Neural networks for parameter estimation in intractable models
The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward....
Saved in:
Published in | Computational statistics & data analysis Vol. 185; no. C; p. 107762 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward. Data from model simulations are used to train deep neural networks and learn statistical parameters from max-stable models. The proposed neural network-based method provides a competitive alternative to current approaches, as demonstrated by considerable accuracy and computational time improvements. It serves as a proof of concept for deep learning in statistical parameter estimation and can be extended to other estimation problems. |
---|---|
AbstractList | The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward. Data from model simulations are used to train deep neural networks and learn statistical parameters from max-stable models. The proposed neural network-based method provides a competitive alternative to current approaches, as demonstrated by considerable accuracy and computational time improvements. It serves as a proof of concept for deep learning in statistical parameter estimation and can be extended to other estimation problems. |
ArticleNumber | 107762 |
Author | Lenzi, Amanda Stein, Michael L. Bessac, Julie Rudi, Johann |
Author_xml | – sequence: 1 givenname: Amanda orcidid: 0000-0001-7618-7164 surname: Lenzi fullname: Lenzi, Amanda email: lenzi.amanda88@gmail.com organization: School of Mathematics, University of Edinburgh, United Kingdom – sequence: 2 givenname: Julie surname: Bessac fullname: Bessac, Julie organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA – sequence: 3 givenname: Johann surname: Rudi fullname: Rudi, Johann organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA – sequence: 4 givenname: Michael L. surname: Stein fullname: Stein, Michael L. organization: Department of Statistics, Rutgers University, Piscataway, NJ, USA |
BackLink | https://www.osti.gov/biblio/2331353$$D View this record in Osti.gov |
BookMark | eNp9kEFr3DAQhUVJoZs0fyAn01Mv3kgj2dJCKJSQNoWQXNqzkMcjqq3X2kjalv77ynVPPQQGBob3hve-c3Y2x5kYuxJ8K7jor_dbzKPbAgdZD1r38IpthNHQatnBGdtUkW53Sss37DznPecclDYb9uGRTslNzUzlV0w_cuNjao4uuQMVSg3lEg6uhDg3YZmSHBY3TNQc4khTfsteezdluvy3L9i3T3dfb-_bh6fPX24_PrSouCotDMIo2ePgDfJO-R2ofkedGAZAP5px1ysJqt4AwOt-9DSiRoVG-AGHvpMX7N36N9ZANmMohN8xzjNhsSClkJ2sover6Jji86lGt4eQkabJzRRP2YKRCrgBCVUKqxRTzDmRt8dUi6bfVnC7ELV7uxC1C1G7Eq0m85-p5vgLp2IJ08vWm9VamdHPQGnpQDPSGNJSYYzhJfsfpuKS9A |
CitedBy_id | crossref_primary_10_1002_env_2845 crossref_primary_10_1002_env_2889 crossref_primary_10_1080_10618600_2024_2402277 crossref_primary_10_1080_00401706_2024_2388549 crossref_primary_10_1002_wer_11016 crossref_primary_10_1080_10618600_2023_2285332 crossref_primary_10_1017_eds_2024_54 crossref_primary_10_1016_j_rineng_2024_103565 crossref_primary_10_1080_10618600_2024_2433671 crossref_primary_10_1007_s10687_024_00496_y crossref_primary_10_1080_00031305_2023_2249522 crossref_primary_10_1109_ACCESS_2023_3342063 crossref_primary_10_3390_pr13030672 crossref_primary_10_1016_j_csda_2023_107913 crossref_primary_10_1016_j_spasta_2024_100848 crossref_primary_10_1371_journal_pcbi_1010817 crossref_primary_10_1371_journal_pcbi_1012119 |
Cites_doi | 10.1007/s10687-015-0230-4 10.1016/j.jspi.2011.03.026 10.1080/10618600.2012.760460 10.1093/biomet/asr020 10.1080/10618600.2015.1086656 10.1029/2003JD003823 10.1214/11-STS376 10.1016/j.csda.2011.12.003 10.1023/A:1020977924878 10.1093/biomet/asv045 10.1016/j.compstruc.2007.05.040 10.1016/j.inffus.2021.05.008 10.5194/ascmo-2-79-2016 10.1214/16-AOAS980 10.1073/pnas.1912789117 10.1214/09-AOP455 10.1038/nature09319 10.1175/1520-0442(2000)013<3760:CITEIA>2.0.CO;2 10.1198/jasa.2009.tm08577 10.1111/j.1467-9868.2011.01010.x 10.1214/18-BA1130 10.1111/rssb.12012 10.1093/biomet/asp052 10.1093/biomet/75.3.397 10.1002/sta4.218 10.1198/016214506000001437 10.1093/biomet/92.1.213 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 OTOTI |
DOI | 10.1016/j.csda.2023.107762 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1872-7352 |
ExternalDocumentID | 2331353 10_1016_j_csda_2023_107762 S0167947323000737 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 OTOTI |
ID | FETCH-LOGICAL-c404t-2b18436cbf8c054f92469e51bb2cfd8d964324469222f76dfedc7c4c81fbcb653 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Mon Apr 29 05:37:05 EDT 2024 Thu Jul 10 22:55:39 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 02:24:38 EDT 2025 Fri Feb 23 02:37:24 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Parameter estimation Deep neural networks Max-stable distributions Intractable likelihood |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-2b18436cbf8c054f92469e51bb2cfd8d964324469222f76dfedc7c4c81fbcb653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE |
ORCID | 0000-0001-7618-7164 0000000176187164 |
OpenAccessLink | https://www.osti.gov/biblio/2331353 |
PQID | 2834208232 |
PQPubID | 24069 |
ParticipantIDs | osti_scitechconnect_2331353 proquest_miscellaneous_2834208232 crossref_primary_10_1016_j_csda_2023_107762 crossref_citationtrail_10_1016_j_csda_2023_107762 elsevier_sciencedirect_doi_10_1016_j_csda_2023_107762 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 20230901 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bengio (br0030) 2012 Bergstra, Yamins, Cox (br0040) 2013; vol. 13 Nguyen (br0360) 2006 Xia, Mitchell, Ek, Sheffield, Cosgrove, Wood, Luo, Alonge, Wei, Meng (br0570) 2012; 117 Abdar, Pourpanah, Hussain, Rezazadegan, Liu, Ghavamzadeh, Fieguth, Cao, Khosravi, Acharya (br0010) 2021 Huser, Davison, Genton (br0230) 2016; 19 Lueckmann, Boelts, Greenberg, Goncalves, Macke (br0320) 2021 Papamakarios, Murray (br0390) 2016 Rudi, Bessac, Lenzi (br0450) 2021 Genton, Ma, Sang (br0180) 2011 Kingma, Ba (br0290) 2014 Cooley, Naveau, Poncet (br0060) 2006 Kharin, Zwiers (br0280) 2000; 13 Cranmer, Brehmer, Louppe (br0070) 2020; 117 Shang, Yan, Zhang (br0470) 2015 Juba, Le (br0260) 2019 Ribatet, Cooley, Davison (br0440) 2012 Liu, Ok, Vega-Brown, Roy (br0310) 2018 Davis, Klüppelberg, Steinkohl (br0100) 2013 Radev, Mertens, Voss, Ardizzone, Köthe (br0420) 2020 Taylor (br0510) 1982 Friedman, Hastie, Tibshirani (br0170) 2001; vol. 1 Jiang, Wu, Zheng, Wong (br0250) 2017 Castruccio, Huser, Genton (br0050) 2016; 25 Varin, Reid, Firth (br0540) 2011 Eidsvik, Shaby, Reich, Wheeler, Niemi (br0140) 2014; 23 Moores, Nicholls, Pettitt, Mengersen (br0350) 2020; 15 Oberguggenberger, Fellin (br0370) 2008; 86 Thibaud, Opitz (br0530) 2015; 102 Cremanns, Roos (br0090) 2017 Thibaud, Aalto, Cooley, Davison, Heikkinen (br0520) 2016; 10 Tawn (br0500) 1988; 75 Wood (br0550) 2010; 466 Gerber, Nychka (br0190) 2020 Davison, Padoan, Ribatet (br0110) 2012; 27 De Haan (br0120) 1984; 12 Kabluchko, Schlather, De Haan (br0270) 2009; 37 Beaumont, Cornuet, Marin, Robert (br0020) 2009; 96 Fearnhead, Prangle (br0160) 2012; 74 Xia, Mitchell, Ek, Cosgrove, Sheffield, Luo, Alonge, Wei, Meng, Livneh (br0560) 2012; 117 Creel (br0080) 2017; 2 Pinaya, Vieira, Garcia-Dias, Mechelli (br0410) 2020 Xu, Reid (br0580) 2011; 141 Snoek, Larochelle, Adams (br0480) 2012 Huang, Stein, McInerney, Sun, Moyer (br0220) 2016; 2 De Haan, Ferreira (br0130) 2007 Moller, Waagepetersen (br0340) 2003 Lawson (br0300) 2008 Erhardt, Smith (br0150) 2012; 56 Hastie, Tibshirani, Friedman (br0210) 2009 Schlather (br0460) 2002; 5 Padoan, Ribatet, Sisson (br0380) 2010; 105 Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (br0400) 2017 Gneiting, Raftery (br0200) 2007; 102 Mitchell, Lohmann, Houser, Wood, Schaake, Robock, Cosgrove, Sheffield, Duan, Luo (br0330) 2004; 109 Huser, Dombry, Ribatet, Genton (br0240) 2019; 8 Stephenson, Tawn (br0490) 2005; 92 Ribatet (br0430) 2008 Eidsvik (10.1016/j.csda.2023.107762_br0140) 2014; 23 Liu (10.1016/j.csda.2023.107762_br0310) 2018 Ribatet (10.1016/j.csda.2023.107762_br0440) 2012 Huang (10.1016/j.csda.2023.107762_br0220) 2016; 2 Cremanns (10.1016/j.csda.2023.107762_br0090) Gneiting (10.1016/j.csda.2023.107762_br0200) 2007; 102 Taylor (10.1016/j.csda.2023.107762_br0510) 1982 Moller (10.1016/j.csda.2023.107762_br0340) 2003 Thibaud (10.1016/j.csda.2023.107762_br0530) 2015; 102 Paszke (10.1016/j.csda.2023.107762_br0400) 2017 De Haan (10.1016/j.csda.2023.107762_br0130) 2007 Kharin (10.1016/j.csda.2023.107762_br0280) 2000; 13 Lawson (10.1016/j.csda.2023.107762_br0300) 2008 Kingma (10.1016/j.csda.2023.107762_br0290) Kabluchko (10.1016/j.csda.2023.107762_br0270) 2009; 37 Huser (10.1016/j.csda.2023.107762_br0230) 2016; 19 Bengio (10.1016/j.csda.2023.107762_br0030) 2012 De Haan (10.1016/j.csda.2023.107762_br0120) 1984; 12 Pinaya (10.1016/j.csda.2023.107762_br0410) 2020 Radev (10.1016/j.csda.2023.107762_br0420) 2020 Wood (10.1016/j.csda.2023.107762_br0550) 2010; 466 Nguyen (10.1016/j.csda.2023.107762_br0360) 2006 Padoan (10.1016/j.csda.2023.107762_br0380) 2010; 105 Genton (10.1016/j.csda.2023.107762_br0180) 2011 Varin (10.1016/j.csda.2023.107762_br0540) 2011 Castruccio (10.1016/j.csda.2023.107762_br0050) 2016; 25 Huser (10.1016/j.csda.2023.107762_br0240) 2019; 8 Schlather (10.1016/j.csda.2023.107762_br0460) 2002; 5 Fearnhead (10.1016/j.csda.2023.107762_br0160) 2012; 74 Creel (10.1016/j.csda.2023.107762_br0080) 2017; 2 Papamakarios (10.1016/j.csda.2023.107762_br0390) 2016 Xu (10.1016/j.csda.2023.107762_br0580) 2011; 141 Cooley (10.1016/j.csda.2023.107762_br0060) 2006 Shang (10.1016/j.csda.2023.107762_br0470) 2015 Cranmer (10.1016/j.csda.2023.107762_br0070) 2020; 117 Gerber (10.1016/j.csda.2023.107762_br0190) 2020 Bergstra (10.1016/j.csda.2023.107762_br0040) 2013; vol. 13 Rudi (10.1016/j.csda.2023.107762_br0450) 2021 Mitchell (10.1016/j.csda.2023.107762_br0330) 2004; 109 Xia (10.1016/j.csda.2023.107762_br0570) 2012; 117 Beaumont (10.1016/j.csda.2023.107762_br0020) 2009; 96 Abdar (10.1016/j.csda.2023.107762_br0010) 2021 Jiang (10.1016/j.csda.2023.107762_br0250) 2017 Davis (10.1016/j.csda.2023.107762_br0100) 2013 Oberguggenberger (10.1016/j.csda.2023.107762_br0370) 2008; 86 Xia (10.1016/j.csda.2023.107762_br0560) 2012; 117 Stephenson (10.1016/j.csda.2023.107762_br0490) 2005; 92 Davison (10.1016/j.csda.2023.107762_br0110) 2012; 27 Juba (10.1016/j.csda.2023.107762_br0260) 2019 Friedman (10.1016/j.csda.2023.107762_br0170) 2001; vol. 1 Ribatet (10.1016/j.csda.2023.107762_br0430) 2008 Tawn (10.1016/j.csda.2023.107762_br0500) 1988; 75 Lueckmann (10.1016/j.csda.2023.107762_br0320) 2021 Erhardt (10.1016/j.csda.2023.107762_br0150) 2012; 56 Snoek (10.1016/j.csda.2023.107762_br0480) 2012 Moores (10.1016/j.csda.2023.107762_br0350) 2020; 15 Hastie (10.1016/j.csda.2023.107762_br0210) 2009 Thibaud (10.1016/j.csda.2023.107762_br0520) 2016; 10 |
References_xml | – year: 2021 ident: br0450 article-title: Parameter estimation with dense and convolutional neural networks applied to the Fitzhugh-Nagumo ODE publication-title: Mathematical and Scientific Machine Learning – start-page: 5 year: 2011 end-page: 42 ident: br0540 article-title: An overview of composite likelihood methods publication-title: Stat. Sin. – year: 2003 ident: br0340 article-title: Statistical Inference and Simulation for Spatial Point Processes – volume: 15 start-page: 1 year: 2020 end-page: 27 ident: br0350 article-title: Scalable Bayesian inference for the inverse temperature of a hidden Potts model publication-title: Bayesian Anal. – start-page: 1595 year: 2017 end-page: 1618 ident: br0250 article-title: Learning summary statistic for approximate Bayesian computation via deep neural network publication-title: Stat. Sin. – start-page: 173 year: 2020 end-page: 191 ident: br0410 article-title: Convolutional neural networks publication-title: Machine Learning – start-page: e382 year: 2020 ident: br0190 article-title: Fast covariance parameter estimation of spatial Gaussian process models using neural networks publication-title: Stat – start-page: 373 year: 2006 end-page: 390 ident: br0060 article-title: Variograms for spatial max-stable random fields publication-title: Dependence in Probability and Statistics – year: 2007 ident: br0130 article-title: Extreme Value Theory: An Introduction – volume: 27 start-page: 161 year: 2012 end-page: 186 ident: br0110 article-title: Statistical modeling of spatial extremes publication-title: Stat. Sci. – volume: 74 start-page: 419 year: 2012 end-page: 474 ident: br0160 article-title: Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – volume: 109 year: 2004 ident: br0330 article-title: The multi-institution North American land data assimilation system (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system publication-title: J. Geophys. Res., Atmos. – year: 2014 ident: br0290 article-title: Adam: a method for stochastic optimization – volume: 10 start-page: 2303 year: 2016 end-page: 2324 ident: br0520 article-title: Bayesian inference for the Brown–Resnick process, with an application to extreme low temperatures publication-title: Ann. Appl. Stat. – year: 2021 ident: br0010 article-title: A review of uncertainty quantification in deep learning: techniques, applications and challenges publication-title: Inf. Fusion – volume: vol. 1 year: 2001 ident: br0170 article-title: The Elements of Statistical Learning publication-title: Springer Series in Statistics – volume: 86 start-page: 1093 year: 2008 end-page: 1101 ident: br0370 article-title: Reliability bounds through random sets: non-parametric methods and geotechnical applications publication-title: Comput. Struct. – start-page: 203 year: 1982 end-page: 226 ident: br0510 article-title: Financial returns modelled by the product of two stochastic processes-a study of the daily sugar prices 1961-75 publication-title: Time Series Analysis: Theory and Practice, vol. 1 – volume: 92 start-page: 213 year: 2005 end-page: 227 ident: br0490 article-title: Exploiting occurrence times in likelihood inference for componentwise maxima publication-title: Biometrika – volume: 466 start-page: 1102 year: 2010 end-page: 1104 ident: br0550 article-title: Statistical inference for noisy nonlinear ecological dynamic systems publication-title: Nature – start-page: 437 year: 2012 end-page: 478 ident: br0030 article-title: Practical recommendations for gradient-based training of deep architectures publication-title: Neural Networks: Tricks of the Trade – volume: 102 start-page: 359 year: 2007 end-page: 378 ident: br0200 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Am. Stat. Assoc. – year: 2009 ident: br0210 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 117 start-page: 30055 year: 2020 end-page: 30062 ident: br0070 article-title: The frontier of simulation-based inference publication-title: Proc. Natl. Acad. Sci. – volume: vol. 13 start-page: 20 year: 2013 ident: br0040 article-title: Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms publication-title: Proceedings of the 12th Python in Science Conference – start-page: 1436 year: 2018 end-page: 1443 ident: br0310 article-title: Deep inference for covariance estimation: learning Gaussian noise models for state estimation publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA) – volume: 141 start-page: 3047 year: 2011 end-page: 3054 ident: br0580 article-title: On the robustness of maximum composite likelihood estimate publication-title: J. Stat. Plan. Inference – volume: 96 start-page: 983 year: 2009 end-page: 990 ident: br0020 article-title: Adaptive approximate Bayesian computation publication-title: Biometrika – year: 2008 ident: br0300 article-title: Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology – volume: 2 start-page: 79 year: 2016 end-page: 103 ident: br0220 article-title: Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (gev) distributions publication-title: Adv. Stat. Climatol. Meteorol. Oceanogr. – volume: 25 start-page: 1212 year: 2016 end-page: 1229 ident: br0050 article-title: High-order composite likelihood inference for max-stable distributions and processes publication-title: J. Comput. Graph. Stat. – year: 2020 ident: br0420 article-title: Bayesflow: learning complex stochastic models with invertible neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 25 year: 2012 ident: br0480 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 start-page: 79 year: 2016 end-page: 103 ident: br0230 article-title: Likelihood estimators for multivariate extremes publication-title: Extremes – volume: 12 start-page: 1194 year: 1984 end-page: 1204 ident: br0120 article-title: A spectral representation for max-stable processes publication-title: Ann. Probab. – volume: 56 start-page: 1468 year: 2012 end-page: 1481 ident: br0150 article-title: Approximate Bayesian computing for spatial extremes publication-title: Comput. Stat. Data Anal. – volume: 2 start-page: 36 year: 2017 end-page: 49 ident: br0080 article-title: Neural nets for indirect inference publication-title: Econom. Stat. – volume: 105 start-page: 263 year: 2010 end-page: 277 ident: br0380 article-title: Likelihood-based inference for max-stable processes publication-title: J. Am. Stat. Assoc. – start-page: 452 year: 2015 end-page: 473 ident: br0470 article-title: A two-step approach to model precipitation extremes in California based on max-stable and marginal point processes publication-title: Ann. Appl. Stat. – start-page: 813 year: 2012 end-page: 845 ident: br0440 article-title: Bayesian inference from composite likelihoods, with an application to spatial extremes publication-title: Stat. Sin. – year: 2006 ident: br0360 article-title: An Introduction to Random Sets – year: 2017 ident: br0090 article-title: Deep Gaussian covariance network – volume: 75 start-page: 397 year: 1988 end-page: 415 ident: br0500 article-title: Bivariate extreme value theory: models and estimation publication-title: Biometrika – volume: 117 year: 2012 ident: br0560 article-title: Continental-scale water and energy flux analysis and validation for North American land data assimilation system project phase 2 (NLDAS-2): 2. validation of model-simulated streamflow publication-title: J. Geophys. Res., Atmos. – start-page: 1028 year: 2016 end-page: 1036 ident: br0390 article-title: Fast publication-title: Advances in Neural Information Processing Systems – year: 2017 ident: br0400 article-title: Automatic Differentiation in Pytorch – start-page: 791 year: 2013 end-page: 819 ident: br0100 article-title: Statistical inference for max-stable processes in space and time publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – volume: 23 start-page: 295 year: 2014 end-page: 315 ident: br0140 article-title: Estimation and prediction in spatial models with block composite likelihoods publication-title: J. Comput. Graph. Stat. – volume: 13 start-page: 3760 year: 2000 end-page: 3788 ident: br0280 article-title: Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean gcm publication-title: J. Climate – volume: 102 start-page: 855 year: 2015 end-page: 870 ident: br0530 article-title: Efficient inference and simulation for elliptical Pareto processes publication-title: Biometrika – volume: 117 year: 2012 ident: br0570 article-title: Continental-scale water and energy flux analysis and validation for the North American land data assimilation system project phase 2 (NLDAS-2): 1. intercomparison and application of model products publication-title: J. Geophys. Res., Atmos. – start-page: 4039 year: 2019 end-page: 4048 ident: br0260 article-title: Precision-recall versus accuracy and the role of large data sets publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33 – volume: 8 start-page: e218 year: 2019 ident: br0240 article-title: Full likelihood inference for max-stable data publication-title: Stat – volume: 37 start-page: 2042 year: 2009 end-page: 2065 ident: br0270 article-title: Stationary max-stable fields associated to negative definite functions publication-title: Ann. Probab. – year: 2008 ident: br0430 article-title: SpatialExtremes: An R-Package for Modelling Spatial Extremes – volume: 5 start-page: 33 year: 2002 end-page: 44 ident: br0460 article-title: Models for stationary max-stable random fields publication-title: Extremes – start-page: 481 year: 2011 end-page: 488 ident: br0180 article-title: On the likelihood function of Gaussian max-stable processes publication-title: Biometrika – start-page: 343 year: 2021 end-page: 351 ident: br0320 article-title: Benchmarking simulation-based inference publication-title: International Conference on Artificial Intelligence and Statistics – start-page: 1595 year: 2017 ident: 10.1016/j.csda.2023.107762_br0250 article-title: Learning summary statistic for approximate Bayesian computation via deep neural network publication-title: Stat. Sin. – volume: 19 start-page: 79 issue: 1 year: 2016 ident: 10.1016/j.csda.2023.107762_br0230 article-title: Likelihood estimators for multivariate extremes publication-title: Extremes doi: 10.1007/s10687-015-0230-4 – volume: 141 start-page: 3047 issue: 9 year: 2011 ident: 10.1016/j.csda.2023.107762_br0580 article-title: On the robustness of maximum composite likelihood estimate publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2011.03.026 – volume: 23 start-page: 295 issue: 2 year: 2014 ident: 10.1016/j.csda.2023.107762_br0140 article-title: Estimation and prediction in spatial models with block composite likelihoods publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2012.760460 – start-page: 813 year: 2012 ident: 10.1016/j.csda.2023.107762_br0440 article-title: Bayesian inference from composite likelihoods, with an application to spatial extremes publication-title: Stat. Sin. – year: 2003 ident: 10.1016/j.csda.2023.107762_br0340 – start-page: 481 year: 2011 ident: 10.1016/j.csda.2023.107762_br0180 article-title: On the likelihood function of Gaussian max-stable processes publication-title: Biometrika doi: 10.1093/biomet/asr020 – start-page: 452 year: 2015 ident: 10.1016/j.csda.2023.107762_br0470 article-title: A two-step approach to model precipitation extremes in California based on max-stable and marginal point processes publication-title: Ann. Appl. Stat. – year: 2008 ident: 10.1016/j.csda.2023.107762_br0430 – volume: vol. 13 start-page: 20 year: 2013 ident: 10.1016/j.csda.2023.107762_br0040 article-title: Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms – volume: 25 start-page: 1212 issue: 4 year: 2016 ident: 10.1016/j.csda.2023.107762_br0050 article-title: High-order composite likelihood inference for max-stable distributions and processes publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2015.1086656 – volume: 109 issue: D7 year: 2004 ident: 10.1016/j.csda.2023.107762_br0330 article-title: The multi-institution North American land data assimilation system (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system publication-title: J. Geophys. Res., Atmos. doi: 10.1029/2003JD003823 – volume: 27 start-page: 161 issue: 2 year: 2012 ident: 10.1016/j.csda.2023.107762_br0110 article-title: Statistical modeling of spatial extremes publication-title: Stat. Sci. doi: 10.1214/11-STS376 – volume: 56 start-page: 1468 issue: 6 year: 2012 ident: 10.1016/j.csda.2023.107762_br0150 article-title: Approximate Bayesian computing for spatial extremes publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2011.12.003 – volume: 12 start-page: 1194 issue: 4 year: 1984 ident: 10.1016/j.csda.2023.107762_br0120 article-title: A spectral representation for max-stable processes publication-title: Ann. Probab. – start-page: 4039 year: 2019 ident: 10.1016/j.csda.2023.107762_br0260 article-title: Precision-recall versus accuracy and the role of large data sets – volume: 5 start-page: 33 issue: 1 year: 2002 ident: 10.1016/j.csda.2023.107762_br0460 article-title: Models for stationary max-stable random fields publication-title: Extremes doi: 10.1023/A:1020977924878 – volume: 102 start-page: 855 issue: 4 year: 2015 ident: 10.1016/j.csda.2023.107762_br0530 article-title: Efficient inference and simulation for elliptical Pareto processes publication-title: Biometrika doi: 10.1093/biomet/asv045 – ident: 10.1016/j.csda.2023.107762_br0090 – volume: 86 start-page: 1093 issue: 10 year: 2008 ident: 10.1016/j.csda.2023.107762_br0370 article-title: Reliability bounds through random sets: non-parametric methods and geotechnical applications publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.05.040 – year: 2021 ident: 10.1016/j.csda.2023.107762_br0010 article-title: A review of uncertainty quantification in deep learning: techniques, applications and challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.05.008 – volume: 117 issue: D3 year: 2012 ident: 10.1016/j.csda.2023.107762_br0560 article-title: Continental-scale water and energy flux analysis and validation for North American land data assimilation system project phase 2 (NLDAS-2): 2. validation of model-simulated streamflow publication-title: J. Geophys. Res., Atmos. – volume: 2 start-page: 79 issue: 1 year: 2016 ident: 10.1016/j.csda.2023.107762_br0220 article-title: Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (gev) distributions publication-title: Adv. Stat. Climatol. Meteorol. Oceanogr. doi: 10.5194/ascmo-2-79-2016 – volume: 2 start-page: 36 year: 2017 ident: 10.1016/j.csda.2023.107762_br0080 article-title: Neural nets for indirect inference publication-title: Econom. Stat. – year: 2009 ident: 10.1016/j.csda.2023.107762_br0210 – volume: 10 start-page: 2303 issue: 4 year: 2016 ident: 10.1016/j.csda.2023.107762_br0520 article-title: Bayesian inference for the Brown–Resnick process, with an application to extreme low temperatures publication-title: Ann. Appl. Stat. doi: 10.1214/16-AOAS980 – start-page: e382 year: 2020 ident: 10.1016/j.csda.2023.107762_br0190 article-title: Fast covariance parameter estimation of spatial Gaussian process models using neural networks publication-title: Stat – start-page: 173 year: 2020 ident: 10.1016/j.csda.2023.107762_br0410 article-title: Convolutional neural networks – volume: 117 start-page: 30055 issue: 48 year: 2020 ident: 10.1016/j.csda.2023.107762_br0070 article-title: The frontier of simulation-based inference publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1912789117 – volume: 37 start-page: 2042 issue: 5 year: 2009 ident: 10.1016/j.csda.2023.107762_br0270 article-title: Stationary max-stable fields associated to negative definite functions publication-title: Ann. Probab. doi: 10.1214/09-AOP455 – year: 2008 ident: 10.1016/j.csda.2023.107762_br0300 – start-page: 1028 year: 2016 ident: 10.1016/j.csda.2023.107762_br0390 article-title: Fast ε-free inference of simulation models with Bayesian conditional density estimation – start-page: 25 year: 2012 ident: 10.1016/j.csda.2023.107762_br0480 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 466 start-page: 1102 issue: 7310 year: 2010 ident: 10.1016/j.csda.2023.107762_br0550 article-title: Statistical inference for noisy nonlinear ecological dynamic systems publication-title: Nature doi: 10.1038/nature09319 – start-page: 343 year: 2021 ident: 10.1016/j.csda.2023.107762_br0320 article-title: Benchmarking simulation-based inference – volume: 13 start-page: 3760 issue: 21 year: 2000 ident: 10.1016/j.csda.2023.107762_br0280 article-title: Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean gcm publication-title: J. Climate doi: 10.1175/1520-0442(2000)013<3760:CITEIA>2.0.CO;2 – start-page: 203 year: 1982 ident: 10.1016/j.csda.2023.107762_br0510 article-title: Financial returns modelled by the product of two stochastic processes-a study of the daily sugar prices 1961-75 – volume: 105 start-page: 263 issue: 489 year: 2010 ident: 10.1016/j.csda.2023.107762_br0380 article-title: Likelihood-based inference for max-stable processes publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.tm08577 – start-page: 373 year: 2006 ident: 10.1016/j.csda.2023.107762_br0060 article-title: Variograms for spatial max-stable random fields – ident: 10.1016/j.csda.2023.107762_br0290 – volume: 74 start-page: 419 issue: 3 year: 2012 ident: 10.1016/j.csda.2023.107762_br0160 article-title: Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/j.1467-9868.2011.01010.x – start-page: 1436 year: 2018 ident: 10.1016/j.csda.2023.107762_br0310 article-title: Deep inference for covariance estimation: learning Gaussian noise models for state estimation – volume: 15 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.csda.2023.107762_br0350 article-title: Scalable Bayesian inference for the inverse temperature of a hidden Potts model publication-title: Bayesian Anal. doi: 10.1214/18-BA1130 – volume: 117 issue: D3 year: 2012 ident: 10.1016/j.csda.2023.107762_br0570 article-title: Continental-scale water and energy flux analysis and validation for the North American land data assimilation system project phase 2 (NLDAS-2): 1. intercomparison and application of model products publication-title: J. Geophys. Res., Atmos. – start-page: 437 year: 2012 ident: 10.1016/j.csda.2023.107762_br0030 article-title: Practical recommendations for gradient-based training of deep architectures – start-page: 791 year: 2013 ident: 10.1016/j.csda.2023.107762_br0100 article-title: Statistical inference for max-stable processes in space and time publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/rssb.12012 – volume: 96 start-page: 983 issue: 4 year: 2009 ident: 10.1016/j.csda.2023.107762_br0020 article-title: Adaptive approximate Bayesian computation publication-title: Biometrika doi: 10.1093/biomet/asp052 – start-page: 5 year: 2011 ident: 10.1016/j.csda.2023.107762_br0540 article-title: An overview of composite likelihood methods publication-title: Stat. Sin. – volume: 75 start-page: 397 issue: 3 year: 1988 ident: 10.1016/j.csda.2023.107762_br0500 article-title: Bivariate extreme value theory: models and estimation publication-title: Biometrika doi: 10.1093/biomet/75.3.397 – volume: 8 start-page: e218 issue: 1 year: 2019 ident: 10.1016/j.csda.2023.107762_br0240 article-title: Full likelihood inference for max-stable data publication-title: Stat doi: 10.1002/sta4.218 – volume: vol. 1 year: 2001 ident: 10.1016/j.csda.2023.107762_br0170 article-title: The Elements of Statistical Learning – year: 2021 ident: 10.1016/j.csda.2023.107762_br0450 article-title: Parameter estimation with dense and convolutional neural networks applied to the Fitzhugh-Nagumo ODE – volume: 102 start-page: 359 issue: 477 year: 2007 ident: 10.1016/j.csda.2023.107762_br0200 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000001437 – year: 2017 ident: 10.1016/j.csda.2023.107762_br0400 – year: 2020 ident: 10.1016/j.csda.2023.107762_br0420 article-title: Bayesflow: learning complex stochastic models with invertible neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 92 start-page: 213 issue: 1 year: 2005 ident: 10.1016/j.csda.2023.107762_br0490 article-title: Exploiting occurrence times in likelihood inference for componentwise maxima publication-title: Biometrika doi: 10.1093/biomet/92.1.213 – year: 2007 ident: 10.1016/j.csda.2023.107762_br0130 – year: 2006 ident: 10.1016/j.csda.2023.107762_br0360 |
SSID | ssj0002478 |
Score | 2.5070252 |
Snippet | The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107762 |
SubjectTerms | data analysis data collection Deep neural networks Intractable likelihood Max-stable distributions Parameter estimation statistics |
Title | Neural networks for parameter estimation in intractable models |
URI | https://dx.doi.org/10.1016/j.csda.2023.107762 https://www.proquest.com/docview/2834208232 https://www.osti.gov/biblio/2331353 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sQ5HRW8SZ1N07S9CGM4psMd_IHegnlJYaLdsNvVv933mnYi4g5CoTTk0fKSvnwh3_seY6d0-MUjHIEASFRbZsJPJRhfWwLogY0vbKn2OZbDR3HzHD03WL_OhSFaZRX7XUwvo3XV0q282Z1NJt17ItCnIg4RRNN5E2WUCxHTLD___KZ5cOGiMel7U-8qccZxvKAwpD3EQ2yIY8n_WpyaU_zffkXrcgkabLHNCjt6Pfd526xh8x22cbsUXi122SWJbWCf3LG7Cw8xqUfy3u9Ee_FIUsPlKnoTuuaUI0XJU15ZEafYY4-Dq4f-0K9KJPggLsTc55rqtUjQWQIIvjLcTcnURoHWHDKTGFLbwgVcpggDsliazBqIQUASZBq0jMJ91synuT1gHo8NgDQ2lLhFimyoTZJIaSFIwfAkgxYLat8oqPTDqYzFm6qJYq-K_KnIn8r5s8XOljYzp56xsndUu1z9mAMKw_tKuzaND9mQ8C0QQwiNeBhSUY8WO6mHTeGvQ-chL7mdLgqFyIrIBYgpD__55jZbpyfHOTtizfnHwh4jSJnrTjkLO2ytdz0ajuk-unsafQFz8OYv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC6G8eB6EB8rjqNuBPe0xDGdpJMcFGTXYXyMl1Xw1rtd3YERzYiZQbz4p_yDVqUTl2VZD8JATp0uEqq6q6rpr74C2OXLLxGTBQJkUm2ZR34m0fjacoIe2GTfVmyfF3JwFZ1ex9cteGlqYRhWWft-59Mrb12P9Gpt9u5Ho95PBtBnURJSEs33TUmNrDyzT490bisPTn6Qkb8K0T--_D7w69YCPkb70cQXmvucSNR5ipS05HQKkZmNA60F5iY1zFJFgU9mFD7zRJrcGkwwwjTINWrJrSLI789F5C64bcLe8x9ciYic-2dCcf69ulLHgcqwNEx2JEIaSBIp_hcN22Pa4P-Ehyrm9ZdgsU5WvSOnj2Vo2WIFFoZvTK_lKhwyuwfNKRycvPQoCfaYT_yOcTYec3i44khvxM-Ei7K4WsurWvCUn-FqJopbg3YxLuw6eCIxiNLYUNKZLLahNmkqpcUgQyPSHDsQNLpRWBOWc9-MW9Ug024U61OxPpXTZwe-vcncO7qOd2fHjcrVX4tOUTx5V67L9mEZZtpFhiSRkAhD7iLSgZ3GbIr2Kl_A_C7seFoqSuUYzUBJ7MYHv_wF5geXw3N1fnJx1oVP_MYB3jahPXmY2i3KkCZ6u1qRHvya9RZ4BW2oIH0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+networks+for+parameter+estimation+in+intractable+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Lenzi%2C+Amanda&rft.au=Bessac%2C+Julie&rft.au=Rudi%2C+Johann&rft.au=Stein%2C+Michael+L.&rft.date=2023-09-01&rft.issn=0167-9473&rft.volume=185&rft.spage=107762&rft_id=info:doi/10.1016%2Fj.csda.2023.107762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2023_107762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |