Numerical simulation of capture process of fine particles in electrostatic precipitators under consideration of electrohydrodynamics flow

In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.11Electrostatic precipitators (ESPs) The simplified models were established to evaluate and predict the distr...

Full description

Saved in:
Bibliographic Details
Published inPowder technology Vol. 354; pp. 653 - 675
Main Authors Zhu, Yong, Gao, Mengxiang, Chen, Mingxia, Shi, Jianwei, Shangguan, Wenfeng
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.09.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.11Electrostatic precipitators (ESPs) The simplified models were established to evaluate and predict the distribution of electrostatic field, gas dynamic, particle charging, and transport behavior. The electrohydrodynamic (EHD) flow with different applied voltage at various gas velocities was presented on the basis of two kinds of models, and the detailed influence on particle dynamic, including particle trajectory, migration velocity to collection plates, and particle capture had also been investigated thoroughly.22Electrohydrodynamic (EHD) Numerical results indicated that corrugated plate electrostatic precipitator (CP ESP),33Corrugated plate electrostatic precipitator (CP ESP) possessed greater electrostatic field characteristic than parallel plate electrostatic precipitator (PP ESP) and it also had a stronger capacity of resisting the influence of EHD flow, which was beneficial from the particular structure.44Parallel plate electrostatic precipitator (PP ESP) Besides, the EHD flow would make smaller particle present more apparent fluctuant trajectory near discharge wires when fine particles traveled in ESPs at a low gas velocity or with a high applied voltage, and that caused a more severe movement towards collection plates. Numerical results of the evolution of EHD flow showed that the faster elimination of ionic wind vortexes in CP ESP gave rise to higher collection efficiency. With the increment of gas velocity, the intensity of EHD flow exhibited a declining trend, and the difference of collection efficiency between two ESPs also decreased, which suggested that EHD flow had a significant effect on the <1 μm particle collection and the structure optimization could provide an available approach to evade the influence of EHD flow. [Display omitted] •A corrugated plate ESP model was established to investigate the evolution of EHD flow.•The influence of EHD flow on particle dynamic had been investigated thoroughly.•Corrugated plate ESP could eliminate ionic wind vortex fast.
AbstractList In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.11Electrostatic precipitators (ESPs) The simplified models were established to evaluate and predict the distribution of electrostatic field, gas dynamic, particle charging, and transport behavior. The electrohydrodynamic (EHD) flow with different applied voltage at various gas velocities was presented on the basis of two kinds of models, and the detailed influence on particle dynamic, including particle trajectory, migration velocity to collection plates, and particle capture had also been investigated thoroughly.22Electrohydrodynamic (EHD) Numerical results indicated that corrugated plate electrostatic precipitator (CP ESP),33Corrugated plate electrostatic precipitator (CP ESP) possessed greater electrostatic field characteristic than parallel plate electrostatic precipitator (PP ESP) and it also had a stronger capacity of resisting the influence of EHD flow, which was beneficial from the particular structure.44Parallel plate electrostatic precipitator (PP ESP) Besides, the EHD flow would make smaller particle present more apparent fluctuant trajectory near discharge wires when fine particles traveled in ESPs at a low gas velocity or with a high applied voltage, and that caused a more severe movement towards collection plates. Numerical results of the evolution of EHD flow showed that the faster elimination of ionic wind vortexes in CP ESP gave rise to higher collection efficiency. With the increment of gas velocity, the intensity of EHD flow exhibited a declining trend, and the difference of collection efficiency between two ESPs also decreased, which suggested that EHD flow had a significant effect on the <1 μm particle collection and the structure optimization could provide an available approach to evade the influence of EHD flow. [Display omitted] •A corrugated plate ESP model was established to investigate the evolution of EHD flow.•The influence of EHD flow on particle dynamic had been investigated thoroughly.•Corrugated plate ESP could eliminate ionic wind vortex fast.
In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.¹1Electrostatic precipitators (ESPs) The simplified models were established to evaluate and predict the distribution of electrostatic field, gas dynamic, particle charging, and transport behavior. The electrohydrodynamic (EHD) flow with different applied voltage at various gas velocities was presented on the basis of two kinds of models, and the detailed influence on particle dynamic, including particle trajectory, migration velocity to collection plates, and particle capture had also been investigated thoroughly.²2Electrohydrodynamic (EHD) Numerical results indicated that corrugated plate electrostatic precipitator (CP ESP),³3Corrugated plate electrostatic precipitator (CP ESP) possessed greater electrostatic field characteristic than parallel plate electrostatic precipitator (PP ESP) and it also had a stronger capacity of resisting the influence of EHD flow, which was beneficial from the particular structure.⁴4Parallel plate electrostatic precipitator (PP ESP) Besides, the EHD flow would make smaller particle present more apparent fluctuant trajectory near discharge wires when fine particles traveled in ESPs at a low gas velocity or with a high applied voltage, and that caused a more severe movement towards collection plates. Numerical results of the evolution of EHD flow showed that the faster elimination of ionic wind vortexes in CP ESP gave rise to higher collection efficiency. With the increment of gas velocity, the intensity of EHD flow exhibited a declining trend, and the difference of collection efficiency between two ESPs also decreased, which suggested that EHD flow had a significant effect on the <1 μm particle collection and the structure optimization could provide an available approach to evade the influence of EHD flow.
In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated and parallel plates, respectively.1 The simplified models were established to evaluate and predict the distribution of electrostatic field, gas dynamic, particle charging, and transport behavior. The electrohydrodynamic (EHD) flow with different applied voltage at various gas velocities was presented on the basis of two kinds of models, and the detailed influence on particle dynamic, including particle trajectory, migration velocity to collection plates, and particle capture had also been investigated thoroughly.2 Numerical results indicated that corrugated plate electrostatic precipitator (CP ESP),3 possessed greater electrostatic field characteristic than parallel plate electrostatic precipitator (PP ESP) and it also had a stronger capacity of resisting the influence of EHD flow, which was beneficial from the particular structure.4 Besides, the EHD flow would make smaller particle present more apparent fluctuant trajectory near discharge wires when fine particles traveled in ESPs at a low gas velocity or with a high applied voltage, and that caused a more severe movement towards collection plates. Numerical results of the evolution of EHD flow showed that the faster elimination of ionic wind vortexes in CP ESP gave rise to higher collection efficiency. With the increment of gas velocity, the intensity of EHD flow exhibited a declining trend, and the difference of collection efficiency between two ESPs also decreased, which suggested that EHD flow had a significant effect on the <1 μm particle collection and the structure optimization could provide an available approach to evade the influence of EHD flow.
Author Shangguan, Wenfeng
Shi, Jianwei
Chen, Mingxia
Gao, Mengxiang
Zhu, Yong
Author_xml – sequence: 1
  givenname: Yong
  surname: Zhu
  fullname: Zhu, Yong
– sequence: 2
  givenname: Mengxiang
  surname: Gao
  fullname: Gao, Mengxiang
– sequence: 3
  givenname: Mingxia
  orcidid: 0000-0001-8775-0987
  surname: Chen
  fullname: Chen, Mingxia
– sequence: 4
  givenname: Jianwei
  surname: Shi
  fullname: Shi, Jianwei
– sequence: 5
  givenname: Wenfeng
  surname: Shangguan
  fullname: Shangguan, Wenfeng
  email: shangguan@sjtu.edu.cn
BookMark eNqFkc2KFDEUhYOMYE_rG7gocOOmypukk65yIcjgz8CgGwV3IXPrBtNUJWWScuhH8K1N04OLWYyr5IbzHW7OuWQXIQZi7CWHjgPXbw7dEu8KYSeADx3oDmT_hG14v5etFP2PC7YBkKJVA4dn7DLnAwBoyWHD_nxZZ0oe7dRkP6-TLT6GJroG7VLWRM2SIlLOpyfnQ51tKh4nyo0PDU2EJcVcKoZVSugXX4eYcrOGkVKDMWRfL_9875GfxzHF8Rjs7DE3bop3z9lTZ6dML-7PLfv-8cO3q8_tzddP11fvb1rcwa60sre8d3qU_Y6k0rrfW4Vjr4CkHLUYNDp0llsLTmqUVt1aN7hbRULAIADllr0--9af_VopFzP7jDRNNlBcsxFiz3shVE1sy149kB7imkLdzgjJuRJqL1RV7c4qrEnkRM4syc82HQ0Hc-rHHMy5H3Pqx4A2tZ-KvX2A4Sm6GlNJ1k__g9-dYapJ_faUTEZPAWn0tYRixugfN_gLS0C1Cg
CitedBy_id crossref_primary_10_1016_j_powtec_2022_117893
crossref_primary_10_1016_j_cej_2020_127797
crossref_primary_10_1016_j_elstat_2023_103841
crossref_primary_10_1016_j_cej_2021_130569
crossref_primary_10_1016_j_powtec_2020_12_070
crossref_primary_10_1088_1742_6596_2083_3_032046
crossref_primary_10_1089_ees_2023_0241
crossref_primary_10_1016_j_ces_2024_120213
crossref_primary_10_3390_electronics12122579
crossref_primary_10_1016_j_jaerosci_2023_106313
crossref_primary_10_1016_j_psep_2022_06_069
crossref_primary_10_1166_jon_2023_2070
crossref_primary_10_1016_j_psep_2022_06_022
crossref_primary_10_1016_j_powtec_2022_117444
crossref_primary_10_1016_j_cherd_2021_02_001
crossref_primary_10_1016_j_compag_2022_107145
crossref_primary_10_1016_j_powtec_2020_11_042
crossref_primary_10_1016_j_powtec_2025_120873
crossref_primary_10_1016_j_powtec_2022_117804
crossref_primary_10_1016_j_elstat_2024_103899
crossref_primary_10_1007_s12046_021_01687_0
crossref_primary_10_1016_j_cherd_2022_07_045
crossref_primary_10_1016_j_powtec_2021_09_064
crossref_primary_10_1016_j_seppur_2023_124550
crossref_primary_10_1016_j_ijthermalsci_2025_109864
crossref_primary_10_1016_j_powtec_2020_04_025
crossref_primary_10_1016_j_seppur_2024_128459
crossref_primary_10_1016_j_cjche_2024_05_028
crossref_primary_10_1016_j_powtec_2019_08_046
crossref_primary_10_1016_j_powtec_2021_04_087
crossref_primary_10_1016_j_ces_2020_115910
crossref_primary_10_1016_j_powtec_2024_119538
crossref_primary_10_1016_j_elstat_2022_103781
crossref_primary_10_1088_1361_6463_ac3e2c
crossref_primary_10_1051_epjap_2023230106
crossref_primary_10_1016_j_measurement_2021_109296
crossref_primary_10_1021_envhealth_4c00100
crossref_primary_10_1016_j_cherd_2022_11_014
crossref_primary_10_1016_j_elstat_2023_103818
crossref_primary_10_1016_j_powtec_2020_10_087
crossref_primary_10_1016_j_fuproc_2023_107981
crossref_primary_10_1021_acsomega_4c06500
crossref_primary_10_1016_j_powtec_2023_118578
crossref_primary_10_1016_j_powtec_2020_12_028
crossref_primary_10_1016_j_psep_2020_07_005
crossref_primary_10_1016_j_cherd_2023_07_006
crossref_primary_10_1016_j_powtec_2020_09_027
crossref_primary_10_1016_j_elstat_2023_103811
crossref_primary_10_1088_1402_4896_ad8af7
crossref_primary_10_1016_j_scs_2019_102001
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119545
crossref_primary_10_1016_j_jes_2022_12_013
crossref_primary_10_1016_j_joei_2021_12_004
crossref_primary_10_1016_j_enbuild_2022_112496
crossref_primary_10_1016_j_powtec_2021_08_049
crossref_primary_10_1016_j_powtec_2020_02_051
Cites_doi 10.1016/j.elstat.2016.08.008
10.1140/epjd/e2016-60736-2
10.1016/j.elstat.2016.02.005
10.1016/j.powtec.2011.08.045
10.1088/1742-6596/142/1/012032
10.1016/j.cjche.2014.06.038
10.1017/S0022112092000053
10.1080/027868200416222
10.1016/S0304-3886(01)00172-3
10.1016/S0304-3886(00)00035-8
10.1016/j.elstat.2004.12.005
10.1016/j.jaerosci.2014.07.009
10.1016/j.elstat.2018.08.002
10.1016/j.elstat.2014.05.005
10.1016/j.elstat.2005.10.015
10.1016/j.powtec.2018.01.016
10.1016/0304-3886(94)00030-Z
10.1016/j.apt.2016.06.021
10.1016/j.jaerosci.2010.04.005
10.1109/TIA.2016.2606366
10.1016/j.seppur.2014.08.032
10.1016/j.elstat.2005.02.002
10.1016/j.elstat.2014.11.002
10.1016/j.applthermaleng.2014.11.078
10.1016/j.powtec.2018.02.038
10.1109/TIA.2016.2606362
10.1063/1.324034
10.1080/02786820500191348
10.1002/ep.12052
10.1016/j.seppur.2016.01.011
10.1016/j.elstat.2014.11.007
10.1016/j.powtec.2019.03.016
10.1103/PhysRevFluids.3.043701
10.1016/j.elstat.2009.07.001
10.1016/j.elstat.2007.11.001
10.1016/j.elstat.2004.06.003
10.1016/0021-8502(95)00541-2
10.1016/j.fuproc.2006.01.012
10.1016/j.jaerosci.2018.01.008
10.1017/S002211208100195X
10.1016/j.jclepro.2017.07.032
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Sep 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 2019
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
JG9
SOI
7S9
L.6
DOI 10.1016/j.powtec.2019.06.038
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-328X
EndPage 675
ExternalDocumentID 10_1016_j_powtec_2019_06_038
S0032591019304814
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
T9H
WUQ
XPP
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7ST
8BQ
8FD
C1K
EFKBS
JG9
SOI
7S9
L.6
ID FETCH-LOGICAL-c404t-38a18f6d384e356687a5cd850e33d6296cfcfa1aa0f36c3a5baf9fb5e220920c3
IEDL.DBID .~1
ISSN 0032-5910
IngestDate Thu Jul 10 23:41:42 EDT 2025
Wed Aug 13 06:35:43 EDT 2025
Tue Jul 01 01:21:51 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Fri Feb 23 02:48:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical simulation
Corrugated plate
Electrohydrodynamics flow
Collection efficiency
Electrostatic precipitators
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-38a18f6d384e356687a5cd850e33d6296cfcfa1aa0f36c3a5baf9fb5e220920c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8775-0987
PQID 2311525725
PQPubID 2045415
PageCount 23
ParticipantIDs proquest_miscellaneous_2271822500
proquest_journals_2311525725
crossref_primary_10_1016_j_powtec_2019_06_038
crossref_citationtrail_10_1016_j_powtec_2019_06_038
elsevier_sciencedirect_doi_10_1016_j_powtec_2019_06_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Powder technology
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References McDonald, Smith, Spencer Iii, Sparks (bb0050) 1977; 48
Arif, Branken, Everson, Neomagus, le Grange, Arif (bb0105) 2016; 84
Ni, Yang, Wang, Wang, Xiao, Zheng, Gao, Luo, Cen (bb0025) 2016; 159
Guan, Vaddi, Aliseda, Novosselov (bb0190) 2018; 3
Lei, Wang, Wu (bb0210) 2008; 66
Tu, Song, Yao (bb0140) 2018; 328
Brocilo, Podlinski, Chang, Mizeraczyk, Findlay (bb0130) 2008; 142
Jaworek, Marchewicz, Sobczyk, Krupa, Czech (bb0160) 2017; 164
Chen, Tsai, Yan, Li (bb0020) 2014; 136
Long, Yao (bb0010) 2010; 41
Dong, Zhou, Zhang, Shang, Li (bb0115) 2018; 330
Shen, Yu, Jia, Kang (bb0195) 2018; 95
Long, Yao, Song, Li (bb0080) 2009; 67
Guo, Guo, Yu (bb0035) 2014; 72
Kasdi (bb0040) 2016; 81
Lami, Mattachini, Gallimberti (bb0055) 1995; 34
Guo, Yu, Guo (bb0090) 2014; 77
Nikas, Varonos, Bergeles (bb0075) 2005; 63
Long, Yao (bb0085) 2012; 215-216
Lu, Yang, Zheng, Li, Zhao, Xu, Gao, Luo, Ni, Cen (bb0015) 2016; 27
Kim, Han, Woo, Kim (bb0125) 2017; 53
Chang, Bai (bb0060) 2000; 33
Davidson, Phalen, Solomon (bb0005) 2005; 39
Zhang, Xu, Ren, Wu, Pan (bb0150) 2015; 34
Yamamoto, Morita, Fujishima, Okubo (bb0185) 2006; 64
Luo, Li, Zheng, Gao, Fan (bb0100) 2015; 88
Wen, Wang, Krichtafovitch, Mamishev (bb0135) 2015; 73
Zhang, Wang, Zhu (bb0205) 2005; 63
J. Podliński, M. Danowska, T. Izdebski, M. Dors, Electrohydrodynamic pump supplied by unipolar direct current voltage with both positive and negative corona discharge, J. Fluids Eng., 141 (2019) 011206–1.
Ning, Cheng, Shen, Li, Yan (bb0045) 2016; 70
Kim, Han, Woo, Kim (bb0120) 2017; 53
Liu, Zhang, Chen (bb0145) 2015; 74
Kallio, Stock (bb0170) 2006; 240
Li, Zheng, Luo, Gao, Fan, Cen (bb0095) 2015; 23
Gao, Zhu, Yao, Shi, Shangguan (bb0165) 2019; 348
Zhao, Adamiak (bb0180) 2005; 63
Lawless (bb0200) 1996; 27
Kim, Park, Lee (bb0065) 2001; 50
Yamamoto, Velkoff (bb0175) 2006; 108
Parasram (bb0215) 2001
Skodras, Kaldis, Sofialidis, Faltsi, Grammelis, Sakellaropoulos (bb0030) 2006; 87
Lu, Yi, Yi, Liu (bb0155) 2017; 19
Zheng, Zhang, Yang, Liang, Guo, Wang, Gao (bb0110) 2018; 118
Anagnostopoulos, Bergeles (bb0070) 2002; 54
Yamamoto (10.1016/j.powtec.2019.06.038_bb0185) 2006; 64
Zhang (10.1016/j.powtec.2019.06.038_bb0205) 2005; 63
Guo (10.1016/j.powtec.2019.06.038_bb0090) 2014; 77
Li (10.1016/j.powtec.2019.06.038_bb0095) 2015; 23
Luo (10.1016/j.powtec.2019.06.038_bb0100) 2015; 88
Lami (10.1016/j.powtec.2019.06.038_bb0055) 1995; 34
Kim (10.1016/j.powtec.2019.06.038_bb0125) 2017; 53
Gao (10.1016/j.powtec.2019.06.038_bb0165) 2019; 348
Long (10.1016/j.powtec.2019.06.038_bb0080) 2009; 67
Parasram (10.1016/j.powtec.2019.06.038_bb0215) 2001
Lawless (10.1016/j.powtec.2019.06.038_bb0200) 1996; 27
Lu (10.1016/j.powtec.2019.06.038_bb0015) 2016; 27
Kallio (10.1016/j.powtec.2019.06.038_bb0170) 2006; 240
Zheng (10.1016/j.powtec.2019.06.038_bb0110) 2018; 118
Wen (10.1016/j.powtec.2019.06.038_bb0135) 2015; 73
Liu (10.1016/j.powtec.2019.06.038_bb0145) 2015; 74
Jaworek (10.1016/j.powtec.2019.06.038_bb0160) 2017; 164
Lei (10.1016/j.powtec.2019.06.038_bb0210) 2008; 66
Kasdi (10.1016/j.powtec.2019.06.038_bb0040) 2016; 81
McDonald (10.1016/j.powtec.2019.06.038_bb0050) 1977; 48
Kim (10.1016/j.powtec.2019.06.038_bb0065) 2001; 50
Dong (10.1016/j.powtec.2019.06.038_bb0115) 2018; 330
Zhao (10.1016/j.powtec.2019.06.038_bb0180) 2005; 63
Long (10.1016/j.powtec.2019.06.038_bb0085) 2012; 215-216
Guo (10.1016/j.powtec.2019.06.038_bb0035) 2014; 72
Lu (10.1016/j.powtec.2019.06.038_bb0155) 2017; 19
Kim (10.1016/j.powtec.2019.06.038_bb0120) 2017; 53
Skodras (10.1016/j.powtec.2019.06.038_bb0030) 2006; 87
Shen (10.1016/j.powtec.2019.06.038_bb0195) 2018; 95
Nikas (10.1016/j.powtec.2019.06.038_bb0075) 2005; 63
Zhang (10.1016/j.powtec.2019.06.038_bb0150) 2015; 34
Chang (10.1016/j.powtec.2019.06.038_bb0060) 2000; 33
Guan (10.1016/j.powtec.2019.06.038_bb0190) 2018; 3
Yamamoto (10.1016/j.powtec.2019.06.038_bb0175) 2006; 108
Ning (10.1016/j.powtec.2019.06.038_bb0045) 2016; 70
Davidson (10.1016/j.powtec.2019.06.038_bb0005) 2005; 39
Ni (10.1016/j.powtec.2019.06.038_bb0025) 2016; 159
Long (10.1016/j.powtec.2019.06.038_bb0010) 2010; 41
Tu (10.1016/j.powtec.2019.06.038_bb0140) 2018; 328
10.1016/j.powtec.2019.06.038_bb0220
Arif (10.1016/j.powtec.2019.06.038_bb0105) 2016; 84
Brocilo (10.1016/j.powtec.2019.06.038_bb0130) 2008; 142
Anagnostopoulos (10.1016/j.powtec.2019.06.038_bb0070) 2002; 54
Chen (10.1016/j.powtec.2019.06.038_bb0020) 2014; 136
References_xml – volume: 48
  start-page: 2231
  year: 1977
  end-page: 2243
  ident: bb0050
  article-title: A mathematical model for calculating electrical conditions in wire-duct electrostatic precipitation devices
  publication-title: J. Appl. Phys.
– volume: 74
  start-page: 56
  year: 2015
  end-page: 65
  ident: bb0145
  article-title: Numerical analysis of charged particle collection in wire-plate ESP
  publication-title: J. Electrost.
– volume: 66
  start-page: 130
  year: 2008
  end-page: 141
  ident: bb0210
  article-title: EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator
  publication-title: J. Electrost.
– volume: 81
  start-page: 1
  year: 2016
  end-page: 8
  ident: bb0040
  article-title: Computation and measurement of corona current density and V–I characteristics in wires-to-plates electrostatic precipitator
  publication-title: J. Electrost.
– volume: 84
  start-page: 10
  year: 2016
  end-page: 22
  ident: bb0105
  article-title: CFD modeling of particle charging and collection in electrostatic precipitators
  publication-title: J. Electrost.
– volume: 330
  start-page: 210
  year: 2018
  end-page: 218
  ident: bb0115
  article-title: Numerical study on fine-particle charging and transport behaviour in electrostatic precipitators
  publication-title: Powder Technol.
– volume: 142
  year: 2008
  ident: bb0130
  article-title: Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators
  publication-title: J. Phys. Conf. Ser.
– volume: 27
  start-page: 191
  year: 1996
  end-page: 215
  ident: bb0200
  article-title: Particle charging bounds, symmetry relations, and an analytic charging rate model for the continuum regime
  publication-title: J. Aerosol Sci.
– volume: 67
  start-page: 835
  year: 2009
  end-page: 843
  ident: bb0080
  article-title: Three-dimensional simulation of electric field and space charge in the advanced hybrid particulate collector
  publication-title: J. Electrost.
– volume: 3
  year: 2018
  ident: bb0190
  article-title: Experimental and numerical investigation of electrohydrodynamic flow in a point-to-ring corona discharge
  publication-title: Phys. Rev. Fluids
– volume: 95
  start-page: 61
  year: 2018
  end-page: 70
  ident: bb0195
  article-title: Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes
  publication-title: J. Electrost.
– volume: 41
  start-page: 702
  year: 2010
  end-page: 718
  ident: bb0010
  article-title: Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators
  publication-title: J. Aerosol Sci.
– volume: 136
  start-page: 27
  year: 2014
  end-page: 35
  ident: bb0020
  article-title: An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles
  publication-title: Sep. Purif. Technol.
– volume: 54
  start-page: 129
  year: 2002
  end-page: 147
  ident: bb0070
  article-title: Corona discharge simulation in wire-duct electrostatic precipitator
  publication-title: J. Electrost.
– volume: 88
  start-page: 127
  year: 2015
  end-page: 139
  ident: bb0100
  article-title: Numerical simulation of temperature effect on particles behavior via electrostatic precipitators
  publication-title: Appl. Therm. Eng.
– volume: 164
  start-page: 1645
  year: 2017
  end-page: 1664
  ident: bb0160
  article-title: Two-stage electrostatic precipitator with dual-corona particle precharger for PM 2.5 particles removal
  publication-title: J. Clean. Prod.
– volume: 63
  start-page: 1057
  year: 2005
  end-page: 1071
  ident: bb0205
  article-title: Particle tracking and particle-wall collision in a wire-plate electrostatic precipitator
  publication-title: J. Electrost.
– volume: 23
  start-page: 633
  year: 2015
  end-page: 640
  ident: bb0095
  article-title: CFD simulation of high-temperature effect on EHD characteristics in a wire-plate electrostatic precipitator
  publication-title: Chin. J. Chem. Eng.
– volume: 77
  start-page: 102
  year: 2014
  end-page: 115
  ident: bb0090
  article-title: Numerical modeling of electrostatic precipitation: effect of gas temperature
  publication-title: J. Aerosol Sci.
– reference: J. Podliński, M. Danowska, T. Izdebski, M. Dors, Electrohydrodynamic pump supplied by unipolar direct current voltage with both positive and negative corona discharge, J. Fluids Eng., 141 (2019) 011206–1.
– volume: 72
  start-page: 301
  year: 2014
  end-page: 310
  ident: bb0035
  article-title: Simulation of the electric field in wire-plate type electrostatic precipitators
  publication-title: J. Electrost.
– year: 2001
  ident: bb0215
  article-title: Particle Motion in Electrostatic Precipitators
– volume: 215-216
  start-page: 26
  year: 2012
  end-page: 37
  ident: bb0085
  article-title: Numerical simulation of the flow and the collection mechanism inside a scale hybrid particulate collector
  publication-title: Powder Technol.
– volume: 73
  start-page: 117
  year: 2015
  end-page: 124
  ident: bb0135
  article-title: Novel electrodes of an electrostatic precipitator for air filtration
  publication-title: J. Electrost.
– volume: 53
  start-page: 459
  year: 2017
  end-page: 465
  ident: bb0120
  article-title: Ozone emission and electrical characteristics of ionizers with different electrode materials, numbers, and diameters
  publication-title: IEEE Trans. Ind. Appl.
– volume: 328
  start-page: 84
  year: 2018
  end-page: 94
  ident: bb0140
  article-title: Mechanism study of electrostatic precipitation in a compact hybrid particulate collector
  publication-title: Powder Technol.
– volume: 240
  start-page: 133
  year: 2006
  ident: bb0170
  article-title: Interaction of electrostatic and fluid dynamic fields in wire—plate electrostatic precipitators
  publication-title: J. Fluid Mech.
– volume: 64
  start-page: 628
  year: 2006
  end-page: 633
  ident: bb0185
  article-title: Three-dimensional EHD simulation for point corona electrostatic precipitator based on laminar and turbulent models
  publication-title: J. Electrost.
– volume: 159
  start-page: 135
  year: 2016
  end-page: 146
  ident: bb0025
  article-title: Experimental investigation on the characteristics of ash layers in a high-temperature wire–cylinder electrostatic precipitator
  publication-title: Sep. Purif. Technol.
– volume: 63
  start-page: 423
  year: 2005
  end-page: 443
  ident: bb0075
  article-title: Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator
  publication-title: J. Electrost.
– volume: 27
  start-page: 1905
  year: 2016
  end-page: 1911
  ident: bb0015
  article-title: Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator
  publication-title: Adv. Powder Technol.
– volume: 50
  start-page: 177
  year: 2001
  end-page: 190
  ident: bb0065
  article-title: Theoretical model of electrostatic precipitator performance for collecting polydisperse particles
  publication-title: J. Electrost.
– volume: 348
  start-page: 13
  year: 2019
  end-page: 23
  ident: bb0165
  article-title: Dust removal performance of two-stage electrostatic precipitators and its influencing factors
  publication-title: Powder Technol.
– volume: 19
  year: 2017
  ident: bb0155
  article-title: Analysis of the operating parameters of a vortex electrostatic precipitator
  publication-title: Plasma Sci. Technol.
– volume: 118
  start-page: 22
  year: 2018
  end-page: 33
  ident: bb0110
  article-title: Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect
  publication-title: J. Aerosol Sci.
– volume: 53
  start-page: 466
  year: 2017
  end-page: 473
  ident: bb0125
  article-title: Performance of ultrafine particle collection of a two-stage ESP using a novel mixing type carbon brush charger and parallel collection plates
  publication-title: IEEE Trans. Ind. Appl.
– volume: 70
  year: 2016
  ident: bb0045
  article-title: Electrode configurations inside an electrostatic precipitator and their impact on collection efficiency and flow pattern
  publication-title: Europ. Phys. J. D
– volume: 34
  start-page: 385
  year: 1995
  end-page: 399
  ident: bb0055
  article-title: A numerical procedure for computing the voltage-current characteristics in electrostatic precipitator configurations
  publication-title: J. Electrost.
– volume: 33
  start-page: 228
  year: 2000
  end-page: 238
  ident: bb0060
  article-title: Effects of some geometric parameters on the electrostatic precipitator efficiency at different operation indexes
  publication-title: Aerosol Sci. Technol.
– volume: 39
  start-page: 737
  year: 2005
  end-page: 749
  ident: bb0005
  article-title: Airborne particulate matter and human health: a review
  publication-title: Aerosol Sci. Technol.
– volume: 34
  start-page: 697
  year: 2015
  end-page: 702
  ident: bb0150
  article-title: Modeling and simulation of PM2.5 collection efficiency in a wire-plate ESP subjected to magnetic field and diffusion charging
  publication-title: Environ. Prog. Sustain. Energy
– volume: 108
  start-page: 1
  year: 2006
  ident: bb0175
  article-title: Electrohydrodynamics in an electrostatic precipitator
  publication-title: J. Fluid Mech.
– volume: 63
  start-page: 337
  year: 2005
  end-page: 350
  ident: bb0180
  article-title: EHD flow in air produced by electric corona discharge in pin–plate configuration
  publication-title: J. Electrost.
– volume: 87
  start-page: 623
  year: 2006
  end-page: 631
  ident: bb0030
  article-title: Particulate removal via electrostatic precipitators — CFD simulation
  publication-title: Fuel Process. Technol.
– volume: 84
  start-page: 10
  year: 2016
  ident: 10.1016/j.powtec.2019.06.038_bb0105
  article-title: CFD modeling of particle charging and collection in electrostatic precipitators
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2016.08.008
– volume: 19
  year: 2017
  ident: 10.1016/j.powtec.2019.06.038_bb0155
  article-title: Analysis of the operating parameters of a vortex electrostatic precipitator
  publication-title: Plasma Sci. Technol.
– volume: 70
  year: 2016
  ident: 10.1016/j.powtec.2019.06.038_bb0045
  article-title: Electrode configurations inside an electrostatic precipitator and their impact on collection efficiency and flow pattern
  publication-title: Europ. Phys. J. D
  doi: 10.1140/epjd/e2016-60736-2
– volume: 81
  start-page: 1
  year: 2016
  ident: 10.1016/j.powtec.2019.06.038_bb0040
  article-title: Computation and measurement of corona current density and V–I characteristics in wires-to-plates electrostatic precipitator
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2016.02.005
– volume: 215-216
  start-page: 26
  year: 2012
  ident: 10.1016/j.powtec.2019.06.038_bb0085
  article-title: Numerical simulation of the flow and the collection mechanism inside a scale hybrid particulate collector
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.08.045
– volume: 142
  year: 2008
  ident: 10.1016/j.powtec.2019.06.038_bb0130
  article-title: Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/142/1/012032
– volume: 23
  start-page: 633
  year: 2015
  ident: 10.1016/j.powtec.2019.06.038_bb0095
  article-title: CFD simulation of high-temperature effect on EHD characteristics in a wire-plate electrostatic precipitator
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2014.06.038
– volume: 240
  start-page: 133
  year: 2006
  ident: 10.1016/j.powtec.2019.06.038_bb0170
  article-title: Interaction of electrostatic and fluid dynamic fields in wire—plate electrostatic precipitators
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112092000053
– volume: 33
  start-page: 228
  year: 2000
  ident: 10.1016/j.powtec.2019.06.038_bb0060
  article-title: Effects of some geometric parameters on the electrostatic precipitator efficiency at different operation indexes
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/027868200416222
– volume: 54
  start-page: 129
  year: 2002
  ident: 10.1016/j.powtec.2019.06.038_bb0070
  article-title: Corona discharge simulation in wire-duct electrostatic precipitator
  publication-title: J. Electrost.
  doi: 10.1016/S0304-3886(01)00172-3
– volume: 50
  start-page: 177
  year: 2001
  ident: 10.1016/j.powtec.2019.06.038_bb0065
  article-title: Theoretical model of electrostatic precipitator performance for collecting polydisperse particles
  publication-title: J. Electrost.
  doi: 10.1016/S0304-3886(00)00035-8
– volume: 63
  start-page: 423
  year: 2005
  ident: 10.1016/j.powtec.2019.06.038_bb0075
  article-title: Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2004.12.005
– volume: 77
  start-page: 102
  year: 2014
  ident: 10.1016/j.powtec.2019.06.038_bb0090
  article-title: Numerical modeling of electrostatic precipitation: effect of gas temperature
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2014.07.009
– volume: 95
  start-page: 61
  year: 2018
  ident: 10.1016/j.powtec.2019.06.038_bb0195
  article-title: Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2018.08.002
– volume: 72
  start-page: 301
  year: 2014
  ident: 10.1016/j.powtec.2019.06.038_bb0035
  article-title: Simulation of the electric field in wire-plate type electrostatic precipitators
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2014.05.005
– volume: 64
  start-page: 628
  year: 2006
  ident: 10.1016/j.powtec.2019.06.038_bb0185
  article-title: Three-dimensional EHD simulation for point corona electrostatic precipitator based on laminar and turbulent models
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2005.10.015
– volume: 328
  start-page: 84
  year: 2018
  ident: 10.1016/j.powtec.2019.06.038_bb0140
  article-title: Mechanism study of electrostatic precipitation in a compact hybrid particulate collector
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.01.016
– volume: 34
  start-page: 385
  year: 1995
  ident: 10.1016/j.powtec.2019.06.038_bb0055
  article-title: A numerical procedure for computing the voltage-current characteristics in electrostatic precipitator configurations
  publication-title: J. Electrost.
  doi: 10.1016/0304-3886(94)00030-Z
– volume: 27
  start-page: 1905
  year: 2016
  ident: 10.1016/j.powtec.2019.06.038_bb0015
  article-title: Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.06.021
– volume: 41
  start-page: 702
  year: 2010
  ident: 10.1016/j.powtec.2019.06.038_bb0010
  article-title: Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2010.04.005
– volume: 53
  start-page: 466
  year: 2017
  ident: 10.1016/j.powtec.2019.06.038_bb0125
  article-title: Performance of ultrafine particle collection of a two-stage ESP using a novel mixing type carbon brush charger and parallel collection plates
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2606366
– volume: 136
  start-page: 27
  year: 2014
  ident: 10.1016/j.powtec.2019.06.038_bb0020
  article-title: An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2014.08.032
– volume: 63
  start-page: 1057
  year: 2005
  ident: 10.1016/j.powtec.2019.06.038_bb0205
  article-title: Particle tracking and particle-wall collision in a wire-plate electrostatic precipitator
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2005.02.002
– volume: 73
  start-page: 117
  year: 2015
  ident: 10.1016/j.powtec.2019.06.038_bb0135
  article-title: Novel electrodes of an electrostatic precipitator for air filtration
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2014.11.002
– volume: 88
  start-page: 127
  year: 2015
  ident: 10.1016/j.powtec.2019.06.038_bb0100
  article-title: Numerical simulation of temperature effect on particles behavior via electrostatic precipitators
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.11.078
– volume: 330
  start-page: 210
  year: 2018
  ident: 10.1016/j.powtec.2019.06.038_bb0115
  article-title: Numerical study on fine-particle charging and transport behaviour in electrostatic precipitators
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.02.038
– volume: 53
  start-page: 459
  year: 2017
  ident: 10.1016/j.powtec.2019.06.038_bb0120
  article-title: Ozone emission and electrical characteristics of ionizers with different electrode materials, numbers, and diameters
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2606362
– volume: 48
  start-page: 2231
  year: 1977
  ident: 10.1016/j.powtec.2019.06.038_bb0050
  article-title: A mathematical model for calculating electrical conditions in wire-duct electrostatic precipitation devices
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.324034
– volume: 39
  start-page: 737
  year: 2005
  ident: 10.1016/j.powtec.2019.06.038_bb0005
  article-title: Airborne particulate matter and human health: a review
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786820500191348
– volume: 34
  start-page: 697
  year: 2015
  ident: 10.1016/j.powtec.2019.06.038_bb0150
  article-title: Modeling and simulation of PM2.5 collection efficiency in a wire-plate ESP subjected to magnetic field and diffusion charging
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.12052
– volume: 159
  start-page: 135
  year: 2016
  ident: 10.1016/j.powtec.2019.06.038_bb0025
  article-title: Experimental investigation on the characteristics of ash layers in a high-temperature wire–cylinder electrostatic precipitator
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.01.011
– volume: 74
  start-page: 56
  year: 2015
  ident: 10.1016/j.powtec.2019.06.038_bb0145
  article-title: Numerical analysis of charged particle collection in wire-plate ESP
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2014.11.007
– year: 2001
  ident: 10.1016/j.powtec.2019.06.038_bb0215
– volume: 348
  start-page: 13
  year: 2019
  ident: 10.1016/j.powtec.2019.06.038_bb0165
  article-title: Dust removal performance of two-stage electrostatic precipitators and its influencing factors
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.03.016
– volume: 3
  year: 2018
  ident: 10.1016/j.powtec.2019.06.038_bb0190
  article-title: Experimental and numerical investigation of electrohydrodynamic flow in a point-to-ring corona discharge
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.043701
– volume: 67
  start-page: 835
  year: 2009
  ident: 10.1016/j.powtec.2019.06.038_bb0080
  article-title: Three-dimensional simulation of electric field and space charge in the advanced hybrid particulate collector
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2009.07.001
– volume: 66
  start-page: 130
  year: 2008
  ident: 10.1016/j.powtec.2019.06.038_bb0210
  article-title: EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2007.11.001
– volume: 63
  start-page: 337
  year: 2005
  ident: 10.1016/j.powtec.2019.06.038_bb0180
  article-title: EHD flow in air produced by electric corona discharge in pin–plate configuration
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2004.06.003
– volume: 27
  start-page: 191
  year: 1996
  ident: 10.1016/j.powtec.2019.06.038_bb0200
  article-title: Particle charging bounds, symmetry relations, and an analytic charging rate model for the continuum regime
  publication-title: J. Aerosol Sci.
  doi: 10.1016/0021-8502(95)00541-2
– ident: 10.1016/j.powtec.2019.06.038_bb0220
– volume: 87
  start-page: 623
  year: 2006
  ident: 10.1016/j.powtec.2019.06.038_bb0030
  article-title: Particulate removal via electrostatic precipitators — CFD simulation
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2006.01.012
– volume: 118
  start-page: 22
  year: 2018
  ident: 10.1016/j.powtec.2019.06.038_bb0110
  article-title: Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2018.01.008
– volume: 108
  start-page: 1
  year: 2006
  ident: 10.1016/j.powtec.2019.06.038_bb0175
  article-title: Electrohydrodynamics in an electrostatic precipitator
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211208100195X
– volume: 164
  start-page: 1645
  year: 2017
  ident: 10.1016/j.powtec.2019.06.038_bb0160
  article-title: Two-stage electrostatic precipitator with dual-corona particle precharger for PM 2.5 particles removal
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.07.032
SSID ssj0006310
Score 2.5417576
Snippet In the present work, a numerical method was adopted to study the capture process of fine particles in two electrostatic precipitators (ESPs) with corrugated...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 653
SubjectTerms Air pollution control
Collection
Collection efficiency
Computational fluid dynamics
Computer simulation
Corrugated plate
Corrugated plates
Electric fields
Electric potential
electric potential difference
Electrohydrodynamics
Electrohydrodynamics flow
Electrostatic precipitators
Electrostatic properties
Fluid flow
Mathematical models
Numerical methods
Numerical simulation
Optimization
Parallel plates
Particle charging
Particle trajectories
Pollution control equipment
powders
Precipitators
Static electricity
Velocity
Voltage
wind
Title Numerical simulation of capture process of fine particles in electrostatic precipitators under consideration of electrohydrodynamics flow
URI https://dx.doi.org/10.1016/j.powtec.2019.06.038
https://www.proquest.com/docview/2311525725
https://www.proquest.com/docview/2271822500
Volume 354
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZLemkPZfti06aLCr26K0uyLB9D6JK2NKcu7E3IssR6SW2zSQi99L7_ujO2nD5YCPRoeWQbzXhmhGa-j5D3wlY-yDQkmdOwQVHMJQUEmiSUlSptnsqq75D7ulLLK_n5Ors-IYuxFwbLKqPvH3x6763jyEVczYuurrHHV0DuDiZVCAQ9QUxQKXO08g8_f5d5KJFGaEbYdIH02D7X13h17X7rEcgwLXoUT-xSeTg8_eOo--hzeUqexrSRzocve0ZOfPOcPPkDTPAFuV_thtOXNd3U3yMrF20DdbbDYwLaDT0BOBRgGu3GojhaNzTS4WB_Ue1A1Lsa-USQi4din9kddZHa8_DcOOXmRwVOeCC239CwbvcvydXlx2-LZRKJFhInmdwmQttUB1UJLb2A_E7nFjEDMuaFqBQvlAsu2NRaFoRywmalDUUoM885Kzhz4hWZNG3jzwiFLFi6PNiKY-KgVcl4aVPmtJU28zqdEjGur3ERhRzJMNZmLDe7NYNWDGrFYNWd0FOSHGZ1AwrHEfl8VJ35y5oMBIojM2ejpk38mzeGIyQR-DaeTcm7w234D_FwxTa-3YEMhygPzpGx1__98jfkMV4NJWwzMtne7fxbyHm25Xlv1Ofk0fzTl-XqF9DLBkY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SzaHNofSTbpK2KvRqIluyVj6G0LBpkj0lkJuQZYm6bG2T3SXkJ-RfZ8aWl7YUAr1KGtvo480YzbwH8FXYygeZhiR3Gn9QFHdJgY4mCWWlSjtLZdVXyF0u1Pxafr_Jb3bgZKyFobTKiP0DpvdoHVuO4mwedXVNNb4CY3fcUoUg0hP5DHaJnSqfwO7x2fl8sQVkJdLIzoj_XWgwVtD1aV5de7f2xGWYFj2RJxWq_NtD_YXVvQM6fQUvY-TIjoePew07vnkDe7_xCb6Fh8VmuIBZslX9KwpzsTYwZzu6KWDdUBZATQHNWDfmxbG6YVERh0qMaodDvatJUoTkeBiVmt0yF9U9t8-NJj_uK8ThQdt-xcKyvXsH16ffrk7mSdRaSJzkcp0IbVMdVCW09AJDPD2zRBuQcy9EpbJCueCCTa3lQSgnbF7aUIQy91nGi4w78R4mTdv4D8AwEJZuFmyVUeygVcmz0qbcaStt7nU6BTHOr3GRiJz0MJZmzDj7aYZVMbQqhhLvhJ5CsrXqBiKOJ8bPxqUzf2wog77iCcvDcaVNPNArkxErEcJblk_hy7YbjyLdr9jGtxsck6GjR3zkfP-_X_4Zns-vLi_Mxdni_ABeUM-Q0XYIk_Xtxn_EEGhdfopb_BG4yAj3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+capture+process+of+fine+particles+in+electrostatic+precipitators+under+consideration+of+electrohydrodynamics+flow&rft.jtitle=Powder+technology&rft.au=Zhu%2C+Yong&rft.au=Gao%2C+Mengxiang&rft.au=Chen%2C+Mingxia&rft.au=Shi%2C+Jianwei&rft.date=2019-09-01&rft.issn=0032-5910&rft.volume=354+p.653-675&rft.spage=653&rft.epage=675&rft_id=info:doi/10.1016%2Fj.powtec.2019.06.038&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon