Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics
Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare t...
Saved in:
Published in | The Science of the total environment Vol. 610-611; pp. 750 - 758 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation–extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients.
[Display omitted]
•Microbial biomass reflects the C/N in plant-soil systems along altitudinal gradients.•Bacterial diversity varied more than fungal diversity along altitudinal gradients.•Altitudinal gradient largely affected bacterial composition not fungal composition.•Microbial alpha diversity was mainly coupled with plant diversity, SOC and TN.•Microbial beta diversity and composition mainly differed with ST and SM. |
---|---|
AbstractList | Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation-extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients.Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation-extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients. Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation-extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients. Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation–extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients. [Display omitted] •Microbial biomass reflects the C/N in plant-soil systems along altitudinal gradients.•Bacterial diversity varied more than fungal diversity along altitudinal gradients.•Altitudinal gradient largely affected bacterial composition not fungal composition.•Microbial alpha diversity was mainly coupled with plant diversity, SOC and TN.•Microbial beta diversity and composition mainly differed with ST and SM. |
Author | Ren, Guangxin Ren, Chengjie Zhang, Wei Han, Xinhui Feng, Yongzhong Zhong, ZeKun Yang, Gaihe |
Author_xml | – sequence: 1 givenname: Chengjie surname: Ren fullname: Ren, Chengjie – sequence: 2 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 3 givenname: ZeKun surname: Zhong fullname: Zhong, ZeKun – sequence: 4 givenname: Xinhui surname: Han fullname: Han, Xinhui email: hanxinhui@nwsuaf.edu.cn – sequence: 5 givenname: Gaihe surname: Yang fullname: Yang, Gaihe email: ygh@nwsuaf.edu.cn – sequence: 6 givenname: Yongzhong surname: Feng fullname: Feng, Yongzhong – sequence: 7 givenname: Guangxin surname: Ren fullname: Ren, Guangxin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28822942$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u3CAUhVGVKpmkfYWWZRexC_gPL7qI0jatFKmbZI0wXLd3ZIMLzEh5irxycSbJIpsUIaErvnNA55ySI-cdEPKRs5Iz3n7eltFg8gncvhSMdyWTJefsDdlw2fUFZ6I9IhvGaln0bd-dkNMYtyyvTvJjciKkFKKvxYbcf8VxhAAuoZ5ogLh4FyFSP9LocaIzmuCH9W5AP-sYz6nFPYSI6e6camep8fPi84hZSJOnekqYdhZd1vwO2mL2jtTCAhn2ji6TdulB-fCA-aODNgkCxoQmviNvRz1FeP94npHb799uLn8U17-ufl5eXBemZnUqqmY0vBqHvhLtIMHYllVCm0aPcrC96eWgtRkra5u6Z0Jq3bRtzTjrWK1tHqsz8unguwT_dwcxqRmjgSl_DvwuKpGzaqRsKvEqyvuK5S1lm9EPj-humMGqJeCsw516yjsD3QHIqcYYYHxGOFNrs2qrnptVa7OKSZWbzcovL5QZ02vqKWic_kN_cdBDTnWPEFYOnAGLAUxS1uOrHv8Ak_HJUg |
CitedBy_id | crossref_primary_10_1016_j_catena_2020_104812 crossref_primary_10_1016_j_catena_2021_105504 crossref_primary_10_3390_d17030175 crossref_primary_10_3390_f15010187 crossref_primary_10_1016_j_agee_2024_109077 crossref_primary_10_1002_ecy_2596 crossref_primary_10_3389_fmicb_2022_1024198 crossref_primary_10_1002_ece3_7903 crossref_primary_10_1002_ldr_4389 crossref_primary_10_1016_j_ejsobi_2023_103586 crossref_primary_10_1007_s11104_020_04823_7 crossref_primary_10_1016_j_scitotenv_2023_165840 crossref_primary_10_1093_femsec_fiaf001 crossref_primary_10_1016_j_catena_2022_106202 crossref_primary_10_1016_j_catena_2020_104921 crossref_primary_10_1016_j_scitotenv_2021_149368 crossref_primary_10_1016_j_envres_2023_117711 crossref_primary_10_1002_ece3_9891 crossref_primary_10_1002_ldr_4812 crossref_primary_10_3390_agronomy14092010 crossref_primary_10_3390_su15065107 crossref_primary_10_1016_j_catena_2018_12_021 crossref_primary_10_1016_j_scitotenv_2023_163536 crossref_primary_10_1128_spectrum_01712_24 crossref_primary_10_1016_j_foreco_2019_117805 crossref_primary_10_2136_sssaj2018_08_0297 crossref_primary_10_1007_s11104_022_05618_8 crossref_primary_10_1111_1365_2435_14635 crossref_primary_10_3390_agriculture14030370 crossref_primary_10_1093_femsec_fiaa201 crossref_primary_10_1128_spectrum_02116_21 crossref_primary_10_1016_j_scitotenv_2022_156194 crossref_primary_10_3389_fmicb_2022_923346 crossref_primary_10_1016_j_isci_2022_105277 crossref_primary_10_36783_18069657rbcs20220090 crossref_primary_10_1016_j_agee_2025_109589 crossref_primary_10_3390_smartcities6010005 crossref_primary_10_2139_ssrn_4126831 crossref_primary_10_1016_j_scitotenv_2024_173850 crossref_primary_10_1016_j_agrformet_2022_108811 crossref_primary_10_3390_microorganisms12050854 crossref_primary_10_1111_ejss_13419 crossref_primary_10_1016_j_catena_2024_108516 crossref_primary_10_1007_s00203_019_01689_x crossref_primary_10_3389_fmicb_2022_882949 crossref_primary_10_1007_s00248_024_02345_8 crossref_primary_10_1016_j_envres_2020_109261 crossref_primary_10_3390_w14243999 crossref_primary_10_1038_s41598_018_35762_0 crossref_primary_10_3390_f10090797 crossref_primary_10_1134_S0026261723600404 crossref_primary_10_1016_j_catena_2021_105707 crossref_primary_10_1016_j_gecco_2020_e00992 crossref_primary_10_1139_cjm_2019_0147 crossref_primary_10_3389_fmicb_2022_1065412 crossref_primary_10_3389_fmicb_2019_00169 crossref_primary_10_1007_s11629_021_7083_x crossref_primary_10_1016_j_scitotenv_2019_135497 crossref_primary_10_3390_f12050562 crossref_primary_10_1002_ece3_11056 crossref_primary_10_1029_2021JG006742 crossref_primary_10_1016_j_gecco_2024_e02891 crossref_primary_10_1016_j_scitotenv_2022_161048 crossref_primary_10_1016_j_soilbio_2020_107881 crossref_primary_10_1016_j_scitotenv_2022_158438 crossref_primary_10_1186_s12866_019_1584_6 crossref_primary_10_1016_j_pedsph_2023_12_012 crossref_primary_10_1094_PHYTOFR_07_23_0091_R crossref_primary_10_1038_s41597_020_0567_7 crossref_primary_10_1016_j_scitotenv_2019_03_273 crossref_primary_10_3389_fevo_2021_630722 crossref_primary_10_3390_su13105747 crossref_primary_10_3390_f12040501 crossref_primary_10_1111_mec_14694 crossref_primary_10_21829_myb_2021_2732271 crossref_primary_10_3390_f14040772 crossref_primary_10_1128_msystems_00755_23 crossref_primary_10_3390_f13020158 crossref_primary_10_1016_j_catena_2025_108714 crossref_primary_10_1016_j_catena_2019_03_021 crossref_primary_10_1111_1365_2664_13964 crossref_primary_10_1111_sum_12612 crossref_primary_10_1007_s11104_020_04479_3 crossref_primary_10_1007_s11104_022_05849_9 crossref_primary_10_1016_j_geoderma_2018_03_027 crossref_primary_10_1128_aem_01161_24 crossref_primary_10_1016_j_catena_2021_105844 crossref_primary_10_1080_03650340_2024_2448623 crossref_primary_10_1128_spectrum_00795_22 crossref_primary_10_3390_plants12203650 crossref_primary_10_1007_s00248_021_01740_9 crossref_primary_10_1016_j_indcrop_2020_113032 crossref_primary_10_1007_s11104_023_06104_5 crossref_primary_10_1016_j_micres_2021_126888 crossref_primary_10_1111_oik_09034 crossref_primary_10_3389_fmicb_2023_1111087 crossref_primary_10_1111_gcb_15036 crossref_primary_10_3390_microorganisms12040728 crossref_primary_10_1016_j_soilbio_2019_107562 crossref_primary_10_3389_fmicb_2023_1106739 crossref_primary_10_1186_s12866_022_02500_6 crossref_primary_10_3390_microorganisms10040766 crossref_primary_10_3390_ijerph15102168 crossref_primary_10_1016_j_geoderma_2019_114167 crossref_primary_10_1016_j_foreco_2021_119793 crossref_primary_10_3389_fpls_2024_1394112 crossref_primary_10_3389_fpls_2022_1036369 crossref_primary_10_3390_ijerph17165699 crossref_primary_10_1016_j_catena_2024_108679 crossref_primary_10_1016_j_scitotenv_2023_165612 crossref_primary_10_1038_s41598_020_65329_x crossref_primary_10_2478_amns_2024_2931 crossref_primary_10_1007_s42729_024_02037_9 crossref_primary_10_2139_ssrn_4066274 crossref_primary_10_1186_s12866_022_02513_1 crossref_primary_10_1002_saj2_20420 crossref_primary_10_1016_j_apsoil_2023_105244 crossref_primary_10_1038_s43705_021_00076_2 crossref_primary_10_1016_j_ecolind_2025_113185 crossref_primary_10_3390_microorganisms8060811 crossref_primary_10_3390_jof8080807 crossref_primary_10_7717_peerj_5767 crossref_primary_10_3389_fmicb_2020_02042 crossref_primary_10_3389_fmicb_2024_1458750 crossref_primary_10_1016_j_scitotenv_2021_151823 crossref_primary_10_2139_ssrn_4000319 crossref_primary_10_1016_j_apsoil_2024_105651 crossref_primary_10_1016_j_foreco_2019_03_033 crossref_primary_10_1007_s42729_024_02048_6 crossref_primary_10_1016_j_geoderma_2023_116343 crossref_primary_10_3389_fmicb_2023_1079113 crossref_primary_10_1016_j_foreco_2017_11_011 crossref_primary_10_1016_j_foreco_2021_119573 crossref_primary_10_2174_1574893615999200422120819 crossref_primary_10_1016_j_scitotenv_2023_163375 crossref_primary_10_1016_j_scitotenv_2019_01_097 crossref_primary_10_1007_s40333_021_0025_1 crossref_primary_10_1093_femsec_fiy099 crossref_primary_10_1016_j_catena_2021_105807 crossref_primary_10_1016_j_envres_2022_115181 crossref_primary_10_1016_j_scitotenv_2020_142619 crossref_primary_10_1016_j_foreco_2019_117625 crossref_primary_10_1007_s11104_022_05842_2 crossref_primary_10_1007_s10123_023_00392_8 crossref_primary_10_3389_fmicb_2024_1494070 crossref_primary_10_3389_fpls_2022_954777 crossref_primary_10_3390_f15020392 crossref_primary_10_3390_su14137910 crossref_primary_10_1007_s11368_018_2173_2 crossref_primary_10_1016_j_agwat_2024_109228 crossref_primary_10_1016_j_ecolind_2020_106491 crossref_primary_10_1038_s41598_018_33965_z crossref_primary_10_3389_fpls_2022_938187 crossref_primary_10_1016_j_apsoil_2021_104292 crossref_primary_10_3389_fmicb_2023_1217925 crossref_primary_10_1007_s11368_022_03300_1 crossref_primary_10_1051_e3sconf_202339302012 crossref_primary_10_1016_j_envres_2023_116656 crossref_primary_10_3390_f16020279 crossref_primary_10_1111_jvs_13193 crossref_primary_10_3389_fmicb_2024_1444260 crossref_primary_10_3389_fmicb_2023_974316 crossref_primary_10_1007_s10342_024_01722_9 crossref_primary_10_1016_j_ecoleng_2024_107348 crossref_primary_10_3390_app9193963 crossref_primary_10_3389_fmicb_2018_01691 crossref_primary_10_3390_jof10110772 crossref_primary_10_1016_j_ejsobi_2019_04_001 crossref_primary_10_1016_j_ecolind_2022_109054 crossref_primary_10_1007_s00248_021_01949_8 crossref_primary_10_3390_f14081634 crossref_primary_10_1002_ldr_4618 crossref_primary_10_3390_microorganisms9112228 crossref_primary_10_3390_su16167096 crossref_primary_10_1016_j_jappgeo_2022_104638 crossref_primary_10_36783_18069657rbcs20200033 crossref_primary_10_1016_j_catena_2020_105021 crossref_primary_10_3390_su12229754 crossref_primary_10_1016_j_soilbio_2024_109371 crossref_primary_10_3389_fmicb_2021_660749 crossref_primary_10_1016_j_apsoil_2025_106037 crossref_primary_10_3389_fmicb_2021_777862 crossref_primary_10_1002_ldr_4724 crossref_primary_10_1016_j_soilbio_2022_108714 crossref_primary_10_3390_agronomy12030657 crossref_primary_10_1016_j_foreco_2020_118332 crossref_primary_10_3390_microorganisms13010138 crossref_primary_10_1016_j_ejsobi_2024_103646 crossref_primary_10_1128_aem_00753_24 crossref_primary_10_3389_fmicb_2020_601054 crossref_primary_10_1016_j_catena_2021_105691 crossref_primary_10_1016_j_apsoil_2021_104003 crossref_primary_10_3389_fmicb_2019_01080 crossref_primary_10_1016_j_ygeno_2020_04_002 crossref_primary_10_3389_fmicb_2022_1115592 crossref_primary_10_3389_fmicb_2021_646124 crossref_primary_10_1002_ece3_11360 crossref_primary_10_3389_fmicb_2020_577242 crossref_primary_10_1007_s42832_020_0061_3 crossref_primary_10_1016_j_biocontrol_2021_104812 crossref_primary_10_1111_ecog_07049 crossref_primary_10_1016_j_agrformet_2019_107894 crossref_primary_10_1089_ind_2018_29132_pzo crossref_primary_10_3389_fmicb_2018_02874 crossref_primary_10_1007_s11676_022_01548_4 crossref_primary_10_3390_microorganisms11030676 crossref_primary_10_1007_s10343_023_00952_y |
Cites_doi | 10.1146/annurev-ecolsys-110512-135750 10.1016/j.soilbio.2012.07.013 10.1016/j.ecoleng.2014.11.010 10.1038/ismej.2013.50 10.1126/science.1206958 10.1128/AEM.05005-11 10.1111/geb.12278 10.1016/0038-0717(85)90144-0 10.1111/nph.13116 10.1111/j.1469-8137.2012.04089.x 10.1016/0038-0717(87)90052-6 10.1073/pnas.0801920105 10.1073/pnas.1204306109 10.1073/pnas.0709942105 10.1890/ES15-00217.1 10.3389/fmicb.2016.01184 10.1007/s11104-011-0836-5 10.1007/s11284-012-0937-5 10.1111/nph.13315 10.1111/geb.12070 10.1007/s00248-016-0748-2 10.1016/j.soilbio.2016.02.013 10.1007/s11284-016-1333-3 10.1111/j.1461-0248.2007.01139.x 10.1111/j.1600-0587.2012.06882.x 10.1016/j.tree.2007.09.006 10.1890/05-1839 10.1126/science.1231923 10.1038/s41598-017-02363-2 10.1126/science.1072380 10.3389/fmicb.2016.02065 10.1126/science.1256688 10.1007/s00253-012-4063-7 10.1890/02-0298 10.1038/nature21027 10.1111/j.1469-8137.2011.03927.x 10.1016/j.scitotenv.2015.09.080 10.1016/j.soilbio.2014.12.002 10.1007/s11104-016-2796-2 10.1038/ismej.2012.8 10.1016/j.soilbio.2005.08.012 10.1111/j.1574-6941.2006.00240.x 10.1128/AEM.02050-12 10.1890/11-0026.1 10.2136/sssaj2005.0500 10.1111/gcb.13011 10.1007/s00374-017-1197-x 10.1007/s00248-014-0458-6 10.3389/fmicb.2017.01301 10.1016/j.agrformet.2006.07.001 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2017.08.110 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 758 |
ExternalDocumentID | 28822942 10_1016_j_scitotenv_2017_08_110 S0048969717321083 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c404t-35fc13fb9326b8ecd6032ac5af8bd9c98baacf3dd549028aa5664010704ad8aa3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Mon Jul 21 11:31:02 EDT 2025 Thu Jul 10 18:54:00 EDT 2025 Thu Apr 03 07:03:22 EDT 2025 Thu Apr 24 23:05:06 EDT 2025 Tue Jul 01 01:21:18 EDT 2025 Fri Feb 23 02:46:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil microbial community Altitudinal gradients Soil moisture Illumina sequencing Soil temperature |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-35fc13fb9326b8ecd6032ac5af8bd9c98baacf3dd549028aa5664010704ad8aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28822942 |
PQID | 1930930886 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000588532 proquest_miscellaneous_1930930886 pubmed_primary_28822942 crossref_primary_10_1016_j_scitotenv_2017_08_110 crossref_citationtrail_10_1016_j_scitotenv_2017_08_110 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_08_110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 2018-01-00 2018-Jan-01 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Liu, Xue, Wang (bb0270) 2016; 97 Siles, Margesin (bb0205) 2016; 72 Placella, Brodie, Firestone (bb0160) 2012; 109 Jones, Willett (bb0095) 2006; 38 Qiao, Jabot, Tang, Jiang, Fang (bb0165) 2015; 24 Miki, Doi (bb0145) 2016; 31 Serna-Chavez, Fierer, van Bodegom (bb0190) 2013; 22 Vance, Brookes, Jenkinson (bb0255) 1987; 19 Zhang, Xue, Liu, Song (bb0265) 2011; 347 Lauber, Ramirez, Aanderud, Lennon, Fierer (bb0105) 2013; 7 Rosling, Cox, Cruz-Martinez, Ihrmark, Grelet, Lindahl (bb0185) 2011; 333 Mukherjee, Chandra, Retuerto, Sikaroodi, Brown, Jurevic, Salata, Lederman, Gillevet, Ghannoum (bb0150) 2014 Ren, Chen, Deng, Zhao, Han, Yang, Tong, Feng, Shelton, Ren (bb0175) 2017; 53 Bahram, Polme, Koljalg, Zarre, Tedersoo (bb0010) 2012; 193 Meng, Li, Nie, Wan, Quan, Fang, Chen, Gu, Li (bb0130) 2013; 97 Clarke, Gorley, Somerfield, Warwick (bb0045) 2014 Cregger, Schadt, McDowell, Pockman, Classen (bb0060) 2012; 78 Ren (bb0170) 2012 Deng, Cheng, Hui, Zhang, Li, Zhang (bb0075) 2016; 541 Lipson (bb0110) 2006; 59 De Vos, Van Meirvenne, Quataert, Deckers, Muys (bb0065) 2005; 69 Miki (bb0140) 2012; 27 Thakur, Milcu, Manning, Niklaus, Roscher, Power, Reich, Scheu, Tilman, Ai, Guo, Ji, Pierce, Ramirez, Richter, Steinauer, Strecker, Vogel, Eisenhauer (bb0245) 2015; 21 Tedersoo, Bahram, Polme, Koljalg, Yorou, Wijesundera (bb0240) 2014; 346 Tang, Fang, Chi, Feng, Liu, Shen, Wang, Wang, Wu, Zheng (bb0235) 2012; 35 Brookes, Landman, Pruden, Jenkinson (bb0030) 1985; 17 Bragazza, Bardgett, Mitchell, Buttler (bb0020) 2015; 205 Mayor, Sanders, Classen, Bardgett, Clement, Fajardo, Lavorel, Sundqvist, Bahn, Chisholm, Cieraad, Gedalof, Grigulis, Kudo, Oberski, Wardle (bb0125) 2017; 542 Zhao, Kang, Han, Yang, Feng, Ren (bb0275) 2015; 74 Manzoni, Schimel, Porporato (bb0120) 2012; 93 Siles, Margesin (bb0210) 2017; 7 Körner (bb0100) 2007; 22 Miatto, Wright, Batalha (bb0135) 2016; 404 Shen, Xiong, Zhang, Feng, Lin, Li, Liang, Chu (bb0195) 2013; 57 Bryant, Lamanna, Morlon, Kerkhoff, Enquist, Green (bb0035) 2008; 105 Hannula, Boschker, de Boer, Van Veen (bb0085) 2012; 194 Wang, Li, Wen, Liu, Han, Liao (bb0260) 2017; 8 Ludwig, Achtenhagen, Miltner, Eckhardt, Leinweber, Emmerling, Thiele-Bruhn (bb0115) 2015; 81 Fierer, Bradford, Jackson (bb0080) 2007; 88 Bremner, Mulvaney (bb0025) 1982 Sundqvist, Sanders, Wardle (bb0220) 2013; 44 Stroobants, Degrune, Olivier, Muys, Roisin, Colinet (bb0215) 2014; 68 Susan, Woodward, Taylor (bb0225) 2015; 206 Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer, Owens, Betley, Fraser, Bauer (bb0040) 2012; 6 Clemmensen, Bahr, Ovaskainen, Dahlberg, Ekblad, Wallander, Lindahl (bb0055) 2013; 339 Van der Heijden, Bardgett, van Straalen (bb0250) 2008; 11 DeBruyn, Nixon, Fawaz, Johnson, Radosevich (bb0070) 2011; 77 Ivanova, Kulichevskaya, Merkel, Toshchakov, Dedysh (bb0090) 2016; 7 Tang, Fang (bb0230) 2006; 139 Biddle, Fitz-Gibbon, Schuster, Brenchley, House (bb0015) 2008; 105 Reynolds, Packer, Bever, Clay (bb0180) 2003; 84 Shen, Shi, Ni, Deng, Van Nostrand, He (bb0200) 2016; 7 Allen, Brown, Gillooly (bb0005) 2002; 297 Classen, Sundqvist, Henning, Newman, Moore, Cregger, Moorhead, Patterson (bb0050) 2015; 6 Stroobants (10.1016/j.scitotenv.2017.08.110_bb0215) 2014; 68 Bahram (10.1016/j.scitotenv.2017.08.110_bb0010) 2012; 193 Sundqvist (10.1016/j.scitotenv.2017.08.110_bb0220) 2013; 44 Brookes (10.1016/j.scitotenv.2017.08.110_bb0030) 1985; 17 Fierer (10.1016/j.scitotenv.2017.08.110_bb0080) 2007; 88 Cregger (10.1016/j.scitotenv.2017.08.110_bb0060) 2012; 78 Miki (10.1016/j.scitotenv.2017.08.110_bb0140) 2012; 27 Caporaso (10.1016/j.scitotenv.2017.08.110_bb0040) 2012; 6 DeBruyn (10.1016/j.scitotenv.2017.08.110_bb0070) 2011; 77 Jones (10.1016/j.scitotenv.2017.08.110_bb0095) 2006; 38 Placella (10.1016/j.scitotenv.2017.08.110_bb0160) 2012; 109 Mukherjee (10.1016/j.scitotenv.2017.08.110_bb0150) 2014 Reynolds (10.1016/j.scitotenv.2017.08.110_bb0180) 2003; 84 Ren (10.1016/j.scitotenv.2017.08.110_bb0175) 2017; 53 Qiao (10.1016/j.scitotenv.2017.08.110_bb0165) 2015; 24 Biddle (10.1016/j.scitotenv.2017.08.110_bb0015) 2008; 105 Shen (10.1016/j.scitotenv.2017.08.110_bb0200) 2016; 7 Lauber (10.1016/j.scitotenv.2017.08.110_bb0105) 2013; 7 Allen (10.1016/j.scitotenv.2017.08.110_bb0005) 2002; 297 Ren (10.1016/j.scitotenv.2017.08.110_bb0170) 2012 Siles (10.1016/j.scitotenv.2017.08.110_bb0205) 2016; 72 Serna-Chavez (10.1016/j.scitotenv.2017.08.110_bb0190) 2013; 22 Meng (10.1016/j.scitotenv.2017.08.110_bb0130) 2013; 97 Rosling (10.1016/j.scitotenv.2017.08.110_bb0185) 2011; 333 Vance (10.1016/j.scitotenv.2017.08.110_bb0255) 1987; 19 Deng (10.1016/j.scitotenv.2017.08.110_bb0075) 2016; 541 De Vos (10.1016/j.scitotenv.2017.08.110_bb0065) 2005; 69 Susan (10.1016/j.scitotenv.2017.08.110_bb0225) 2015; 206 Thakur (10.1016/j.scitotenv.2017.08.110_bb0245) 2015; 21 Körner (10.1016/j.scitotenv.2017.08.110_bb0100) 2007; 22 Van der Heijden (10.1016/j.scitotenv.2017.08.110_bb0250) 2008; 11 Lipson (10.1016/j.scitotenv.2017.08.110_bb0110) 2006; 59 Wang (10.1016/j.scitotenv.2017.08.110_bb0260) 2017; 8 Tang (10.1016/j.scitotenv.2017.08.110_bb0230) 2006; 139 Manzoni (10.1016/j.scitotenv.2017.08.110_bb0120) 2012; 93 Ludwig (10.1016/j.scitotenv.2017.08.110_bb0115) 2015; 81 Zhang (10.1016/j.scitotenv.2017.08.110_bb0265) 2011; 347 Tang (10.1016/j.scitotenv.2017.08.110_bb0235) 2012; 35 Clemmensen (10.1016/j.scitotenv.2017.08.110_bb0055) 2013; 339 Miki (10.1016/j.scitotenv.2017.08.110_bb0145) 2016; 31 Zhao (10.1016/j.scitotenv.2017.08.110_bb0275) 2015; 74 Ivanova (10.1016/j.scitotenv.2017.08.110_bb0090) 2016; 7 Shen (10.1016/j.scitotenv.2017.08.110_bb0195) 2013; 57 Bremner (10.1016/j.scitotenv.2017.08.110_bb0025) 1982 Bragazza (10.1016/j.scitotenv.2017.08.110_bb0020) 2015; 205 Bryant (10.1016/j.scitotenv.2017.08.110_bb0035) 2008; 105 Siles (10.1016/j.scitotenv.2017.08.110_bb0210) 2017; 7 Hannula (10.1016/j.scitotenv.2017.08.110_bb0085) 2012; 194 Tedersoo (10.1016/j.scitotenv.2017.08.110_bb0240) 2014; 346 Miatto (10.1016/j.scitotenv.2017.08.110_bb0135) 2016; 404 Zhang (10.1016/j.scitotenv.2017.08.110_bb0270) 2016; 97 Mayor (10.1016/j.scitotenv.2017.08.110_bb0125) 2017; 542 Classen (10.1016/j.scitotenv.2017.08.110_bb0050) 2015; 6 Clarke (10.1016/j.scitotenv.2017.08.110_bb0045) 2014 |
References_xml | – volume: 27 start-page: 509 year: 2012 end-page: 520 ident: bb0140 article-title: Microbe-mediated plant–soil feedback and its roles in a changing world publication-title: Ecol. Res. – volume: 59 start-page: 418 year: 2006 end-page: 427 ident: bb0110 article-title: Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients publication-title: FEMS Microbiol. Ecol. – year: 1982 ident: bb0025 article-title: Nitrogen total publication-title: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties – volume: 339 start-page: 1615 year: 2013 end-page: 1618 ident: bb0055 article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest publication-title: Science – volume: 31 start-page: 263 year: 2016 end-page: 274 ident: bb0145 article-title: Leaf phenological shifts and plant-microbe-soil interactions can determine forest productivity and nutrient cycling under climate change in an ecosystem model publication-title: Ecol. Res. – volume: 206 start-page: 1145 year: 2015 end-page: 1155 ident: bb0225 article-title: Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 publication-title: New Phytol. – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bb0255 article-title: An extraction method for measuring soil microbial biomass-C publication-title: Soil Biol. Biochem. – volume: 6 start-page: 1621 year: 2012 end-page: 1624 ident: bb0040 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J. – volume: 541 start-page: 230 year: 2016 end-page: 237 ident: bb0075 article-title: Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China publication-title: Sci. Total Environ. – volume: 6 start-page: 1 year: 2015 end-page: 21 ident: bb0050 article-title: Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? publication-title: Ecosphere – volume: 205 start-page: 1175 year: 2015 end-page: 1182 ident: bb0020 article-title: Linking soil microbial communities to vascular plant abundance along a climate gradient publication-title: New Phytol. – volume: 81 start-page: 311 year: 2015 end-page: 322 ident: bb0115 article-title: Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils publication-title: Soil Biol. Biochem. – volume: 109 start-page: 10931 year: 2012 end-page: 10936 ident: bb0160 article-title: Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 105 start-page: 10583 year: 2008 end-page: 10588 ident: bb0015 article-title: Metagenomic signatures of the Peru margin subseafloor biosphere show a genetically distinct environment publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 194 start-page: 784 year: 2012 end-page: 799 ident: bb0085 article-title: 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline publication-title: New Phytol. – volume: 7 start-page: 2204 year: 2017 ident: bb0210 article-title: Seasonal soil microbial responses are limited to changes in functionality at two alpine forest sites differing in altitude and vegetation publication-title: Sci. Rep.-UK – volume: 21 start-page: 4076 year: 2015 end-page: 4085 ident: bb0245 article-title: Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors publication-title: Glob. Chang. Biol. – volume: 193 start-page: 465 year: 2012 end-page: 473 ident: bb0010 article-title: Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran publication-title: New Phytol. – volume: 346 start-page: 1078 year: 2014 ident: bb0240 article-title: Global diversity and geography of soil fungi publication-title: Science – volume: 105 start-page: 11505 year: 2008 end-page: 11511 ident: bb0035 article-title: Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 53 start-page: 457 year: 2017 end-page: 468 ident: bb0175 article-title: Response of microbial diversity to C: N: P stoichiometry in fine root and microbial biomass following afforestation publication-title: Biol. Fertil. Soils – volume: 347 start-page: 163 year: 2011 end-page: 178 ident: bb0265 article-title: A comparison of soil qualities of different revegetation types in the loess plateau, China publication-title: Plant Soil – volume: 74 start-page: 415 year: 2015 end-page: 422 ident: bb0275 article-title: Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity publication-title: Ecol. Eng. – volume: 38 start-page: 991 year: 2006 end-page: 999 ident: bb0095 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biol. Biochem. – volume: 333 start-page: 876 year: 2011 end-page: 879 ident: bb0185 article-title: Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi publication-title: Science – volume: 84 start-page: 2281 year: 2003 end-page: 2291 ident: bb0180 article-title: Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics publication-title: Ecology – volume: 35 start-page: 1083 year: 2012 end-page: 1091 ident: bb0235 article-title: Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China publication-title: Ecography – volume: 22 start-page: 569 year: 2007 end-page: 574 ident: bb0100 article-title: The use of ‘altitude’ in ecological research publication-title: Trends Ecol. Evol. – volume: 57 start-page: 204 year: 2013 end-page: 211 ident: bb0195 article-title: Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain publication-title: Soil Biol. Biochem. – volume: 97 start-page: 40 year: 2016 end-page: 49 ident: bb0270 article-title: Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the loess plateau publication-title: Soil Biol. Biochem. – volume: 72 start-page: 207 year: 2016 end-page: 220 ident: bb0205 article-title: Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? publication-title: Microb. Ecol. – volume: 93 start-page: 930 year: 2012 end-page: 938 ident: bb0120 article-title: Responses of soil microbial communities to water stress: results from a meta-analysis publication-title: Ecology – volume: 24 start-page: 314 year: 2015 end-page: 323 ident: bb0165 article-title: A latitudinal gradient in tree community assembly processes evidenced in Chinese forests publication-title: Glob. Ecol. Biogeogr. – volume: 542 start-page: 91 year: 2017 end-page: 95 ident: bb0125 article-title: Elevation alters ecosystem properties across temperate treelines globally publication-title: Nature – volume: 77 start-page: 6295 year: 2011 end-page: 6300 ident: bb0070 article-title: Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil publication-title: Appl. Environ. Microbiol. – year: 2012 ident: bb0170 article-title: Quantitative Classification of Mainplant Communities and Environmental Explanation of Species Composition and Richness in Taibai Mountain ChinaYangling – year: 2014 ident: bb0045 article-title: Change in Marine Communities: an Approach to Statistical Analysis and Interpretation – volume: 78 start-page: 8587 year: 2012 end-page: 8594 ident: bb0060 article-title: Response of the soil microbial community to changes in precipitation in a semiarid ecosystem publication-title: Appl. Environ. Microbiol. – volume: 88 start-page: 1354 year: 2007 end-page: 1364 ident: bb0080 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology – volume: 8 start-page: 1301 year: 2017 ident: bb0260 article-title: Fungal communities in rhizosphere soil under conservation tillage shift in response to plant growth publication-title: Front. Microbiol. – start-page: 10 year: 2014 ident: bb0150 article-title: Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi publication-title: PLoS Pathog. – volume: 7 start-page: 2065 year: 2016 ident: bb0090 article-title: High diversity of Planctomycetes in soils of two lichen-dominated sub-Arctic ecosystems of northwestern Siberia publication-title: Front. Microbiol. – volume: 69 start-page: 500 year: 2005 end-page: 510 ident: bb0065 article-title: Predictive quality of pedotransfer functions for estimating bulk density of forest soils publication-title: Soil Sci. Soc. Am. J. – volume: 22 start-page: 1162 year: 2013 end-page: 1172 ident: bb0190 article-title: Global drivers and patterns of microbial abundance in soil publication-title: Glob. Ecol. Biogeogr. – volume: 68 start-page: 822 year: 2014 end-page: 833 ident: bb0215 article-title: Diversity of bacterial communities in a profile of a winter wheat field: known and unknown members publication-title: Microb. Ecol. – volume: 44 start-page: 261 year: 2013 end-page: 280 ident: bb0220 article-title: Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 7 start-page: 1641 year: 2013 end-page: 1650 ident: bb0105 article-title: Temporal variability in soil microbial communities across land-use types publication-title: ISME J. – volume: 139 start-page: 200 year: 2006 end-page: 207 ident: bb0230 article-title: Temperature variation along the northern and southern slopes of Mt. Taibai, China publication-title: Agric. For. Meteorol. – volume: 7 start-page: 1184 year: 2016 ident: bb0200 article-title: Dramatic increases of soil microbial functional gene diversity at the Treeline ecotone of Changbai Mountain publication-title: Front. Microbiol. – volume: 297 start-page: 1545 year: 2002 end-page: 1548 ident: bb0005 article-title: Global biodiversity, biochemical kinetics, and the energetic-equivalence rule publication-title: Science – volume: 97 start-page: 2219 year: 2013 end-page: 2230 ident: bb0130 article-title: Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China publication-title: Appl. Microbiol. Biotechnol. – volume: 404 start-page: 13 year: 2016 end-page: 33 ident: bb0135 article-title: Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities publication-title: Plant Soil – volume: 11 start-page: 296 year: 2008 end-page: 310 ident: bb0250 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol. Lett. – volume: 17 start-page: 837 year: 1985 end-page: 842 ident: bb0030 article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biol. Biochem. – volume: 44 start-page: 261 year: 2013 ident: 10.1016/j.scitotenv.2017.08.110_bb0220 article-title: Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev-ecolsys-110512-135750 – volume: 57 start-page: 204 year: 2013 ident: 10.1016/j.scitotenv.2017.08.110_bb0195 article-title: Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.07.013 – volume: 74 start-page: 415 year: 2015 ident: 10.1016/j.scitotenv.2017.08.110_bb0275 article-title: Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.11.010 – volume: 7 start-page: 1641 year: 2013 ident: 10.1016/j.scitotenv.2017.08.110_bb0105 article-title: Temporal variability in soil microbial communities across land-use types publication-title: ISME J. doi: 10.1038/ismej.2013.50 – volume: 333 start-page: 876 year: 2011 ident: 10.1016/j.scitotenv.2017.08.110_bb0185 article-title: Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi publication-title: Science doi: 10.1126/science.1206958 – volume: 77 start-page: 6295 year: 2011 ident: 10.1016/j.scitotenv.2017.08.110_bb0070 article-title: Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.05005-11 – volume: 24 start-page: 314 year: 2015 ident: 10.1016/j.scitotenv.2017.08.110_bb0165 article-title: A latitudinal gradient in tree community assembly processes evidenced in Chinese forests publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12278 – year: 2012 ident: 10.1016/j.scitotenv.2017.08.110_bb0170 – volume: 17 start-page: 837 year: 1985 ident: 10.1016/j.scitotenv.2017.08.110_bb0030 article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(85)90144-0 – volume: 205 start-page: 1175 year: 2015 ident: 10.1016/j.scitotenv.2017.08.110_bb0020 article-title: Linking soil microbial communities to vascular plant abundance along a climate gradient publication-title: New Phytol. doi: 10.1111/nph.13116 – volume: 194 start-page: 784 year: 2012 ident: 10.1016/j.scitotenv.2017.08.110_bb0085 article-title: 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04089.x – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.scitotenv.2017.08.110_bb0255 article-title: An extraction method for measuring soil microbial biomass-C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 105 start-page: 11505 year: 2008 ident: 10.1016/j.scitotenv.2017.08.110_bb0035 article-title: Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0801920105 – volume: 109 start-page: 10931 year: 2012 ident: 10.1016/j.scitotenv.2017.08.110_bb0160 article-title: Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1204306109 – volume: 105 start-page: 10583 year: 2008 ident: 10.1016/j.scitotenv.2017.08.110_bb0015 article-title: Metagenomic signatures of the Peru margin subseafloor biosphere show a genetically distinct environment publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0709942105 – start-page: 10 year: 2014 ident: 10.1016/j.scitotenv.2017.08.110_bb0150 article-title: Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi publication-title: PLoS Pathog. – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.scitotenv.2017.08.110_bb0050 article-title: Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? publication-title: Ecosphere doi: 10.1890/ES15-00217.1 – volume: 7 start-page: 1184 year: 2016 ident: 10.1016/j.scitotenv.2017.08.110_bb0200 article-title: Dramatic increases of soil microbial functional gene diversity at the Treeline ecotone of Changbai Mountain publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01184 – year: 2014 ident: 10.1016/j.scitotenv.2017.08.110_bb0045 – volume: 347 start-page: 163 year: 2011 ident: 10.1016/j.scitotenv.2017.08.110_bb0265 article-title: A comparison of soil qualities of different revegetation types in the loess plateau, China publication-title: Plant Soil doi: 10.1007/s11104-011-0836-5 – volume: 27 start-page: 509 year: 2012 ident: 10.1016/j.scitotenv.2017.08.110_bb0140 article-title: Microbe-mediated plant–soil feedback and its roles in a changing world publication-title: Ecol. Res. doi: 10.1007/s11284-012-0937-5 – volume: 206 start-page: 1145 year: 2015 ident: 10.1016/j.scitotenv.2017.08.110_bb0225 article-title: Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300m) elevation gradient publication-title: New Phytol. doi: 10.1111/nph.13315 – volume: 22 start-page: 1162 year: 2013 ident: 10.1016/j.scitotenv.2017.08.110_bb0190 article-title: Global drivers and patterns of microbial abundance in soil publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12070 – volume: 72 start-page: 207 year: 2016 ident: 10.1016/j.scitotenv.2017.08.110_bb0205 article-title: Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? publication-title: Microb. Ecol. doi: 10.1007/s00248-016-0748-2 – volume: 97 start-page: 40 year: 2016 ident: 10.1016/j.scitotenv.2017.08.110_bb0270 article-title: Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the loess plateau publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.02.013 – volume: 31 start-page: 263 year: 2016 ident: 10.1016/j.scitotenv.2017.08.110_bb0145 article-title: Leaf phenological shifts and plant-microbe-soil interactions can determine forest productivity and nutrient cycling under climate change in an ecosystem model publication-title: Ecol. Res. doi: 10.1007/s11284-016-1333-3 – volume: 11 start-page: 296 year: 2008 ident: 10.1016/j.scitotenv.2017.08.110_bb0250 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01139.x – volume: 35 start-page: 1083 year: 2012 ident: 10.1016/j.scitotenv.2017.08.110_bb0235 article-title: Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China publication-title: Ecography doi: 10.1111/j.1600-0587.2012.06882.x – volume: 22 start-page: 569 year: 2007 ident: 10.1016/j.scitotenv.2017.08.110_bb0100 article-title: The use of ‘altitude’ in ecological research publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2007.09.006 – volume: 88 start-page: 1354 year: 2007 ident: 10.1016/j.scitotenv.2017.08.110_bb0080 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology doi: 10.1890/05-1839 – volume: 339 start-page: 1615 year: 2013 ident: 10.1016/j.scitotenv.2017.08.110_bb0055 article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest publication-title: Science doi: 10.1126/science.1231923 – volume: 7 start-page: 2204 year: 2017 ident: 10.1016/j.scitotenv.2017.08.110_bb0210 article-title: Seasonal soil microbial responses are limited to changes in functionality at two alpine forest sites differing in altitude and vegetation publication-title: Sci. Rep.-UK doi: 10.1038/s41598-017-02363-2 – volume: 297 start-page: 1545 year: 2002 ident: 10.1016/j.scitotenv.2017.08.110_bb0005 article-title: Global biodiversity, biochemical kinetics, and the energetic-equivalence rule publication-title: Science doi: 10.1126/science.1072380 – volume: 7 start-page: 2065 year: 2016 ident: 10.1016/j.scitotenv.2017.08.110_bb0090 article-title: High diversity of Planctomycetes in soils of two lichen-dominated sub-Arctic ecosystems of northwestern Siberia publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.02065 – volume: 346 start-page: 1078 year: 2014 ident: 10.1016/j.scitotenv.2017.08.110_bb0240 article-title: Global diversity and geography of soil fungi publication-title: Science doi: 10.1126/science.1256688 – volume: 97 start-page: 2219 year: 2013 ident: 10.1016/j.scitotenv.2017.08.110_bb0130 article-title: Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4063-7 – volume: 84 start-page: 2281 year: 2003 ident: 10.1016/j.scitotenv.2017.08.110_bb0180 article-title: Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics publication-title: Ecology doi: 10.1890/02-0298 – volume: 542 start-page: 91 year: 2017 ident: 10.1016/j.scitotenv.2017.08.110_bb0125 article-title: Elevation alters ecosystem properties across temperate treelines globally publication-title: Nature doi: 10.1038/nature21027 – volume: 193 start-page: 465 year: 2012 ident: 10.1016/j.scitotenv.2017.08.110_bb0010 article-title: Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03927.x – volume: 541 start-page: 230 year: 2016 ident: 10.1016/j.scitotenv.2017.08.110_bb0075 article-title: Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.080 – volume: 81 start-page: 311 year: 2015 ident: 10.1016/j.scitotenv.2017.08.110_bb0115 article-title: Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.12.002 – volume: 404 start-page: 13 year: 2016 ident: 10.1016/j.scitotenv.2017.08.110_bb0135 article-title: Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities publication-title: Plant Soil doi: 10.1007/s11104-016-2796-2 – volume: 6 start-page: 1621 year: 2012 ident: 10.1016/j.scitotenv.2017.08.110_bb0040 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J. doi: 10.1038/ismej.2012.8 – volume: 38 start-page: 991 year: 2006 ident: 10.1016/j.scitotenv.2017.08.110_bb0095 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.08.012 – volume: 59 start-page: 418 year: 2006 ident: 10.1016/j.scitotenv.2017.08.110_bb0110 article-title: Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2006.00240.x – year: 1982 ident: 10.1016/j.scitotenv.2017.08.110_bb0025 article-title: Nitrogen total – volume: 78 start-page: 8587 year: 2012 ident: 10.1016/j.scitotenv.2017.08.110_bb0060 article-title: Response of the soil microbial community to changes in precipitation in a semiarid ecosystem publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02050-12 – volume: 93 start-page: 930 year: 2012 ident: 10.1016/j.scitotenv.2017.08.110_bb0120 article-title: Responses of soil microbial communities to water stress: results from a meta-analysis publication-title: Ecology doi: 10.1890/11-0026.1 – volume: 69 start-page: 500 year: 2005 ident: 10.1016/j.scitotenv.2017.08.110_bb0065 article-title: Predictive quality of pedotransfer functions for estimating bulk density of forest soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0500 – volume: 21 start-page: 4076 year: 2015 ident: 10.1016/j.scitotenv.2017.08.110_bb0245 article-title: Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13011 – volume: 53 start-page: 457 year: 2017 ident: 10.1016/j.scitotenv.2017.08.110_bb0175 article-title: Response of microbial diversity to C: N: P stoichiometry in fine root and microbial biomass following afforestation publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-017-1197-x – volume: 68 start-page: 822 year: 2014 ident: 10.1016/j.scitotenv.2017.08.110_bb0215 article-title: Diversity of bacterial communities in a profile of a winter wheat field: known and unknown members publication-title: Microb. Ecol. doi: 10.1007/s00248-014-0458-6 – volume: 8 start-page: 1301 year: 2017 ident: 10.1016/j.scitotenv.2017.08.110_bb0260 article-title: Fungal communities in rhizosphere soil under conservation tillage shift in response to plant growth publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01301 – volume: 139 start-page: 200 year: 2006 ident: 10.1016/j.scitotenv.2017.08.110_bb0230 article-title: Temperature variation along the northern and southern slopes of Mt. Taibai, China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.07.001 |
SSID | ssj0000781 |
Score | 2.6272051 |
Snippet | Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 750 |
SubjectTerms | Acidobacteria Actinobacteria alpha-Proteobacteria Altitude Altitudinal gradients Ascomycota Bacteria - classification Basidiomycota beta-Proteobacteria Biodiversity Biomass bulk density carbon China Chloroflexi climatic zones delta-Proteobacteria fungi Fungi - classification gamma-Proteobacteria Gemmatimonadetes genes grasses Illumina sequencing internal transcribed spacers leaves microbial biomass nitrogen nitrogen content Nitrospirae plant communities Plants - classification Poaceae ribosomal RNA RNA, Ribosomal, 16S - genetics Soil soil bacteria Soil microbial community Soil Microbiology Soil moisture Soil temperature soil water species diversity |
Title | Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics |
URI | https://dx.doi.org/10.1016/j.scitotenv.2017.08.110 https://www.ncbi.nlm.nih.gov/pubmed/28822942 https://www.proquest.com/docview/1930930886 https://www.proquest.com/docview/2000588532 |
Volume | 610-611 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED5Kx2AwRpetW9auaLDHenVtWZb7VrqWbGF9GCvrm5BkaWRkdoidQl_2F_aXd2fZKYGVPgwMxonkiJxO-iR99x3Ae5G6QtisjLKCRLUF15HRPIskSY-kXieGU6Dwl0sxueKfr7PrLTgbYmGIVtmP_WFM70br_pOj_t88WsxmFOPLZSEKOkbGdYskxU_Oc-rlH37f0TxIzCacMqNjY-kNjhe-t60Rm94QxysnLc9jCqX99wx1HwLtZqKLHXjWQ0h2Glr5HLZcNYLHIank7Qh2z-9i17BY77zNCJ6GLToWIo9ewJ-PfXIUdPI5WwayrGtY7VlTz-bs16wTacLvKEYfQfYhKwcWxyHTVcmIjz6QvlhbM03BvKuSEm2xH8uOTNY2LOTZZXXFFnO0Y1ez-wG7KRb9Eq4uzr-dTaI-P0NkeczbKM28PU69IQhopLOliNNE20x7acrCFtJobX1alrgGRRijNUJHXM7hIMN1iY_pLmxXdeVeA_OI5HIRa6-F5rkxxufOapOhaZ13sRuDGGyibC9eTjk05mpgqf1Ua2MqMqaKJa5u4jHE64qLoN_xcJWTwehqoysqnGUervxu6CYKHZVOX3Tl6lWjECnHeEkp7i9DcVOZRASVjOFV6GPrVieStPl58uZ_mrcHT_BJhj2kfdhulyv3FlFVaw46tzmAR6efppNLuk-_fp_-BfwvKWk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED66lLHBGFu2btlPDfZYU9eWZXlvpWtJ1zZPLfRNSLI0MjI7xM5gf8X-5d1ZdkpgpQ-DvDj2OSKnO32y7_sO4LNIXSFsVkZZQaLaguvIaJ5FkqRHUq8Tw4kofDkT02v-7Sa72YHjgQtDZZV97g85vcvW_TcH_b95sJzPiePLZSEKeo2M-xaZPoBdUqfKRrB7dHY-nd0m5FyGxnkcYxsNtsq88NZtjfD0F5V55STneUhs2n8vUneB0G4xOn0GT3sUyY7CQJ_DjqvG8DD0lfw9hr2TW_oaXtbHbzOGJ-EpHQvkoxfw52vfHwXjfMFWoV7WNaz2rKnnC_Zz3uk04Tmi6SPO3mflUMixz3RVMipJH-q-WFszTXzedUm9ttj3VVdP1jYstNpldcWWC3RlZ9n9gN3Wi34J16cnV8fTqG_REFke8zZKM28PU28IBRrpbCniNNE2016asrCFNFpbn5YlbkMRyWiN6BF3dJhnuC7xMN2DUVVX7jUwj2AuF7H2WmieG2N87qw2GXrXeRe7CYjBJ8r2-uXURmOhhkK1H2rjTEXOVLHEDU48gXhjuAwSHvebfBmcrrZmo8KF5n7jT8M0URir9AJGV65eNwrBcowfKcXd1xB1KpMIopIJvApzbDPqRJI8P0_e_M_wPsKj6dXlhbo4m52_hcd4RoZHSu9g1K7W7j2CrNZ86IPoL7QCKnc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+responses+of+soil+microbial+biomass%2C+diversity%2C+and+compositions+to+altitudinal+gradients+depend+on+plant+and+soil+characteristics&rft.jtitle=The+Science+of+the+total+environment&rft.au=Ren%2C+Chengjie&rft.au=Zhang%2C+Wei&rft.au=Zhong%2C+ZeKun&rft.au=Han%2C+Xinhui&rft.date=2018-01-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=610-611&rft.spage=750&rft.epage=758&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.08.110&rft.externalDocID=S0048969717321083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |