Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics

Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare t...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 610-611; pp. 750 - 758
Main Authors Ren, Chengjie, Zhang, Wei, Zhong, ZeKun, Han, Xinhui, Yang, Gaihe, Feng, Yongzhong, Ren, Guangxin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation–extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients. [Display omitted] •Microbial biomass reflects the C/N in plant-soil systems along altitudinal gradients.•Bacterial diversity varied more than fungal diversity along altitudinal gradients.•Altitudinal gradient largely affected bacterial composition not fungal composition.•Microbial alpha diversity was mainly coupled with plant diversity, SOC and TN.•Microbial beta diversity and composition mainly differed with ST and SM.
AbstractList Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation-extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients.Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation-extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients.
Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation-extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients.
Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation–extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients. [Display omitted] •Microbial biomass reflects the C/N in plant-soil systems along altitudinal gradients.•Bacterial diversity varied more than fungal diversity along altitudinal gradients.•Altitudinal gradient largely affected bacterial composition not fungal composition.•Microbial alpha diversity was mainly coupled with plant diversity, SOC and TN.•Microbial beta diversity and composition mainly differed with ST and SM.
Author Ren, Guangxin
Ren, Chengjie
Zhang, Wei
Han, Xinhui
Feng, Yongzhong
Zhong, ZeKun
Yang, Gaihe
Author_xml – sequence: 1
  givenname: Chengjie
  surname: Ren
  fullname: Ren, Chengjie
– sequence: 2
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
– sequence: 3
  givenname: ZeKun
  surname: Zhong
  fullname: Zhong, ZeKun
– sequence: 4
  givenname: Xinhui
  surname: Han
  fullname: Han, Xinhui
  email: hanxinhui@nwsuaf.edu.cn
– sequence: 5
  givenname: Gaihe
  surname: Yang
  fullname: Yang, Gaihe
  email: ygh@nwsuaf.edu.cn
– sequence: 6
  givenname: Yongzhong
  surname: Feng
  fullname: Feng, Yongzhong
– sequence: 7
  givenname: Guangxin
  surname: Ren
  fullname: Ren, Guangxin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28822942$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u3CAUhVGVKpmkfYWWZRexC_gPL7qI0jatFKmbZI0wXLd3ZIMLzEh5irxycSbJIpsUIaErvnNA55ySI-cdEPKRs5Iz3n7eltFg8gncvhSMdyWTJefsDdlw2fUFZ6I9IhvGaln0bd-dkNMYtyyvTvJjciKkFKKvxYbcf8VxhAAuoZ5ogLh4FyFSP9LocaIzmuCH9W5AP-sYz6nFPYSI6e6camep8fPi84hZSJOnekqYdhZd1vwO2mL2jtTCAhn2ji6TdulB-fCA-aODNgkCxoQmviNvRz1FeP94npHb799uLn8U17-ufl5eXBemZnUqqmY0vBqHvhLtIMHYllVCm0aPcrC96eWgtRkra5u6Z0Jq3bRtzTjrWK1tHqsz8unguwT_dwcxqRmjgSl_DvwuKpGzaqRsKvEqyvuK5S1lm9EPj-humMGqJeCsw516yjsD3QHIqcYYYHxGOFNrs2qrnptVa7OKSZWbzcovL5QZ02vqKWic_kN_cdBDTnWPEFYOnAGLAUxS1uOrHv8Ak_HJUg
CitedBy_id crossref_primary_10_1016_j_catena_2020_104812
crossref_primary_10_1016_j_catena_2021_105504
crossref_primary_10_3390_d17030175
crossref_primary_10_3390_f15010187
crossref_primary_10_1016_j_agee_2024_109077
crossref_primary_10_1002_ecy_2596
crossref_primary_10_3389_fmicb_2022_1024198
crossref_primary_10_1002_ece3_7903
crossref_primary_10_1002_ldr_4389
crossref_primary_10_1016_j_ejsobi_2023_103586
crossref_primary_10_1007_s11104_020_04823_7
crossref_primary_10_1016_j_scitotenv_2023_165840
crossref_primary_10_1093_femsec_fiaf001
crossref_primary_10_1016_j_catena_2022_106202
crossref_primary_10_1016_j_catena_2020_104921
crossref_primary_10_1016_j_scitotenv_2021_149368
crossref_primary_10_1016_j_envres_2023_117711
crossref_primary_10_1002_ece3_9891
crossref_primary_10_1002_ldr_4812
crossref_primary_10_3390_agronomy14092010
crossref_primary_10_3390_su15065107
crossref_primary_10_1016_j_catena_2018_12_021
crossref_primary_10_1016_j_scitotenv_2023_163536
crossref_primary_10_1128_spectrum_01712_24
crossref_primary_10_1016_j_foreco_2019_117805
crossref_primary_10_2136_sssaj2018_08_0297
crossref_primary_10_1007_s11104_022_05618_8
crossref_primary_10_1111_1365_2435_14635
crossref_primary_10_3390_agriculture14030370
crossref_primary_10_1093_femsec_fiaa201
crossref_primary_10_1128_spectrum_02116_21
crossref_primary_10_1016_j_scitotenv_2022_156194
crossref_primary_10_3389_fmicb_2022_923346
crossref_primary_10_1016_j_isci_2022_105277
crossref_primary_10_36783_18069657rbcs20220090
crossref_primary_10_1016_j_agee_2025_109589
crossref_primary_10_3390_smartcities6010005
crossref_primary_10_2139_ssrn_4126831
crossref_primary_10_1016_j_scitotenv_2024_173850
crossref_primary_10_1016_j_agrformet_2022_108811
crossref_primary_10_3390_microorganisms12050854
crossref_primary_10_1111_ejss_13419
crossref_primary_10_1016_j_catena_2024_108516
crossref_primary_10_1007_s00203_019_01689_x
crossref_primary_10_3389_fmicb_2022_882949
crossref_primary_10_1007_s00248_024_02345_8
crossref_primary_10_1016_j_envres_2020_109261
crossref_primary_10_3390_w14243999
crossref_primary_10_1038_s41598_018_35762_0
crossref_primary_10_3390_f10090797
crossref_primary_10_1134_S0026261723600404
crossref_primary_10_1016_j_catena_2021_105707
crossref_primary_10_1016_j_gecco_2020_e00992
crossref_primary_10_1139_cjm_2019_0147
crossref_primary_10_3389_fmicb_2022_1065412
crossref_primary_10_3389_fmicb_2019_00169
crossref_primary_10_1007_s11629_021_7083_x
crossref_primary_10_1016_j_scitotenv_2019_135497
crossref_primary_10_3390_f12050562
crossref_primary_10_1002_ece3_11056
crossref_primary_10_1029_2021JG006742
crossref_primary_10_1016_j_gecco_2024_e02891
crossref_primary_10_1016_j_scitotenv_2022_161048
crossref_primary_10_1016_j_soilbio_2020_107881
crossref_primary_10_1016_j_scitotenv_2022_158438
crossref_primary_10_1186_s12866_019_1584_6
crossref_primary_10_1016_j_pedsph_2023_12_012
crossref_primary_10_1094_PHYTOFR_07_23_0091_R
crossref_primary_10_1038_s41597_020_0567_7
crossref_primary_10_1016_j_scitotenv_2019_03_273
crossref_primary_10_3389_fevo_2021_630722
crossref_primary_10_3390_su13105747
crossref_primary_10_3390_f12040501
crossref_primary_10_1111_mec_14694
crossref_primary_10_21829_myb_2021_2732271
crossref_primary_10_3390_f14040772
crossref_primary_10_1128_msystems_00755_23
crossref_primary_10_3390_f13020158
crossref_primary_10_1016_j_catena_2025_108714
crossref_primary_10_1016_j_catena_2019_03_021
crossref_primary_10_1111_1365_2664_13964
crossref_primary_10_1111_sum_12612
crossref_primary_10_1007_s11104_020_04479_3
crossref_primary_10_1007_s11104_022_05849_9
crossref_primary_10_1016_j_geoderma_2018_03_027
crossref_primary_10_1128_aem_01161_24
crossref_primary_10_1016_j_catena_2021_105844
crossref_primary_10_1080_03650340_2024_2448623
crossref_primary_10_1128_spectrum_00795_22
crossref_primary_10_3390_plants12203650
crossref_primary_10_1007_s00248_021_01740_9
crossref_primary_10_1016_j_indcrop_2020_113032
crossref_primary_10_1007_s11104_023_06104_5
crossref_primary_10_1016_j_micres_2021_126888
crossref_primary_10_1111_oik_09034
crossref_primary_10_3389_fmicb_2023_1111087
crossref_primary_10_1111_gcb_15036
crossref_primary_10_3390_microorganisms12040728
crossref_primary_10_1016_j_soilbio_2019_107562
crossref_primary_10_3389_fmicb_2023_1106739
crossref_primary_10_1186_s12866_022_02500_6
crossref_primary_10_3390_microorganisms10040766
crossref_primary_10_3390_ijerph15102168
crossref_primary_10_1016_j_geoderma_2019_114167
crossref_primary_10_1016_j_foreco_2021_119793
crossref_primary_10_3389_fpls_2024_1394112
crossref_primary_10_3389_fpls_2022_1036369
crossref_primary_10_3390_ijerph17165699
crossref_primary_10_1016_j_catena_2024_108679
crossref_primary_10_1016_j_scitotenv_2023_165612
crossref_primary_10_1038_s41598_020_65329_x
crossref_primary_10_2478_amns_2024_2931
crossref_primary_10_1007_s42729_024_02037_9
crossref_primary_10_2139_ssrn_4066274
crossref_primary_10_1186_s12866_022_02513_1
crossref_primary_10_1002_saj2_20420
crossref_primary_10_1016_j_apsoil_2023_105244
crossref_primary_10_1038_s43705_021_00076_2
crossref_primary_10_1016_j_ecolind_2025_113185
crossref_primary_10_3390_microorganisms8060811
crossref_primary_10_3390_jof8080807
crossref_primary_10_7717_peerj_5767
crossref_primary_10_3389_fmicb_2020_02042
crossref_primary_10_3389_fmicb_2024_1458750
crossref_primary_10_1016_j_scitotenv_2021_151823
crossref_primary_10_2139_ssrn_4000319
crossref_primary_10_1016_j_apsoil_2024_105651
crossref_primary_10_1016_j_foreco_2019_03_033
crossref_primary_10_1007_s42729_024_02048_6
crossref_primary_10_1016_j_geoderma_2023_116343
crossref_primary_10_3389_fmicb_2023_1079113
crossref_primary_10_1016_j_foreco_2017_11_011
crossref_primary_10_1016_j_foreco_2021_119573
crossref_primary_10_2174_1574893615999200422120819
crossref_primary_10_1016_j_scitotenv_2023_163375
crossref_primary_10_1016_j_scitotenv_2019_01_097
crossref_primary_10_1007_s40333_021_0025_1
crossref_primary_10_1093_femsec_fiy099
crossref_primary_10_1016_j_catena_2021_105807
crossref_primary_10_1016_j_envres_2022_115181
crossref_primary_10_1016_j_scitotenv_2020_142619
crossref_primary_10_1016_j_foreco_2019_117625
crossref_primary_10_1007_s11104_022_05842_2
crossref_primary_10_1007_s10123_023_00392_8
crossref_primary_10_3389_fmicb_2024_1494070
crossref_primary_10_3389_fpls_2022_954777
crossref_primary_10_3390_f15020392
crossref_primary_10_3390_su14137910
crossref_primary_10_1007_s11368_018_2173_2
crossref_primary_10_1016_j_agwat_2024_109228
crossref_primary_10_1016_j_ecolind_2020_106491
crossref_primary_10_1038_s41598_018_33965_z
crossref_primary_10_3389_fpls_2022_938187
crossref_primary_10_1016_j_apsoil_2021_104292
crossref_primary_10_3389_fmicb_2023_1217925
crossref_primary_10_1007_s11368_022_03300_1
crossref_primary_10_1051_e3sconf_202339302012
crossref_primary_10_1016_j_envres_2023_116656
crossref_primary_10_3390_f16020279
crossref_primary_10_1111_jvs_13193
crossref_primary_10_3389_fmicb_2024_1444260
crossref_primary_10_3389_fmicb_2023_974316
crossref_primary_10_1007_s10342_024_01722_9
crossref_primary_10_1016_j_ecoleng_2024_107348
crossref_primary_10_3390_app9193963
crossref_primary_10_3389_fmicb_2018_01691
crossref_primary_10_3390_jof10110772
crossref_primary_10_1016_j_ejsobi_2019_04_001
crossref_primary_10_1016_j_ecolind_2022_109054
crossref_primary_10_1007_s00248_021_01949_8
crossref_primary_10_3390_f14081634
crossref_primary_10_1002_ldr_4618
crossref_primary_10_3390_microorganisms9112228
crossref_primary_10_3390_su16167096
crossref_primary_10_1016_j_jappgeo_2022_104638
crossref_primary_10_36783_18069657rbcs20200033
crossref_primary_10_1016_j_catena_2020_105021
crossref_primary_10_3390_su12229754
crossref_primary_10_1016_j_soilbio_2024_109371
crossref_primary_10_3389_fmicb_2021_660749
crossref_primary_10_1016_j_apsoil_2025_106037
crossref_primary_10_3389_fmicb_2021_777862
crossref_primary_10_1002_ldr_4724
crossref_primary_10_1016_j_soilbio_2022_108714
crossref_primary_10_3390_agronomy12030657
crossref_primary_10_1016_j_foreco_2020_118332
crossref_primary_10_3390_microorganisms13010138
crossref_primary_10_1016_j_ejsobi_2024_103646
crossref_primary_10_1128_aem_00753_24
crossref_primary_10_3389_fmicb_2020_601054
crossref_primary_10_1016_j_catena_2021_105691
crossref_primary_10_1016_j_apsoil_2021_104003
crossref_primary_10_3389_fmicb_2019_01080
crossref_primary_10_1016_j_ygeno_2020_04_002
crossref_primary_10_3389_fmicb_2022_1115592
crossref_primary_10_3389_fmicb_2021_646124
crossref_primary_10_1002_ece3_11360
crossref_primary_10_3389_fmicb_2020_577242
crossref_primary_10_1007_s42832_020_0061_3
crossref_primary_10_1016_j_biocontrol_2021_104812
crossref_primary_10_1111_ecog_07049
crossref_primary_10_1016_j_agrformet_2019_107894
crossref_primary_10_1089_ind_2018_29132_pzo
crossref_primary_10_3389_fmicb_2018_02874
crossref_primary_10_1007_s11676_022_01548_4
crossref_primary_10_3390_microorganisms11030676
crossref_primary_10_1007_s10343_023_00952_y
Cites_doi 10.1146/annurev-ecolsys-110512-135750
10.1016/j.soilbio.2012.07.013
10.1016/j.ecoleng.2014.11.010
10.1038/ismej.2013.50
10.1126/science.1206958
10.1128/AEM.05005-11
10.1111/geb.12278
10.1016/0038-0717(85)90144-0
10.1111/nph.13116
10.1111/j.1469-8137.2012.04089.x
10.1016/0038-0717(87)90052-6
10.1073/pnas.0801920105
10.1073/pnas.1204306109
10.1073/pnas.0709942105
10.1890/ES15-00217.1
10.3389/fmicb.2016.01184
10.1007/s11104-011-0836-5
10.1007/s11284-012-0937-5
10.1111/nph.13315
10.1111/geb.12070
10.1007/s00248-016-0748-2
10.1016/j.soilbio.2016.02.013
10.1007/s11284-016-1333-3
10.1111/j.1461-0248.2007.01139.x
10.1111/j.1600-0587.2012.06882.x
10.1016/j.tree.2007.09.006
10.1890/05-1839
10.1126/science.1231923
10.1038/s41598-017-02363-2
10.1126/science.1072380
10.3389/fmicb.2016.02065
10.1126/science.1256688
10.1007/s00253-012-4063-7
10.1890/02-0298
10.1038/nature21027
10.1111/j.1469-8137.2011.03927.x
10.1016/j.scitotenv.2015.09.080
10.1016/j.soilbio.2014.12.002
10.1007/s11104-016-2796-2
10.1038/ismej.2012.8
10.1016/j.soilbio.2005.08.012
10.1111/j.1574-6941.2006.00240.x
10.1128/AEM.02050-12
10.1890/11-0026.1
10.2136/sssaj2005.0500
10.1111/gcb.13011
10.1007/s00374-017-1197-x
10.1007/s00248-014-0458-6
10.3389/fmicb.2017.01301
10.1016/j.agrformet.2006.07.001
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2017.08.110
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 758
ExternalDocumentID 28822942
10_1016_j_scitotenv_2017_08_110
S0048969717321083
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c404t-35fc13fb9326b8ecd6032ac5af8bd9c98baacf3dd549028aa5664010704ad8aa3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Mon Jul 21 11:31:02 EDT 2025
Thu Jul 10 18:54:00 EDT 2025
Thu Apr 03 07:03:22 EDT 2025
Thu Apr 24 23:05:06 EDT 2025
Tue Jul 01 01:21:18 EDT 2025
Fri Feb 23 02:46:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil microbial community
Altitudinal gradients
Soil moisture
Illumina sequencing
Soil temperature
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-35fc13fb9326b8ecd6032ac5af8bd9c98baacf3dd549028aa5664010704ad8aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28822942
PQID 1930930886
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000588532
proquest_miscellaneous_1930930886
pubmed_primary_28822942
crossref_primary_10_1016_j_scitotenv_2017_08_110
crossref_citationtrail_10_1016_j_scitotenv_2017_08_110
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_08_110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
2018-01-00
2018-Jan-01
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Liu, Xue, Wang (bb0270) 2016; 97
Siles, Margesin (bb0205) 2016; 72
Placella, Brodie, Firestone (bb0160) 2012; 109
Jones, Willett (bb0095) 2006; 38
Qiao, Jabot, Tang, Jiang, Fang (bb0165) 2015; 24
Miki, Doi (bb0145) 2016; 31
Serna-Chavez, Fierer, van Bodegom (bb0190) 2013; 22
Vance, Brookes, Jenkinson (bb0255) 1987; 19
Zhang, Xue, Liu, Song (bb0265) 2011; 347
Lauber, Ramirez, Aanderud, Lennon, Fierer (bb0105) 2013; 7
Rosling, Cox, Cruz-Martinez, Ihrmark, Grelet, Lindahl (bb0185) 2011; 333
Mukherjee, Chandra, Retuerto, Sikaroodi, Brown, Jurevic, Salata, Lederman, Gillevet, Ghannoum (bb0150) 2014
Ren, Chen, Deng, Zhao, Han, Yang, Tong, Feng, Shelton, Ren (bb0175) 2017; 53
Bahram, Polme, Koljalg, Zarre, Tedersoo (bb0010) 2012; 193
Meng, Li, Nie, Wan, Quan, Fang, Chen, Gu, Li (bb0130) 2013; 97
Clarke, Gorley, Somerfield, Warwick (bb0045) 2014
Cregger, Schadt, McDowell, Pockman, Classen (bb0060) 2012; 78
Ren (bb0170) 2012
Deng, Cheng, Hui, Zhang, Li, Zhang (bb0075) 2016; 541
Lipson (bb0110) 2006; 59
De Vos, Van Meirvenne, Quataert, Deckers, Muys (bb0065) 2005; 69
Miki (bb0140) 2012; 27
Thakur, Milcu, Manning, Niklaus, Roscher, Power, Reich, Scheu, Tilman, Ai, Guo, Ji, Pierce, Ramirez, Richter, Steinauer, Strecker, Vogel, Eisenhauer (bb0245) 2015; 21
Tedersoo, Bahram, Polme, Koljalg, Yorou, Wijesundera (bb0240) 2014; 346
Tang, Fang, Chi, Feng, Liu, Shen, Wang, Wang, Wu, Zheng (bb0235) 2012; 35
Brookes, Landman, Pruden, Jenkinson (bb0030) 1985; 17
Bragazza, Bardgett, Mitchell, Buttler (bb0020) 2015; 205
Mayor, Sanders, Classen, Bardgett, Clement, Fajardo, Lavorel, Sundqvist, Bahn, Chisholm, Cieraad, Gedalof, Grigulis, Kudo, Oberski, Wardle (bb0125) 2017; 542
Zhao, Kang, Han, Yang, Feng, Ren (bb0275) 2015; 74
Manzoni, Schimel, Porporato (bb0120) 2012; 93
Siles, Margesin (bb0210) 2017; 7
Körner (bb0100) 2007; 22
Miatto, Wright, Batalha (bb0135) 2016; 404
Shen, Xiong, Zhang, Feng, Lin, Li, Liang, Chu (bb0195) 2013; 57
Bryant, Lamanna, Morlon, Kerkhoff, Enquist, Green (bb0035) 2008; 105
Hannula, Boschker, de Boer, Van Veen (bb0085) 2012; 194
Wang, Li, Wen, Liu, Han, Liao (bb0260) 2017; 8
Ludwig, Achtenhagen, Miltner, Eckhardt, Leinweber, Emmerling, Thiele-Bruhn (bb0115) 2015; 81
Fierer, Bradford, Jackson (bb0080) 2007; 88
Bremner, Mulvaney (bb0025) 1982
Sundqvist, Sanders, Wardle (bb0220) 2013; 44
Stroobants, Degrune, Olivier, Muys, Roisin, Colinet (bb0215) 2014; 68
Susan, Woodward, Taylor (bb0225) 2015; 206
Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer, Owens, Betley, Fraser, Bauer (bb0040) 2012; 6
Clemmensen, Bahr, Ovaskainen, Dahlberg, Ekblad, Wallander, Lindahl (bb0055) 2013; 339
Van der Heijden, Bardgett, van Straalen (bb0250) 2008; 11
DeBruyn, Nixon, Fawaz, Johnson, Radosevich (bb0070) 2011; 77
Ivanova, Kulichevskaya, Merkel, Toshchakov, Dedysh (bb0090) 2016; 7
Tang, Fang (bb0230) 2006; 139
Biddle, Fitz-Gibbon, Schuster, Brenchley, House (bb0015) 2008; 105
Reynolds, Packer, Bever, Clay (bb0180) 2003; 84
Shen, Shi, Ni, Deng, Van Nostrand, He (bb0200) 2016; 7
Allen, Brown, Gillooly (bb0005) 2002; 297
Classen, Sundqvist, Henning, Newman, Moore, Cregger, Moorhead, Patterson (bb0050) 2015; 6
Stroobants (10.1016/j.scitotenv.2017.08.110_bb0215) 2014; 68
Bahram (10.1016/j.scitotenv.2017.08.110_bb0010) 2012; 193
Sundqvist (10.1016/j.scitotenv.2017.08.110_bb0220) 2013; 44
Brookes (10.1016/j.scitotenv.2017.08.110_bb0030) 1985; 17
Fierer (10.1016/j.scitotenv.2017.08.110_bb0080) 2007; 88
Cregger (10.1016/j.scitotenv.2017.08.110_bb0060) 2012; 78
Miki (10.1016/j.scitotenv.2017.08.110_bb0140) 2012; 27
Caporaso (10.1016/j.scitotenv.2017.08.110_bb0040) 2012; 6
DeBruyn (10.1016/j.scitotenv.2017.08.110_bb0070) 2011; 77
Jones (10.1016/j.scitotenv.2017.08.110_bb0095) 2006; 38
Placella (10.1016/j.scitotenv.2017.08.110_bb0160) 2012; 109
Mukherjee (10.1016/j.scitotenv.2017.08.110_bb0150) 2014
Reynolds (10.1016/j.scitotenv.2017.08.110_bb0180) 2003; 84
Ren (10.1016/j.scitotenv.2017.08.110_bb0175) 2017; 53
Qiao (10.1016/j.scitotenv.2017.08.110_bb0165) 2015; 24
Biddle (10.1016/j.scitotenv.2017.08.110_bb0015) 2008; 105
Shen (10.1016/j.scitotenv.2017.08.110_bb0200) 2016; 7
Lauber (10.1016/j.scitotenv.2017.08.110_bb0105) 2013; 7
Allen (10.1016/j.scitotenv.2017.08.110_bb0005) 2002; 297
Ren (10.1016/j.scitotenv.2017.08.110_bb0170) 2012
Siles (10.1016/j.scitotenv.2017.08.110_bb0205) 2016; 72
Serna-Chavez (10.1016/j.scitotenv.2017.08.110_bb0190) 2013; 22
Meng (10.1016/j.scitotenv.2017.08.110_bb0130) 2013; 97
Rosling (10.1016/j.scitotenv.2017.08.110_bb0185) 2011; 333
Vance (10.1016/j.scitotenv.2017.08.110_bb0255) 1987; 19
Deng (10.1016/j.scitotenv.2017.08.110_bb0075) 2016; 541
De Vos (10.1016/j.scitotenv.2017.08.110_bb0065) 2005; 69
Susan (10.1016/j.scitotenv.2017.08.110_bb0225) 2015; 206
Thakur (10.1016/j.scitotenv.2017.08.110_bb0245) 2015; 21
Körner (10.1016/j.scitotenv.2017.08.110_bb0100) 2007; 22
Van der Heijden (10.1016/j.scitotenv.2017.08.110_bb0250) 2008; 11
Lipson (10.1016/j.scitotenv.2017.08.110_bb0110) 2006; 59
Wang (10.1016/j.scitotenv.2017.08.110_bb0260) 2017; 8
Tang (10.1016/j.scitotenv.2017.08.110_bb0230) 2006; 139
Manzoni (10.1016/j.scitotenv.2017.08.110_bb0120) 2012; 93
Ludwig (10.1016/j.scitotenv.2017.08.110_bb0115) 2015; 81
Zhang (10.1016/j.scitotenv.2017.08.110_bb0265) 2011; 347
Tang (10.1016/j.scitotenv.2017.08.110_bb0235) 2012; 35
Clemmensen (10.1016/j.scitotenv.2017.08.110_bb0055) 2013; 339
Miki (10.1016/j.scitotenv.2017.08.110_bb0145) 2016; 31
Zhao (10.1016/j.scitotenv.2017.08.110_bb0275) 2015; 74
Ivanova (10.1016/j.scitotenv.2017.08.110_bb0090) 2016; 7
Shen (10.1016/j.scitotenv.2017.08.110_bb0195) 2013; 57
Bremner (10.1016/j.scitotenv.2017.08.110_bb0025) 1982
Bragazza (10.1016/j.scitotenv.2017.08.110_bb0020) 2015; 205
Bryant (10.1016/j.scitotenv.2017.08.110_bb0035) 2008; 105
Siles (10.1016/j.scitotenv.2017.08.110_bb0210) 2017; 7
Hannula (10.1016/j.scitotenv.2017.08.110_bb0085) 2012; 194
Tedersoo (10.1016/j.scitotenv.2017.08.110_bb0240) 2014; 346
Miatto (10.1016/j.scitotenv.2017.08.110_bb0135) 2016; 404
Zhang (10.1016/j.scitotenv.2017.08.110_bb0270) 2016; 97
Mayor (10.1016/j.scitotenv.2017.08.110_bb0125) 2017; 542
Classen (10.1016/j.scitotenv.2017.08.110_bb0050) 2015; 6
Clarke (10.1016/j.scitotenv.2017.08.110_bb0045) 2014
References_xml – volume: 27
  start-page: 509
  year: 2012
  end-page: 520
  ident: bb0140
  article-title: Microbe-mediated plant–soil feedback and its roles in a changing world
  publication-title: Ecol. Res.
– volume: 59
  start-page: 418
  year: 2006
  end-page: 427
  ident: bb0110
  article-title: Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients
  publication-title: FEMS Microbiol. Ecol.
– year: 1982
  ident: bb0025
  article-title: Nitrogen total
  publication-title: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties
– volume: 339
  start-page: 1615
  year: 2013
  end-page: 1618
  ident: bb0055
  article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest
  publication-title: Science
– volume: 31
  start-page: 263
  year: 2016
  end-page: 274
  ident: bb0145
  article-title: Leaf phenological shifts and plant-microbe-soil interactions can determine forest productivity and nutrient cycling under climate change in an ecosystem model
  publication-title: Ecol. Res.
– volume: 206
  start-page: 1145
  year: 2015
  end-page: 1155
  ident: bb0225
  article-title: Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300
  publication-title: New Phytol.
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: bb0255
  article-title: An extraction method for measuring soil microbial biomass-C
  publication-title: Soil Biol. Biochem.
– volume: 6
  start-page: 1621
  year: 2012
  end-page: 1624
  ident: bb0040
  article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
  publication-title: ISME J.
– volume: 541
  start-page: 230
  year: 2016
  end-page: 237
  ident: bb0075
  article-title: Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China
  publication-title: Sci. Total Environ.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 21
  ident: bb0050
  article-title: Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead?
  publication-title: Ecosphere
– volume: 205
  start-page: 1175
  year: 2015
  end-page: 1182
  ident: bb0020
  article-title: Linking soil microbial communities to vascular plant abundance along a climate gradient
  publication-title: New Phytol.
– volume: 81
  start-page: 311
  year: 2015
  end-page: 322
  ident: bb0115
  article-title: Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils
  publication-title: Soil Biol. Biochem.
– volume: 109
  start-page: 10931
  year: 2012
  end-page: 10936
  ident: bb0160
  article-title: Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 105
  start-page: 10583
  year: 2008
  end-page: 10588
  ident: bb0015
  article-title: Metagenomic signatures of the Peru margin subseafloor biosphere show a genetically distinct environment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 194
  start-page: 784
  year: 2012
  end-page: 799
  ident: bb0085
  article-title: 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline
  publication-title: New Phytol.
– volume: 7
  start-page: 2204
  year: 2017
  ident: bb0210
  article-title: Seasonal soil microbial responses are limited to changes in functionality at two alpine forest sites differing in altitude and vegetation
  publication-title: Sci. Rep.-UK
– volume: 21
  start-page: 4076
  year: 2015
  end-page: 4085
  ident: bb0245
  article-title: Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors
  publication-title: Glob. Chang. Biol.
– volume: 193
  start-page: 465
  year: 2012
  end-page: 473
  ident: bb0010
  article-title: Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran
  publication-title: New Phytol.
– volume: 346
  start-page: 1078
  year: 2014
  ident: bb0240
  article-title: Global diversity and geography of soil fungi
  publication-title: Science
– volume: 105
  start-page: 11505
  year: 2008
  end-page: 11511
  ident: bb0035
  article-title: Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 53
  start-page: 457
  year: 2017
  end-page: 468
  ident: bb0175
  article-title: Response of microbial diversity to C: N: P stoichiometry in fine root and microbial biomass following afforestation
  publication-title: Biol. Fertil. Soils
– volume: 347
  start-page: 163
  year: 2011
  end-page: 178
  ident: bb0265
  article-title: A comparison of soil qualities of different revegetation types in the loess plateau, China
  publication-title: Plant Soil
– volume: 74
  start-page: 415
  year: 2015
  end-page: 422
  ident: bb0275
  article-title: Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity
  publication-title: Ecol. Eng.
– volume: 38
  start-page: 991
  year: 2006
  end-page: 999
  ident: bb0095
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biol. Biochem.
– volume: 333
  start-page: 876
  year: 2011
  end-page: 879
  ident: bb0185
  article-title: Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi
  publication-title: Science
– volume: 84
  start-page: 2281
  year: 2003
  end-page: 2291
  ident: bb0180
  article-title: Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics
  publication-title: Ecology
– volume: 35
  start-page: 1083
  year: 2012
  end-page: 1091
  ident: bb0235
  article-title: Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China
  publication-title: Ecography
– volume: 22
  start-page: 569
  year: 2007
  end-page: 574
  ident: bb0100
  article-title: The use of ‘altitude’ in ecological research
  publication-title: Trends Ecol. Evol.
– volume: 57
  start-page: 204
  year: 2013
  end-page: 211
  ident: bb0195
  article-title: Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain
  publication-title: Soil Biol. Biochem.
– volume: 97
  start-page: 40
  year: 2016
  end-page: 49
  ident: bb0270
  article-title: Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the loess plateau
  publication-title: Soil Biol. Biochem.
– volume: 72
  start-page: 207
  year: 2016
  end-page: 220
  ident: bb0205
  article-title: Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors?
  publication-title: Microb. Ecol.
– volume: 93
  start-page: 930
  year: 2012
  end-page: 938
  ident: bb0120
  article-title: Responses of soil microbial communities to water stress: results from a meta-analysis
  publication-title: Ecology
– volume: 24
  start-page: 314
  year: 2015
  end-page: 323
  ident: bb0165
  article-title: A latitudinal gradient in tree community assembly processes evidenced in Chinese forests
  publication-title: Glob. Ecol. Biogeogr.
– volume: 542
  start-page: 91
  year: 2017
  end-page: 95
  ident: bb0125
  article-title: Elevation alters ecosystem properties across temperate treelines globally
  publication-title: Nature
– volume: 77
  start-page: 6295
  year: 2011
  end-page: 6300
  ident: bb0070
  article-title: Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil
  publication-title: Appl. Environ. Microbiol.
– year: 2012
  ident: bb0170
  article-title: Quantitative Classification of Mainplant Communities and Environmental Explanation of Species Composition and Richness in Taibai Mountain ChinaYangling
– year: 2014
  ident: bb0045
  article-title: Change in Marine Communities: an Approach to Statistical Analysis and Interpretation
– volume: 78
  start-page: 8587
  year: 2012
  end-page: 8594
  ident: bb0060
  article-title: Response of the soil microbial community to changes in precipitation in a semiarid ecosystem
  publication-title: Appl. Environ. Microbiol.
– volume: 88
  start-page: 1354
  year: 2007
  end-page: 1364
  ident: bb0080
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
– volume: 8
  start-page: 1301
  year: 2017
  ident: bb0260
  article-title: Fungal communities in rhizosphere soil under conservation tillage shift in response to plant growth
  publication-title: Front. Microbiol.
– start-page: 10
  year: 2014
  ident: bb0150
  article-title: Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi
  publication-title: PLoS Pathog.
– volume: 7
  start-page: 2065
  year: 2016
  ident: bb0090
  article-title: High diversity of Planctomycetes in soils of two lichen-dominated sub-Arctic ecosystems of northwestern Siberia
  publication-title: Front. Microbiol.
– volume: 69
  start-page: 500
  year: 2005
  end-page: 510
  ident: bb0065
  article-title: Predictive quality of pedotransfer functions for estimating bulk density of forest soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 22
  start-page: 1162
  year: 2013
  end-page: 1172
  ident: bb0190
  article-title: Global drivers and patterns of microbial abundance in soil
  publication-title: Glob. Ecol. Biogeogr.
– volume: 68
  start-page: 822
  year: 2014
  end-page: 833
  ident: bb0215
  article-title: Diversity of bacterial communities in a profile of a winter wheat field: known and unknown members
  publication-title: Microb. Ecol.
– volume: 44
  start-page: 261
  year: 2013
  end-page: 280
  ident: bb0220
  article-title: Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 7
  start-page: 1641
  year: 2013
  end-page: 1650
  ident: bb0105
  article-title: Temporal variability in soil microbial communities across land-use types
  publication-title: ISME J.
– volume: 139
  start-page: 200
  year: 2006
  end-page: 207
  ident: bb0230
  article-title: Temperature variation along the northern and southern slopes of Mt. Taibai, China
  publication-title: Agric. For. Meteorol.
– volume: 7
  start-page: 1184
  year: 2016
  ident: bb0200
  article-title: Dramatic increases of soil microbial functional gene diversity at the Treeline ecotone of Changbai Mountain
  publication-title: Front. Microbiol.
– volume: 297
  start-page: 1545
  year: 2002
  end-page: 1548
  ident: bb0005
  article-title: Global biodiversity, biochemical kinetics, and the energetic-equivalence rule
  publication-title: Science
– volume: 97
  start-page: 2219
  year: 2013
  end-page: 2230
  ident: bb0130
  article-title: Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 404
  start-page: 13
  year: 2016
  end-page: 33
  ident: bb0135
  article-title: Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities
  publication-title: Plant Soil
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  ident: bb0250
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecol. Lett.
– volume: 17
  start-page: 837
  year: 1985
  end-page: 842
  ident: bb0030
  article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biol. Biochem.
– volume: 44
  start-page: 261
  year: 2013
  ident: 10.1016/j.scitotenv.2017.08.110_bb0220
  article-title: Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev-ecolsys-110512-135750
– volume: 57
  start-page: 204
  year: 2013
  ident: 10.1016/j.scitotenv.2017.08.110_bb0195
  article-title: Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.07.013
– volume: 74
  start-page: 415
  year: 2015
  ident: 10.1016/j.scitotenv.2017.08.110_bb0275
  article-title: Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.11.010
– volume: 7
  start-page: 1641
  year: 2013
  ident: 10.1016/j.scitotenv.2017.08.110_bb0105
  article-title: Temporal variability in soil microbial communities across land-use types
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.50
– volume: 333
  start-page: 876
  year: 2011
  ident: 10.1016/j.scitotenv.2017.08.110_bb0185
  article-title: Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi
  publication-title: Science
  doi: 10.1126/science.1206958
– volume: 77
  start-page: 6295
  year: 2011
  ident: 10.1016/j.scitotenv.2017.08.110_bb0070
  article-title: Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.05005-11
– volume: 24
  start-page: 314
  year: 2015
  ident: 10.1016/j.scitotenv.2017.08.110_bb0165
  article-title: A latitudinal gradient in tree community assembly processes evidenced in Chinese forests
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12278
– year: 2012
  ident: 10.1016/j.scitotenv.2017.08.110_bb0170
– volume: 17
  start-page: 837
  year: 1985
  ident: 10.1016/j.scitotenv.2017.08.110_bb0030
  article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(85)90144-0
– volume: 205
  start-page: 1175
  year: 2015
  ident: 10.1016/j.scitotenv.2017.08.110_bb0020
  article-title: Linking soil microbial communities to vascular plant abundance along a climate gradient
  publication-title: New Phytol.
  doi: 10.1111/nph.13116
– volume: 194
  start-page: 784
  year: 2012
  ident: 10.1016/j.scitotenv.2017.08.110_bb0085
  article-title: 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04089.x
– volume: 19
  start-page: 703
  year: 1987
  ident: 10.1016/j.scitotenv.2017.08.110_bb0255
  article-title: An extraction method for measuring soil microbial biomass-C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(87)90052-6
– volume: 105
  start-page: 11505
  year: 2008
  ident: 10.1016/j.scitotenv.2017.08.110_bb0035
  article-title: Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0801920105
– volume: 109
  start-page: 10931
  year: 2012
  ident: 10.1016/j.scitotenv.2017.08.110_bb0160
  article-title: Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1204306109
– volume: 105
  start-page: 10583
  year: 2008
  ident: 10.1016/j.scitotenv.2017.08.110_bb0015
  article-title: Metagenomic signatures of the Peru margin subseafloor biosphere show a genetically distinct environment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0709942105
– start-page: 10
  year: 2014
  ident: 10.1016/j.scitotenv.2017.08.110_bb0150
  article-title: Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi
  publication-title: PLoS Pathog.
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2017.08.110_bb0050
  article-title: Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead?
  publication-title: Ecosphere
  doi: 10.1890/ES15-00217.1
– volume: 7
  start-page: 1184
  year: 2016
  ident: 10.1016/j.scitotenv.2017.08.110_bb0200
  article-title: Dramatic increases of soil microbial functional gene diversity at the Treeline ecotone of Changbai Mountain
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01184
– year: 2014
  ident: 10.1016/j.scitotenv.2017.08.110_bb0045
– volume: 347
  start-page: 163
  year: 2011
  ident: 10.1016/j.scitotenv.2017.08.110_bb0265
  article-title: A comparison of soil qualities of different revegetation types in the loess plateau, China
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0836-5
– volume: 27
  start-page: 509
  year: 2012
  ident: 10.1016/j.scitotenv.2017.08.110_bb0140
  article-title: Microbe-mediated plant–soil feedback and its roles in a changing world
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-012-0937-5
– volume: 206
  start-page: 1145
  year: 2015
  ident: 10.1016/j.scitotenv.2017.08.110_bb0225
  article-title: Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300m) elevation gradient
  publication-title: New Phytol.
  doi: 10.1111/nph.13315
– volume: 22
  start-page: 1162
  year: 2013
  ident: 10.1016/j.scitotenv.2017.08.110_bb0190
  article-title: Global drivers and patterns of microbial abundance in soil
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12070
– volume: 72
  start-page: 207
  year: 2016
  ident: 10.1016/j.scitotenv.2017.08.110_bb0205
  article-title: Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors?
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-016-0748-2
– volume: 97
  start-page: 40
  year: 2016
  ident: 10.1016/j.scitotenv.2017.08.110_bb0270
  article-title: Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the loess plateau
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.02.013
– volume: 31
  start-page: 263
  year: 2016
  ident: 10.1016/j.scitotenv.2017.08.110_bb0145
  article-title: Leaf phenological shifts and plant-microbe-soil interactions can determine forest productivity and nutrient cycling under climate change in an ecosystem model
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-016-1333-3
– volume: 11
  start-page: 296
  year: 2008
  ident: 10.1016/j.scitotenv.2017.08.110_bb0250
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01139.x
– volume: 35
  start-page: 1083
  year: 2012
  ident: 10.1016/j.scitotenv.2017.08.110_bb0235
  article-title: Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2012.06882.x
– volume: 22
  start-page: 569
  year: 2007
  ident: 10.1016/j.scitotenv.2017.08.110_bb0100
  article-title: The use of ‘altitude’ in ecological research
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2007.09.006
– volume: 88
  start-page: 1354
  year: 2007
  ident: 10.1016/j.scitotenv.2017.08.110_bb0080
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
  doi: 10.1890/05-1839
– volume: 339
  start-page: 1615
  year: 2013
  ident: 10.1016/j.scitotenv.2017.08.110_bb0055
  article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest
  publication-title: Science
  doi: 10.1126/science.1231923
– volume: 7
  start-page: 2204
  year: 2017
  ident: 10.1016/j.scitotenv.2017.08.110_bb0210
  article-title: Seasonal soil microbial responses are limited to changes in functionality at two alpine forest sites differing in altitude and vegetation
  publication-title: Sci. Rep.-UK
  doi: 10.1038/s41598-017-02363-2
– volume: 297
  start-page: 1545
  year: 2002
  ident: 10.1016/j.scitotenv.2017.08.110_bb0005
  article-title: Global biodiversity, biochemical kinetics, and the energetic-equivalence rule
  publication-title: Science
  doi: 10.1126/science.1072380
– volume: 7
  start-page: 2065
  year: 2016
  ident: 10.1016/j.scitotenv.2017.08.110_bb0090
  article-title: High diversity of Planctomycetes in soils of two lichen-dominated sub-Arctic ecosystems of northwestern Siberia
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.02065
– volume: 346
  start-page: 1078
  year: 2014
  ident: 10.1016/j.scitotenv.2017.08.110_bb0240
  article-title: Global diversity and geography of soil fungi
  publication-title: Science
  doi: 10.1126/science.1256688
– volume: 97
  start-page: 2219
  year: 2013
  ident: 10.1016/j.scitotenv.2017.08.110_bb0130
  article-title: Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4063-7
– volume: 84
  start-page: 2281
  year: 2003
  ident: 10.1016/j.scitotenv.2017.08.110_bb0180
  article-title: Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics
  publication-title: Ecology
  doi: 10.1890/02-0298
– volume: 542
  start-page: 91
  year: 2017
  ident: 10.1016/j.scitotenv.2017.08.110_bb0125
  article-title: Elevation alters ecosystem properties across temperate treelines globally
  publication-title: Nature
  doi: 10.1038/nature21027
– volume: 193
  start-page: 465
  year: 2012
  ident: 10.1016/j.scitotenv.2017.08.110_bb0010
  article-title: Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03927.x
– volume: 541
  start-page: 230
  year: 2016
  ident: 10.1016/j.scitotenv.2017.08.110_bb0075
  article-title: Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.080
– volume: 81
  start-page: 311
  year: 2015
  ident: 10.1016/j.scitotenv.2017.08.110_bb0115
  article-title: Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.12.002
– volume: 404
  start-page: 13
  year: 2016
  ident: 10.1016/j.scitotenv.2017.08.110_bb0135
  article-title: Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2796-2
– volume: 6
  start-page: 1621
  year: 2012
  ident: 10.1016/j.scitotenv.2017.08.110_bb0040
  article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.8
– volume: 38
  start-page: 991
  year: 2006
  ident: 10.1016/j.scitotenv.2017.08.110_bb0095
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.08.012
– volume: 59
  start-page: 418
  year: 2006
  ident: 10.1016/j.scitotenv.2017.08.110_bb0110
  article-title: Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2006.00240.x
– year: 1982
  ident: 10.1016/j.scitotenv.2017.08.110_bb0025
  article-title: Nitrogen total
– volume: 78
  start-page: 8587
  year: 2012
  ident: 10.1016/j.scitotenv.2017.08.110_bb0060
  article-title: Response of the soil microbial community to changes in precipitation in a semiarid ecosystem
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02050-12
– volume: 93
  start-page: 930
  year: 2012
  ident: 10.1016/j.scitotenv.2017.08.110_bb0120
  article-title: Responses of soil microbial communities to water stress: results from a meta-analysis
  publication-title: Ecology
  doi: 10.1890/11-0026.1
– volume: 69
  start-page: 500
  year: 2005
  ident: 10.1016/j.scitotenv.2017.08.110_bb0065
  article-title: Predictive quality of pedotransfer functions for estimating bulk density of forest soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0500
– volume: 21
  start-page: 4076
  year: 2015
  ident: 10.1016/j.scitotenv.2017.08.110_bb0245
  article-title: Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13011
– volume: 53
  start-page: 457
  year: 2017
  ident: 10.1016/j.scitotenv.2017.08.110_bb0175
  article-title: Response of microbial diversity to C: N: P stoichiometry in fine root and microbial biomass following afforestation
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-017-1197-x
– volume: 68
  start-page: 822
  year: 2014
  ident: 10.1016/j.scitotenv.2017.08.110_bb0215
  article-title: Diversity of bacterial communities in a profile of a winter wheat field: known and unknown members
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-014-0458-6
– volume: 8
  start-page: 1301
  year: 2017
  ident: 10.1016/j.scitotenv.2017.08.110_bb0260
  article-title: Fungal communities in rhizosphere soil under conservation tillage shift in response to plant growth
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01301
– volume: 139
  start-page: 200
  year: 2006
  ident: 10.1016/j.scitotenv.2017.08.110_bb0230
  article-title: Temperature variation along the northern and southern slopes of Mt. Taibai, China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.07.001
SSID ssj0000781
Score 2.6272051
Snippet Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 750
SubjectTerms Acidobacteria
Actinobacteria
alpha-Proteobacteria
Altitude
Altitudinal gradients
Ascomycota
Bacteria - classification
Basidiomycota
beta-Proteobacteria
Biodiversity
Biomass
bulk density
carbon
China
Chloroflexi
climatic zones
delta-Proteobacteria
fungi
Fungi - classification
gamma-Proteobacteria
Gemmatimonadetes
genes
grasses
Illumina sequencing
internal transcribed spacers
leaves
microbial biomass
nitrogen
nitrogen content
Nitrospirae
plant communities
Plants - classification
Poaceae
ribosomal RNA
RNA, Ribosomal, 16S - genetics
Soil
soil bacteria
Soil microbial community
Soil Microbiology
Soil moisture
Soil temperature
soil water
species diversity
Title Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics
URI https://dx.doi.org/10.1016/j.scitotenv.2017.08.110
https://www.ncbi.nlm.nih.gov/pubmed/28822942
https://www.proquest.com/docview/1930930886
https://www.proquest.com/docview/2000588532
Volume 610-611
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED5Kx2AwRpetW9auaLDHenVtWZb7VrqWbGF9GCvrm5BkaWRkdoidQl_2F_aXd2fZKYGVPgwMxonkiJxO-iR99x3Ae5G6QtisjLKCRLUF15HRPIskSY-kXieGU6Dwl0sxueKfr7PrLTgbYmGIVtmP_WFM70br_pOj_t88WsxmFOPLZSEKOkbGdYskxU_Oc-rlH37f0TxIzCacMqNjY-kNjhe-t60Rm94QxysnLc9jCqX99wx1HwLtZqKLHXjWQ0h2Glr5HLZcNYLHIank7Qh2z-9i17BY77zNCJ6GLToWIo9ewJ-PfXIUdPI5WwayrGtY7VlTz-bs16wTacLvKEYfQfYhKwcWxyHTVcmIjz6QvlhbM03BvKuSEm2xH8uOTNY2LOTZZXXFFnO0Y1ez-wG7KRb9Eq4uzr-dTaI-P0NkeczbKM28PU69IQhopLOliNNE20x7acrCFtJobX1alrgGRRijNUJHXM7hIMN1iY_pLmxXdeVeA_OI5HIRa6-F5rkxxufOapOhaZ13sRuDGGyibC9eTjk05mpgqf1Ua2MqMqaKJa5u4jHE64qLoN_xcJWTwehqoysqnGUervxu6CYKHZVOX3Tl6lWjECnHeEkp7i9DcVOZRASVjOFV6GPrVieStPl58uZ_mrcHT_BJhj2kfdhulyv3FlFVaw46tzmAR6efppNLuk-_fp_-BfwvKWk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED66lLHBGFu2btlPDfZYU9eWZXlvpWtJ1zZPLfRNSLI0MjI7xM5gf8X-5d1ZdkpgpQ-DvDj2OSKnO32y7_sO4LNIXSFsVkZZQaLaguvIaJ5FkqRHUq8Tw4kofDkT02v-7Sa72YHjgQtDZZV97g85vcvW_TcH_b95sJzPiePLZSEKeo2M-xaZPoBdUqfKRrB7dHY-nd0m5FyGxnkcYxsNtsq88NZtjfD0F5V55STneUhs2n8vUneB0G4xOn0GT3sUyY7CQJ_DjqvG8DD0lfw9hr2TW_oaXtbHbzOGJ-EpHQvkoxfw52vfHwXjfMFWoV7WNaz2rKnnC_Zz3uk04Tmi6SPO3mflUMixz3RVMipJH-q-WFszTXzedUm9ttj3VVdP1jYstNpldcWWC3RlZ9n9gN3Wi34J16cnV8fTqG_REFke8zZKM28PU28IBRrpbCniNNE2016asrCFNFpbn5YlbkMRyWiN6BF3dJhnuC7xMN2DUVVX7jUwj2AuF7H2WmieG2N87qw2GXrXeRe7CYjBJ8r2-uXURmOhhkK1H2rjTEXOVLHEDU48gXhjuAwSHvebfBmcrrZmo8KF5n7jT8M0URir9AJGV65eNwrBcowfKcXd1xB1KpMIopIJvApzbDPqRJI8P0_e_M_wPsKj6dXlhbo4m52_hcd4RoZHSu9g1K7W7j2CrNZ86IPoL7QCKnc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+responses+of+soil+microbial+biomass%2C+diversity%2C+and+compositions+to+altitudinal+gradients+depend+on+plant+and+soil+characteristics&rft.jtitle=The+Science+of+the+total+environment&rft.au=Ren%2C+Chengjie&rft.au=Zhang%2C+Wei&rft.au=Zhong%2C+ZeKun&rft.au=Han%2C+Xinhui&rft.date=2018-01-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=610-611&rft.spage=750&rft.epage=758&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.08.110&rft.externalDocID=S0048969717321083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon