ShinyBioHEAT: an interactive shiny app to identify phenotype driver genes in E.coli and B.subtilis
Abstract Summary In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing inform...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 39; no. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Summary
In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers.
Availability and implementation
Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/. |
---|---|
AbstractList | In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers.
Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/. In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers.SUMMARYIn any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers.Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/.AVAILABILITY AND IMPLEMENTATIONCode for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/. Abstract Summary In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers. Availability and implementation Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/. |
Author | Lichtarge, Olivier Wang, Chen Govindarajan, Harikumar Katsonis, Panagiotis |
Author_xml | – sequence: 1 givenname: Chen orcidid: 0000-0001-5769-2077 surname: Wang fullname: Wang, Chen email: chen.wang@bcm.edu – sequence: 2 givenname: Harikumar surname: Govindarajan fullname: Govindarajan, Harikumar – sequence: 3 givenname: Panagiotis surname: Katsonis fullname: Katsonis, Panagiotis – sequence: 4 givenname: Olivier surname: Lichtarge fullname: Lichtarge, Olivier email: lichtarge@bcm.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37522889$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9PAyEQxYnR-P8rGI5e2gILy64Xo6ZakyYe1DOBhW0xW1iBNem3F9Pa1JunmWR-781k3hk4dN4ZAK4wGmNUFxNlvXWtDyuZbBMnKklNS34ATnFR8hGtMD7c60_AWYwfCCGGWHkMTgrOCKmq-hSo16V163vrZ9O7txsoHbQumSCbZL8MjD9DKPseJg-tNi7Zdg37pXE-rXsDdchUgAvjTMxCOB03vrPZRcP7cRxUsp2NF-ColV00l9t6Dt4fp28Ps9H85en54W4-aiiiaVQQ2tZMEUM4JojoivC2LCVnlFdUKVIXmlV1qSgxGmnNS4wxIUrqomkZQ7w4B7cb335QK6ObfG2QneiDXcmwFl5a8Xfi7FIs_JfAiGKSb8gO11uH4D8HE5NY2diYrpPO-CEKUlGKaoZ5ndGr_WW7Lb-fzUC5AZrgYwym3SEYiZ8Ixd8IxTbCLMQboR_6_2q-AW2TptY |
Cites_doi | 10.1038/s41467-022-33634-w 10.1093/nar/gky1131 10.1128/JB.00784-18 10.1146/annurev-food-032519-051750 10.1038/nature18959 10.1093/bioinformatics/btab406 10.1038/s41467-018-04651-5 10.15252/msb.20199265 10.1093/bioinformatics/btu829 10.1111/1462-2920.13831 10.1128/MMBR.00008-18 10.1101/gr.176214.114 10.1016/j.mib.2020.05.010 10.1038/s41467-022-30889-1 10.1006/jmbi.1996.0167 10.3389/fmicb.2021.711077 10.1007/s00439-022-02457-6 10.1002/humu.23873 10.1093/bioinformatics/btt489 10.1038/s41586-021-03819-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. 2023 The Author(s) 2023. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. 2023 – notice: The Author(s) 2023. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/btad467 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
ExternalDocumentID | PMC10412404 37522889 10_1093_bioinformatics_btad467 10.1093/bioinformatics/btad467 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG074009 – fundername: NIA NIH HHS grantid: R01 AG061105 – fundername: NIH HHS grantid: GM066099 – fundername: NIA NIH HHS grantid: U01 AG068214 – fundername: ; grantid: GM066099; AG074009; AG061105; AG068214 – fundername: ; grantid: DBI-2032904 |
GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c404t-324f95b2e271202d827f66a754784bb293d5896b42ed0dd7611122bad3cf55073 |
IEDL.DBID | TOX |
ISSN | 1367-4811 1367-4803 |
IngestDate | Thu Aug 21 18:40:06 EDT 2025 Thu Jul 10 19:29:26 EDT 2025 Mon Jul 21 06:17:35 EDT 2025 Tue Jul 01 02:34:02 EDT 2025 Wed Apr 02 07:05:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2023. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-324f95b2e271202d827f66a754784bb293d5896b42ed0dd7611122bad3cf55073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5769-2077 |
OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btad467 |
PMID | 37522889 |
PQID | 2844095179 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10412404 proquest_miscellaneous_2844095179 pubmed_primary_37522889 crossref_primary_10_1093_bioinformatics_btad467 oup_primary_10_1093_bioinformatics_btad467 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Deatherage (2023081001053477400_btad467-B5) 2014 Karve (2023081001053477400_btad467-B8) 2022; 13 Su (2023081001053477400_btad467-B17) 2022 Marciano (2023081001053477400_btad467-B14) 2022; 13 Choudhury (2023081001053477400_btad467-B3) 2020; 16 Jumper (2023081001053477400_btad467-B7) 2021; 596 Lichtarge (2023081001053477400_btad467-B13) 1996; 257 Tierrafría (2023081001053477400_btad467-B21) 2022; 8 van den Bergh (2023081001053477400_btad467-B22) 2018; 82 Szklarczyk (2023081001053477400_btad467-B19) 2019; 47 Schrödinger (2023081001053477400_btad467-B16) 2015 Csörgö (2023081001053477400_btad467-B4) 2020; 57 Chang (2023081001053477400_btad467-B2) 2022 Katsonis (2023081001053477400_btad467-B9) 2022; 141 Katsonis (2023081001053477400_btad467-B10) 2014; 24 Zeigler (2023081001053477400_btad467-B25) 2017; 19 Bruckbauer (2023081001053477400_btad467-B1) 2019; 201 Katsonis (2023081001053477400_btad467-B11) 2019; 40 Tenaillon (2023081001053477400_btad467-B20) 2016; 536 Wang (2023081001053477400_btad467-B23) 2021; 37 Zhang (2023081001053477400_btad467-B26) 2020; 11 Wilkins (2023081001053477400_btad467-B24) 2013; 29 Swings (2023081001053477400_btad467-B18) 2018; 9 Rego (2023081001053477400_btad467-B15) 2015; 31 Fay (2023081001053477400_btad467-B6) 2022 Keseler (2023081001053477400_btad467-B12) 2021; 12 |
References_xml | – volume-title: shiny: Web Application Framework for R year: 2022 ident: 2023081001053477400_btad467-B2 – volume: 13 start-page: 5904 year: 2022 ident: 2023081001053477400_btad467-B8 article-title: Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli publication-title: Nat Commun doi: 10.1038/s41467-022-33634-w – volume: 47 start-page: D607 year: 2019 ident: 2023081001053477400_btad467-B19 article-title: STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1131 – volume: 201 start-page: 1 year: 2019 ident: 2023081001053477400_btad467-B1 article-title: Experimental evolution of extreme resistance to ionizing radiation in Escherichia coli after 50 cycles of selection publication-title: J Bacteriol doi: 10.1128/JB.00784-18 – volume: 11 start-page: 295 year: 2020 ident: 2023081001053477400_btad467-B26 article-title: Recent advances in recombinant protein production by Bacillus subtilis publication-title: Annu Rev Food Sci Technol doi: 10.1146/annurev-food-032519-051750 – volume: 536 start-page: 165 year: 2016 ident: 2023081001053477400_btad467-B20 article-title: Tempo and mode of genome evolution in a 50,000-generation experiment publication-title: Nature doi: 10.1038/nature18959 – volume: 8 issue: 5 year: 2022 ident: 2023081001053477400_btad467-B21 article-title: RegulonDB 11.0: Comprehensive high-throughput datasets on transcriptional regulation in Escherichia coli K-12 publication-title: Microb Genom – volume: 37 start-page: 4033 year: 2021 ident: 2023081001053477400_btad467-B23 article-title: Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and greater coronavirus family publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab406 – year: 2022 ident: 2023081001053477400_btad467-B17 – volume: 9 start-page: 2231 year: 2018 ident: 2023081001053477400_btad467-B18 article-title: CRISPR-FRT targets shared sites in a knock-out collection for off-the-shelf genome editing publication-title: Nat Commun doi: 10.1038/s41467-018-04651-5 – volume: 16 start-page: e9265 year: 2020 ident: 2023081001053477400_btad467-B3 article-title: CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli publication-title: Mol Syst Biol doi: 10.15252/msb.20199265 – volume: 31 start-page: 1322 year: 2015 ident: 2023081001053477400_btad467-B15 article-title: 3Dmol.js: Molecular visualization with WebGL publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu829 – volume: 19 start-page: 3415 year: 2017 ident: 2023081001053477400_btad467-B25 article-title: Experimental evolution of Bacillus subtilis publication-title: Environ Microbiol doi: 10.1111/1462-2920.13831 – volume: 82 start-page: e00008-18 year: 2018 ident: 2023081001053477400_btad467-B22 article-title: Experimental design, population dynamics, and diversity in microbial experimental evolution publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00008-18 – volume: 24 start-page: 2050 year: 2014 ident: 2023081001053477400_btad467-B10 article-title: A formal perturbation equation between genotype and phenotype determines the evolutionary action of protein-coding variations on fitness publication-title: Genome Res doi: 10.1101/gr.176214.114 – year: 2015 ident: 2023081001053477400_btad467-B16 – volume: 57 start-page: 22 year: 2020 ident: 2023081001053477400_btad467-B4 article-title: Targeted mutagenesis of multiple chromosomal regions in microbes publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2020.05.010 – volume: 13 start-page: 3189 year: 2022 ident: 2023081001053477400_btad467-B14 article-title: Evolutionary action of mutations reveals antimicrobial resistance genes in Escherichia coli publication-title: Nat Commun doi: 10.1038/s41467-022-30889-1 – year: 2022 ident: 2023081001053477400_btad467-B6 – volume: 257 start-page: 342 year: 1996 ident: 2023081001053477400_btad467-B13 article-title: An evolutionary trace method defines binding surfaces common to protein families publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0167 – volume: 12 start-page: 711077 year: 2021 ident: 2023081001053477400_btad467-B12 article-title: The EcoCyc database in 2021 publication-title: Front Microbiol doi: 10.3389/fmicb.2021.711077 – volume: 141 start-page: 1549 year: 2022 ident: 2023081001053477400_btad467-B9 article-title: Genome interpretation using in silico predictors of variant impact publication-title: Hum Genet doi: 10.1007/s00439-022-02457-6 – volume: 40 start-page: 1436 year: 2019 ident: 2023081001053477400_btad467-B11 article-title: CAGI5: Objective performance assessments of predictions based on the evolutionary action equation publication-title: Hum Mutat doi: 10.1002/humu.23873 – volume: 29 start-page: 2714 year: 2013 ident: 2023081001053477400_btad467-B24 article-title: Accounting for epistatic interactions improves the functional analysis of protein structures publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt489 – start-page: 165 volume-title: Methods in Molecular Biology year: 2014 ident: 2023081001053477400_btad467-B5 – volume: 596 start-page: 583 year: 2021 ident: 2023081001053477400_btad467-B7 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 |
SSID | ssj0005056 |
Score | 2.4271917 |
Snippet | Abstract
Summary
In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject... In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Applications Note Data Interpretation, Statistical Escherichia coli - genetics Mobile Applications Mutation Mutation Rate Software |
Title | ShinyBioHEAT: an interactive shiny app to identify phenotype driver genes in E.coli and B.subtilis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37522889 https://www.proquest.com/docview/2844095179 https://pubmed.ncbi.nlm.nih.gov/PMC10412404 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da8IwEA8iDPYy9j33IRnsaVBs05i0e3NDkcG2hyn4VhKTzsJoRevA_353rTorDLbHkg_KXXr3a-7ud4Tcedyg7Y8dl2vh8LZhjgrGyvGUMIjBVehjvfPLq-gP-fOoPaoRb10LsxvCD_2WTrIViSgSF7d0rgx83WB1wRMjW_7gbfST1AH-fF0H_OvSiguqlLVtocvdJMktr9M7JAcruEg7pX6PSM2mx2SvbCC5PCH6fZKkS3jsdzuDB6pSivQPReHTl6V4u7SkajqleUaToiI3XlJM6srw5pWaGSZl0A80d7CQduH4fSawi6GP2BsrTz6T-SkZ9rqDp76z6prgjLnLcwcQUhy2NbNMesxlJmAyFkJJJO7iWoN7N-0gFJoza1xjpABrx5hWxh_HSG7mn5F6mqX2glDfejFSO1jkgBc2DFWotLRKKia05KZBWmtBRtOSHCMqg9p-VBV9tBJ9g9yDvP88-XatlggOPUYyVGqzxTwCn8oRG8qwQc5LNW329CVAyiCAkaCiwM0EJNSujqTJpCDW9ope3C6__M9bXpF9bEFfJgVek3o-W9gbACq5bhY_-M3ihH4DNyrukQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ShinyBioHEAT%3A+an+interactive+shiny+app+to+identify+phenotype+driver+genes+in+E.coli+and+B.subtilis&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wang%2C+Chen&rft.au=Govindarajan%2C+Harikumar&rft.au=Katsonis%2C+Panagiotis&rft.au=Lichtarge%2C+Olivier&rft.date=2023-08-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=39&rft.issue=8&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtad467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btad467 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |