Power comparisons of the unbiased Berk-Jones test and the unbiased reversed Berk-Jones test

The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous distribution function. The bias correction is applied to the Berk-Jones test and the reversed Berk-Jones test by using a similar process of Frey (...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 50; no. 4; pp. 1009 - 1024
Main Authors Hanyuda, Bunto, Murakami, Hidetoshi
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 16.04.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2019.1571608

Cover

Loading…
Abstract The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous distribution function. The bias correction is applied to the Berk-Jones test and the reversed Berk-Jones test by using a similar process of Frey ( 2009 ). In order to compose the unbiased test, various critical values are listed. Simulations are used to compare the power of the biased and unbiased Berk-Jones and reversed Berk-Jones tests for various population distributions. Numerical results indicate that the unbiased Berk-Jones test is more powerful than the unbiased reversed Berk-Jones test.
AbstractList The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous distribution function. The bias correction is applied to the Berk-Jones test and the reversed Berk-Jones test by using a similar process of Frey ( 2009 ). In order to compose the unbiased test, various critical values are listed. Simulations are used to compare the power of the biased and unbiased Berk-Jones and reversed Berk-Jones tests for various population distributions. Numerical results indicate that the unbiased Berk-Jones test is more powerful than the unbiased reversed Berk-Jones test.
The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous distribution function. The bias correction is applied to the Berk-Jones test and the reversed Berk-Jones test by using a similar process of Frey (2009). In order to compose the unbiased test, various critical values are listed. Simulations are used to compare the power of the biased and unbiased Berk-Jones and reversed Berk-Jones tests for various population distributions. Numerical results indicate that the unbiased Berk-Jones test is more powerful than the unbiased reversed Berk-Jones test.
Author Murakami, Hidetoshi
Hanyuda, Bunto
Author_xml – sequence: 1
  givenname: Bunto
  surname: Hanyuda
  fullname: Hanyuda, Bunto
  organization: Department of Applied Mathematics, Graduated School of Science, Tokyo University of Science
– sequence: 2
  givenname: Hidetoshi
  surname: Murakami
  fullname: Murakami, Hidetoshi
  organization: Department of Applied Mathematics, Tokyo University of Science
BookMark eNqFkM1KAzEURoNUsK0-gjDgeuq9k0xnBjdq8ZeCLnTlImQmCaa2SU1SS9_eGVoXiujqbs65H5wB6VlnFSHHCCOEEk6BjhEqLEcZYDXCvMAxlHukjznNUoYMe6TfMWkHHZBBCDMAoCUr--Tl0a2VTxq3WApvgrMhcTqJrypZ2dqIoGRyqfxbet9OhiSqEBNh5XfAqw_lfyEPyb4W86COdndInq-vnia36fTh5m5yMU0bBiymlGJRskpQRVmpK9nkdaU0rVVVI2ANDYLUqlCypg0ttKSQMUqLjNYgEQXQITnZ_l16975qh_nMrbxtJ3mWdy0YjIuWyrdU410IXmm-9GYh_IYj8K4j_-rIu45817H1zn54jYkiGmejF2b-r32-tY3Vzi_E2vm55FFs5s5rL2xjAqd_v_gEq1aNUw
CitedBy_id crossref_primary_10_1002_wics_1600
Cites_doi 10.1016/j.jspi.2009.04.017
10.1080/03610918.2014.983651
10.1214/aoms/1177692700
10.1080/00031305.2013.847865
10.1214/aoms/1177729639
10.1016/j.jkss.2014.10.001
10.1007/BF00533250
10.1111/j.1467-842X.2009.00546.x
10.1080/01621459.1995.10476543
10.1214/0009053607000000244
10.1007/BF02868170
10.1007/s10463-005-0019-3
10.1214/aoms/1177729803
10.1080/01621459.1966.10502023
10.1007/978-3-0348-8059-6_19
10.1007/s11425-010-4034-3
10.1016/j.spl.2017.03.009
10.1080/00949650701763464
10.1201/9781439896129
ContentType Journal Article
Copyright 2019 Taylor & Francis Group, LLC 2019
2019 Taylor & Francis Group, LLC
Copyright_xml – notice: 2019 Taylor & Francis Group, LLC 2019
– notice: 2019 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2019.1571608
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 1024
ExternalDocumentID 10_1080_03610918_2019_1571608
1571608
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c404t-3317849a3e348f9dc5b9ef3be9b101b0c10dfe7edb3c37fd302433723b0d11a03
ISSN 0361-0918
IngestDate Wed Aug 13 09:09:08 EDT 2025
Tue Jul 01 03:09:59 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Wed Dec 25 09:07:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-3317849a3e348f9dc5b9ef3be9b101b0c10dfe7edb3c37fd302433723b0d11a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2516084067
PQPubID 186203
PageCount 16
ParticipantIDs crossref_primary_10_1080_03610918_2019_1571608
proquest_journals_2516084067
informaworld_taylorfrancis_310_1080_03610918_2019_1571608
crossref_citationtrail_10_1080_03610918_2019_1571608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-16
PublicationDateYYYYMMDD 2021-04-16
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-16
  day: 16
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0021
CIT0020
CIT0001
CIT0023
CIT0011
CIT0022
Jager L. (CIT0007) 2004
CIT0003
CIT0014
CIT0002
Moscovich-Eiger A. (CIT0012) 2014
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0018
CIT0006
Lehmann E. L. (CIT0010) 2005
CIT0017
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0006
  doi: 10.1016/j.jspi.2009.04.017
– ident: CIT0015
  doi: 10.1080/03610918.2014.983651
– ident: CIT0016
  doi: 10.1214/aoms/1177692700
– ident: CIT0001
  doi: 10.1080/00031305.2013.847865
– ident: CIT0009
  doi: 10.1214/aoms/1177729639
– ident: CIT0013
  doi: 10.1016/j.jkss.2014.10.001
– ident: CIT0002
  doi: 10.1007/BF00533250
– ident: CIT0022
  doi: 10.1111/j.1467-842X.2009.00546.x
– year: 2014
  ident: CIT0012
  publication-title: Cornell University arXiv
– ident: CIT0017
  doi: 10.1080/01621459.1995.10476543
– ident: CIT0008
  doi: 10.1214/0009053607000000244
– volume-title: A new goodness of fit test: The reversed Berk-Jones statistics. Technical report
  year: 2004
  ident: CIT0007
– ident: CIT0018
  doi: 10.1007/BF02868170
– ident: CIT0019
  doi: 10.1007/s10463-005-0019-3
– volume-title: Testing statistical hypotheses
  year: 2005
  ident: CIT0010
– ident: CIT0011
  doi: 10.1214/aoms/1177729803
– ident: CIT0004
– ident: CIT0020
  doi: 10.1080/01621459.1966.10502023
– ident: CIT0021
  doi: 10.1007/978-3-0348-8059-6_19
– ident: CIT0003
  doi: 10.1007/s11425-010-4034-3
– ident: CIT0014
  doi: 10.1016/j.spl.2017.03.009
– ident: CIT0023
  doi: 10.1080/00949650701763464
– ident: CIT0005
  doi: 10.1201/9781439896129
SSID ssj0003848
Score 2.2294388
Snippet The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1009
SubjectTerms Berk-Jones test
Bias correction
Confidence band
Continuity (mathematics)
Distribution functions
Power
Reversed Berk-Jones test
Title Power comparisons of the unbiased Berk-Jones test and the unbiased reversed Berk-Jones test
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2019.1571608
https://www.proquest.com/docview/2516084067
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBZZd-kO3ZattF03dNgtOEh-8g8dt7ERBi2DplDYwdiWxELbpCT2Zfvn-2RLjr0Guh-HmGA_2SHfl6en6L3vEfI-RKDTBOKg5BoXKKlmQQ6pDrgBEYHKYyNt7fDZeTy7FF-voqvR6Fe_uqQqpuXPnXUl_4IqnkNcbZXsXyDb3RRP4HvEF4-IMB7_CONvtsWZSyO3WUEbv-NfL4sFTk9q8lGvr4NGj3-CMWXV5Ut2BlbBab3Dsh-0DopImvxZW4bUKjxPJxeLW9cCzNfI3dXD_f0ZOpxatT2e62W16oGcX-e3bd_shdLVavNj0f8bIuR2R6WtkmyIM3_QEaTnyCBGc-n8rPaONgwEb0WvvCduJWgd40TPrXLGZG-KxqBI7HT_Ll8SrIY8bxL35JRHuCRk6Xa-67IQ3ZUn5GmIawzb_gLYeTeNQ9q0Xus-vC__ssLsux4wCGwGsrcPpvkmdpm_IAdu0UE_tAx6SUZ6OSbPfUMP6vz7mDw760R8N2Oyf9Gh_Ip8b7hGe1yjK0PRmnoq0S2DqGUQRTYMDTzXfrd8TS6_fJ5_mgWuMUdQCiaqADDoTIXMQYNIjVRlVEhtoNCyQA9fsJIzZXSiVQElJEaBlb2EJISCKc5zBodkb4kPOSI0VmB7JCgmcgwWjUrjkkVGQJ5zmeDrmAj_rWalU623zVNuMu7FbR0YmQUjc2Ack2k37K6VbXlsgOxDllUNn01L5QweGXvq8c2cd9hkuG7ASxguJyf_ces3ZH_7Yzsle9W61m8xCq6Kdw1b7wHh7atb
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5VcCg9lBKoSqHgQ68bvBnvw8eCikJLoh5AQurBWr8kBEqrZHPh1zOzj4j0IQ4c9rQer9eP8Wdr5vsAPo9ooMsC88SlgQ4oZZBJhWVI0ogqQ1_lUXPu8GSaj6_Vt5vs5kkuDIdV8hk6tkQRja_mxc2X0X1I3Al5XeazbCKz9DDNCPNzvu9mpvOCVQxQTlfeGMtGQYtNErbps3j-V83a_rTGXvqXt262oPNtcH3j28iTu-GytkP38Aev48v-7h287RCq-NJOqR14FWYD2O7VH0TnDAbwZrJifF0MYItRa0v6vAs_f7D2mnArjcOF-BUFlRbLmb2lfdOL0zC_SxqhAEFgtxbU3PUCTC01_0fJPbg-_3p1Nk46FYfEKanqBAmhlEpXGFCVUXuXWR0i2qAtuQMrXSp9DEXwFh0W0SNzJGIxQit9mlYS38PGjD7yAUTukQn1vVQVIYvoy9zJLCqsqlQX9OyD6sfOuI7inJU27k3aM6F2fWu4b03Xt_swXJn9bjk-njPQTyeGqZvLldgqoRh8xvawn0WmcxcLQyCTXhG2Kj6-oOpjeD2-mlyay4vp9wPYGnH0DbNS5oewUc-X4RPBp9oeNevjEb8qCVo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hkBA9QAmtCqXgQ6-bejPe17EUIp4RhyIhcbDWLwkFpSjZXPj1zOwjaloQBw57Wo_X68f4szXzfQDfBzTQeYZpZGNPB5Tcy6jE3EdxQJWgK9NQcO7w1Sg9vVHnt0kXTThrwyr5DB0aoojaV_PifnShi4j7QU6X6SzrwKyiHycE-Tnddy1l8nDO4pCjhTPGvBbQYpOIbboknteqWdqelshL_3PW9Q403ALTtb0JPBn355Xp26d_aB3f9XMfYbPFp-JnM6G2YcVPerDVaT-I1hX04MPVgu911oMNxqwN5fMO3F2z8pqwC4XDmfgTBJUW84m5p13TiSM_HUe1TIAgqFsJau1yASaWmr5Q8hPcDE9-_zqNWg2HyCqpqggJn-SqKNGjykPhbGIKH9D4wpAzMNLG0gWfeWfQYhYcMkMiZgM00sVxKfEzrE7oI19ApA6ZTt9JVRKuCC5PrUyCwrKMi4yeXVDd0GnbEpyzzsaDjjse1LZvNfetbvt2F_oLs8eG4eMtg-LveaGr-molNDooGt-w3e8mkW6dxUwTxKRXhKyyvXdUfQjr18dDfXk2uvgKGwMOvWFKynQfVqvp3H8j7FSZg3p1PANi2Qf-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+comparisons+of+the+unbiased+Berk-Jones+test+and+the+unbiased+reversed+Berk-Jones+test&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Hanyuda%2C+Bunto&rft.au=Murakami%2C+Hidetoshi&rft.date=2021-04-16&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=50&rft.issue=4&rft.spage=1009&rft.epage=1024&rft_id=info:doi/10.1080%2F03610918.2019.1571608&rft.externalDocID=1571608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon