Numerical simulation of capture process of fine particles in electrostatic precipitators under consideration of electrohydrodynamics flow
In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.11Electrostatic precipitators (ESPs) The simplified models were established to evaluate and predict the distr...
Saved in:
Published in | Powder technology Vol. 354; pp. 653 - 675 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.09.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.11Electrostatic precipitators (ESPs) The simplified models were established to evaluate and predict the distribution of electrostatic field, gas dynamic, particle charging, and transport behavior. The electrohydrodynamic (EHD) flow with different applied voltage at various gas velocities was presented on the basis of two kinds of models, and the detailed influence on particle dynamic, including particle trajectory, migration velocity to collection plates, and particle capture had also been investigated thoroughly.22Electrohydrodynamic (EHD) Numerical results indicated that corrugated plate electrostatic precipitator (CP ESP),33Corrugated plate electrostatic precipitator (CP ESP) possessed greater electrostatic field characteristic than parallel plate electrostatic precipitator (PP ESP) and it also had a stronger capacity of resisting the influence of EHD flow, which was beneficial from the particular structure.44Parallel plate electrostatic precipitator (PP ESP) Besides, the EHD flow would make smaller particle present more apparent fluctuant trajectory near discharge wires when fine particles traveled in ESPs at a low gas velocity or with a high applied voltage, and that caused a more severe movement towards collection plates. Numerical results of the evolution of EHD flow showed that the faster elimination of ionic wind vortexes in CP ESP gave rise to higher collection efficiency. With the increment of gas velocity, the intensity of EHD flow exhibited a declining trend, and the difference of collection efficiency between two ESPs also decreased, which suggested that EHD flow had a significant effect on the <1 μm particle collection and the structure optimization could provide an available approach to evade the influence of EHD flow.
[Display omitted]
•A corrugated plate ESP model was established to investigate the evolution of EHD flow.•The influence of EHD flow on particle dynamic had been investigated thoroughly.•Corrugated plate ESP could eliminate ionic wind vortex fast. |
---|---|
AbstractList | In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.11Electrostatic precipitators (ESPs) The simplified models were established to evaluate and predict the distribution of electrostatic field, gas dynamic, particle charging, and transport behavior. The electrohydrodynamic (EHD) flow with different applied voltage at various gas velocities was presented on the basis of two kinds of models, and the detailed influence on particle dynamic, including particle trajectory, migration velocity to collection plates, and particle capture had also been investigated thoroughly.22Electrohydrodynamic (EHD) Numerical results indicated that corrugated plate electrostatic precipitator (CP ESP),33Corrugated plate electrostatic precipitator (CP ESP) possessed greater electrostatic field characteristic than parallel plate electrostatic precipitator (PP ESP) and it also had a stronger capacity of resisting the influence of EHD flow, which was beneficial from the particular structure.44Parallel plate electrostatic precipitator (PP ESP) Besides, the EHD flow would make smaller particle present more apparent fluctuant trajectory near discharge wires when fine particles traveled in ESPs at a low gas velocity or with a high applied voltage, and that caused a more severe movement towards collection plates. Numerical results of the evolution of EHD flow showed that the faster elimination of ionic wind vortexes in CP ESP gave rise to higher collection efficiency. With the increment of gas velocity, the intensity of EHD flow exhibited a declining trend, and the difference of collection efficiency between two ESPs also decreased, which suggested that EHD flow had a significant effect on the <1 μm particle collection and the structure optimization could provide an available approach to evade the influence of EHD flow.
[Display omitted]
•A corrugated plate ESP model was established to investigate the evolution of EHD flow.•The influence of EHD flow on particle dynamic had been investigated thoroughly.•Corrugated plate ESP could eliminate ionic wind vortex fast. In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.¹1Electrostatic precipitators (ESPs) The simplified models were established to evaluate and predict the distribution of electrostatic field, gas dynamic, particle charging, and transport behavior. The electrohydrodynamic (EHD) flow with different applied voltage at various gas velocities was presented on the basis of two kinds of models, and the detailed influence on particle dynamic, including particle trajectory, migration velocity to collection plates, and particle capture had also been investigated thoroughly.²2Electrohydrodynamic (EHD) Numerical results indicated that corrugated plate electrostatic precipitator (CP ESP),³3Corrugated plate electrostatic precipitator (CP ESP) possessed greater electrostatic field characteristic than parallel plate electrostatic precipitator (PP ESP) and it also had a stronger capacity of resisting the influence of EHD flow, which was beneficial from the particular structure.⁴4Parallel plate electrostatic precipitator (PP ESP) Besides, the EHD flow would make smaller particle present more apparent fluctuant trajectory near discharge wires when fine particles traveled in ESPs at a low gas velocity or with a high applied voltage, and that caused a more severe movement towards collection plates. Numerical results of the evolution of EHD flow showed that the faster elimination of ionic wind vortexes in CP ESP gave rise to higher collection efficiency. With the increment of gas velocity, the intensity of EHD flow exhibited a declining trend, and the difference of collection efficiency between two ESPs also decreased, which suggested that EHD flow had a significant effect on the <1 μm particle collection and the structure optimization could provide an available approach to evade the influence of EHD flow. In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.1 The simplified models were established to evaluate and predict the distribution of electrostatic field, gas dynamic, particle charging, and transport behavior. The electrohydrodynamic (EHD) flow with different applied voltage at various gas velocities was presented on the basis of two kinds of models, and the detailed influence on particle dynamic, including particle trajectory, migration velocity to collection plates, and particle capture had also been investigated thoroughly.2 Numerical results indicated that corrugated plate electrostatic precipitator (CP ESP),3 possessed greater electrostatic field characteristic than parallel plate electrostatic precipitator (PP ESP) and it also had a stronger capacity of resisting the influence of EHD flow, which was beneficial from the particular structure.4 Besides, the EHD flow would make smaller particle present more apparent fluctuant trajectory near discharge wires when fine particles traveled in ESPs at a low gas velocity or with a high applied voltage, and that caused a more severe movement towards collection plates. Numerical results of the evolution of EHD flow showed that the faster elimination of ionic wind vortexes in CP ESP gave rise to higher collection efficiency. With the increment of gas velocity, the intensity of EHD flow exhibited a declining trend, and the difference of collection efficiency between two ESPs also decreased, which suggested that EHD flow had a significant effect on the <1 μm particle collection and the structure optimization could provide an available approach to evade the influence of EHD flow. |
Author | Shangguan, Wenfeng Shi, Jianwei Chen, Mingxia Gao, Mengxiang Zhu, Yong |
Author_xml | – sequence: 1 givenname: Yong surname: Zhu fullname: Zhu, Yong – sequence: 2 givenname: Mengxiang surname: Gao fullname: Gao, Mengxiang – sequence: 3 givenname: Mingxia orcidid: 0000-0001-8775-0987 surname: Chen fullname: Chen, Mingxia – sequence: 4 givenname: Jianwei surname: Shi fullname: Shi, Jianwei – sequence: 5 givenname: Wenfeng surname: Shangguan fullname: Shangguan, Wenfeng email: shangguan@sjtu.edu.cn |
BookMark | eNqFkc2KFDEUhYOMYE_rG7gocOOmypukk65yIcjgz8CgGwV3IXPrBtNUJWWScuhH8K1N04OLWYyr5IbzHW7OuWQXIQZi7CWHjgPXbw7dEu8KYSeADx3oDmT_hG14v5etFP2PC7YBkKJVA4dn7DLnAwBoyWHD_nxZZ0oe7dRkP6-TLT6GJroG7VLWRM2SIlLOpyfnQ51tKh4nyo0PDU2EJcVcKoZVSugXX4eYcrOGkVKDMWRfL_9875GfxzHF8Rjs7DE3bop3z9lTZ6dML-7PLfv-8cO3q8_tzddP11fvb1rcwa60sre8d3qU_Y6k0rrfW4Vjr4CkHLUYNDp0llsLTmqUVt1aN7hbRULAIADllr0--9af_VopFzP7jDRNNlBcsxFiz3shVE1sy149kB7imkLdzgjJuRJqL1RV7c4qrEnkRM4syc82HQ0Hc-rHHMy5H3Pqx4A2tZ-KvX2A4Sm6GlNJ1k__g9-dYapJ_faUTEZPAWn0tYRixugfN_gLS0C1Cg |
CitedBy_id | crossref_primary_10_1016_j_powtec_2022_117893 crossref_primary_10_1016_j_cej_2020_127797 crossref_primary_10_1016_j_elstat_2023_103841 crossref_primary_10_1016_j_cej_2021_130569 crossref_primary_10_1016_j_powtec_2020_12_070 crossref_primary_10_1088_1742_6596_2083_3_032046 crossref_primary_10_1089_ees_2023_0241 crossref_primary_10_1016_j_ces_2024_120213 crossref_primary_10_3390_electronics12122579 crossref_primary_10_1016_j_jaerosci_2023_106313 crossref_primary_10_1016_j_psep_2022_06_069 crossref_primary_10_1166_jon_2023_2070 crossref_primary_10_1016_j_psep_2022_06_022 crossref_primary_10_1016_j_powtec_2022_117444 crossref_primary_10_1016_j_cherd_2021_02_001 crossref_primary_10_1016_j_compag_2022_107145 crossref_primary_10_1016_j_powtec_2020_11_042 crossref_primary_10_1016_j_powtec_2025_120873 crossref_primary_10_1016_j_powtec_2022_117804 crossref_primary_10_1016_j_elstat_2024_103899 crossref_primary_10_1007_s12046_021_01687_0 crossref_primary_10_1016_j_cherd_2022_07_045 crossref_primary_10_1016_j_powtec_2021_09_064 crossref_primary_10_1016_j_seppur_2023_124550 crossref_primary_10_1016_j_ijthermalsci_2025_109864 crossref_primary_10_1016_j_powtec_2020_04_025 crossref_primary_10_1016_j_seppur_2024_128459 crossref_primary_10_1016_j_cjche_2024_05_028 crossref_primary_10_1016_j_powtec_2019_08_046 crossref_primary_10_1016_j_powtec_2021_04_087 crossref_primary_10_1016_j_ces_2020_115910 crossref_primary_10_1016_j_powtec_2024_119538 crossref_primary_10_1016_j_elstat_2022_103781 crossref_primary_10_1088_1361_6463_ac3e2c crossref_primary_10_1051_epjap_2023230106 crossref_primary_10_1016_j_measurement_2021_109296 crossref_primary_10_1021_envhealth_4c00100 crossref_primary_10_1016_j_cherd_2022_11_014 crossref_primary_10_1016_j_elstat_2023_103818 crossref_primary_10_1016_j_powtec_2020_10_087 crossref_primary_10_1016_j_fuproc_2023_107981 crossref_primary_10_1021_acsomega_4c06500 crossref_primary_10_1016_j_powtec_2023_118578 crossref_primary_10_1016_j_powtec_2020_12_028 crossref_primary_10_1016_j_psep_2020_07_005 crossref_primary_10_1016_j_cherd_2023_07_006 crossref_primary_10_1016_j_powtec_2020_09_027 crossref_primary_10_1016_j_elstat_2023_103811 crossref_primary_10_1088_1402_4896_ad8af7 crossref_primary_10_1016_j_scs_2019_102001 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119545 crossref_primary_10_1016_j_jes_2022_12_013 crossref_primary_10_1016_j_joei_2021_12_004 crossref_primary_10_1016_j_enbuild_2022_112496 crossref_primary_10_1016_j_powtec_2021_08_049 crossref_primary_10_1016_j_powtec_2020_02_051 |
Cites_doi | 10.1016/j.elstat.2016.08.008 10.1140/epjd/e2016-60736-2 10.1016/j.elstat.2016.02.005 10.1016/j.powtec.2011.08.045 10.1088/1742-6596/142/1/012032 10.1016/j.cjche.2014.06.038 10.1017/S0022112092000053 10.1080/027868200416222 10.1016/S0304-3886(01)00172-3 10.1016/S0304-3886(00)00035-8 10.1016/j.elstat.2004.12.005 10.1016/j.jaerosci.2014.07.009 10.1016/j.elstat.2018.08.002 10.1016/j.elstat.2014.05.005 10.1016/j.elstat.2005.10.015 10.1016/j.powtec.2018.01.016 10.1016/0304-3886(94)00030-Z 10.1016/j.apt.2016.06.021 10.1016/j.jaerosci.2010.04.005 10.1109/TIA.2016.2606366 10.1016/j.seppur.2014.08.032 10.1016/j.elstat.2005.02.002 10.1016/j.elstat.2014.11.002 10.1016/j.applthermaleng.2014.11.078 10.1016/j.powtec.2018.02.038 10.1109/TIA.2016.2606362 10.1063/1.324034 10.1080/02786820500191348 10.1002/ep.12052 10.1016/j.seppur.2016.01.011 10.1016/j.elstat.2014.11.007 10.1016/j.powtec.2019.03.016 10.1103/PhysRevFluids.3.043701 10.1016/j.elstat.2009.07.001 10.1016/j.elstat.2007.11.001 10.1016/j.elstat.2004.06.003 10.1016/0021-8502(95)00541-2 10.1016/j.fuproc.2006.01.012 10.1016/j.jaerosci.2018.01.008 10.1017/S002211208100195X 10.1016/j.jclepro.2017.07.032 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Sep 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Sep 2019 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K JG9 SOI 7S9 L.6 |
DOI | 10.1016/j.powtec.2019.06.038 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-328X |
EndPage | 675 |
ExternalDocumentID | 10_1016_j_powtec_2019_06_038 S0032591019304814 |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCB SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSM SSZ T5K T9H WUQ XPP ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7ST 8BQ 8FD C1K EFKBS JG9 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-38a18f6d384e356687a5cd850e33d6296cfcfa1aa0f36c3a5baf9fb5e220920c3 |
IEDL.DBID | .~1 |
ISSN | 0032-5910 |
IngestDate | Thu Jul 10 23:41:42 EDT 2025 Wed Aug 13 06:35:43 EDT 2025 Tue Jul 01 01:21:51 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Feb 23 02:48:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical simulation Corrugated plate Electrohydrodynamics flow Collection efficiency Electrostatic precipitators |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-38a18f6d384e356687a5cd850e33d6296cfcfa1aa0f36c3a5baf9fb5e220920c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8775-0987 |
PQID | 2311525725 |
PQPubID | 2045415 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2271822500 proquest_journals_2311525725 crossref_primary_10_1016_j_powtec_2019_06_038 crossref_citationtrail_10_1016_j_powtec_2019_06_038 elsevier_sciencedirect_doi_10_1016_j_powtec_2019_06_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Powder technology |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | McDonald, Smith, Spencer Iii, Sparks (bb0050) 1977; 48 Arif, Branken, Everson, Neomagus, le Grange, Arif (bb0105) 2016; 84 Ni, Yang, Wang, Wang, Xiao, Zheng, Gao, Luo, Cen (bb0025) 2016; 159 Guan, Vaddi, Aliseda, Novosselov (bb0190) 2018; 3 Lei, Wang, Wu (bb0210) 2008; 66 Tu, Song, Yao (bb0140) 2018; 328 Brocilo, Podlinski, Chang, Mizeraczyk, Findlay (bb0130) 2008; 142 Jaworek, Marchewicz, Sobczyk, Krupa, Czech (bb0160) 2017; 164 Chen, Tsai, Yan, Li (bb0020) 2014; 136 Long, Yao (bb0010) 2010; 41 Dong, Zhou, Zhang, Shang, Li (bb0115) 2018; 330 Shen, Yu, Jia, Kang (bb0195) 2018; 95 Long, Yao, Song, Li (bb0080) 2009; 67 Guo, Guo, Yu (bb0035) 2014; 72 Kasdi (bb0040) 2016; 81 Lami, Mattachini, Gallimberti (bb0055) 1995; 34 Guo, Yu, Guo (bb0090) 2014; 77 Nikas, Varonos, Bergeles (bb0075) 2005; 63 Long, Yao (bb0085) 2012; 215-216 Lu, Yang, Zheng, Li, Zhao, Xu, Gao, Luo, Ni, Cen (bb0015) 2016; 27 Kim, Han, Woo, Kim (bb0125) 2017; 53 Chang, Bai (bb0060) 2000; 33 Davidson, Phalen, Solomon (bb0005) 2005; 39 Zhang, Xu, Ren, Wu, Pan (bb0150) 2015; 34 Yamamoto, Morita, Fujishima, Okubo (bb0185) 2006; 64 Luo, Li, Zheng, Gao, Fan (bb0100) 2015; 88 Wen, Wang, Krichtafovitch, Mamishev (bb0135) 2015; 73 Zhang, Wang, Zhu (bb0205) 2005; 63 J. Podliński, M. Danowska, T. Izdebski, M. Dors, Electrohydrodynamic pump supplied by unipolar direct current voltage with both positive and negative corona discharge, J. Fluids Eng., 141 (2019) 011206–1. Ning, Cheng, Shen, Li, Yan (bb0045) 2016; 70 Kim, Han, Woo, Kim (bb0120) 2017; 53 Liu, Zhang, Chen (bb0145) 2015; 74 Kallio, Stock (bb0170) 2006; 240 Li, Zheng, Luo, Gao, Fan, Cen (bb0095) 2015; 23 Gao, Zhu, Yao, Shi, Shangguan (bb0165) 2019; 348 Zhao, Adamiak (bb0180) 2005; 63 Lawless (bb0200) 1996; 27 Kim, Park, Lee (bb0065) 2001; 50 Yamamoto, Velkoff (bb0175) 2006; 108 Parasram (bb0215) 2001 Skodras, Kaldis, Sofialidis, Faltsi, Grammelis, Sakellaropoulos (bb0030) 2006; 87 Lu, Yi, Yi, Liu (bb0155) 2017; 19 Zheng, Zhang, Yang, Liang, Guo, Wang, Gao (bb0110) 2018; 118 Anagnostopoulos, Bergeles (bb0070) 2002; 54 Yamamoto (10.1016/j.powtec.2019.06.038_bb0185) 2006; 64 Zhang (10.1016/j.powtec.2019.06.038_bb0205) 2005; 63 Guo (10.1016/j.powtec.2019.06.038_bb0090) 2014; 77 Li (10.1016/j.powtec.2019.06.038_bb0095) 2015; 23 Luo (10.1016/j.powtec.2019.06.038_bb0100) 2015; 88 Lami (10.1016/j.powtec.2019.06.038_bb0055) 1995; 34 Kim (10.1016/j.powtec.2019.06.038_bb0125) 2017; 53 Gao (10.1016/j.powtec.2019.06.038_bb0165) 2019; 348 Long (10.1016/j.powtec.2019.06.038_bb0080) 2009; 67 Parasram (10.1016/j.powtec.2019.06.038_bb0215) 2001 Lawless (10.1016/j.powtec.2019.06.038_bb0200) 1996; 27 Lu (10.1016/j.powtec.2019.06.038_bb0015) 2016; 27 Kallio (10.1016/j.powtec.2019.06.038_bb0170) 2006; 240 Zheng (10.1016/j.powtec.2019.06.038_bb0110) 2018; 118 Wen (10.1016/j.powtec.2019.06.038_bb0135) 2015; 73 Liu (10.1016/j.powtec.2019.06.038_bb0145) 2015; 74 Jaworek (10.1016/j.powtec.2019.06.038_bb0160) 2017; 164 Lei (10.1016/j.powtec.2019.06.038_bb0210) 2008; 66 Kasdi (10.1016/j.powtec.2019.06.038_bb0040) 2016; 81 McDonald (10.1016/j.powtec.2019.06.038_bb0050) 1977; 48 Kim (10.1016/j.powtec.2019.06.038_bb0065) 2001; 50 Dong (10.1016/j.powtec.2019.06.038_bb0115) 2018; 330 Zhao (10.1016/j.powtec.2019.06.038_bb0180) 2005; 63 Long (10.1016/j.powtec.2019.06.038_bb0085) 2012; 215-216 Guo (10.1016/j.powtec.2019.06.038_bb0035) 2014; 72 Lu (10.1016/j.powtec.2019.06.038_bb0155) 2017; 19 Kim (10.1016/j.powtec.2019.06.038_bb0120) 2017; 53 Skodras (10.1016/j.powtec.2019.06.038_bb0030) 2006; 87 Shen (10.1016/j.powtec.2019.06.038_bb0195) 2018; 95 Nikas (10.1016/j.powtec.2019.06.038_bb0075) 2005; 63 Zhang (10.1016/j.powtec.2019.06.038_bb0150) 2015; 34 Chang (10.1016/j.powtec.2019.06.038_bb0060) 2000; 33 Guan (10.1016/j.powtec.2019.06.038_bb0190) 2018; 3 Yamamoto (10.1016/j.powtec.2019.06.038_bb0175) 2006; 108 Ning (10.1016/j.powtec.2019.06.038_bb0045) 2016; 70 Davidson (10.1016/j.powtec.2019.06.038_bb0005) 2005; 39 Ni (10.1016/j.powtec.2019.06.038_bb0025) 2016; 159 Long (10.1016/j.powtec.2019.06.038_bb0010) 2010; 41 Tu (10.1016/j.powtec.2019.06.038_bb0140) 2018; 328 10.1016/j.powtec.2019.06.038_bb0220 Arif (10.1016/j.powtec.2019.06.038_bb0105) 2016; 84 Brocilo (10.1016/j.powtec.2019.06.038_bb0130) 2008; 142 Anagnostopoulos (10.1016/j.powtec.2019.06.038_bb0070) 2002; 54 Chen (10.1016/j.powtec.2019.06.038_bb0020) 2014; 136 |
References_xml | – volume: 48 start-page: 2231 year: 1977 end-page: 2243 ident: bb0050 article-title: A mathematical model for calculating electrical conditions in wire-duct electrostatic precipitation devices publication-title: J. Appl. Phys. – volume: 74 start-page: 56 year: 2015 end-page: 65 ident: bb0145 article-title: Numerical analysis of charged particle collection in wire-plate ESP publication-title: J. Electrost. – volume: 66 start-page: 130 year: 2008 end-page: 141 ident: bb0210 article-title: EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator publication-title: J. Electrost. – volume: 81 start-page: 1 year: 2016 end-page: 8 ident: bb0040 article-title: Computation and measurement of corona current density and V–I characteristics in wires-to-plates electrostatic precipitator publication-title: J. Electrost. – volume: 84 start-page: 10 year: 2016 end-page: 22 ident: bb0105 article-title: CFD modeling of particle charging and collection in electrostatic precipitators publication-title: J. Electrost. – volume: 330 start-page: 210 year: 2018 end-page: 218 ident: bb0115 article-title: Numerical study on fine-particle charging and transport behaviour in electrostatic precipitators publication-title: Powder Technol. – volume: 142 year: 2008 ident: bb0130 article-title: Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators publication-title: J. Phys. Conf. Ser. – volume: 27 start-page: 191 year: 1996 end-page: 215 ident: bb0200 article-title: Particle charging bounds, symmetry relations, and an analytic charging rate model for the continuum regime publication-title: J. Aerosol Sci. – volume: 67 start-page: 835 year: 2009 end-page: 843 ident: bb0080 article-title: Three-dimensional simulation of electric field and space charge in the advanced hybrid particulate collector publication-title: J. Electrost. – volume: 3 year: 2018 ident: bb0190 article-title: Experimental and numerical investigation of electrohydrodynamic flow in a point-to-ring corona discharge publication-title: Phys. Rev. Fluids – volume: 95 start-page: 61 year: 2018 end-page: 70 ident: bb0195 article-title: Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes publication-title: J. Electrost. – volume: 41 start-page: 702 year: 2010 end-page: 718 ident: bb0010 article-title: Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators publication-title: J. Aerosol Sci. – volume: 136 start-page: 27 year: 2014 end-page: 35 ident: bb0020 article-title: An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles publication-title: Sep. Purif. Technol. – volume: 54 start-page: 129 year: 2002 end-page: 147 ident: bb0070 article-title: Corona discharge simulation in wire-duct electrostatic precipitator publication-title: J. Electrost. – volume: 88 start-page: 127 year: 2015 end-page: 139 ident: bb0100 article-title: Numerical simulation of temperature effect on particles behavior via electrostatic precipitators publication-title: Appl. Therm. Eng. – volume: 164 start-page: 1645 year: 2017 end-page: 1664 ident: bb0160 article-title: Two-stage electrostatic precipitator with dual-corona particle precharger for PM 2.5 particles removal publication-title: J. Clean. Prod. – volume: 63 start-page: 1057 year: 2005 end-page: 1071 ident: bb0205 article-title: Particle tracking and particle-wall collision in a wire-plate electrostatic precipitator publication-title: J. Electrost. – volume: 23 start-page: 633 year: 2015 end-page: 640 ident: bb0095 article-title: CFD simulation of high-temperature effect on EHD characteristics in a wire-plate electrostatic precipitator publication-title: Chin. J. Chem. Eng. – volume: 77 start-page: 102 year: 2014 end-page: 115 ident: bb0090 article-title: Numerical modeling of electrostatic precipitation: effect of gas temperature publication-title: J. Aerosol Sci. – reference: J. Podliński, M. Danowska, T. Izdebski, M. Dors, Electrohydrodynamic pump supplied by unipolar direct current voltage with both positive and negative corona discharge, J. Fluids Eng., 141 (2019) 011206–1. – volume: 72 start-page: 301 year: 2014 end-page: 310 ident: bb0035 article-title: Simulation of the electric field in wire-plate type electrostatic precipitators publication-title: J. Electrost. – year: 2001 ident: bb0215 article-title: Particle Motion in Electrostatic Precipitators – volume: 215-216 start-page: 26 year: 2012 end-page: 37 ident: bb0085 article-title: Numerical simulation of the flow and the collection mechanism inside a scale hybrid particulate collector publication-title: Powder Technol. – volume: 73 start-page: 117 year: 2015 end-page: 124 ident: bb0135 article-title: Novel electrodes of an electrostatic precipitator for air filtration publication-title: J. Electrost. – volume: 53 start-page: 459 year: 2017 end-page: 465 ident: bb0120 article-title: Ozone emission and electrical characteristics of ionizers with different electrode materials, numbers, and diameters publication-title: IEEE Trans. Ind. Appl. – volume: 328 start-page: 84 year: 2018 end-page: 94 ident: bb0140 article-title: Mechanism study of electrostatic precipitation in a compact hybrid particulate collector publication-title: Powder Technol. – volume: 240 start-page: 133 year: 2006 ident: bb0170 article-title: Interaction of electrostatic and fluid dynamic fields in wire—plate electrostatic precipitators publication-title: J. Fluid Mech. – volume: 64 start-page: 628 year: 2006 end-page: 633 ident: bb0185 article-title: Three-dimensional EHD simulation for point corona electrostatic precipitator based on laminar and turbulent models publication-title: J. Electrost. – volume: 159 start-page: 135 year: 2016 end-page: 146 ident: bb0025 article-title: Experimental investigation on the characteristics of ash layers in a high-temperature wire–cylinder electrostatic precipitator publication-title: Sep. Purif. Technol. – volume: 63 start-page: 423 year: 2005 end-page: 443 ident: bb0075 article-title: Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator publication-title: J. Electrost. – volume: 27 start-page: 1905 year: 2016 end-page: 1911 ident: bb0015 article-title: Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator publication-title: Adv. Powder Technol. – volume: 50 start-page: 177 year: 2001 end-page: 190 ident: bb0065 article-title: Theoretical model of electrostatic precipitator performance for collecting polydisperse particles publication-title: J. Electrost. – volume: 348 start-page: 13 year: 2019 end-page: 23 ident: bb0165 article-title: Dust removal performance of two-stage electrostatic precipitators and its influencing factors publication-title: Powder Technol. – volume: 19 year: 2017 ident: bb0155 article-title: Analysis of the operating parameters of a vortex electrostatic precipitator publication-title: Plasma Sci. Technol. – volume: 118 start-page: 22 year: 2018 end-page: 33 ident: bb0110 article-title: Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect publication-title: J. Aerosol Sci. – volume: 53 start-page: 466 year: 2017 end-page: 473 ident: bb0125 article-title: Performance of ultrafine particle collection of a two-stage ESP using a novel mixing type carbon brush charger and parallel collection plates publication-title: IEEE Trans. Ind. Appl. – volume: 70 year: 2016 ident: bb0045 article-title: Electrode configurations inside an electrostatic precipitator and their impact on collection efficiency and flow pattern publication-title: Europ. Phys. J. D – volume: 34 start-page: 385 year: 1995 end-page: 399 ident: bb0055 article-title: A numerical procedure for computing the voltage-current characteristics in electrostatic precipitator configurations publication-title: J. Electrost. – volume: 33 start-page: 228 year: 2000 end-page: 238 ident: bb0060 article-title: Effects of some geometric parameters on the electrostatic precipitator efficiency at different operation indexes publication-title: Aerosol Sci. Technol. – volume: 39 start-page: 737 year: 2005 end-page: 749 ident: bb0005 article-title: Airborne particulate matter and human health: a review publication-title: Aerosol Sci. Technol. – volume: 34 start-page: 697 year: 2015 end-page: 702 ident: bb0150 article-title: Modeling and simulation of PM2.5 collection efficiency in a wire-plate ESP subjected to magnetic field and diffusion charging publication-title: Environ. Prog. Sustain. Energy – volume: 108 start-page: 1 year: 2006 ident: bb0175 article-title: Electrohydrodynamics in an electrostatic precipitator publication-title: J. Fluid Mech. – volume: 63 start-page: 337 year: 2005 end-page: 350 ident: bb0180 article-title: EHD flow in air produced by electric corona discharge in pin–plate configuration publication-title: J. Electrost. – volume: 87 start-page: 623 year: 2006 end-page: 631 ident: bb0030 article-title: Particulate removal via electrostatic precipitators — CFD simulation publication-title: Fuel Process. Technol. – volume: 84 start-page: 10 year: 2016 ident: 10.1016/j.powtec.2019.06.038_bb0105 article-title: CFD modeling of particle charging and collection in electrostatic precipitators publication-title: J. Electrost. doi: 10.1016/j.elstat.2016.08.008 – volume: 19 year: 2017 ident: 10.1016/j.powtec.2019.06.038_bb0155 article-title: Analysis of the operating parameters of a vortex electrostatic precipitator publication-title: Plasma Sci. Technol. – volume: 70 year: 2016 ident: 10.1016/j.powtec.2019.06.038_bb0045 article-title: Electrode configurations inside an electrostatic precipitator and their impact on collection efficiency and flow pattern publication-title: Europ. Phys. J. D doi: 10.1140/epjd/e2016-60736-2 – volume: 81 start-page: 1 year: 2016 ident: 10.1016/j.powtec.2019.06.038_bb0040 article-title: Computation and measurement of corona current density and V–I characteristics in wires-to-plates electrostatic precipitator publication-title: J. Electrost. doi: 10.1016/j.elstat.2016.02.005 – volume: 215-216 start-page: 26 year: 2012 ident: 10.1016/j.powtec.2019.06.038_bb0085 article-title: Numerical simulation of the flow and the collection mechanism inside a scale hybrid particulate collector publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.08.045 – volume: 142 year: 2008 ident: 10.1016/j.powtec.2019.06.038_bb0130 article-title: Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/142/1/012032 – volume: 23 start-page: 633 year: 2015 ident: 10.1016/j.powtec.2019.06.038_bb0095 article-title: CFD simulation of high-temperature effect on EHD characteristics in a wire-plate electrostatic precipitator publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2014.06.038 – volume: 240 start-page: 133 year: 2006 ident: 10.1016/j.powtec.2019.06.038_bb0170 article-title: Interaction of electrostatic and fluid dynamic fields in wire—plate electrostatic precipitators publication-title: J. Fluid Mech. doi: 10.1017/S0022112092000053 – volume: 33 start-page: 228 year: 2000 ident: 10.1016/j.powtec.2019.06.038_bb0060 article-title: Effects of some geometric parameters on the electrostatic precipitator efficiency at different operation indexes publication-title: Aerosol Sci. Technol. doi: 10.1080/027868200416222 – volume: 54 start-page: 129 year: 2002 ident: 10.1016/j.powtec.2019.06.038_bb0070 article-title: Corona discharge simulation in wire-duct electrostatic precipitator publication-title: J. Electrost. doi: 10.1016/S0304-3886(01)00172-3 – volume: 50 start-page: 177 year: 2001 ident: 10.1016/j.powtec.2019.06.038_bb0065 article-title: Theoretical model of electrostatic precipitator performance for collecting polydisperse particles publication-title: J. Electrost. doi: 10.1016/S0304-3886(00)00035-8 – volume: 63 start-page: 423 year: 2005 ident: 10.1016/j.powtec.2019.06.038_bb0075 article-title: Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator publication-title: J. Electrost. doi: 10.1016/j.elstat.2004.12.005 – volume: 77 start-page: 102 year: 2014 ident: 10.1016/j.powtec.2019.06.038_bb0090 article-title: Numerical modeling of electrostatic precipitation: effect of gas temperature publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2014.07.009 – volume: 95 start-page: 61 year: 2018 ident: 10.1016/j.powtec.2019.06.038_bb0195 article-title: Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes publication-title: J. Electrost. doi: 10.1016/j.elstat.2018.08.002 – volume: 72 start-page: 301 year: 2014 ident: 10.1016/j.powtec.2019.06.038_bb0035 article-title: Simulation of the electric field in wire-plate type electrostatic precipitators publication-title: J. Electrost. doi: 10.1016/j.elstat.2014.05.005 – volume: 64 start-page: 628 year: 2006 ident: 10.1016/j.powtec.2019.06.038_bb0185 article-title: Three-dimensional EHD simulation for point corona electrostatic precipitator based on laminar and turbulent models publication-title: J. Electrost. doi: 10.1016/j.elstat.2005.10.015 – volume: 328 start-page: 84 year: 2018 ident: 10.1016/j.powtec.2019.06.038_bb0140 article-title: Mechanism study of electrostatic precipitation in a compact hybrid particulate collector publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.01.016 – volume: 34 start-page: 385 year: 1995 ident: 10.1016/j.powtec.2019.06.038_bb0055 article-title: A numerical procedure for computing the voltage-current characteristics in electrostatic precipitator configurations publication-title: J. Electrost. doi: 10.1016/0304-3886(94)00030-Z – volume: 27 start-page: 1905 year: 2016 ident: 10.1016/j.powtec.2019.06.038_bb0015 article-title: Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.06.021 – volume: 41 start-page: 702 year: 2010 ident: 10.1016/j.powtec.2019.06.038_bb0010 article-title: Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2010.04.005 – volume: 53 start-page: 466 year: 2017 ident: 10.1016/j.powtec.2019.06.038_bb0125 article-title: Performance of ultrafine particle collection of a two-stage ESP using a novel mixing type carbon brush charger and parallel collection plates publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2606366 – volume: 136 start-page: 27 year: 2014 ident: 10.1016/j.powtec.2019.06.038_bb0020 article-title: An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2014.08.032 – volume: 63 start-page: 1057 year: 2005 ident: 10.1016/j.powtec.2019.06.038_bb0205 article-title: Particle tracking and particle-wall collision in a wire-plate electrostatic precipitator publication-title: J. Electrost. doi: 10.1016/j.elstat.2005.02.002 – volume: 73 start-page: 117 year: 2015 ident: 10.1016/j.powtec.2019.06.038_bb0135 article-title: Novel electrodes of an electrostatic precipitator for air filtration publication-title: J. Electrost. doi: 10.1016/j.elstat.2014.11.002 – volume: 88 start-page: 127 year: 2015 ident: 10.1016/j.powtec.2019.06.038_bb0100 article-title: Numerical simulation of temperature effect on particles behavior via electrostatic precipitators publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.11.078 – volume: 330 start-page: 210 year: 2018 ident: 10.1016/j.powtec.2019.06.038_bb0115 article-title: Numerical study on fine-particle charging and transport behaviour in electrostatic precipitators publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.02.038 – volume: 53 start-page: 459 year: 2017 ident: 10.1016/j.powtec.2019.06.038_bb0120 article-title: Ozone emission and electrical characteristics of ionizers with different electrode materials, numbers, and diameters publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2606362 – volume: 48 start-page: 2231 year: 1977 ident: 10.1016/j.powtec.2019.06.038_bb0050 article-title: A mathematical model for calculating electrical conditions in wire-duct electrostatic precipitation devices publication-title: J. Appl. Phys. doi: 10.1063/1.324034 – volume: 39 start-page: 737 year: 2005 ident: 10.1016/j.powtec.2019.06.038_bb0005 article-title: Airborne particulate matter and human health: a review publication-title: Aerosol Sci. Technol. doi: 10.1080/02786820500191348 – volume: 34 start-page: 697 year: 2015 ident: 10.1016/j.powtec.2019.06.038_bb0150 article-title: Modeling and simulation of PM2.5 collection efficiency in a wire-plate ESP subjected to magnetic field and diffusion charging publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.12052 – volume: 159 start-page: 135 year: 2016 ident: 10.1016/j.powtec.2019.06.038_bb0025 article-title: Experimental investigation on the characteristics of ash layers in a high-temperature wire–cylinder electrostatic precipitator publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.01.011 – volume: 74 start-page: 56 year: 2015 ident: 10.1016/j.powtec.2019.06.038_bb0145 article-title: Numerical analysis of charged particle collection in wire-plate ESP publication-title: J. Electrost. doi: 10.1016/j.elstat.2014.11.007 – year: 2001 ident: 10.1016/j.powtec.2019.06.038_bb0215 – volume: 348 start-page: 13 year: 2019 ident: 10.1016/j.powtec.2019.06.038_bb0165 article-title: Dust removal performance of two-stage electrostatic precipitators and its influencing factors publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.03.016 – volume: 3 year: 2018 ident: 10.1016/j.powtec.2019.06.038_bb0190 article-title: Experimental and numerical investigation of electrohydrodynamic flow in a point-to-ring corona discharge publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.043701 – volume: 67 start-page: 835 year: 2009 ident: 10.1016/j.powtec.2019.06.038_bb0080 article-title: Three-dimensional simulation of electric field and space charge in the advanced hybrid particulate collector publication-title: J. Electrost. doi: 10.1016/j.elstat.2009.07.001 – volume: 66 start-page: 130 year: 2008 ident: 10.1016/j.powtec.2019.06.038_bb0210 article-title: EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator publication-title: J. Electrost. doi: 10.1016/j.elstat.2007.11.001 – volume: 63 start-page: 337 year: 2005 ident: 10.1016/j.powtec.2019.06.038_bb0180 article-title: EHD flow in air produced by electric corona discharge in pin–plate configuration publication-title: J. Electrost. doi: 10.1016/j.elstat.2004.06.003 – volume: 27 start-page: 191 year: 1996 ident: 10.1016/j.powtec.2019.06.038_bb0200 article-title: Particle charging bounds, symmetry relations, and an analytic charging rate model for the continuum regime publication-title: J. Aerosol Sci. doi: 10.1016/0021-8502(95)00541-2 – ident: 10.1016/j.powtec.2019.06.038_bb0220 – volume: 87 start-page: 623 year: 2006 ident: 10.1016/j.powtec.2019.06.038_bb0030 article-title: Particulate removal via electrostatic precipitators — CFD simulation publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2006.01.012 – volume: 118 start-page: 22 year: 2018 ident: 10.1016/j.powtec.2019.06.038_bb0110 article-title: Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2018.01.008 – volume: 108 start-page: 1 year: 2006 ident: 10.1016/j.powtec.2019.06.038_bb0175 article-title: Electrohydrodynamics in an electrostatic precipitator publication-title: J. Fluid Mech. doi: 10.1017/S002211208100195X – volume: 164 start-page: 1645 year: 2017 ident: 10.1016/j.powtec.2019.06.038_bb0160 article-title: Two-stage electrostatic precipitator with dual-corona particle precharger for PM 2.5 particles removal publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.07.032 |
SSID | ssj0006310 |
Score | 2.5417576 |
Snippet | In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 653 |
SubjectTerms | Air pollution control Collection Collection efficiency Computational fluid dynamics Computer simulation Corrugated plate Corrugated plates Electric fields Electric potential electric potential difference Electrohydrodynamics Electrohydrodynamics flow Electrostatic precipitators Electrostatic properties Fluid flow Mathematical models Numerical methods Numerical simulation Optimization Parallel plates Particle charging Particle trajectories Pollution control equipment powders Precipitators Static electricity Velocity Voltage wind |
Title | Numerical simulation of capture process of fine particles in electrostatic precipitators under consideration of electrohydrodynamics flow |
URI | https://dx.doi.org/10.1016/j.powtec.2019.06.038 https://www.proquest.com/docview/2311525725 https://www.proquest.com/docview/2271822500 |
Volume | 354 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZLemkPZfti06aLCr26K0uyLB9D6JK2NKcu7E3IssR6SW2zSQi99L7_ujO2nD5YCPRoeWQbzXhmhGa-j5D3wlY-yDQkmdOwQVHMJQUEmiSUlSptnsqq75D7ulLLK_n5Ors-IYuxFwbLKqPvH3x6763jyEVczYuurrHHV0DuDiZVCAQ9QUxQKXO08g8_f5d5KJFGaEbYdIH02D7X13h17X7rEcgwLXoUT-xSeTg8_eOo--hzeUqexrSRzocve0ZOfPOcPPkDTPAFuV_thtOXNd3U3yMrF20DdbbDYwLaDT0BOBRgGu3GojhaNzTS4WB_Ue1A1Lsa-USQi4din9kddZHa8_DcOOXmRwVOeCC239CwbvcvydXlx2-LZRKJFhInmdwmQttUB1UJLb2A_E7nFjEDMuaFqBQvlAsu2NRaFoRywmalDUUoM885Kzhz4hWZNG3jzwiFLFi6PNiKY-KgVcl4aVPmtJU28zqdEjGur3ERhRzJMNZmLDe7NYNWDGrFYNWd0FOSHGZ1AwrHEfl8VJ35y5oMBIojM2ejpk38mzeGIyQR-DaeTcm7w234D_FwxTa-3YEMhygPzpGx1__98jfkMV4NJWwzMtne7fxbyHm25Xlv1Ofk0fzTl-XqF9DLBkY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SzaHNofSTbpK2KvRqIluyVj6G0LBpkj0lkJuQZYm6bG2T3SXkJ-RfZ8aWl7YUAr1KGtvo480YzbwH8FXYygeZhiR3Gn9QFHdJgY4mCWWlSjtLZdVXyF0u1Pxafr_Jb3bgZKyFobTKiP0DpvdoHVuO4mwedXVNNb4CY3fcUoUg0hP5DHaJnSqfwO7x2fl8sQVkJdLIzoj_XWgwVtD1aV5de7f2xGWYFj2RJxWq_NtD_YXVvQM6fQUvY-TIjoePew07vnkDe7_xCb6Fh8VmuIBZslX9KwpzsTYwZzu6KWDdUBZATQHNWDfmxbG6YVERh0qMaodDvatJUoTkeBiVmt0yF9U9t8-NJj_uK8ThQdt-xcKyvXsH16ffrk7mSdRaSJzkcp0IbVMdVCW09AJDPD2zRBuQcy9EpbJCueCCTa3lQSgnbF7aUIQy91nGi4w78R4mTdv4D8AwEJZuFmyVUeygVcmz0qbcaStt7nU6BTHOr3GRiJz0MJZmzDj7aYZVMbQqhhLvhJ5CsrXqBiKOJ8bPxqUzf2wog77iCcvDcaVNPNArkxErEcJblk_hy7YbjyLdr9jGtxsck6GjR3zkfP-_X_4Zns-vLi_Mxdni_ABeUM-Q0XYIk_Xtxn_EEGhdfopb_BG4yAj3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+capture+process+of+fine+particles+in+electrostatic+precipitators+under+consideration+of+electrohydrodynamics+flow&rft.jtitle=Powder+technology&rft.au=Zhu%2C+Yong&rft.au=Gao%2C+Mengxiang&rft.au=Chen%2C+Mingxia&rft.au=Shi%2C+Jianwei&rft.date=2019-09-01&rft.issn=0032-5910&rft.volume=354+p.653-675&rft.spage=653&rft.epage=675&rft_id=info:doi/10.1016%2Fj.powtec.2019.06.038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon |