Power comparisons of the unbiased Berk-Jones test and the unbiased reversed Berk-Jones test
The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous distribution function. The bias correction is applied to the Berk-Jones test and the reversed Berk-Jones test by using a similar process of Frey (...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 50; no. 4; pp. 1009 - 1024 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
16.04.2021
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0918 1532-4141 |
DOI | 10.1080/03610918.2019.1571608 |
Cover
Loading…
Abstract | The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous distribution function. The bias correction is applied to the Berk-Jones test and the reversed Berk-Jones test by using a similar process of Frey (
2009
). In order to compose the unbiased test, various critical values are listed. Simulations are used to compare the power of the biased and unbiased Berk-Jones and reversed Berk-Jones tests for various population distributions. Numerical results indicate that the unbiased Berk-Jones test is more powerful than the unbiased reversed Berk-Jones test. |
---|---|
AbstractList | The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous distribution function. The bias correction is applied to the Berk-Jones test and the reversed Berk-Jones test by using a similar process of Frey (
2009
). In order to compose the unbiased test, various critical values are listed. Simulations are used to compare the power of the biased and unbiased Berk-Jones and reversed Berk-Jones tests for various population distributions. Numerical results indicate that the unbiased Berk-Jones test is more powerful than the unbiased reversed Berk-Jones test. The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous distribution function. The bias correction is applied to the Berk-Jones test and the reversed Berk-Jones test by using a similar process of Frey (2009). In order to compose the unbiased test, various critical values are listed. Simulations are used to compare the power of the biased and unbiased Berk-Jones and reversed Berk-Jones tests for various population distributions. Numerical results indicate that the unbiased Berk-Jones test is more powerful than the unbiased reversed Berk-Jones test. |
Author | Murakami, Hidetoshi Hanyuda, Bunto |
Author_xml | – sequence: 1 givenname: Bunto surname: Hanyuda fullname: Hanyuda, Bunto organization: Department of Applied Mathematics, Graduated School of Science, Tokyo University of Science – sequence: 2 givenname: Hidetoshi surname: Murakami fullname: Murakami, Hidetoshi organization: Department of Applied Mathematics, Tokyo University of Science |
BookMark | eNqFkM1KAzEURoNUsK0-gjDgeuq9k0xnBjdq8ZeCLnTlImQmCaa2SU1SS9_eGVoXiujqbs65H5wB6VlnFSHHCCOEEk6BjhEqLEcZYDXCvMAxlHukjznNUoYMe6TfMWkHHZBBCDMAoCUr--Tl0a2VTxq3WApvgrMhcTqJrypZ2dqIoGRyqfxbet9OhiSqEBNh5XfAqw_lfyEPyb4W86COdndInq-vnia36fTh5m5yMU0bBiymlGJRskpQRVmpK9nkdaU0rVVVI2ANDYLUqlCypg0ttKSQMUqLjNYgEQXQITnZ_l16975qh_nMrbxtJ3mWdy0YjIuWyrdU410IXmm-9GYh_IYj8K4j_-rIu45817H1zn54jYkiGmejF2b-r32-tY3Vzi_E2vm55FFs5s5rL2xjAqd_v_gEq1aNUw |
CitedBy_id | crossref_primary_10_1002_wics_1600 |
Cites_doi | 10.1016/j.jspi.2009.04.017 10.1080/03610918.2014.983651 10.1214/aoms/1177692700 10.1080/00031305.2013.847865 10.1214/aoms/1177729639 10.1016/j.jkss.2014.10.001 10.1007/BF00533250 10.1111/j.1467-842X.2009.00546.x 10.1080/01621459.1995.10476543 10.1214/0009053607000000244 10.1007/BF02868170 10.1007/s10463-005-0019-3 10.1214/aoms/1177729803 10.1080/01621459.1966.10502023 10.1007/978-3-0348-8059-6_19 10.1007/s11425-010-4034-3 10.1016/j.spl.2017.03.009 10.1080/00949650701763464 10.1201/9781439896129 |
ContentType | Journal Article |
Copyright | 2019 Taylor & Francis Group, LLC 2019 2019 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2019 Taylor & Francis Group, LLC 2019 – notice: 2019 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2019.1571608 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 1024 |
ExternalDocumentID | 10_1080_03610918_2019_1571608 1571608 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c404t-3317849a3e348f9dc5b9ef3be9b101b0c10dfe7edb3c37fd302433723b0d11a03 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 09:09:08 EDT 2025 Tue Jul 01 03:09:59 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Wed Dec 25 09:07:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-3317849a3e348f9dc5b9ef3be9b101b0c10dfe7edb3c37fd302433723b0d11a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2516084067 |
PQPubID | 186203 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1080_03610918_2019_1571608 proquest_journals_2516084067 informaworld_taylorfrancis_310_1080_03610918_2019_1571608 crossref_citationtrail_10_1080_03610918_2019_1571608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-16 |
PublicationDateYYYYMMDD | 2021-04-16 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0021 CIT0020 CIT0001 CIT0023 CIT0011 CIT0022 Jager L. (CIT0007) 2004 CIT0003 CIT0014 CIT0002 Moscovich-Eiger A. (CIT0012) 2014 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0018 CIT0006 Lehmann E. L. (CIT0010) 2005 CIT0017 CIT0009 CIT0008 CIT0019 |
References_xml | – ident: CIT0006 doi: 10.1016/j.jspi.2009.04.017 – ident: CIT0015 doi: 10.1080/03610918.2014.983651 – ident: CIT0016 doi: 10.1214/aoms/1177692700 – ident: CIT0001 doi: 10.1080/00031305.2013.847865 – ident: CIT0009 doi: 10.1214/aoms/1177729639 – ident: CIT0013 doi: 10.1016/j.jkss.2014.10.001 – ident: CIT0002 doi: 10.1007/BF00533250 – ident: CIT0022 doi: 10.1111/j.1467-842X.2009.00546.x – year: 2014 ident: CIT0012 publication-title: Cornell University arXiv – ident: CIT0017 doi: 10.1080/01621459.1995.10476543 – ident: CIT0008 doi: 10.1214/0009053607000000244 – volume-title: A new goodness of fit test: The reversed Berk-Jones statistics. Technical report year: 2004 ident: CIT0007 – ident: CIT0018 doi: 10.1007/BF02868170 – ident: CIT0019 doi: 10.1007/s10463-005-0019-3 – volume-title: Testing statistical hypotheses year: 2005 ident: CIT0010 – ident: CIT0011 doi: 10.1214/aoms/1177729803 – ident: CIT0004 – ident: CIT0020 doi: 10.1080/01621459.1966.10502023 – ident: CIT0021 doi: 10.1007/978-3-0348-8059-6_19 – ident: CIT0003 doi: 10.1007/s11425-010-4034-3 – ident: CIT0014 doi: 10.1016/j.spl.2017.03.009 – ident: CIT0023 doi: 10.1080/00949650701763464 – ident: CIT0005 doi: 10.1201/9781439896129 |
SSID | ssj0003848 |
Score | 2.2294388 |
Snippet | The Berk-Jones test and the reversed Berk-Jones test are shown to be biased by computing the exact minimum power with confidence bands for the continuous... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1009 |
SubjectTerms | Berk-Jones test Bias correction Confidence band Continuity (mathematics) Distribution functions Power Reversed Berk-Jones test |
Title | Power comparisons of the unbiased Berk-Jones test and the unbiased reversed Berk-Jones test |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2019.1571608 https://www.proquest.com/docview/2516084067 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBZZd-kO3ZattF03dNgtOEh-8g8dt7ERBi2DplDYwdiWxELbpCT2Zfvn-2RLjr0Guh-HmGA_2SHfl6en6L3vEfI-RKDTBOKg5BoXKKlmQQ6pDrgBEYHKYyNt7fDZeTy7FF-voqvR6Fe_uqQqpuXPnXUl_4IqnkNcbZXsXyDb3RRP4HvEF4-IMB7_CONvtsWZSyO3WUEbv-NfL4sFTk9q8lGvr4NGj3-CMWXV5Ut2BlbBab3Dsh-0DopImvxZW4bUKjxPJxeLW9cCzNfI3dXD_f0ZOpxatT2e62W16oGcX-e3bd_shdLVavNj0f8bIuR2R6WtkmyIM3_QEaTnyCBGc-n8rPaONgwEb0WvvCduJWgd40TPrXLGZG-KxqBI7HT_Ll8SrIY8bxL35JRHuCRk6Xa-67IQ3ZUn5GmIawzb_gLYeTeNQ9q0Xus-vC__ssLsux4wCGwGsrcPpvkmdpm_IAdu0UE_tAx6SUZ6OSbPfUMP6vz7mDw760R8N2Oyf9Gh_Ip8b7hGe1yjK0PRmnoq0S2DqGUQRTYMDTzXfrd8TS6_fJ5_mgWuMUdQCiaqADDoTIXMQYNIjVRlVEhtoNCyQA9fsJIzZXSiVQElJEaBlb2EJISCKc5zBodkb4kPOSI0VmB7JCgmcgwWjUrjkkVGQJ5zmeDrmAj_rWalU623zVNuMu7FbR0YmQUjc2Ack2k37K6VbXlsgOxDllUNn01L5QweGXvq8c2cd9hkuG7ASxguJyf_ces3ZH_7Yzsle9W61m8xCq6Kdw1b7wHh7atb |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5VcCg9lBKoSqHgQ68bvBnvw8eCikJLoh5AQurBWr8kBEqrZHPh1zOzj4j0IQ4c9rQer9eP8Wdr5vsAPo9ooMsC88SlgQ4oZZBJhWVI0ogqQ1_lUXPu8GSaj6_Vt5vs5kkuDIdV8hk6tkQRja_mxc2X0X1I3Al5XeazbCKz9DDNCPNzvu9mpvOCVQxQTlfeGMtGQYtNErbps3j-V83a_rTGXvqXt262oPNtcH3j28iTu-GytkP38Aev48v-7h287RCq-NJOqR14FWYD2O7VH0TnDAbwZrJifF0MYItRa0v6vAs_f7D2mnArjcOF-BUFlRbLmb2lfdOL0zC_SxqhAEFgtxbU3PUCTC01_0fJPbg-_3p1Nk46FYfEKanqBAmhlEpXGFCVUXuXWR0i2qAtuQMrXSp9DEXwFh0W0SNzJGIxQit9mlYS38PGjD7yAUTukQn1vVQVIYvoy9zJLCqsqlQX9OyD6sfOuI7inJU27k3aM6F2fWu4b03Xt_swXJn9bjk-njPQTyeGqZvLldgqoRh8xvawn0WmcxcLQyCTXhG2Kj6-oOpjeD2-mlyay4vp9wPYGnH0DbNS5oewUc-X4RPBp9oeNevjEb8qCVo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hkBA9QAmtCqXgQ6-bejPe17EUIp4RhyIhcbDWLwkFpSjZXPj1zOwjaloQBw57Wo_X68f4szXzfQDfBzTQeYZpZGNPB5Tcy6jE3EdxQJWgK9NQcO7w1Sg9vVHnt0kXTThrwyr5DB0aoojaV_PifnShi4j7QU6X6SzrwKyiHycE-Tnddy1l8nDO4pCjhTPGvBbQYpOIbboknteqWdqelshL_3PW9Q403ALTtb0JPBn355Xp26d_aB3f9XMfYbPFp-JnM6G2YcVPerDVaT-I1hX04MPVgu911oMNxqwN5fMO3F2z8pqwC4XDmfgTBJUW84m5p13TiSM_HUe1TIAgqFsJau1yASaWmr5Q8hPcDE9-_zqNWg2HyCqpqggJn-SqKNGjykPhbGIKH9D4wpAzMNLG0gWfeWfQYhYcMkMiZgM00sVxKfEzrE7oI19ApA6ZTt9JVRKuCC5PrUyCwrKMi4yeXVDd0GnbEpyzzsaDjjse1LZvNfetbvt2F_oLs8eG4eMtg-LveaGr-molNDooGt-w3e8mkW6dxUwTxKRXhKyyvXdUfQjr18dDfXk2uvgKGwMOvWFKynQfVqvp3H8j7FSZg3p1PANi2Qf- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+comparisons+of+the+unbiased+Berk-Jones+test+and+the+unbiased+reversed+Berk-Jones+test&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Hanyuda%2C+Bunto&rft.au=Murakami%2C+Hidetoshi&rft.date=2021-04-16&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=50&rft.issue=4&rft.spage=1009&rft.epage=1024&rft_id=info:doi/10.1080%2F03610918.2019.1571608&rft.externalDocID=1571608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |