ShinyBioHEAT: an interactive shiny app to identify phenotype driver genes in E.coli and B.subtilis

Abstract Summary In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing inform...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 39; no. 8
Main Authors Wang, Chen, Govindarajan, Harikumar, Katsonis, Panagiotis, Lichtarge, Olivier
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Summary In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers. Availability and implementation Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/.
AbstractList In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers. Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/.
In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers.SUMMARYIn any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers.Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/.AVAILABILITY AND IMPLEMENTATIONCode for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/.
Abstract Summary In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers. Availability and implementation Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/.
Author Lichtarge, Olivier
Wang, Chen
Govindarajan, Harikumar
Katsonis, Panagiotis
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0001-5769-2077
  surname: Wang
  fullname: Wang, Chen
  email: chen.wang@bcm.edu
– sequence: 2
  givenname: Harikumar
  surname: Govindarajan
  fullname: Govindarajan, Harikumar
– sequence: 3
  givenname: Panagiotis
  surname: Katsonis
  fullname: Katsonis, Panagiotis
– sequence: 4
  givenname: Olivier
  surname: Lichtarge
  fullname: Lichtarge, Olivier
  email: lichtarge@bcm.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37522889$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9PAyEQxYnR-P8rGI5e2gILy64Xo6ZakyYe1DOBhW0xW1iBNem3F9Pa1JunmWR-781k3hk4dN4ZAK4wGmNUFxNlvXWtDyuZbBMnKklNS34ATnFR8hGtMD7c60_AWYwfCCGGWHkMTgrOCKmq-hSo16V163vrZ9O7txsoHbQumSCbZL8MjD9DKPseJg-tNi7Zdg37pXE-rXsDdchUgAvjTMxCOB03vrPZRcP7cRxUsp2NF-ColV00l9t6Dt4fp28Ps9H85en54W4-aiiiaVQQ2tZMEUM4JojoivC2LCVnlFdUKVIXmlV1qSgxGmnNS4wxIUrqomkZQ7w4B7cb335QK6ObfG2QneiDXcmwFl5a8Xfi7FIs_JfAiGKSb8gO11uH4D8HE5NY2diYrpPO-CEKUlGKaoZ5ndGr_WW7Lb-fzUC5AZrgYwym3SEYiZ8Ixd8IxTbCLMQboR_6_2q-AW2TptY
Cites_doi 10.1038/s41467-022-33634-w
10.1093/nar/gky1131
10.1128/JB.00784-18
10.1146/annurev-food-032519-051750
10.1038/nature18959
10.1093/bioinformatics/btab406
10.1038/s41467-018-04651-5
10.15252/msb.20199265
10.1093/bioinformatics/btu829
10.1111/1462-2920.13831
10.1128/MMBR.00008-18
10.1101/gr.176214.114
10.1016/j.mib.2020.05.010
10.1038/s41467-022-30889-1
10.1006/jmbi.1996.0167
10.3389/fmicb.2021.711077
10.1007/s00439-022-02457-6
10.1002/humu.23873
10.1093/bioinformatics/btt489
10.1038/s41586-021-03819-2
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. 2023
The Author(s) 2023. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. 2023
– notice: The Author(s) 2023. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btad467
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC10412404
37522889
10_1093_bioinformatics_btad467
10.1093/bioinformatics/btad467
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG074009
– fundername: NIA NIH HHS
  grantid: R01 AG061105
– fundername: NIH HHS
  grantid: GM066099
– fundername: NIA NIH HHS
  grantid: U01 AG068214
– fundername: ;
  grantid: GM066099; AG074009; AG061105; AG068214
– fundername: ;
  grantid: DBI-2032904
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c404t-324f95b2e271202d827f66a754784bb293d5896b42ed0dd7611122bad3cf55073
IEDL.DBID TOX
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:40:06 EDT 2025
Thu Jul 10 19:29:26 EDT 2025
Mon Jul 21 06:17:35 EDT 2025
Tue Jul 01 02:34:02 EDT 2025
Wed Apr 02 07:05:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2023. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-324f95b2e271202d827f66a754784bb293d5896b42ed0dd7611122bad3cf55073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5769-2077
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btad467
PMID 37522889
PQID 2844095179
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10412404
proquest_miscellaneous_2844095179
pubmed_primary_37522889
crossref_primary_10_1093_bioinformatics_btad467
oup_primary_10_1093_bioinformatics_btad467
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Deatherage (2023081001053477400_btad467-B5) 2014
Karve (2023081001053477400_btad467-B8) 2022; 13
Su (2023081001053477400_btad467-B17) 2022
Marciano (2023081001053477400_btad467-B14) 2022; 13
Choudhury (2023081001053477400_btad467-B3) 2020; 16
Jumper (2023081001053477400_btad467-B7) 2021; 596
Lichtarge (2023081001053477400_btad467-B13) 1996; 257
Tierrafría (2023081001053477400_btad467-B21) 2022; 8
van den Bergh (2023081001053477400_btad467-B22) 2018; 82
Szklarczyk (2023081001053477400_btad467-B19) 2019; 47
Schrödinger (2023081001053477400_btad467-B16) 2015
Csörgö (2023081001053477400_btad467-B4) 2020; 57
Chang (2023081001053477400_btad467-B2) 2022
Katsonis (2023081001053477400_btad467-B9) 2022; 141
Katsonis (2023081001053477400_btad467-B10) 2014; 24
Zeigler (2023081001053477400_btad467-B25) 2017; 19
Bruckbauer (2023081001053477400_btad467-B1) 2019; 201
Katsonis (2023081001053477400_btad467-B11) 2019; 40
Tenaillon (2023081001053477400_btad467-B20) 2016; 536
Wang (2023081001053477400_btad467-B23) 2021; 37
Zhang (2023081001053477400_btad467-B26) 2020; 11
Wilkins (2023081001053477400_btad467-B24) 2013; 29
Swings (2023081001053477400_btad467-B18) 2018; 9
Rego (2023081001053477400_btad467-B15) 2015; 31
Fay (2023081001053477400_btad467-B6) 2022
Keseler (2023081001053477400_btad467-B12) 2021; 12
References_xml – volume-title: shiny: Web Application Framework for R
  year: 2022
  ident: 2023081001053477400_btad467-B2
– volume: 13
  start-page: 5904
  year: 2022
  ident: 2023081001053477400_btad467-B8
  article-title: Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-33634-w
– volume: 47
  start-page: D607
  year: 2019
  ident: 2023081001053477400_btad467-B19
  article-title: STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1131
– volume: 201
  start-page: 1
  year: 2019
  ident: 2023081001053477400_btad467-B1
  article-title: Experimental evolution of extreme resistance to ionizing radiation in Escherichia coli after 50 cycles of selection
  publication-title: J Bacteriol
  doi: 10.1128/JB.00784-18
– volume: 11
  start-page: 295
  year: 2020
  ident: 2023081001053477400_btad467-B26
  article-title: Recent advances in recombinant protein production by Bacillus subtilis
  publication-title: Annu Rev Food Sci Technol
  doi: 10.1146/annurev-food-032519-051750
– volume: 536
  start-page: 165
  year: 2016
  ident: 2023081001053477400_btad467-B20
  article-title: Tempo and mode of genome evolution in a 50,000-generation experiment
  publication-title: Nature
  doi: 10.1038/nature18959
– volume: 8
  issue: 5
  year: 2022
  ident: 2023081001053477400_btad467-B21
  article-title: RegulonDB 11.0: Comprehensive high-throughput datasets on transcriptional regulation in Escherichia coli K-12
  publication-title: Microb Genom
– volume: 37
  start-page: 4033
  year: 2021
  ident: 2023081001053477400_btad467-B23
  article-title: Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and greater coronavirus family
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab406
– year: 2022
  ident: 2023081001053477400_btad467-B17
– volume: 9
  start-page: 2231
  year: 2018
  ident: 2023081001053477400_btad467-B18
  article-title: CRISPR-FRT targets shared sites in a knock-out collection for off-the-shelf genome editing
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04651-5
– volume: 16
  start-page: e9265
  year: 2020
  ident: 2023081001053477400_btad467-B3
  article-title: CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20199265
– volume: 31
  start-page: 1322
  year: 2015
  ident: 2023081001053477400_btad467-B15
  article-title: 3Dmol.js: Molecular visualization with WebGL
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu829
– volume: 19
  start-page: 3415
  year: 2017
  ident: 2023081001053477400_btad467-B25
  article-title: Experimental evolution of Bacillus subtilis
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13831
– volume: 82
  start-page: e00008-18
  year: 2018
  ident: 2023081001053477400_btad467-B22
  article-title: Experimental design, population dynamics, and diversity in microbial experimental evolution
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00008-18
– volume: 24
  start-page: 2050
  year: 2014
  ident: 2023081001053477400_btad467-B10
  article-title: A formal perturbation equation between genotype and phenotype determines the evolutionary action of protein-coding variations on fitness
  publication-title: Genome Res
  doi: 10.1101/gr.176214.114
– year: 2015
  ident: 2023081001053477400_btad467-B16
– volume: 57
  start-page: 22
  year: 2020
  ident: 2023081001053477400_btad467-B4
  article-title: Targeted mutagenesis of multiple chromosomal regions in microbes
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2020.05.010
– volume: 13
  start-page: 3189
  year: 2022
  ident: 2023081001053477400_btad467-B14
  article-title: Evolutionary action of mutations reveals antimicrobial resistance genes in Escherichia coli
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-30889-1
– year: 2022
  ident: 2023081001053477400_btad467-B6
– volume: 257
  start-page: 342
  year: 1996
  ident: 2023081001053477400_btad467-B13
  article-title: An evolutionary trace method defines binding surfaces common to protein families
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0167
– volume: 12
  start-page: 711077
  year: 2021
  ident: 2023081001053477400_btad467-B12
  article-title: The EcoCyc database in 2021
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.711077
– volume: 141
  start-page: 1549
  year: 2022
  ident: 2023081001053477400_btad467-B9
  article-title: Genome interpretation using in silico predictors of variant impact
  publication-title: Hum Genet
  doi: 10.1007/s00439-022-02457-6
– volume: 40
  start-page: 1436
  year: 2019
  ident: 2023081001053477400_btad467-B11
  article-title: CAGI5: Objective performance assessments of predictions based on the evolutionary action equation
  publication-title: Hum Mutat
  doi: 10.1002/humu.23873
– volume: 29
  start-page: 2714
  year: 2013
  ident: 2023081001053477400_btad467-B24
  article-title: Accounting for epistatic interactions improves the functional analysis of protein structures
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt489
– start-page: 165
  volume-title: Methods in Molecular Biology
  year: 2014
  ident: 2023081001053477400_btad467-B5
– volume: 596
  start-page: 583
  year: 2021
  ident: 2023081001053477400_btad467-B7
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
SSID ssj0005056
Score 2.4271917
Snippet Abstract Summary In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject...
In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Applications Note
Data Interpretation, Statistical
Escherichia coli - genetics
Mobile Applications
Mutation
Mutation Rate
Software
Title ShinyBioHEAT: an interactive shiny app to identify phenotype driver genes in E.coli and B.subtilis
URI https://www.ncbi.nlm.nih.gov/pubmed/37522889
https://www.proquest.com/docview/2844095179
https://pubmed.ncbi.nlm.nih.gov/PMC10412404
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da8IwEA8iDPYy9j33IRnsaVBs05i0e3NDkcG2hyn4VhKTzsJoRevA_353rTorDLbHkg_KXXr3a-7ud4Tcedyg7Y8dl2vh8LZhjgrGyvGUMIjBVehjvfPLq-gP-fOoPaoRb10LsxvCD_2WTrIViSgSF7d0rgx83WB1wRMjW_7gbfST1AH-fF0H_OvSiguqlLVtocvdJMktr9M7JAcruEg7pX6PSM2mx2SvbCC5PCH6fZKkS3jsdzuDB6pSivQPReHTl6V4u7SkajqleUaToiI3XlJM6srw5pWaGSZl0A80d7CQduH4fSawi6GP2BsrTz6T-SkZ9rqDp76z6prgjLnLcwcQUhy2NbNMesxlJmAyFkJJJO7iWoN7N-0gFJoza1xjpABrx5hWxh_HSG7mn5F6mqX2glDfejFSO1jkgBc2DFWotLRKKia05KZBWmtBRtOSHCMqg9p-VBV9tBJ9g9yDvP88-XatlggOPUYyVGqzxTwCn8oRG8qwQc5LNW329CVAyiCAkaCiwM0EJNSujqTJpCDW9ope3C6__M9bXpF9bEFfJgVek3o-W9gbACq5bhY_-M3ihH4DNyrukQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ShinyBioHEAT%3A+an+interactive+shiny+app+to+identify+phenotype+driver+genes+in+E.coli+and+B.subtilis&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wang%2C+Chen&rft.au=Govindarajan%2C+Harikumar&rft.au=Katsonis%2C+Panagiotis&rft.au=Lichtarge%2C+Olivier&rft.date=2023-08-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=39&rft.issue=8&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtad467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btad467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon