Pyrolysis of microalgae: A critical review
Microalgae as an environmentally friendly renewable feedstock can be processed into an array of products via conversion technologies such as algal lipid upgrading, liquefaction, pyrolysis, gasification, and bioethanol technology. As a unique chemical reaction, pyrolysis of microalgae yields useful c...
Saved in:
Published in | Fuel processing technology Vol. 186; pp. 53 - 72 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microalgae as an environmentally friendly renewable feedstock can be processed into an array of products via conversion technologies such as algal lipid upgrading, liquefaction, pyrolysis, gasification, and bioethanol technology. As a unique chemical reaction, pyrolysis of microalgae yields useful chemicals like light olefins, alkanes, syngas, and biochar, as well as the bio-oils with less oxygen, more hydrocarbons, and higher gross heating values than the bio-oils derived from cellulosic biomass. The article reviews direct pyrolysis and catalytic pyrolysis of microalgae, pyrolytic products, reaction mechanisms, and upgrading of microalgal bio-oils. Based on critical analyses of the state-of-the-art developments in this field, the article provides the following perspectives. The current major bottleneck of microalgal technologies is still the productivity, which makes microalgae less abundant than cellulosic biomass at this stage. Biorefinery of microalgae shall be further developed to produce multiple products from various microalgal species. Determination of high value-added chemicals that can be produced from microalgae, especially from microalgal proteins, might significantly promote the development of the conversion technologies and related catalytic science. Designing novel catalysts for the selective conversion of microalgae into fine chemicals may increase the effective use of microalgae and the economics of the process. With the advancement of science and technology, catalytic pyrolysis technology has the potential to process microalgae into biofuels and fine chemicals.
•Critically analyzing the state-of-the-art developments in pyrolysis processes of microalgae•The impact of the biochemical composition of microalgae on pyrolytic products are discussed.•Mechanisms of direct and catalytic pyrolysis of microalgae are summarized.•Perspectives of this technology are presented. |
---|---|
AbstractList | Microalgae as an environmentally friendly renewable feedstock can be processed into an array of products via conversion technologies such as algal lipid upgrading, liquefaction, pyrolysis, gasification, and bioethanol technology. As a unique chemical reaction, pyrolysis of microalgae yields useful chemicals like light olefins, alkanes, syngas, and biochar, as well as the bio-oils with less oxygen, more hydrocarbons, and higher gross heating values than the bio-oils derived from cellulosic biomass. The article reviews direct pyrolysis and catalytic pyrolysis of microalgae, pyrolytic products, reaction mechanisms, and upgrading of microalgal bio-oils. Based on critical analyses of the state-of-the-art developments in this field, the article provides the following perspectives. The current major bottleneck of microalgal technologies is still the productivity, which makes microalgae less abundant than cellulosic biomass at this stage. Biorefinery of microalgae shall be further developed to produce multiple products from various microalgal species. Determination of high value-added chemicals that can be produced from microalgae, especially from microalgal proteins, might significantly promote the development of the conversion technologies and related catalytic science. Designing novel catalysts for the selective conversion of microalgae into fine chemicals may increase the effective use of microalgae and the economics of the process. With the advancement of science and technology, catalytic pyrolysis technology has the potential to process microalgae into biofuels and fine chemicals. Microalgae as an environmentally friendly renewable feedstock can be processed into an array of products via conversion technologies such as algal lipid upgrading, liquefaction, pyrolysis, gasification, and bioethanol technology. As a unique chemical reaction, pyrolysis of microalgae yields useful chemicals like light olefins, alkanes, syngas, and biochar, as well as the bio-oils with less oxygen, more hydrocarbons, and higher gross heating values than the bio-oils derived from cellulosic biomass. The article reviews direct pyrolysis and catalytic pyrolysis of microalgae, pyrolytic products, reaction mechanisms, and upgrading of microalgal bio-oils. Based on critical analyses of the state-of-the-art developments in this field, the article provides the following perspectives. The current major bottleneck of microalgal technologies is still the productivity, which makes microalgae less abundant than cellulosic biomass at this stage. Biorefinery of microalgae shall be further developed to produce multiple products from various microalgal species. Determination of high value-added chemicals that can be produced from microalgae, especially from microalgal proteins, might significantly promote the development of the conversion technologies and related catalytic science. Designing novel catalysts for the selective conversion of microalgae into fine chemicals may increase the effective use of microalgae and the economics of the process. With the advancement of science and technology, catalytic pyrolysis technology has the potential to process microalgae into biofuels and fine chemicals. •Critically analyzing the state-of-the-art developments in pyrolysis processes of microalgae•The impact of the biochemical composition of microalgae on pyrolytic products are discussed.•Mechanisms of direct and catalytic pyrolysis of microalgae are summarized.•Perspectives of this technology are presented. |
Author | Qiu, Qi Ding, Yigang Yang, Changyan Wang, Baowei Li, Rui Zhang, Bo Wang, Cunwen Yang, Hui |
Author_xml | – sequence: 1 givenname: Changyan surname: Yang fullname: Yang, Changyan organization: Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei, China – sequence: 2 givenname: Rui surname: Li fullname: Li, Rui organization: College of Engineering, Northeast Agricultural University, Harbin 150030, Heilongjiang, China – sequence: 3 givenname: Bo surname: Zhang fullname: Zhang, Bo email: bzhang_wh@foxmail.com organization: Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei, China – sequence: 4 givenname: Qi surname: Qiu fullname: Qiu, Qi organization: College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, China – sequence: 5 givenname: Baowei surname: Wang fullname: Wang, Baowei organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin, China – sequence: 6 givenname: Hui surname: Yang fullname: Yang, Hui organization: College of Materials Science and Engineering, Nanjing Tech University, Jiangsu, China – sequence: 7 givenname: Yigang surname: Ding fullname: Ding, Yigang organization: Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei, China – sequence: 8 givenname: Cunwen surname: Wang fullname: Wang, Cunwen organization: Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei, China |
BookMark | eNqFkEtLAzEUhYNUsK3-AxcDbkSY8eYxmehCKMUXFHSh65DJ3JGU6aQmU6X_3pS66kJXd3O-wz3fhIx63yMh5xQKClReL4t2sw7eFgyoKigrgLIjMqaq4nlFlRqRMfBK5VwxOCGTGJcAUJY31ZhcvW6D77bRxcy32crZ4E33YfA2m2U2uMFZ02UBvxx-n5Lj1nQRz37vlLw_3L_Nn_LFy-PzfLbIrQAx5ELI2iC3jSp5jS0zFLhUYExjG1E20NbyRlYKUVKGpuZMNViXrVQSGs4q4FNyue9Nkz43GAe9ctFi15ke_SZqxhiFUpRKpejFQXTpN6FP32lGVQlcSCFTSuxTaVyMAVu9Dm5lwlZT0DuBeqn3AvVOoKZMJ4EJuz3ArBvM4Hw_BOO6_-C7PYzJVLIXdLQOe4uNC2gH3Xj3d8EPimqPNw |
CitedBy_id | crossref_primary_10_1016_j_jaap_2024_106863 crossref_primary_10_1016_j_enconman_2020_112707 crossref_primary_10_1016_j_heliyon_2023_e18350 crossref_primary_10_1016_j_fuel_2021_122841 crossref_primary_10_1016_j_biombioe_2024_107303 crossref_primary_10_1371_journal_pone_0276317 crossref_primary_10_1016_j_algal_2020_102006 crossref_primary_10_1016_j_biombioe_2024_107548 crossref_primary_10_1016_j_scitotenv_2023_162214 crossref_primary_10_1016_j_envres_2020_109596 crossref_primary_10_1016_j_joei_2021_06_019 crossref_primary_10_3390_catal14050286 crossref_primary_10_1016_j_cattod_2023_114248 crossref_primary_10_3390_en14134061 crossref_primary_10_1016_j_jaap_2020_104799 crossref_primary_10_1016_j_jaap_2024_106755 crossref_primary_10_1016_j_jaap_2023_106333 crossref_primary_10_1016_j_resconrec_2023_107323 crossref_primary_10_1007_s42823_023_00478_3 crossref_primary_10_1016_j_biortech_2023_129782 crossref_primary_10_1002_kin_21684 crossref_primary_10_1007_s13399_021_02086_5 crossref_primary_10_3390_separations12020032 crossref_primary_10_1016_j_gerr_2024_100057 crossref_primary_10_1007_s11630_023_1797_8 crossref_primary_10_1016_j_pecs_2023_101071 crossref_primary_10_1016_j_jclepro_2020_124090 crossref_primary_10_1016_j_energy_2019_116645 crossref_primary_10_3389_fenrg_2021_782139 crossref_primary_10_1016_j_chemosphere_2024_141702 crossref_primary_10_1016_j_coal_2024_104498 crossref_primary_10_1007_s10973_022_11895_3 crossref_primary_10_1016_j_fuproc_2020_106364 crossref_primary_10_3390_molecules28166114 crossref_primary_10_1016_j_biortech_2023_129671 crossref_primary_10_1016_j_fuel_2023_128177 crossref_primary_10_9767_bcrec_16_1_10316_205_213 crossref_primary_10_1016_j_biortech_2020_123801 crossref_primary_10_3390_app14156727 crossref_primary_10_3390_en15093173 crossref_primary_10_1016_j_seppur_2024_129336 crossref_primary_10_1002_er_7855 crossref_primary_10_1016_j_jece_2019_103391 crossref_primary_10_1016_j_renene_2020_11_039 crossref_primary_10_1016_j_jaap_2024_106772 crossref_primary_10_1016_j_biortech_2021_126258 crossref_primary_10_1016_j_jece_2021_106762 crossref_primary_10_1016_j_jaap_2020_104902 crossref_primary_10_1016_j_bej_2021_108330 crossref_primary_10_4028_www_scientific_net_KEM_849_47 crossref_primary_10_1080_17597269_2023_2238382 crossref_primary_10_3390_catal11121508 crossref_primary_10_1007_s12155_020_10225_5 crossref_primary_10_1016_j_energy_2022_123667 crossref_primary_10_1016_j_cclet_2020_08_019 crossref_primary_10_1016_j_pecs_2022_101020 crossref_primary_10_1016_j_algal_2021_102206 crossref_primary_10_1016_j_chemosphere_2023_140137 crossref_primary_10_3390_agronomy11081610 crossref_primary_10_1016_j_biortech_2019_122008 crossref_primary_10_1016_j_algal_2024_103662 crossref_primary_10_1016_j_jece_2024_114955 crossref_primary_10_1016_j_rser_2021_111379 crossref_primary_10_1016_j_nexus_2022_100139 crossref_primary_10_1016_j_fuproc_2024_108094 crossref_primary_10_1016_j_jclepro_2022_131768 crossref_primary_10_1016_j_joei_2023_101434 crossref_primary_10_1002_cssc_202400325 crossref_primary_10_1016_j_fuel_2020_118146 crossref_primary_10_1016_j_jaap_2020_104997 crossref_primary_10_1016_j_fuel_2024_132463 crossref_primary_10_1007_s12155_021_10382_1 crossref_primary_10_1088_1755_1315_765_1_012095 crossref_primary_10_1016_j_envpol_2021_116934 crossref_primary_10_1021_acs_energyfuels_0c02295 crossref_primary_10_1016_j_biortech_2023_129748 crossref_primary_10_1002_ente_202001053 crossref_primary_10_1016_j_envres_2023_116263 crossref_primary_10_1016_j_algal_2024_103674 crossref_primary_10_3390_en17143530 crossref_primary_10_1016_j_algal_2024_103559 crossref_primary_10_1016_j_algal_2020_102031 crossref_primary_10_1063_5_0030180 crossref_primary_10_1016_j_cej_2022_140588 crossref_primary_10_1016_j_fuel_2024_131015 crossref_primary_10_1002_jctb_6506 crossref_primary_10_1016_j_fuel_2024_133671 crossref_primary_10_1007_s42773_020_00055_1 crossref_primary_10_1016_j_fuel_2021_121932 crossref_primary_10_1016_j_fuel_2023_128130 crossref_primary_10_1016_j_jaap_2024_106443 crossref_primary_10_1016_j_jaap_2022_105791 crossref_primary_10_1016_j_jaap_2024_106682 crossref_primary_10_1016_j_jtice_2023_105312 crossref_primary_10_1016_j_algal_2022_102635 crossref_primary_10_1016_j_biombioe_2022_106599 crossref_primary_10_1016_j_fuel_2022_125903 crossref_primary_10_3390_su16031201 crossref_primary_10_1016_j_nexus_2023_100231 crossref_primary_10_1039_D0RE00084A crossref_primary_10_1016_S1872_5805_21_60020_3 crossref_primary_10_3390_molecules28217280 crossref_primary_10_1016_j_jenvman_2023_119028 crossref_primary_10_1007_s10811_020_02157_6 crossref_primary_10_1016_j_biortech_2020_123561 crossref_primary_10_1007_s11356_024_32336_8 crossref_primary_10_1016_j_fuel_2024_131156 crossref_primary_10_1016_j_jclepro_2022_134387 crossref_primary_10_1016_j_renene_2019_10_027 crossref_primary_10_3390_su14010499 crossref_primary_10_1007_s13399_019_00572_5 crossref_primary_10_1016_j_jaap_2020_104835 crossref_primary_10_1016_j_biotechadv_2021_107791 crossref_primary_10_1007_s10973_024_13487_9 crossref_primary_10_1016_j_eti_2020_101040 crossref_primary_10_1016_j_joei_2023_101236 crossref_primary_10_3390_en13102648 crossref_primary_10_3390_en16052212 crossref_primary_10_1007_s13399_022_02713_9 crossref_primary_10_1016_j_energy_2020_118579 crossref_primary_10_1007_s11814_022_1064_9 crossref_primary_10_1016_j_biortech_2023_129705 crossref_primary_10_1016_j_algal_2022_102782 crossref_primary_10_1016_j_enconman_2020_113772 crossref_primary_10_1016_j_ecmx_2022_100323 crossref_primary_10_1016_j_energy_2023_128757 crossref_primary_10_3390_catal11010022 crossref_primary_10_3390_pr8111432 crossref_primary_10_1021_acs_energyfuels_9b04024 crossref_primary_10_1016_j_jaap_2023_105879 crossref_primary_10_1007_s12155_020_10222_8 crossref_primary_10_1016_j_fuel_2022_123958 crossref_primary_10_1002_er_5289 crossref_primary_10_1016_j_biortech_2023_128860 crossref_primary_10_1016_j_biortech_2019_121371 crossref_primary_10_1016_j_fuproc_2023_107818 crossref_primary_10_1016_j_jaap_2024_106365 crossref_primary_10_1016_j_egyr_2023_09_068 crossref_primary_10_1016_j_scitotenv_2021_151170 crossref_primary_10_1016_j_jaap_2023_106083 crossref_primary_10_1080_17597269_2021_1878577 crossref_primary_10_1016_j_jaap_2021_105070 crossref_primary_10_1016_j_algal_2024_103602 crossref_primary_10_1016_j_colsurfb_2024_114475 crossref_primary_10_1007_s10668_024_05841_6 crossref_primary_10_32604_jrm_2023_045822 crossref_primary_10_1016_j_fuel_2019_116724 crossref_primary_10_3390_jmse10070928 crossref_primary_10_1016_j_jhazmat_2021_125242 crossref_primary_10_1016_j_fuel_2023_130099 crossref_primary_10_1016_j_fuproc_2021_107126 crossref_primary_10_1007_s40726_022_00243_6 crossref_primary_10_1016_j_biortech_2021_126096 crossref_primary_10_1002_ente_202000025 crossref_primary_10_1016_j_biortech_2019_121939 crossref_primary_10_1016_j_jclepro_2023_136705 crossref_primary_10_1016_j_fuproc_2022_107413 crossref_primary_10_1016_j_biortech_2022_128087 crossref_primary_10_1007_s12155_020_10185_w crossref_primary_10_1016_j_biteb_2021_100694 crossref_primary_10_1016_j_fuproc_2021_107034 crossref_primary_10_1016_j_fuel_2021_122765 crossref_primary_10_1016_j_nbt_2025_02_007 crossref_primary_10_1016_j_biortech_2020_123502 crossref_primary_10_1016_j_biortech_2020_122774 crossref_primary_10_1016_j_fuel_2022_126299 crossref_primary_10_1016_j_fuel_2020_119190 crossref_primary_10_1021_acs_est_3c10594 crossref_primary_10_1016_j_scitotenv_2020_144660 crossref_primary_10_1016_j_enconman_2021_114094 crossref_primary_10_1016_j_fuel_2024_131643 crossref_primary_10_1007_s11101_022_09819_y crossref_primary_10_1039_D4GC00606B crossref_primary_10_1016_j_molliq_2021_117667 crossref_primary_10_1080_21655979_2023_2252157 crossref_primary_10_1007_s10163_024_01888_9 crossref_primary_10_1016_j_eti_2024_103667 crossref_primary_10_1007_s10811_023_03104_x crossref_primary_10_3390_en16031316 crossref_primary_10_1002_cben_202400035 crossref_primary_10_1016_j_fuel_2023_127893 crossref_primary_10_1021_acsomega_1c02678 crossref_primary_10_1063_5_0127158 crossref_primary_10_1016_j_energy_2022_123165 crossref_primary_10_2139_ssrn_3978731 crossref_primary_10_1016_j_enconman_2022_115475 crossref_primary_10_1002_bbb_2597 crossref_primary_10_1016_j_jece_2023_110917 crossref_primary_10_1080_15567036_2024_2428393 crossref_primary_10_1016_j_cattod_2022_06_033 crossref_primary_10_1016_j_algal_2022_102908 crossref_primary_10_1016_j_fuproc_2020_106686 crossref_primary_10_1016_j_joei_2023_101182 crossref_primary_10_1016_j_jaap_2023_106320 crossref_primary_10_1016_j_tibtech_2020_02_009 crossref_primary_10_1016_j_chemosphere_2023_137826 crossref_primary_10_1016_j_chemosphere_2022_135565 crossref_primary_10_1016_j_jaap_2019_02_014 crossref_primary_10_1016_j_nexus_2023_100199 crossref_primary_10_1016_j_cej_2023_147223 crossref_primary_10_1016_j_fuproc_2023_107986 crossref_primary_10_1016_j_apcatb_2023_123135 crossref_primary_10_1186_s13068_024_02512_6 crossref_primary_10_1021_acscatal_2c06147 crossref_primary_10_3390_su13010053 crossref_primary_10_1016_j_jhazmat_2021_128147 crossref_primary_10_1021_acs_energyfuels_2c02692 crossref_primary_10_1016_j_seta_2023_103128 crossref_primary_10_1016_j_enconman_2021_114979 crossref_primary_10_1016_j_cej_2024_155362 crossref_primary_10_1016_j_chemosphere_2024_141251 crossref_primary_10_1016_j_energy_2024_134309 crossref_primary_10_1007_s10811_023_03070_4 crossref_primary_10_1016_j_scitotenv_2022_159155 crossref_primary_10_3390_biomass4020016 crossref_primary_10_1016_j_biteb_2022_101071 crossref_primary_10_2139_ssrn_4164391 |
Cites_doi | 10.17737/tre.2016.2.2.0022 10.1016/j.biortech.2011.12.115 10.1081/CR-100101952 10.1016/j.fuproc.2017.05.001 10.1016/S0960-8524(01)00072-4 10.1016/j.enconman.2016.03.013 10.1007/s11244-008-9160-6 10.1016/j.biortech.2014.09.097 10.1016/j.biombioe.2011.04.043 10.13031/trans.12028 10.1016/j.biortech.2012.08.016 10.1039/C6GC01937D 10.1016/j.biortech.2010.01.070 10.1021/acs.est.7b00434 10.17737/tre.2017.3.1.0013 10.1039/c3gc36958g 10.1016/j.biortech.2017.11.080 10.1016/j.biortech.2015.06.029 10.1016/j.ejmech.2018.02.065 10.1016/j.biombioe.2013.12.011 10.1039/c3gc00031a 10.1016/j.biortech.2017.02.006 10.1039/C5RA02814K 10.1016/j.cattod.2011.08.009 10.1016/j.biortech.2011.12.095 10.1080/15567036.2016.1214641 10.1016/j.biortech.2012.04.077 10.1016/j.biotechadv.2011.05.015 10.1016/j.biombioe.2012.08.023 10.1016/j.renene.2018.02.136 10.1016/j.biortech.2018.09.076 10.20964/2018.07.06 10.1016/j.biortech.2014.03.136 10.1016/j.biortech.2014.11.015 10.1016/S1872-5813(13)60030-4 10.1039/C3GC41382A 10.1016/j.fuel.2004.10.010 10.1016/j.rser.2013.06.032 10.1080/01425919708914325 10.1016/j.rser.2015.04.049 10.1016/j.energy.2016.11.146 10.1016/j.egypro.2017.12.060 10.3926/jotse.206 10.1016/j.biombioe.2013.05.035 10.1007/s12155-014-9467-z 10.1007/s00299-018-2270-0 10.1016/j.biortech.2011.01.055 10.1016/j.biortech.2011.08.030 10.1016/j.energy.2014.05.008 10.1016/j.rser.2014.07.030 10.1016/j.rser.2009.10.009 10.1016/j.biortech.2018.08.127 10.1016/j.enconman.2016.10.077 10.1016/0926-860X(92)80075-N 10.1016/j.fuproc.2018.08.002 10.1021/ie5042935 10.1016/j.jbiotec.2004.01.013 10.1021/ef960029h 10.1016/j.cattod.2005.07.188 10.1371/journal.pone.0012641 10.1016/j.jaap.2003.11.004 10.1007/s12155-018-9927-y 10.1016/j.biortech.2018.11.083 10.1016/j.tca.2007.10.014 10.1021/ef401500z 10.1016/j.biortech.2011.09.055 10.1016/j.cej.2014.11.045 10.1016/j.algal.2015.12.008 10.1016/j.fuproc.2018.07.027 10.1021/ie404426x 10.1016/j.algal.2018.06.024 10.1021/acs.est.8b02485 10.1016/j.biortech.2012.12.115 10.1007/s12649-017-9996-8 10.1039/c1ee01230d 10.1016/j.jaap.2008.10.003 10.1016/j.renene.2015.03.088 10.1080/009083190910389 10.1039/C5CY00029G 10.1016/j.jaap.2011.11.018 10.1039/C6GC01239F 10.1016/j.rser.2010.09.018 10.1016/j.renene.2017.12.056 10.1016/j.biortech.2016.11.077 10.1016/j.biortech.2012.12.002 10.1016/j.biortech.2018.01.141 10.1016/j.biortech.2006.10.025 10.1016/j.biortech.2018.04.073 10.1016/j.algal.2015.12.021 10.1023/A:1008115025002 10.1016/0165-2370(93)80006-L 10.1016/j.apenergy.2011.01.059 10.1016/j.biortech.2009.08.020 10.1023/A:1008153831875 10.1039/c3ra43850c 10.1016/j.biortech.2014.05.100 10.1039/c3gc40558c 10.1021/ef201373m 10.1021/ie960747r 10.1016/j.biortech.2015.09.021 10.1016/j.biortech.2010.07.106 10.1016/j.biortech.2017.06.087 10.1016/j.biortech.2013.06.102 10.1002/bbb.97 10.1016/j.fuproc.2005.01.016 10.1080/15567036.2012.682199 10.1016/j.energy.2013.01.059 10.1111/gcbb.12018 10.1016/j.biortech.2017.08.093 10.2174/1385272820666160525114627 10.1002/ente.201600107 10.1016/j.fuel.2015.08.020 10.1016/j.biortech.2012.05.080 10.1016/j.fuel.2018.02.166 10.1016/j.biortech.2014.09.132 10.1016/j.biortech.2017.09.059 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier Science Ltd. Apr 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Apr 2019 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M 7S9 L.6 |
DOI | 10.1016/j.fuproc.2018.12.012 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7188 |
EndPage | 72 |
ExternalDocumentID | 10_1016_j_fuproc_2018_12_012 S0378382018317843 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION GROUPED_DOAJ SSH 7TB 8FD EFKBS FR3 H8D L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-446bae3cd853bef2a103680aadcd45d0fb69678ee612eab328deb5f6860d32703 |
IEDL.DBID | .~1 |
ISSN | 0378-3820 |
IngestDate | Fri Jul 11 02:19:52 EDT 2025 Fri Jul 25 07:41:07 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Tue Jul 01 03:04:36 EDT 2025 Fri Feb 23 02:35:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pyrolysis Microalgae Biochar Mechanism Bio-oil |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-446bae3cd853bef2a103680aadcd45d0fb69678ee612eab328deb5f6860d32703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2185034646 |
PQPubID | 2047467 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2221054588 proquest_journals_2185034646 crossref_primary_10_1016_j_fuproc_2018_12_012 crossref_citationtrail_10_1016_j_fuproc_2018_12_012 elsevier_sciencedirect_doi_10_1016_j_fuproc_2018_12_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Fuel processing technology |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Zhang, Wu, Deng, Yang, Cui, Ding (bb0240) 2017; 3 Brown, Wang (bb0090) 2017 U.S. Department of Energy (bb0005) 2010 Bach, Chen (bb0280) 2017; 131 Elliott, Biller, Ross, Schmidt, Jones (bb0050) 2015; 178 Pan, Hu, Yang, Li, Dong, Zhu, Tong, Qing, Fan (bb0160) 2010; 101 Dong, Chen, Xue, Zhang, Zhou, Liu, Xu, Liu (bb0470) 2013; 3 Guisnet, Gnep, Alario (bb0630) 1992; 89 Adamczyk, Sajdak (bb0210) 2018; 9 Chaiwong, Kiatsiriroat, Vorayos, Thararax (bb0140) 2013; 56 Parikh, Channiwala, Ghosal (bb0560) 2005; 84 Xu, Zhang, Fu (bb0070) 2017; 5 Yang, Li, Cui, Wu, Ding, Wu, Zhang (bb0255) 2017; 39 Rahman, Liu, Cai (bb0085) 2018; 180 Wang, Johnston, Brown (bb0065) 2014; 173 Na, Han, Oh, Park, Jung, Han, Yoon, Chung, Kim, Ko (bb0165) 2012; 185 Shimizu, Watanabe, Kataoka, Shoji, Abe, Morishita, Ichimura (bb0505) 2000 Wu, Wu, Wu, Chen, Hu, Yang (bb0420) 2015; 192 Sanchez-Silva, López-González, Garcia-Minguillan, Valverde (bb0205) 2013; 130 Gao, Sun, Xu, Xiao (bb0635) 2017; 225 U.S. Department of Energy (bb0180) 2014 Pollak, Romeder, Hagedorn, Gelbke (bb0520) 2000 Peng, Wu, Tu, Zhao (bb0270) 2001; 80 Yu, Maliutina, Tahmasebi (bb0500) 2018; 270 Carlson, Tompsett, Conner, Huber (bb0650) 2009; 52 Peng, Wu, Tu (bb0260) 2001; 13 Demirbas (bb0330) 2011; 88 Kumar, Shobana, Chen, Bach, Kim, Atabani, Chang (bb0600) 2017; 19 Aysu, Ola, Maroto-Valer, Sanna (bb0365) 2017; 166 Harreus (bb0510) 2000 Guo, Wu, Wang, Zhang, Xu (bb0680) 2015; 54 Albrecht, Zhu, Schmidt, Billing, Hart, Jones, Maupin, Hallen, Ahrens, Anderson (bb0040) 2016; 14 Prakash, Pushparaj, Carlozzi, Torzillo, Montaini, Materassi (bb0245) 1997; 18 Qiu, Zhang, Lv (bb0315) 2018; 13 Cai, Wu, Liu, Huber (bb0290) 2013; 15 Yu, Dai, Huang, Fang, Xu, Lin, Ma (bb0450) 2018; 125 Li, Liu, Shi, Wang, Hu, Yang, Wang (bb0595) 2008; 467 Gong, Zhang, Zhang, Huang, Xu (bb0110) 2014; 28 Azizi, Keshavarz Moraveji, Abedini Najafabadi (bb0430) 2018; 247 Naqvi, Naqvi, Noor, Hussain, Iqbal, Uemura, Nishiyama (bb0370) 2017; 142 Bird, Wurster, de Paula Silva, Bass, de Nys (bb0565) 2011; 102 Parmar, Singh, Pandey, Gnansounou, Madamwar (bb0010) 2011; 102 Kabyemela, Adschiri, Malaluan, Arai (bb0645) 1997; 36 Zainan, Srivatsa, Li, Bhattacharya (bb0360) 2018; 223 Wang, Brown, Homsy, Martinez, Sidhu (bb0340) 2013; 127 Gautam, Vinu (bb0380) 2018; 34 Borges, Xie, Min, Muniz, Farenzena, Trierweiler, Chen, Ruan (bb0105) 2014; 166 Malheiro, Ribeiro, Silva, Caetano, Ferreira, Guedes (bb0250) 2015; 5 Kubičková, Snåre, Eränen, Mäki-Arvela, Murzin (bb0610) 2005; 106 Chen, Ma, He (bb0425) 2012; 117 López-González, Fernandez-Lopez, Valverde, Sanchez-Silva (bb0310) 2014; 73 Hagen, Roessner (bb0620) 2000; 42 Tian, Li, Liu, Zhang, Lu (bb0055) 2014; 38 Wu, Yang, Li, Yang (bb0490) 2018; 255 Ronsse, van Hecke, Dickinson, Prins (bb0550) 2013; 5 Zhang, Xiu, Shahbazi (bb0400) 2012 Kim, Koo, Lee (bb0130) 2014; 162 Yan, Lu, F. To, Li, Yu (bb0545) 2015; 5 Dadashpour, Emami (bb0515) 2018; 150 Dunford, Zhou (bb0305) 2017; 60 Dong, Knoshaug, Davis, Laurens, Van Wychen, Pienkos, Nagle (bb0035) 2016; 19 Yang, Zhang, Cui, Wu, Ding, Wu (bb0655) 2016; 2 Boley, Landers (bb0570) 1969 Bach, Chen (bb0275) 2017; 246 Idem, Katikaneni, Bakhshi (bb0640) 1996; 10 Tadros (bb0585) 1985 Hong, Chen, Luo, Pang, Lester, Wu (bb0575) 2017; 237 Zou, Wu, Yang, Li, Tong (bb0285) 2010; 101 Babich, van der Hulst, Lefferts, Moulijn, O'Connor, Seshan (bb0335) 2011; 35 Zhang, Seddon (bb0670) 2018 Aresta, Dibenedetto, Barberio (bb0015) 2005; 86 Biddy, Davis, Jones (bb0235) 2013 Zhang, Wang, Processing (bb0080) 2013 Xie, Chen, Peng, Liu, Peng, Zhang, Cheng, Wan, Liu, Ruan (bb0615) 2015; 5 Söyler, Goldfarb, Ceylan, Saçan (bb0300) 2017; 120 Moen, Yang, Zhang, Lei, Hennessy, Wan, Le, Liu, Chen, Ruan (bb0395) 2009; 2 Marcilla, Catalá, García-Quesada, Valdés, Hernández (bb0225) 2013; 27 Chen, Yang, Chen, Xia, Chen, Chen (bb0605) 2017; 51 Du, Hu, Ma, Cheng, Liu, Lin, Wan, Lei, Chen, Ruan (bb0475) 2013; 130 NAABB (bb0690) 2014 Yang, Zhang, Moen, Hennessy, Liu, Lin, Wan, Lei, Chen, Ruan (bb0385) 2010; 3 Zhao, Bruck, Lercher (bb0660) 2013; 15 Zhang, Wu, Yang, Qiu, Yan, Li, Wang, Wu, Ding (bb0665) 2018; 11 Wang, Zhao, Tang, Yang (bb0150) 2015; 179 Christenson, Sims (bb0020) 2011; 29 Davis, Biddy, Jones (bb0030) 2013 Antizar-Ladislao, Turrion-Gomez (bb0025) 2008; 2 Fang, Gu, Dai, Xu, Yu, Lin, Chen, Ma (bb0445) 2018; 250 Zacher, Olarte, Santosa, Elliott, Jones (bb0535) 2014; 16 Guo, Yeh, Song, Xu, Wang (bb0045) 2015; 48 Kim, Ly, Kim, Lee, Woo (bb0145) 2015; 263 Wang, Zhang, Xiu, Li, Shi (bb0075) 2016; 20 ASTM D3175-11 (bb0095) 2011 Hu, Zheng, Yan, Xiao, Liu (bb0465) 2013; 52 Hudek, Davis, Ibbini, Erickson (bb0695) 2014 Gelin, Gatellier, Damsté, Metzger, Derenne, Largeau, de Leeuw (bb0190) 1993; 27 Yang, Li, Cui, Liu, Qiu, Ding, Wu, Zhang (bb0685) 2016; 18 Na, Park, Kim, Oh, Jeon, Kook, Shin, Lee (bb0215) 2015; 81 U.S. Department of Agriculture (bb0540) 2017 Thangalazhy-Gopakumar, Adhikari, Chattanathan, Gupta (bb0115) 2012; 118 Miao, Wu (bb0170) 2004; 110 Yang, Wang, Zhao, Li (bb0265) 2014; 7 Du, Li, Wang, Wan, Chen, Wang, Lin, Liu, Chen, Ruan (bb0100) 2011; 102 Maddi, Viamajala, Varanasi (bb0120) 2011; 102 Lehto, Oasmaa, Solantausta, Kyto, Chiaramonti (bb0495) 2013; 87 Zhong, Guo, Wang, Zhang (bb0675) 2013; 41 Miao, Wu, Yang (bb0125) 2004; 71 Andrade, Batista, Lira, Barrozo, Vieira (bb0375) 2018; 119 Zhao, Wang, Yang (bb0435) 2015; 198 Tang, Chen, Chen, Yang, Chen (bb0455) 2019; 274 Belotti, de Caprariis, De Filippis, Scarsella, Verdone (bb0175) 2014; 61 Peng, Wu, Tu (bb0320) 2000; 12 Wang, Brown (bb0355) 2013; 15 Song, Guo (bb0555) 2012; 94 Ye, Li, Chen, Zhang, Xu (bb0295) 2010; 5 Wu, Wu, Zhang, Xiao (bb0060) 2018; 179 Chen, Yang, Chen, Li, Xia, Chen (bb0460) 2018; 52 Campanella, Muncrief, Harold, Griffith, Whitton, Weber (bb0350) 2012; 109 Huang, Tahmasebi, Maliutina, Yu (bb0480) 2017; 245 Maher, Bressler (bb0590) 2007; 98 Ahmad, Yasin, Derek, Lim (bb0230) 2011; 15 Wang, Zhao, Yang (bb0440) 2016; 117 Brennan, Owende (bb0220) 2010; 14 Demirbaş (bb0325) 2006; 28 Poliner, Farré, Benning (bb0700) 2018; 37 Zhang, Zhong, Ding, Cao, Liu (bb0625) 2014; 53 Holladay (bb0390) 2014 Grierson, Strezov, Ellem, McGregor, Herbertson (bb0195) 2009; 85 Campanella, Harold (bb0345) 2012; 46 Wu, Li, Zhang, Yang, Yang (bb0485) 2019; 271 Hu, Ma, Chen (bb0200) 2012; 107 U.S. Department of Energy (bb0185) 2018 Xie, Addy, Liu, Zhang, Cheng, Wan, Li, Liu, Lin, Chen, Ruan (bb0415) 2015; 160 Beneroso, Bermúdez, Arenillas, Menéndez (bb0155) 2013; 144 Jena, Das (bb0135) 2011; 25 Higman, van der Burgt (bb0580) 2008 Chen, Walsh, Koenig (bb0405) 1988 Maliutina, Tahmasebi, Yu (bb0525) 2018; 262 Zhang, Cheng, Vispute, Xiao, Huber (bb0410) 2011; 4 Xu, Yu, Hu, Wei, Cui (bb0530) 2014; 36 Lehto (10.1016/j.fuproc.2018.12.012_bb0495) 2013; 87 Xie (10.1016/j.fuproc.2018.12.012_bb0615) 2015; 5 Antizar-Ladislao (10.1016/j.fuproc.2018.12.012_bb0025) 2008; 2 Song (10.1016/j.fuproc.2018.12.012_bb0555) 2012; 94 Kumar (10.1016/j.fuproc.2018.12.012_bb0600) 2017; 19 Gautam (10.1016/j.fuproc.2018.12.012_bb0380) 2018; 34 Kim (10.1016/j.fuproc.2018.12.012_bb0145) 2015; 263 Babich (10.1016/j.fuproc.2018.12.012_bb0335) 2011; 35 Chen (10.1016/j.fuproc.2018.12.012_bb0425) 2012; 117 Xu (10.1016/j.fuproc.2018.12.012_bb0530) 2014; 36 Ye (10.1016/j.fuproc.2018.12.012_bb0295) 2010; 5 Ronsse (10.1016/j.fuproc.2018.12.012_bb0550) 2013; 5 Malheiro (10.1016/j.fuproc.2018.12.012_bb0250) 2015; 5 Zhong (10.1016/j.fuproc.2018.12.012_bb0675) 2013; 41 Miao (10.1016/j.fuproc.2018.12.012_bb0170) 2004; 110 Zacher (10.1016/j.fuproc.2018.12.012_bb0535) 2014; 16 Wang (10.1016/j.fuproc.2018.12.012_bb0340) 2013; 127 Yu (10.1016/j.fuproc.2018.12.012_bb0450) 2018; 125 Parikh (10.1016/j.fuproc.2018.12.012_bb0560) 2005; 84 Wang (10.1016/j.fuproc.2018.12.012_bb0355) 2013; 15 Hu (10.1016/j.fuproc.2018.12.012_bb0200) 2012; 107 Sanchez-Silva (10.1016/j.fuproc.2018.12.012_bb0205) 2013; 130 Demirbas (10.1016/j.fuproc.2018.12.012_bb0330) 2011; 88 Tang (10.1016/j.fuproc.2018.12.012_bb0455) 2019; 274 Tadros (10.1016/j.fuproc.2018.12.012_bb0585) Beneroso (10.1016/j.fuproc.2018.12.012_bb0155) 2013; 144 Dong (10.1016/j.fuproc.2018.12.012_bb0470) 2013; 3 Yang (10.1016/j.fuproc.2018.12.012_bb0655) 2016; 2 Albrecht (10.1016/j.fuproc.2018.12.012_bb0040) 2016; 14 Wang (10.1016/j.fuproc.2018.12.012_bb0150) 2015; 179 Biddy (10.1016/j.fuproc.2018.12.012_bb0235) 2013 Tian (10.1016/j.fuproc.2018.12.012_bb0055) 2014; 38 Peng (10.1016/j.fuproc.2018.12.012_bb0320) 2000; 12 Huang (10.1016/j.fuproc.2018.12.012_bb0480) 2017; 245 Wang (10.1016/j.fuproc.2018.12.012_bb0075) 2016; 20 Zou (10.1016/j.fuproc.2018.12.012_bb0285) 2010; 101 Bach (10.1016/j.fuproc.2018.12.012_bb0280) 2017; 131 Naqvi (10.1016/j.fuproc.2018.12.012_bb0370) 2017; 142 Zhang (10.1016/j.fuproc.2018.12.012_bb0240) 2017; 3 Zhang (10.1016/j.fuproc.2018.12.012_bb0410) 2011; 4 Pollak (10.1016/j.fuproc.2018.12.012_bb0520) 2000 U.S. Department of Energy (10.1016/j.fuproc.2018.12.012_bb0005) Wang (10.1016/j.fuproc.2018.12.012_bb0440) 2016; 117 Qiu (10.1016/j.fuproc.2018.12.012_bb0315) 2018; 13 Li (10.1016/j.fuproc.2018.12.012_bb0595) 2008; 467 Campanella (10.1016/j.fuproc.2018.12.012_bb0350) 2012; 109 Shimizu (10.1016/j.fuproc.2018.12.012_bb0505) 2000 Wu (10.1016/j.fuproc.2018.12.012_bb0490) 2018; 255 Parmar (10.1016/j.fuproc.2018.12.012_bb0010) 2011; 102 Dong (10.1016/j.fuproc.2018.12.012_bb0035) 2016; 19 Campanella (10.1016/j.fuproc.2018.12.012_bb0345) 2012; 46 Chen (10.1016/j.fuproc.2018.12.012_bb0605) 2017; 51 Grierson (10.1016/j.fuproc.2018.12.012_bb0195) 2009; 85 Yu (10.1016/j.fuproc.2018.12.012_bb0500) 2018; 270 Andrade (10.1016/j.fuproc.2018.12.012_bb0375) 2018; 119 Azizi (10.1016/j.fuproc.2018.12.012_bb0430) 2018; 247 Guisnet (10.1016/j.fuproc.2018.12.012_bb0630) 1992; 89 Gao (10.1016/j.fuproc.2018.12.012_bb0635) 2017; 225 Gelin (10.1016/j.fuproc.2018.12.012_bb0190) 1993; 27 Idem (10.1016/j.fuproc.2018.12.012_bb0640) 1996; 10 Boley (10.1016/j.fuproc.2018.12.012_bb0570) 1969 Bach (10.1016/j.fuproc.2018.12.012_bb0275) 2017; 246 Xie (10.1016/j.fuproc.2018.12.012_bb0415) 2015; 160 NAABB (10.1016/j.fuproc.2018.12.012_bb0690) Higman (10.1016/j.fuproc.2018.12.012_bb0580) 2008 Thangalazhy-Gopakumar (10.1016/j.fuproc.2018.12.012_bb0115) 2012; 118 Zhao (10.1016/j.fuproc.2018.12.012_bb0435) 2015; 198 López-González (10.1016/j.fuproc.2018.12.012_bb0310) 2014; 73 U.S. Department of Energy (10.1016/j.fuproc.2018.12.012_bb0180) Poliner (10.1016/j.fuproc.2018.12.012_bb0700) 2018; 37 Wang (10.1016/j.fuproc.2018.12.012_bb0065) 2014; 173 Jena (10.1016/j.fuproc.2018.12.012_bb0135) 2011; 25 Kabyemela (10.1016/j.fuproc.2018.12.012_bb0645) 1997; 36 Holladay (10.1016/j.fuproc.2018.12.012_bb0390) Christenson (10.1016/j.fuproc.2018.12.012_bb0020) 2011; 29 Davis (10.1016/j.fuproc.2018.12.012_bb0030) 2013 Belotti (10.1016/j.fuproc.2018.12.012_bb0175) 2014; 61 Chen (10.1016/j.fuproc.2018.12.012_bb0460) 2018; 52 Maddi (10.1016/j.fuproc.2018.12.012_bb0120) 2011; 102 Prakash (10.1016/j.fuproc.2018.12.012_bb0245) 1997; 18 Cai (10.1016/j.fuproc.2018.12.012_bb0290) 2013; 15 Zhang (10.1016/j.fuproc.2018.12.012_bb0400) 2012 Wu (10.1016/j.fuproc.2018.12.012_bb0485) 2019; 271 Brown (10.1016/j.fuproc.2018.12.012_bb0090) 2017 Aysu (10.1016/j.fuproc.2018.12.012_bb0365) 2017; 166 Zhang (10.1016/j.fuproc.2018.12.012_bb0665) 2018; 11 Zhang (10.1016/j.fuproc.2018.12.012_bb0625) 2014; 53 ASTM D3175-11 (10.1016/j.fuproc.2018.12.012_bb0095) 2011 Yang (10.1016/j.fuproc.2018.12.012_bb0255) 2017; 39 Hong (10.1016/j.fuproc.2018.12.012_bb0575) 2017; 237 Zhao (10.1016/j.fuproc.2018.12.012_bb0660) 2013; 15 Zainan (10.1016/j.fuproc.2018.12.012_bb0360) 2018; 223 Pan (10.1016/j.fuproc.2018.12.012_bb0160) 2010; 101 Moen (10.1016/j.fuproc.2018.12.012_bb0395) 2009; 2 Carlson (10.1016/j.fuproc.2018.12.012_bb0650) 2009; 52 Rahman (10.1016/j.fuproc.2018.12.012_bb0085) 2018; 180 Du (10.1016/j.fuproc.2018.12.012_bb0100) 2011; 102 Ahmad (10.1016/j.fuproc.2018.12.012_bb0230) 2011; 15 Hagen (10.1016/j.fuproc.2018.12.012_bb0620) 2000; 42 Maher (10.1016/j.fuproc.2018.12.012_bb0590) 2007; 98 Chaiwong (10.1016/j.fuproc.2018.12.012_bb0140) 2013; 56 Yan (10.1016/j.fuproc.2018.12.012_bb0545) 2015; 5 Yang (10.1016/j.fuproc.2018.12.012_bb0685) 2016; 18 Xu (10.1016/j.fuproc.2018.12.012_bb0070) 2017; 5 Marcilla (10.1016/j.fuproc.2018.12.012_bb0225) 2013; 27 Na (10.1016/j.fuproc.2018.12.012_bb0215) 2015; 81 Hu (10.1016/j.fuproc.2018.12.012_bb0465) 2013; 52 Guo (10.1016/j.fuproc.2018.12.012_bb0045) 2015; 48 Brennan (10.1016/j.fuproc.2018.12.012_bb0220) 2010; 14 Kubičková (10.1016/j.fuproc.2018.12.012_bb0610) 2005; 106 Yang (10.1016/j.fuproc.2018.12.012_bb0265) 2014; 7 Dadashpour (10.1016/j.fuproc.2018.12.012_bb0515) 2018; 150 Guo (10.1016/j.fuproc.2018.12.012_bb0680) 2015; 54 Du (10.1016/j.fuproc.2018.12.012_bb0475) 2013; 130 Söyler (10.1016/j.fuproc.2018.12.012_bb0300) 2017; 120 Fang (10.1016/j.fuproc.2018.12.012_bb0445) 2018; 250 Peng (10.1016/j.fuproc.2018.12.012_bb0260) 2001; 13 Elliott (10.1016/j.fuproc.2018.12.012_bb0050) 2015; 178 Peng (10.1016/j.fuproc.2018.12.012_bb0270) 2001; 80 Wu (10.1016/j.fuproc.2018.12.012_bb0060) 2018; 179 Yang (10.1016/j.fuproc.2018.12.012_bb0385) 2010; 3 U.S. Department of Agriculture (10.1016/j.fuproc.2018.12.012_bb0540) Kim (10.1016/j.fuproc.2018.12.012_bb0130) 2014; 162 Wu (10.1016/j.fuproc.2018.12.012_bb0420) 2015; 192 Adamczyk (10.1016/j.fuproc.2018.12.012_bb0210) 2018; 9 Borges (10.1016/j.fuproc.2018.12.012_bb0105) 2014; 166 Gong (10.1016/j.fuproc.2018.12.012_bb0110) 2014; 28 Hudek (10.1016/j.fuproc.2018.12.012_bb0695) 2014 Zhang (10.1016/j.fuproc.2018.12.012_bb0080) 2013 Demirbaş (10.1016/j.fuproc.2018.12.012_bb0325) 2006; 28 Miao (10.1016/j.fuproc.2018.12.012_bb0125) 2004; 71 Zhang (10.1016/j.fuproc.2018.12.012_bb0670) 2018 Bird (10.1016/j.fuproc.2018.12.012_bb0565) 2011; 102 Dunford (10.1016/j.fuproc.2018.12.012_bb0305) 2017; 60 Maliutina (10.1016/j.fuproc.2018.12.012_bb0525) 2018; 262 Na (10.1016/j.fuproc.2018.12.012_bb0165) 2012; 185 U.S. Department of Energy (10.1016/j.fuproc.2018.12.012_bb0185) Chen (10.1016/j.fuproc.2018.12.012_bb0405) 1988 Harreus (10.1016/j.fuproc.2018.12.012_bb0510) 2000 Aresta (10.1016/j.fuproc.2018.12.012_bb0015) 2005; 86 |
References_xml | – volume: 150 start-page: 9 year: 2018 end-page: 29 ident: bb0515 article-title: Indole in the target-based design of anticancer agents: a versatile scaffold with diverse mechanisms publication-title: Eur. J. Med. Chem. – volume: 13 start-page: 6484 year: 2018 end-page: 6502 ident: bb0315 article-title: Green energy based thermochemical and photochemical hydrogen production publication-title: Int. J. Electrochem. Sci. – start-page: 131 year: 2012 end-page: 143 ident: bb0400 article-title: Microwave-assisted pyrolysis oil: process, characterization, and fractionation publication-title: Oil: Production, Consumption and Environmental Impact – year: 2011 ident: bb0095 article-title: Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke – volume: 13 start-page: 5 year: 2001 end-page: 12 ident: bb0260 article-title: Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production publication-title: J. Appl. Phycol. – volume: 102 start-page: 1886 year: 2011 end-page: 1891 ident: bb0565 article-title: Algal biochar – production and properties publication-title: Bioresour. Technol. – volume: 60 start-page: 561 year: 2017 ident: bb0305 article-title: Thermal degradation and microwave-assisted pyrolysis of green algae and cyanobacteria isolated from the Great Salt Plains publication-title: Trans. ASABE – year: 2018 ident: bb0185 article-title: Bioenergy Technologies Office Closed Funding Opportunities – year: 2000 ident: bb0510 article-title: Pyrrole publication-title: Ullmann's Encyclopedia of Industrial Chemistry – year: 2014 ident: bb0390 article-title: All About Microwave Ovens – volume: 16 start-page: 491 year: 2014 end-page: 515 ident: bb0535 article-title: A review and perspective of recent bio-oil hydrotreating research publication-title: Green Chem. – volume: 53 start-page: 9979 year: 2014 end-page: 9984 ident: bb0625 article-title: Catalytic upgrading of corn stalk fast pyrolysis vapors with fresh and hydrothermally treated HZSM-5 catalysts using Py-GC/MS publication-title: Ind. Eng. Chem. Res. – volume: 54 start-page: 890 year: 2015 end-page: 899 ident: bb0680 article-title: Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni–Cu/ZrO publication-title: Ind. Eng. Chem. Res. – volume: 27 start-page: 11 year: 2013 end-page: 19 ident: bb0225 article-title: A review of thermochemical conversion of microalgae publication-title: Renew. Sust. Energ. Rev. – volume: 142 start-page: 381 year: 2017 end-page: 385 ident: bb0370 article-title: Catalytic pyrolysis of publication-title: Energy Procedia – year: 2014 ident: bb0180 article-title: Algal Biofuels Strategy Proceedings from the March 26–27, 2014, Workshop – volume: 28 start-page: 933 year: 2006 end-page: 940 ident: bb0325 article-title: Oily products from mosses and algae via pyrolysis publication-title: Energy Sources, Part A – volume: 106 start-page: 197 year: 2005 end-page: 200 ident: bb0610 article-title: Hydrocarbons for diesel fuel via decarboxylation of vegetable oils publication-title: Catal. Today – volume: 110 start-page: 85 year: 2004 end-page: 93 ident: bb0170 article-title: High yield bio-oil production from fast pyrolysis by metabolic controlling of publication-title: J. Biotechnol. – volume: 192 start-page: 522 year: 2015 end-page: 528 ident: bb0420 article-title: Study on pyrolytic kinetics and behavior: the co-pyrolysis of microalgae and polypropylene publication-title: Bioresour. Technol. – volume: 179 start-page: 436 year: 2018 end-page: 442 ident: bb0060 article-title: Cellulose-lignin interactions during catalytic pyrolysis with different zeolite catalysts publication-title: Fuel Process. Technol. – volume: 2 start-page: 56 year: 2016 end-page: 60 ident: bb0655 article-title: Standards and protocols for characterization of algae-based biofuels publication-title: Trends Renew. Energy – volume: 39 start-page: 177 year: 2017 end-page: 183 ident: bb0255 article-title: The pyrolysis of duckweed over a solid base catalyst: Py-GC/MS and TGA analysis publication-title: Energy Sources, Part A – volume: 71 start-page: 855 year: 2004 end-page: 863 ident: bb0125 article-title: Fast pyrolysis of microalgae to produce renewable fuels publication-title: J. Anal. Appl. Pyrolysis – volume: 274 start-page: 145 year: 2019 end-page: 152 ident: bb0455 article-title: Co-pyrolysis of microalgae and plastic: characteristics and interaction effects publication-title: Bioresour. Technol. – volume: 52 start-page: 119 year: 2013 end-page: 125 ident: bb0465 article-title: Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product distribution and bio-oil characterization publication-title: Energy – volume: 36 start-page: 38 year: 2014 end-page: 44 ident: bb0530 article-title: Bio-oil production from algae via thermochemical catalytic liquefaction publication-title: Energy Sources, Part A – volume: 88 start-page: 3473 year: 2011 end-page: 3480 ident: bb0330 article-title: Biofuels from algae for sustainable development publication-title: Appl. Energy – volume: 5 start-page: 30 year: 2017 end-page: 51 ident: bb0070 article-title: Advances in upgrading lignin pyrolysis vapors by ex situ catalytic fast pyrolysis publication-title: Energy Technol. – volume: 250 start-page: 821 year: 2018 end-page: 827 ident: bb0445 article-title: A study on microwave-assisted fast co-pyrolysis of chlorella and tire in the N2 and CO publication-title: Bioresour. Technol. – volume: 467 start-page: 20 year: 2008 end-page: 29 ident: bb0595 article-title: The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG–FTIR publication-title: Thermochim. Acta – volume: 18 start-page: 303 year: 1997 end-page: 311 ident: bb0245 article-title: Microalgal biomass drying by a simple solar device publication-title: Int. J. Solar Energy – volume: 15 start-page: 675 year: 2013 end-page: 681 ident: bb0355 article-title: Catalytic pyrolysis of microalgae for production of aromatics and ammonia publication-title: Green Chem. – volume: 2 start-page: 70 year: 2009 end-page: 75 ident: bb0395 article-title: Catalytic microwave assisted pyrolysis of aspen publication-title: Int. J. Agric. & Biol. Eng. – volume: 131 start-page: 109 year: 2017 end-page: 116 ident: bb0280 article-title: A comprehensive study on pyrolysis kinetics of microalgal biomass publication-title: Energy Convers. Manag. – volume: 120 start-page: 907 year: 2017 end-page: 914 ident: bb0300 article-title: Renewable fuels from pyrolysis of publication-title: Energy – volume: 11 start-page: 689 year: 2018 end-page: 702 ident: bb0665 article-title: Recent developments in commercial processes for refining bio-feedstocks to renewable diesel publication-title: Bioenerg. Res. – year: 2014 ident: bb0690 article-title: National Alliance for Advanced Biofuels and Bioproducts Synopsis – volume: 271 start-page: 202 year: 2019 end-page: 209 ident: bb0485 article-title: Co-pyrolysis behavior of microalgae biomass and low-rank coal: kinetic analysis of the main volatile products publication-title: Bioresour. Technol. – volume: 102 start-page: 10163 year: 2011 end-page: 10172 ident: bb0010 article-title: Cyanobacteria and microalgae: a positive prospect for biofuels publication-title: Bioresour. Technol. – year: 2000 ident: bb0505 article-title: Pyridine and pyridine derivatives publication-title: Ullmann's Encyclopedia of Industrial Chemistry – year: 1969 ident: bb0570 article-title: Entrainment Drying and Carbonization of Wood Waste – volume: 102 start-page: 4890 year: 2011 end-page: 4896 ident: bb0100 article-title: Microwave-assisted pyrolysis of microalgae for biofuel production publication-title: Bioresour. Technol. – volume: 166 start-page: 291 year: 2017 end-page: 298 ident: bb0365 article-title: Effects of titania based catalysts on in-situ pyrolysis of Pavlova microalgae publication-title: Fuel Process. Technol. – volume: 94 start-page: 138 year: 2012 end-page: 145 ident: bb0555 article-title: Quality variations of poultry litter biochar generated at different pyrolysis temperatures publication-title: J. Anal. Appl. Pyrolysis – volume: 270 start-page: 689 year: 2018 end-page: 701 ident: bb0500 article-title: A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis publication-title: Bioresour. Technol. – year: 2017 ident: bb0090 article-title: Fast Pyrolysis of Biomass: Advances in Science and Technology – volume: 246 start-page: 88 year: 2017 end-page: 100 ident: bb0275 article-title: Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review publication-title: Bioresour. Technol. – volume: 160 start-page: 577 year: 2015 end-page: 582 ident: bb0415 article-title: Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production publication-title: Fuel – volume: 46 start-page: 218 year: 2012 end-page: 232 ident: bb0345 article-title: Fast pyrolysis of microalgae in a falling solids reactor: effects of process variables and zeolite catalysts publication-title: Biomass Bioenergy – volume: 29 start-page: 686 year: 2011 end-page: 702 ident: bb0020 article-title: Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts publication-title: Biotechnol. Adv. – volume: 109 start-page: 154 year: 2012 end-page: 162 ident: bb0350 article-title: Thermolysis of microalgae and duckweed in a CO2-swept fixed-bed reactor: Bio-oil yield and compositional effects publication-title: Bioresour. Technol. – volume: 5 start-page: 254 year: 2015 end-page: 271 ident: bb0250 article-title: Learning sustainability by developing a solar dryer for microalgae retrieval publication-title: J. Technol. Sci. Educ. – volume: 173 start-page: 124 year: 2014 end-page: 131 ident: bb0065 article-title: Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system publication-title: Bioresour. Technol. – volume: 87 start-page: 79 year: 2013 ident: bb0495 article-title: Fuel oil quality and combustion of fast pyrolysis bio-oils publication-title: VTT Technology – volume: 247 start-page: 66 year: 2018 end-page: 72 ident: bb0430 article-title: Simultaneous pyrolysis of microalgae C. vulgaris, wood and polymer: the effect of third component addition publication-title: Bioresour. Technol. – start-page: 11 year: 2008 end-page: 31 ident: bb0580 article-title: Chapter 2 - the thermodynamics of gasification publication-title: Gasification – year: 2010 ident: bb0005 article-title: National Algal Biofuels Technology Roadmap – year: 2013 ident: bb0030 article-title: Algal lipid extraction and upgrading to hydrocarbons technology pathway – volume: 25 start-page: 5472 year: 2011 end-page: 5482 ident: bb0135 article-title: Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae publication-title: Energy Fuel – volume: 14 start-page: 557 year: 2010 end-page: 577 ident: bb0220 article-title: Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products publication-title: Renew. Sust. Energ. Rev. – volume: 80 start-page: 1 year: 2001 end-page: 7 ident: bb0270 article-title: Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis publication-title: Bioresour. Technol. – volume: 107 start-page: 487 year: 2012 end-page: 493 ident: bb0200 article-title: A study on experimental characteristic of microwave-assisted pyrolysis of microalgae publication-title: Bioresour. Technol. – volume: 119 start-page: 731 year: 2018 end-page: 740 ident: bb0375 article-title: Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae publication-title: Renew. Energy – year: 2013 ident: bb0080 article-title: Conversion and Biorefinery – volume: 5 start-page: 104 year: 2013 end-page: 115 ident: bb0550 article-title: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions publication-title: GCB Bioenergy – year: 1985 ident: bb0585 article-title: Screening and Characterizing Oleaginous Microalgal Species From the Southeastern United States – volume: 198 start-page: 332 year: 2015 end-page: 339 ident: bb0435 article-title: Co-pyrolysis characteristics of microalgae publication-title: Bioresour. Technol. – year: 2017 ident: bb0540 article-title: Biochar – volume: 102 start-page: 11018 year: 2011 end-page: 11026 ident: bb0120 article-title: Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass publication-title: Bioresour. Technol. – year: 2018 ident: bb0670 article-title: Hydroprocessing Catalysts and Processes: The Challenges for Biofuels Production – volume: 166 start-page: 518 year: 2014 end-page: 526 ident: bb0105 article-title: Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst publication-title: Bioresour. Technol. – volume: 10 start-page: 1150 year: 1996 end-page: 1162 ident: bb0640 article-title: Thermal cracking of canola oil: Reaction products in the presence and absence of steam publication-title: Energy Fuel – year: 2013 ident: bb0235 article-title: Whole Algae Hydrothermal Liquefaction Technology Pathway – volume: 130 start-page: 777 year: 2013 end-page: 782 ident: bb0475 article-title: Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids publication-title: Bioresour. Technol. – volume: 37 start-page: 1383 year: 2018 end-page: 1399 ident: bb0700 article-title: Advanced genetic tools enable synthetic biology in the oleaginous microalgae publication-title: Plant Cell Rep. – volume: 3 start-page: 76 year: 2017 end-page: 85 ident: bb0240 article-title: A comparison of energy consumption in hydrothermal liquefaction and pyrolysis of microalgae publication-title: Trends Renew. Energy – volume: 15 start-page: 1331 year: 2013 end-page: 1340 ident: bb0290 article-title: A distributed activation energy model for the pyrolysis of lignocellulosic biomass publication-title: Green Chem. – volume: 51 start-page: 6570 year: 2017 end-page: 6579 ident: bb0605 article-title: Transformation of nitrogen and evolution of N-containing species during algae pyrolysis publication-title: Environ. Sci. Technol. – volume: 52 start-page: 9514 year: 2018 end-page: 9521 ident: bb0460 article-title: Influence of biochar addition on nitrogen transformation during copyrolysis of algae and lignocellulosic biomass publication-title: Environ. Sci. Technol. – volume: 56 start-page: 600 year: 2013 end-page: 606 ident: bb0140 article-title: Study of bio-oil and bio-char production from algae by slow pyrolysis publication-title: Biomass Bioenergy – volume: 262 start-page: 90 year: 2018 end-page: 97 ident: bb0525 article-title: The transformation of nitrogen during pressurized entrained-flow pyrolysis of publication-title: Bioresour. Technol. – volume: 3 start-page: 54 year: 2010 end-page: 61 ident: bb0385 article-title: Fractionation and characterization of bio-oil from microwave-assisted pyrolysis of corn stover publication-title: Int. J. Agric. Biol. Eng. – volume: 245 start-page: 1067 year: 2017 end-page: 1074 ident: bb0480 article-title: Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: product distribution and reaction pathways publication-title: Bioresour. Technol. – volume: 237 start-page: 47 year: 2017 end-page: 56 ident: bb0575 article-title: Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production publication-title: Bioresour. Technol. – volume: 162 start-page: 96 year: 2014 end-page: 102 ident: bb0130 article-title: A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed publication-title: Bioresour. Technol. – volume: 15 start-page: 584 year: 2011 end-page: 593 ident: bb0230 article-title: Microalgae as a sustainable energy source for biodiesel production: a review publication-title: Renew. Sust. Energ. Rev. – volume: 5 start-page: 26301 year: 2015 end-page: 26307 ident: bb0615 article-title: Single-step synthesis of DME from syngas on CuZnAl-zeolite bifunctional catalysts: the influence of zeolite type publication-title: RSC Adv. – volume: 4 start-page: 2297 year: 2011 end-page: 2307 ident: bb0410 article-title: Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio publication-title: Energy Environ. Sci. – volume: 86 start-page: 1679 year: 2005 end-page: 1693 ident: bb0015 article-title: Utilization of macro-algae for enhanced CO publication-title: Fuel Process. Technol. – volume: 117 start-page: 264 year: 2012 end-page: 273 ident: bb0425 article-title: Co-pyrolysis characteristics of microalgae publication-title: Bioresour. Technol. – volume: 85 start-page: 118 year: 2009 end-page: 123 ident: bb0195 article-title: Thermal characterisation of microalgae under slow pyrolysis conditions publication-title: J. Anal. Appl. Pyrolysis – volume: 117 start-page: 326 year: 2016 end-page: 334 ident: bb0440 article-title: Co-pyrolysis of microalgae and sewage sludge: biocrude assessment and char yield prediction publication-title: Energy Convers. Manag. – start-page: 277 year: 1988 end-page: 289 ident: bb0405 article-title: Fluidized-bed upgrading of wood pyrolysis liquids and related compounds publication-title: Pyrolysis Oils from Biomass – volume: 27 start-page: 155 year: 1993 end-page: 168 ident: bb0190 article-title: Mechanisms of flash pyrolysis of ether lipids isolated from the green microalga publication-title: J. Anal. Appl. Pyrolysis – volume: 127 start-page: 494 year: 2013 end-page: 499 ident: bb0340 article-title: Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production publication-title: Bioresour. Technol. – volume: 84 start-page: 487 year: 2005 end-page: 494 ident: bb0560 article-title: A correlation for calculating HHV from proximate analysis of solid fuels publication-title: Fuel – volume: 15 start-page: 1720 year: 2013 end-page: 1739 ident: bb0660 article-title: Catalytic deoxygenation of microalgae oil to green hydrocarbons publication-title: Green Chem. – volume: 225 start-page: 293 year: 2017 end-page: 298 ident: bb0635 article-title: Catalytic pyrolysis of natural algae over Mg-Al layered double oxides/ZSM-5 (MgAl-LDO/ZSM-5) for producing bio-oil with low nitrogen content publication-title: Bioresour. Technol. – volume: 41 start-page: 571 year: 2013 end-page: 578 ident: bb0675 article-title: Catalytic hydroprocessing of fast pyrolysis bio-oil from publication-title: J. Fuel Chem. Technol. – volume: 118 start-page: 150 year: 2012 end-page: 157 ident: bb0115 article-title: Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst publication-title: Bioresour. Technol. – volume: 12 start-page: 147 year: 2000 end-page: 152 ident: bb0320 article-title: Effects of temperature and holding time on production of renewable fuels from pyrolysis of publication-title: J. Appl. Phycol. – volume: 101 start-page: 4593 year: 2010 end-page: 4599 ident: bb0160 article-title: The direct pyrolysis and catalytic pyrolysis of publication-title: Bioresour. Technol. – volume: 35 start-page: 3199 year: 2011 end-page: 3207 ident: bb0335 article-title: Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels publication-title: Biomass Bioenergy – volume: 180 start-page: 32 year: 2018 end-page: 46 ident: bb0085 article-title: Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – a review publication-title: Fuel Process. Technol. – volume: 9 start-page: 2221 year: 2018 end-page: 2235 ident: bb0210 article-title: Pyrolysis behaviours of microalgae publication-title: Waste Biomass Valoriz. – volume: 52 start-page: 241 year: 2009 ident: bb0650 article-title: Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks publication-title: Top. Catal. – volume: 125 start-page: 465 year: 2018 end-page: 471 ident: bb0450 article-title: Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: analytical Py-GC/MS study publication-title: Renew. Energy – volume: 19 start-page: 316 year: 2016 end-page: 323 ident: bb0035 article-title: Combined algal processing: a novel integrated biorefinery process to produce algal biofuels and bioproducts publication-title: Algal Res. – volume: 20 start-page: 2480 year: 2016 end-page: 2488 ident: bb0075 article-title: Densification and pyrolysis of lignocellulosic biomass for renewable energy publication-title: Curr. Org. Chem. – year: 2000 ident: bb0520 article-title: Nitriles publication-title: Ullmann's Encyclopedia of Industrial Chemistry – volume: 130 start-page: 321 year: 2013 end-page: 331 ident: bb0205 article-title: Pyrolysis, combustion and gasification characteristics of publication-title: Bioresour. Technol. – volume: 5 year: 2010 ident: bb0295 article-title: Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed publication-title: PLoS One – volume: 2 start-page: 455 year: 2008 end-page: 469 ident: bb0025 article-title: Second-generation biofuels and local bioenergy systems publication-title: Biofuels Bioprod. Biorefin. – volume: 89 start-page: 1 year: 1992 end-page: 30 ident: bb0630 article-title: Aromatization of short chain alkanes on zeolite catalysts publication-title: Appl. Catal. A Gen. – volume: 48 start-page: 776 year: 2015 end-page: 790 ident: bb0045 article-title: A review of bio-oil production from hydrothermal liquefaction of algae publication-title: Renew. Sust. Energ. Rev. – volume: 263 start-page: 194 year: 2015 end-page: 199 ident: bb0145 article-title: Pyrolysis of microalgae residual biomass derived from publication-title: Chem. Eng. J. – volume: 223 start-page: 12 year: 2018 end-page: 19 ident: bb0360 article-title: Quality of bio-oil from catalytic pyrolysis of microalgae publication-title: Fuel – volume: 3 start-page: 25780 year: 2013 end-page: 25787 ident: bb0470 article-title: Catalytic pyrolysis of microalga Chlorella pyrenoidosa for production of ethylene, propylene and butene publication-title: RSC Adv. – volume: 61 start-page: 187 year: 2014 end-page: 195 ident: bb0175 article-title: Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis publication-title: Biomass Bioenergy – volume: 34 start-page: 12 year: 2018 end-page: 24 ident: bb0380 article-title: Non-catalytic fast pyrolysis and catalytic fast pyrolysis of publication-title: Algal Res. – volume: 255 start-page: 238 year: 2018 end-page: 245 ident: bb0490 article-title: Co-pyrolysis behavior of microalgae biomass and low-quality coal: Products distributions, char-surface morphology, and synergistic effects publication-title: Bioresour. Technol. – volume: 42 start-page: 403 year: 2000 end-page: 437 ident: bb0620 article-title: Ethane to aromatic hydrocarbons: past, present, future publication-title: Catal. Rev. – volume: 14 start-page: 17 year: 2016 end-page: 27 ident: bb0040 article-title: Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors publication-title: Algal Res. – volume: 81 start-page: 779 year: 2015 end-page: 784 ident: bb0215 article-title: Rapid pyrolysis behavior of oleaginous microalga, publication-title: Renew. Energy – volume: 101 start-page: 359 year: 2010 end-page: 365 ident: bb0285 article-title: Pyrolysis characteristics and kinetics of the marine microalgae publication-title: Bioresour. Technol. – volume: 36 start-page: 2025 year: 1997 end-page: 2030 ident: bb0645 article-title: Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water publication-title: Ind. Eng. Chem. Res. – volume: 28 start-page: 95 year: 2014 end-page: 103 ident: bb0110 article-title: Investigation on Pyrolysis of Low Lipid Microalgae publication-title: Energy Fuel – volume: 5 start-page: 3270 year: 2015 end-page: 3280 ident: bb0545 article-title: Synthesis of tungsten carbide nanoparticles in biochar matrix as a catalyst for dry reforming of methane to syngas publication-title: Cat. Sci. Technol. – volume: 178 start-page: 147 year: 2015 end-page: 156 ident: bb0050 article-title: Hydrothermal liquefaction of biomass: developments from batch to continuous process publication-title: Bioresour. Technol. – volume: 98 start-page: 2351 year: 2007 end-page: 2368 ident: bb0590 article-title: Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals publication-title: Bioresour. Technol. – volume: 179 start-page: 58 year: 2015 end-page: 62 ident: bb0150 article-title: Comparison of direct and indirect pyrolysis of micro-algae publication-title: Bioresour. Technol. – volume: 185 start-page: 313 year: 2012 end-page: 317 ident: bb0165 article-title: Decarboxylation of microalgal oil without hydrogen into hydrocarbon for the production of transportation fuel publication-title: Catal. Today – volume: 18 start-page: 3684 year: 2016 end-page: 3699 ident: bb0685 article-title: Catalytic hydroprocessing of microalgae-derived biofuels: a review publication-title: Green Chem. – volume: 73 start-page: 33 year: 2014 end-page: 43 ident: bb0310 article-title: Pyrolysis of three different types of microalgae: kinetic and evolved gas analysis publication-title: Energy – volume: 144 start-page: 240 year: 2013 end-page: 246 ident: bb0155 article-title: Microwave pyrolysis of microalgae for high syngas production publication-title: Bioresour. Technol. – volume: 38 start-page: 933 year: 2014 end-page: 950 ident: bb0055 article-title: Hydrothermal liquefaction for algal biorefinery: a critical review publication-title: Renew. Sust. Energ. Rev. – volume: 7 start-page: 1293 year: 2014 end-page: 1304 ident: bb0265 article-title: Simulation model of pyrolysis biofuel yield based on algal components and pyrolysis kinetics publication-title: Bioenerg. Res. – start-page: 275 year: 2014 end-page: 295 ident: bb0695 article-title: Commercial products from algae publication-title: Algal Biorefineries: Volume 1: Cultivation of Cells and Products – volume: 19 start-page: 44 year: 2017 end-page: 67 ident: bb0600 article-title: A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes publication-title: Green Chem. – volume: 2 start-page: 56 year: 2016 ident: 10.1016/j.fuproc.2018.12.012_bb0655 article-title: Standards and protocols for characterization of algae-based biofuels publication-title: Trends Renew. Energy doi: 10.17737/tre.2016.2.2.0022 – volume: 109 start-page: 154 year: 2012 ident: 10.1016/j.fuproc.2018.12.012_bb0350 article-title: Thermolysis of microalgae and duckweed in a CO2-swept fixed-bed reactor: Bio-oil yield and compositional effects publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.12.115 – volume: 42 start-page: 403 year: 2000 ident: 10.1016/j.fuproc.2018.12.012_bb0620 article-title: Ethane to aromatic hydrocarbons: past, present, future publication-title: Catal. Rev. doi: 10.1081/CR-100101952 – volume: 166 start-page: 291 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0365 article-title: Effects of titania based catalysts on in-situ pyrolysis of Pavlova microalgae publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2017.05.001 – volume: 80 start-page: 1 year: 2001 ident: 10.1016/j.fuproc.2018.12.012_bb0270 article-title: Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00072-4 – volume: 117 start-page: 326 year: 2016 ident: 10.1016/j.fuproc.2018.12.012_bb0440 article-title: Co-pyrolysis of microalgae and sewage sludge: biocrude assessment and char yield prediction publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.03.013 – volume: 87 start-page: 79 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0495 article-title: Fuel oil quality and combustion of fast pyrolysis bio-oils publication-title: VTT Technology – volume: 52 start-page: 241 year: 2009 ident: 10.1016/j.fuproc.2018.12.012_bb0650 article-title: Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks publication-title: Top. Catal. doi: 10.1007/s11244-008-9160-6 – start-page: 275 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0695 article-title: Commercial products from algae – ident: 10.1016/j.fuproc.2018.12.012_bb0390 – ident: 10.1016/j.fuproc.2018.12.012_bb0540 – volume: 173 start-page: 124 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0065 article-title: Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.09.097 – volume: 35 start-page: 3199 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0335 article-title: Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.04.043 – volume: 60 start-page: 561 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0305 article-title: Thermal degradation and microwave-assisted pyrolysis of green algae and cyanobacteria isolated from the Great Salt Plains publication-title: Trans. ASABE doi: 10.13031/trans.12028 – volume: 127 start-page: 494 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0340 article-title: Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.016 – volume: 19 start-page: 44 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0600 article-title: A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes publication-title: Green Chem. doi: 10.1039/C6GC01937D – volume: 101 start-page: 4593 year: 2010 ident: 10.1016/j.fuproc.2018.12.012_bb0160 article-title: The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.070 – volume: 51 start-page: 6570 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0605 article-title: Transformation of nitrogen and evolution of N-containing species during algae pyrolysis publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00434 – volume: 3 start-page: 76 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0240 article-title: A comparison of energy consumption in hydrothermal liquefaction and pyrolysis of microalgae publication-title: Trends Renew. Energy doi: 10.17737/tre.2017.3.1.0013 – volume: 15 start-page: 1331 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0290 article-title: A distributed activation energy model for the pyrolysis of lignocellulosic biomass publication-title: Green Chem. doi: 10.1039/c3gc36958g – volume: 250 start-page: 821 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0445 article-title: A study on microwave-assisted fast co-pyrolysis of chlorella and tire in the N2 and CO2 atmospheres publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.11.080 – volume: 192 start-page: 522 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0420 article-title: Study on pyrolytic kinetics and behavior: the co-pyrolysis of microalgae and polypropylene publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.06.029 – volume: 150 start-page: 9 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0515 article-title: Indole in the target-based design of anticancer agents: a versatile scaffold with diverse mechanisms publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.02.065 – volume: 61 start-page: 187 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0175 article-title: Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.12.011 – volume: 15 start-page: 675 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0355 article-title: Catalytic pyrolysis of microalgae for production of aromatics and ammonia publication-title: Green Chem. doi: 10.1039/c3gc00031a – volume: 237 start-page: 47 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0575 article-title: Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.006 – volume: 5 start-page: 26301 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0615 article-title: Single-step synthesis of DME from syngas on CuZnAl-zeolite bifunctional catalysts: the influence of zeolite type publication-title: RSC Adv. doi: 10.1039/C5RA02814K – volume: 185 start-page: 313 year: 2012 ident: 10.1016/j.fuproc.2018.12.012_bb0165 article-title: Decarboxylation of microalgal oil without hydrogen into hydrocarbon for the production of transportation fuel publication-title: Catal. Today doi: 10.1016/j.cattod.2011.08.009 – volume: 107 start-page: 487 year: 2012 ident: 10.1016/j.fuproc.2018.12.012_bb0200 article-title: A study on experimental characteristic of microwave-assisted pyrolysis of microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.12.095 – volume: 39 start-page: 177 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0255 article-title: The pyrolysis of duckweed over a solid base catalyst: Py-GC/MS and TGA analysis publication-title: Energy Sources, Part A doi: 10.1080/15567036.2016.1214641 – volume: 117 start-page: 264 year: 2012 ident: 10.1016/j.fuproc.2018.12.012_bb0425 article-title: Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.077 – volume: 29 start-page: 686 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0020 article-title: Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.05.015 – year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0095 – volume: 46 start-page: 218 year: 2012 ident: 10.1016/j.fuproc.2018.12.012_bb0345 article-title: Fast pyrolysis of microalgae in a falling solids reactor: effects of process variables and zeolite catalysts publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.08.023 – volume: 125 start-page: 465 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0450 article-title: Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: analytical Py-GC/MS study publication-title: Renew. Energy doi: 10.1016/j.renene.2018.02.136 – volume: 271 start-page: 202 year: 2019 ident: 10.1016/j.fuproc.2018.12.012_bb0485 article-title: Co-pyrolysis behavior of microalgae biomass and low-rank coal: kinetic analysis of the main volatile products publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.09.076 – volume: 13 start-page: 6484 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0315 article-title: Green energy based thermochemical and photochemical hydrogen production publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2018.07.06 – volume: 162 start-page: 96 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0130 article-title: A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.136 – volume: 179 start-page: 58 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0150 article-title: Comparison of direct and indirect pyrolysis of micro-algae Isochrysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.015 – volume: 41 start-page: 571 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0675 article-title: Catalytic hydroprocessing of fast pyrolysis bio-oil from Chlorella publication-title: J. Fuel Chem. Technol. doi: 10.1016/S1872-5813(13)60030-4 – volume: 16 start-page: 491 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0535 article-title: A review and perspective of recent bio-oil hydrotreating research publication-title: Green Chem. doi: 10.1039/C3GC41382A – volume: 84 start-page: 487 year: 2005 ident: 10.1016/j.fuproc.2018.12.012_bb0560 article-title: A correlation for calculating HHV from proximate analysis of solid fuels publication-title: Fuel doi: 10.1016/j.fuel.2004.10.010 – volume: 27 start-page: 11 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0225 article-title: A review of thermochemical conversion of microalgae publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2013.06.032 – volume: 18 start-page: 303 year: 1997 ident: 10.1016/j.fuproc.2018.12.012_bb0245 article-title: Microalgal biomass drying by a simple solar device publication-title: Int. J. Solar Energy doi: 10.1080/01425919708914325 – volume: 48 start-page: 776 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0045 article-title: A review of bio-oil production from hydrothermal liquefaction of algae publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.04.049 – volume: 120 start-page: 907 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0300 article-title: Renewable fuels from pyrolysis of Dunaliella tertiolecta: an alternative approach to biochemical conversions of microalgae publication-title: Energy doi: 10.1016/j.energy.2016.11.146 – volume: 142 start-page: 381 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0370 article-title: Catalytic pyrolysis of Botryococcus braunii (microalgae) over layered and delaminated zeolites for aromatic hydrocarbon production publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.12.060 – volume: 5 start-page: 254 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0250 article-title: Learning sustainability by developing a solar dryer for microalgae retrieval publication-title: J. Technol. Sci. Educ. doi: 10.3926/jotse.206 – volume: 56 start-page: 600 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0140 article-title: Study of bio-oil and bio-char production from algae by slow pyrolysis publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.05.035 – year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0030 – volume: 7 start-page: 1293 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0265 article-title: Simulation model of pyrolysis biofuel yield based on algal components and pyrolysis kinetics publication-title: Bioenerg. Res. doi: 10.1007/s12155-014-9467-z – volume: 37 start-page: 1383 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0700 article-title: Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp. publication-title: Plant Cell Rep. doi: 10.1007/s00299-018-2270-0 – volume: 102 start-page: 4890 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0100 article-title: Microwave-assisted pyrolysis of microalgae for biofuel production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.01.055 – volume: 102 start-page: 10163 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0010 article-title: Cyanobacteria and microalgae: a positive prospect for biofuels publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.08.030 – volume: 73 start-page: 33 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0310 article-title: Pyrolysis of three different types of microalgae: kinetic and evolved gas analysis publication-title: Energy doi: 10.1016/j.energy.2014.05.008 – volume: 38 start-page: 933 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0055 article-title: Hydrothermal liquefaction for algal biorefinery: a critical review publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2014.07.030 – volume: 14 start-page: 557 year: 2010 ident: 10.1016/j.fuproc.2018.12.012_bb0220 article-title: Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2009.10.009 – volume: 270 start-page: 689 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0500 article-title: A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.08.127 – year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0090 – volume: 131 start-page: 109 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0280 article-title: A comprehensive study on pyrolysis kinetics of microalgal biomass publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.10.077 – volume: 89 start-page: 1 year: 1992 ident: 10.1016/j.fuproc.2018.12.012_bb0630 article-title: Aromatization of short chain alkanes on zeolite catalysts publication-title: Appl. Catal. A Gen. doi: 10.1016/0926-860X(92)80075-N – volume: 180 start-page: 32 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0085 article-title: Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – a review publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.08.002 – year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0670 – volume: 54 start-page: 890 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0680 article-title: Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni–Cu/ZrO2 Catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie5042935 – volume: 110 start-page: 85 year: 2004 ident: 10.1016/j.fuproc.2018.12.012_bb0170 article-title: High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2004.01.013 – volume: 10 start-page: 1150 year: 1996 ident: 10.1016/j.fuproc.2018.12.012_bb0640 article-title: Thermal cracking of canola oil: Reaction products in the presence and absence of steam publication-title: Energy Fuel doi: 10.1021/ef960029h – volume: 106 start-page: 197 year: 2005 ident: 10.1016/j.fuproc.2018.12.012_bb0610 article-title: Hydrocarbons for diesel fuel via decarboxylation of vegetable oils publication-title: Catal. Today doi: 10.1016/j.cattod.2005.07.188 – volume: 5 year: 2010 ident: 10.1016/j.fuproc.2018.12.012_bb0295 article-title: Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa publication-title: PLoS One doi: 10.1371/journal.pone.0012641 – volume: 71 start-page: 855 year: 2004 ident: 10.1016/j.fuproc.2018.12.012_bb0125 article-title: Fast pyrolysis of microalgae to produce renewable fuels publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2003.11.004 – volume: 11 start-page: 689 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0665 article-title: Recent developments in commercial processes for refining bio-feedstocks to renewable diesel publication-title: Bioenerg. Res. doi: 10.1007/s12155-018-9927-y – volume: 274 start-page: 145 year: 2019 ident: 10.1016/j.fuproc.2018.12.012_bb0455 article-title: Co-pyrolysis of microalgae and plastic: characteristics and interaction effects publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.11.083 – volume: 467 start-page: 20 year: 2008 ident: 10.1016/j.fuproc.2018.12.012_bb0595 article-title: The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG–FTIR publication-title: Thermochim. Acta doi: 10.1016/j.tca.2007.10.014 – ident: 10.1016/j.fuproc.2018.12.012_bb0005 – year: 2000 ident: 10.1016/j.fuproc.2018.12.012_bb0510 article-title: Pyrrole – volume: 28 start-page: 95 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0110 article-title: Investigation on Pyrolysis of Low Lipid Microalgae Chlorella vulgaris and Dunaliella salina publication-title: Energy Fuel doi: 10.1021/ef401500z – volume: 102 start-page: 11018 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0120 article-title: Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.09.055 – volume: 263 start-page: 194 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0145 article-title: Pyrolysis of microalgae residual biomass derived from Dunaliella tertiolecta after lipid extraction and carbohydrate saccharification publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.11.045 – volume: 14 start-page: 17 year: 2016 ident: 10.1016/j.fuproc.2018.12.012_bb0040 article-title: Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors publication-title: Algal Res. doi: 10.1016/j.algal.2015.12.008 – volume: 179 start-page: 436 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0060 article-title: Cellulose-lignin interactions during catalytic pyrolysis with different zeolite catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.07.027 – volume: 53 start-page: 9979 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0625 article-title: Catalytic upgrading of corn stalk fast pyrolysis vapors with fresh and hydrothermally treated HZSM-5 catalysts using Py-GC/MS publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie404426x – volume: 34 start-page: 12 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0380 article-title: Non-catalytic fast pyrolysis and catalytic fast pyrolysis of Nannochloropsis oculata using Co-Mo/γ-Al2O3 catalyst for valuable chemicals publication-title: Algal Res. doi: 10.1016/j.algal.2018.06.024 – volume: 52 start-page: 9514 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0460 article-title: Influence of biochar addition on nitrogen transformation during copyrolysis of algae and lignocellulosic biomass publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02485 – volume: 130 start-page: 777 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0475 article-title: Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.115 – volume: 9 start-page: 2221 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0210 article-title: Pyrolysis behaviours of microalgae Nannochloropsis gaditana publication-title: Waste Biomass Valoriz. doi: 10.1007/s12649-017-9996-8 – volume: 4 start-page: 2297 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0410 article-title: Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01230d – volume: 85 start-page: 118 year: 2009 ident: 10.1016/j.fuproc.2018.12.012_bb0195 article-title: Thermal characterisation of microalgae under slow pyrolysis conditions publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2008.10.003 – volume: 81 start-page: 779 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0215 article-title: Rapid pyrolysis behavior of oleaginous microalga, Chlorella sp. KR-1 with different triglyceride contents publication-title: Renew. Energy doi: 10.1016/j.renene.2015.03.088 – start-page: 11 year: 2008 ident: 10.1016/j.fuproc.2018.12.012_bb0580 article-title: Chapter 2 - the thermodynamics of gasification – volume: 28 start-page: 933 year: 2006 ident: 10.1016/j.fuproc.2018.12.012_bb0325 article-title: Oily products from mosses and algae via pyrolysis publication-title: Energy Sources, Part A doi: 10.1080/009083190910389 – volume: 5 start-page: 3270 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0545 article-title: Synthesis of tungsten carbide nanoparticles in biochar matrix as a catalyst for dry reforming of methane to syngas publication-title: Cat. Sci. Technol. doi: 10.1039/C5CY00029G – volume: 94 start-page: 138 year: 2012 ident: 10.1016/j.fuproc.2018.12.012_bb0555 article-title: Quality variations of poultry litter biochar generated at different pyrolysis temperatures publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2011.11.018 – volume: 18 start-page: 3684 year: 2016 ident: 10.1016/j.fuproc.2018.12.012_bb0685 article-title: Catalytic hydroprocessing of microalgae-derived biofuels: a review publication-title: Green Chem. doi: 10.1039/C6GC01239F – volume: 15 start-page: 584 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0230 article-title: Microalgae as a sustainable energy source for biodiesel production: a review publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2010.09.018 – volume: 119 start-page: 731 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0375 article-title: Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii publication-title: Renew. Energy doi: 10.1016/j.renene.2017.12.056 – volume: 225 start-page: 293 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0635 article-title: Catalytic pyrolysis of natural algae over Mg-Al layered double oxides/ZSM-5 (MgAl-LDO/ZSM-5) for producing bio-oil with low nitrogen content publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.077 – volume: 130 start-page: 321 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0205 article-title: Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.002 – volume: 255 start-page: 238 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0490 article-title: Co-pyrolysis behavior of microalgae biomass and low-quality coal: Products distributions, char-surface morphology, and synergistic effects publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.01.141 – volume: 98 start-page: 2351 year: 2007 ident: 10.1016/j.fuproc.2018.12.012_bb0590 article-title: Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.10.025 – volume: 262 start-page: 90 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0525 article-title: The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.04.073 – volume: 19 start-page: 316 year: 2016 ident: 10.1016/j.fuproc.2018.12.012_bb0035 article-title: Combined algal processing: a novel integrated biorefinery process to produce algal biofuels and bioproducts publication-title: Algal Res. doi: 10.1016/j.algal.2015.12.021 – year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0080 – volume: 12 start-page: 147 year: 2000 ident: 10.1016/j.fuproc.2018.12.012_bb0320 article-title: Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides publication-title: J. Appl. Phycol. doi: 10.1023/A:1008115025002 – volume: 27 start-page: 155 year: 1993 ident: 10.1016/j.fuproc.2018.12.012_bb0190 article-title: Mechanisms of flash pyrolysis of ether lipids isolated from the green microalga Botryococcus braunii race a publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/0165-2370(93)80006-L – volume: 88 start-page: 3473 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0330 article-title: Biofuels from algae for sustainable development publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.059 – volume: 101 start-page: 359 year: 2010 ident: 10.1016/j.fuproc.2018.12.012_bb0285 article-title: Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.08.020 – volume: 13 start-page: 5 year: 2001 ident: 10.1016/j.fuproc.2018.12.012_bb0260 article-title: Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production publication-title: J. Appl. Phycol. doi: 10.1023/A:1008153831875 – volume: 3 start-page: 25780 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0470 article-title: Catalytic pyrolysis of microalga Chlorella pyrenoidosa for production of ethylene, propylene and butene publication-title: RSC Adv. doi: 10.1039/c3ra43850c – volume: 166 start-page: 518 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0105 article-title: Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.05.100 – ident: 10.1016/j.fuproc.2018.12.012_bb0585 – volume: 15 start-page: 1720 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0660 article-title: Catalytic deoxygenation of microalgae oil to green hydrocarbons publication-title: Green Chem. doi: 10.1039/c3gc40558c – volume: 25 start-page: 5472 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0135 article-title: Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae publication-title: Energy Fuel doi: 10.1021/ef201373m – start-page: 131 year: 2012 ident: 10.1016/j.fuproc.2018.12.012_bb0400 article-title: Microwave-assisted pyrolysis oil: process, characterization, and fractionation – volume: 36 start-page: 2025 year: 1997 ident: 10.1016/j.fuproc.2018.12.012_bb0645 article-title: Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie960747r – ident: 10.1016/j.fuproc.2018.12.012_bb0690 – volume: 198 start-page: 332 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0435 article-title: Co-pyrolysis characteristics of microalgae Isochrysis and Chlorella: kinetics, biocrude yield and interaction publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.09.021 – volume: 102 start-page: 1886 year: 2011 ident: 10.1016/j.fuproc.2018.12.012_bb0565 article-title: Algal biochar – production and properties publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.07.106 – start-page: 277 year: 1988 ident: 10.1016/j.fuproc.2018.12.012_bb0405 article-title: Fluidized-bed upgrading of wood pyrolysis liquids and related compounds – volume: 2 start-page: 70 year: 2009 ident: 10.1016/j.fuproc.2018.12.012_bb0395 article-title: Catalytic microwave assisted pyrolysis of aspen publication-title: Int. J. Agric. & Biol. Eng. – volume: 246 start-page: 88 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0275 article-title: Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.087 – year: 2000 ident: 10.1016/j.fuproc.2018.12.012_bb0505 article-title: Pyridine and pyridine derivatives – volume: 144 start-page: 240 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0155 article-title: Microwave pyrolysis of microalgae for high syngas production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.102 – volume: 2 start-page: 455 year: 2008 ident: 10.1016/j.fuproc.2018.12.012_bb0025 article-title: Second-generation biofuels and local bioenergy systems publication-title: Biofuels Bioprod. Biorefin. doi: 10.1002/bbb.97 – volume: 86 start-page: 1679 year: 2005 ident: 10.1016/j.fuproc.2018.12.012_bb0015 article-title: Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2005.01.016 – volume: 36 start-page: 38 year: 2014 ident: 10.1016/j.fuproc.2018.12.012_bb0530 article-title: Bio-oil production from algae via thermochemical catalytic liquefaction publication-title: Energy Sources, Part A doi: 10.1080/15567036.2012.682199 – volume: 52 start-page: 119 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0465 article-title: Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product distribution and bio-oil characterization publication-title: Energy doi: 10.1016/j.energy.2013.01.059 – ident: 10.1016/j.fuproc.2018.12.012_bb0185 – volume: 3 start-page: 54 year: 2010 ident: 10.1016/j.fuproc.2018.12.012_bb0385 article-title: Fractionation and characterization of bio-oil from microwave-assisted pyrolysis of corn stover publication-title: Int. J. Agric. Biol. Eng. – volume: 5 start-page: 104 year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0550 article-title: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions publication-title: GCB Bioenergy doi: 10.1111/gcbb.12018 – volume: 245 start-page: 1067 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0480 article-title: Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: product distribution and reaction pathways publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.093 – ident: 10.1016/j.fuproc.2018.12.012_bb0180 – volume: 20 start-page: 2480 year: 2016 ident: 10.1016/j.fuproc.2018.12.012_bb0075 article-title: Densification and pyrolysis of lignocellulosic biomass for renewable energy publication-title: Curr. Org. Chem. doi: 10.2174/1385272820666160525114627 – volume: 5 start-page: 30 year: 2017 ident: 10.1016/j.fuproc.2018.12.012_bb0070 article-title: Advances in upgrading lignin pyrolysis vapors by ex situ catalytic fast pyrolysis publication-title: Energy Technol. doi: 10.1002/ente.201600107 – volume: 160 start-page: 577 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0415 article-title: Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production publication-title: Fuel doi: 10.1016/j.fuel.2015.08.020 – year: 1969 ident: 10.1016/j.fuproc.2018.12.012_bb0570 – volume: 118 start-page: 150 year: 2012 ident: 10.1016/j.fuproc.2018.12.012_bb0115 article-title: Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.080 – year: 2000 ident: 10.1016/j.fuproc.2018.12.012_bb0520 article-title: Nitriles – year: 2013 ident: 10.1016/j.fuproc.2018.12.012_bb0235 – volume: 223 start-page: 12 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0360 article-title: Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris publication-title: Fuel doi: 10.1016/j.fuel.2018.02.166 – volume: 178 start-page: 147 year: 2015 ident: 10.1016/j.fuproc.2018.12.012_bb0050 article-title: Hydrothermal liquefaction of biomass: developments from batch to continuous process publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.09.132 – volume: 247 start-page: 66 year: 2018 ident: 10.1016/j.fuproc.2018.12.012_bb0430 article-title: Simultaneous pyrolysis of microalgae C. vulgaris, wood and polymer: the effect of third component addition publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.059 |
SSID | ssj0005597 |
Score | 2.6378903 |
SecondaryResourceType | review_article |
Snippet | Microalgae as an environmentally friendly renewable feedstock can be processed into an array of products via conversion technologies such as algal lipid... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 53 |
SubjectTerms | Algae Alkanes Alkenes Bio-oil Biochar bioethanol Biomass biorefining catalysts Catalytic converters Chemical reactions Conversion feedstocks Fine chemicals Gasification Lipids Liquefaction Mechanism Microalgae Organic chemistry oxygen Proteins Pyrolysis Reaction mechanisms Synthesis gas value added |
Title | Pyrolysis of microalgae: A critical review |
URI | https://dx.doi.org/10.1016/j.fuproc.2018.12.012 https://www.proquest.com/docview/2185034646 https://www.proquest.com/docview/2221054588 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD-InTOSr4JNQlbdKmvo3hmApD0MHeQpoPmOg65vbgi3-7lzaVKcjAx7bXDy65-901v7sgdAnmT4jSNrQ5zV2CwkKuNWStqWIqpTqDGMmxLUbJcEzvJ2zSQP26FsbRKr3vr3x66a39ma7XZnc-nXafcJzy2AEYBwzk1HX8pDR1s_z6c43mwcoNVpxw6KTr8rmS42VXDiYcwYuXPwVJ9Bc8_XLUJfoM9tCuDxuDXvVl-6hhZgdoZ62Z4CG6evxYFGWDkaCwwZsj2rk6DXMT9ALlNzQIqkqVIzQe3D73h6HfCSFUFNNlCDlbLk2sNIBrbmwkCQAPx1JqpSnT2OZJBqhjDMQrRuZxxLXJmU14gnUcgVEfo-asmJkTFBCtOE4ziS2T1GAiGVEZPFByTqhivIXiWgFC-TbhbreKV1HzwV5EpTbh1CZIJEBtLRR-3zWv2mRskE9r3Yofwy3Ak2-4s10PhfDm9i4gTmE4pglNWuji-zIYilv9kDNTrEAmguzWLRPy03-__Axtw1FWMXfaqLlcrMw5BCXLvFPOug7a6t09DEdfqezgeA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgP4ifOzwo-CWVJm7Spb0OUzc0huIFvIU1SUHQT3R7877206fwAEXxtkrZceve7a353B3CK6k-pNkVY5Cx3AQoPhTEYtaaa65SZDH0kx7YYJJ0Ru77n9wtwUefCOFqlt_2VTS-ttb_S8tJsvTw8tO5InIrYAZhADBQsXoQlV52KN2Cp3e11Bp9MD172WHHzQ7egzqAraV7FzCGF43iJ8r8gjX5DqB-2ugSgq3VY855j0K5ebgMW7HgTVr_UE9yCs9v310lZYySYFMGz49q5VA17HrQD7XsaBFWyyjaMri6HF53QN0MINSNsGmLYlisba4P4mtsiUhSxRxCljDaMG1LkSYbAYy26LFblcSSMzXmRiISYOEK93oHGeDK2uxBQowVJM0UKrpglVHGqM7yhEoIyzUUT4loAUvtK4a5hxZOsKWGPshKbdGKTNJIotiaE81UvVaWMP-antWzltx2XaMz_WHlQb4X0Gvcm0VXhJGYJS5pwMh9GXXEHIGpsJzOcE2GA604Kxd6_H34My53hTV_2u4PePqzgSFYReQ6gMX2d2UP0Uab5kf8GPwBnF-Mp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrolysis+of+microalgae%3A+A+critical+review&rft.jtitle=Fuel+processing+technology&rft.au=Yang%2C+Changyan&rft.au=Li%2C+Rui&rft.au=Zhang%2C+Bo&rft.au=Qiu%2C+Qi&rft.date=2019-04-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-3820&rft.eissn=1873-7188&rft.volume=186&rft.spage=53&rft_id=info:doi/10.1016%2Fj.fuproc.2018.12.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |