Neural networks for parameter estimation in intractable models

The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward....

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 185; no. C; p. 107762
Main Authors Lenzi, Amanda, Bessac, Julie, Rudi, Johann, Stein, Michael L.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward. Data from model simulations are used to train deep neural networks and learn statistical parameters from max-stable models. The proposed neural network-based method provides a competitive alternative to current approaches, as demonstrated by considerable accuracy and computational time improvements. It serves as a proof of concept for deep learning in statistical parameter estimation and can be extended to other estimation problems.
AbstractList The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward. Data from model simulations are used to train deep neural networks and learn statistical parameters from max-stable models. The proposed neural network-based method provides a competitive alternative to current approaches, as demonstrated by considerable accuracy and computational time improvements. It serves as a proof of concept for deep learning in statistical parameter estimation and can be extended to other estimation problems.
ArticleNumber 107762
Author Lenzi, Amanda
Stein, Michael L.
Bessac, Julie
Rudi, Johann
Author_xml – sequence: 1
  givenname: Amanda
  orcidid: 0000-0001-7618-7164
  surname: Lenzi
  fullname: Lenzi, Amanda
  email: lenzi.amanda88@gmail.com
  organization: School of Mathematics, University of Edinburgh, United Kingdom
– sequence: 2
  givenname: Julie
  surname: Bessac
  fullname: Bessac, Julie
  organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
– sequence: 3
  givenname: Johann
  surname: Rudi
  fullname: Rudi, Johann
  organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
– sequence: 4
  givenname: Michael L.
  surname: Stein
  fullname: Stein, Michael L.
  organization: Department of Statistics, Rutgers University, Piscataway, NJ, USA
BackLink https://www.osti.gov/biblio/2331353$$D View this record in Osti.gov
BookMark eNp9kEFr3DAQhUVJoZs0fyAn01Mv3kgj2dJCKJSQNoWQXNqzkMcjqq3X2kjalv77ynVPPQQGBob3hve-c3Y2x5kYuxJ8K7jor_dbzKPbAgdZD1r38IpthNHQatnBGdtUkW53Sss37DznPecclDYb9uGRTslNzUzlV0w_cuNjao4uuQMVSg3lEg6uhDg3YZmSHBY3TNQc4khTfsteezdluvy3L9i3T3dfb-_bh6fPX24_PrSouCotDMIo2ePgDfJO-R2ofkedGAZAP5px1ysJqt4AwOt-9DSiRoVG-AGHvpMX7N36N9ZANmMohN8xzjNhsSClkJ2sover6Jji86lGt4eQkabJzRRP2YKRCrgBCVUKqxRTzDmRt8dUi6bfVnC7ELV7uxC1C1G7Eq0m85-p5vgLp2IJ08vWm9VamdHPQGnpQDPSGNJSYYzhJfsfpuKS9A
CitedBy_id crossref_primary_10_1002_env_2845
crossref_primary_10_1002_env_2889
crossref_primary_10_1080_10618600_2024_2402277
crossref_primary_10_1080_00401706_2024_2388549
crossref_primary_10_1002_wer_11016
crossref_primary_10_1080_10618600_2023_2285332
crossref_primary_10_1017_eds_2024_54
crossref_primary_10_1016_j_rineng_2024_103565
crossref_primary_10_1080_10618600_2024_2433671
crossref_primary_10_1007_s10687_024_00496_y
crossref_primary_10_1080_00031305_2023_2249522
crossref_primary_10_1109_ACCESS_2023_3342063
crossref_primary_10_3390_pr13030672
crossref_primary_10_1016_j_csda_2023_107913
crossref_primary_10_1016_j_spasta_2024_100848
crossref_primary_10_1371_journal_pcbi_1010817
crossref_primary_10_1371_journal_pcbi_1012119
Cites_doi 10.1007/s10687-015-0230-4
10.1016/j.jspi.2011.03.026
10.1080/10618600.2012.760460
10.1093/biomet/asr020
10.1080/10618600.2015.1086656
10.1029/2003JD003823
10.1214/11-STS376
10.1016/j.csda.2011.12.003
10.1023/A:1020977924878
10.1093/biomet/asv045
10.1016/j.compstruc.2007.05.040
10.1016/j.inffus.2021.05.008
10.5194/ascmo-2-79-2016
10.1214/16-AOAS980
10.1073/pnas.1912789117
10.1214/09-AOP455
10.1038/nature09319
10.1175/1520-0442(2000)013<3760:CITEIA>2.0.CO;2
10.1198/jasa.2009.tm08577
10.1111/j.1467-9868.2011.01010.x
10.1214/18-BA1130
10.1111/rssb.12012
10.1093/biomet/asp052
10.1093/biomet/75.3.397
10.1002/sta4.218
10.1198/016214506000001437
10.1093/biomet/92.1.213
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1016/j.csda.2023.107762
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
ExternalDocumentID 2331353
10_1016_j_csda_2023_107762
S0167947323000737
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
OTOTI
ID FETCH-LOGICAL-c404t-2b18436cbf8c054f92469e51bb2cfd8d964324469222f76dfedc7c4c81fbcb653
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Mon Apr 29 05:37:05 EDT 2024
Thu Jul 10 22:55:39 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 02:24:38 EDT 2025
Fri Feb 23 02:37:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Parameter estimation
Deep neural networks
Max-stable distributions
Intractable likelihood
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-2b18436cbf8c054f92469e51bb2cfd8d964324469222f76dfedc7c4c81fbcb653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
ORCID 0000-0001-7618-7164
0000000176187164
OpenAccessLink https://www.osti.gov/biblio/2331353
PQID 2834208232
PQPubID 24069
ParticipantIDs osti_scitechconnect_2331353
proquest_miscellaneous_2834208232
crossref_primary_10_1016_j_csda_2023_107762
crossref_citationtrail_10_1016_j_csda_2023_107762
elsevier_sciencedirect_doi_10_1016_j_csda_2023_107762
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
20230901
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computational statistics & data analysis
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bengio (br0030) 2012
Bergstra, Yamins, Cox (br0040) 2013; vol. 13
Nguyen (br0360) 2006
Xia, Mitchell, Ek, Sheffield, Cosgrove, Wood, Luo, Alonge, Wei, Meng (br0570) 2012; 117
Abdar, Pourpanah, Hussain, Rezazadegan, Liu, Ghavamzadeh, Fieguth, Cao, Khosravi, Acharya (br0010) 2021
Huser, Davison, Genton (br0230) 2016; 19
Lueckmann, Boelts, Greenberg, Goncalves, Macke (br0320) 2021
Papamakarios, Murray (br0390) 2016
Rudi, Bessac, Lenzi (br0450) 2021
Genton, Ma, Sang (br0180) 2011
Kingma, Ba (br0290) 2014
Cooley, Naveau, Poncet (br0060) 2006
Kharin, Zwiers (br0280) 2000; 13
Cranmer, Brehmer, Louppe (br0070) 2020; 117
Shang, Yan, Zhang (br0470) 2015
Juba, Le (br0260) 2019
Ribatet, Cooley, Davison (br0440) 2012
Liu, Ok, Vega-Brown, Roy (br0310) 2018
Davis, Klüppelberg, Steinkohl (br0100) 2013
Radev, Mertens, Voss, Ardizzone, Köthe (br0420) 2020
Taylor (br0510) 1982
Friedman, Hastie, Tibshirani (br0170) 2001; vol. 1
Jiang, Wu, Zheng, Wong (br0250) 2017
Castruccio, Huser, Genton (br0050) 2016; 25
Varin, Reid, Firth (br0540) 2011
Eidsvik, Shaby, Reich, Wheeler, Niemi (br0140) 2014; 23
Moores, Nicholls, Pettitt, Mengersen (br0350) 2020; 15
Oberguggenberger, Fellin (br0370) 2008; 86
Thibaud, Opitz (br0530) 2015; 102
Cremanns, Roos (br0090) 2017
Thibaud, Aalto, Cooley, Davison, Heikkinen (br0520) 2016; 10
Tawn (br0500) 1988; 75
Wood (br0550) 2010; 466
Gerber, Nychka (br0190) 2020
Davison, Padoan, Ribatet (br0110) 2012; 27
De Haan (br0120) 1984; 12
Kabluchko, Schlather, De Haan (br0270) 2009; 37
Beaumont, Cornuet, Marin, Robert (br0020) 2009; 96
Fearnhead, Prangle (br0160) 2012; 74
Xia, Mitchell, Ek, Cosgrove, Sheffield, Luo, Alonge, Wei, Meng, Livneh (br0560) 2012; 117
Creel (br0080) 2017; 2
Pinaya, Vieira, Garcia-Dias, Mechelli (br0410) 2020
Xu, Reid (br0580) 2011; 141
Snoek, Larochelle, Adams (br0480) 2012
Huang, Stein, McInerney, Sun, Moyer (br0220) 2016; 2
De Haan, Ferreira (br0130) 2007
Moller, Waagepetersen (br0340) 2003
Lawson (br0300) 2008
Erhardt, Smith (br0150) 2012; 56
Hastie, Tibshirani, Friedman (br0210) 2009
Schlather (br0460) 2002; 5
Padoan, Ribatet, Sisson (br0380) 2010; 105
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (br0400) 2017
Gneiting, Raftery (br0200) 2007; 102
Mitchell, Lohmann, Houser, Wood, Schaake, Robock, Cosgrove, Sheffield, Duan, Luo (br0330) 2004; 109
Huser, Dombry, Ribatet, Genton (br0240) 2019; 8
Stephenson, Tawn (br0490) 2005; 92
Ribatet (br0430) 2008
Eidsvik (10.1016/j.csda.2023.107762_br0140) 2014; 23
Liu (10.1016/j.csda.2023.107762_br0310) 2018
Ribatet (10.1016/j.csda.2023.107762_br0440) 2012
Huang (10.1016/j.csda.2023.107762_br0220) 2016; 2
Cremanns (10.1016/j.csda.2023.107762_br0090)
Gneiting (10.1016/j.csda.2023.107762_br0200) 2007; 102
Taylor (10.1016/j.csda.2023.107762_br0510) 1982
Moller (10.1016/j.csda.2023.107762_br0340) 2003
Thibaud (10.1016/j.csda.2023.107762_br0530) 2015; 102
Paszke (10.1016/j.csda.2023.107762_br0400) 2017
De Haan (10.1016/j.csda.2023.107762_br0130) 2007
Kharin (10.1016/j.csda.2023.107762_br0280) 2000; 13
Lawson (10.1016/j.csda.2023.107762_br0300) 2008
Kingma (10.1016/j.csda.2023.107762_br0290)
Kabluchko (10.1016/j.csda.2023.107762_br0270) 2009; 37
Huser (10.1016/j.csda.2023.107762_br0230) 2016; 19
Bengio (10.1016/j.csda.2023.107762_br0030) 2012
De Haan (10.1016/j.csda.2023.107762_br0120) 1984; 12
Pinaya (10.1016/j.csda.2023.107762_br0410) 2020
Radev (10.1016/j.csda.2023.107762_br0420) 2020
Wood (10.1016/j.csda.2023.107762_br0550) 2010; 466
Nguyen (10.1016/j.csda.2023.107762_br0360) 2006
Padoan (10.1016/j.csda.2023.107762_br0380) 2010; 105
Genton (10.1016/j.csda.2023.107762_br0180) 2011
Varin (10.1016/j.csda.2023.107762_br0540) 2011
Castruccio (10.1016/j.csda.2023.107762_br0050) 2016; 25
Huser (10.1016/j.csda.2023.107762_br0240) 2019; 8
Schlather (10.1016/j.csda.2023.107762_br0460) 2002; 5
Fearnhead (10.1016/j.csda.2023.107762_br0160) 2012; 74
Creel (10.1016/j.csda.2023.107762_br0080) 2017; 2
Papamakarios (10.1016/j.csda.2023.107762_br0390) 2016
Xu (10.1016/j.csda.2023.107762_br0580) 2011; 141
Cooley (10.1016/j.csda.2023.107762_br0060) 2006
Shang (10.1016/j.csda.2023.107762_br0470) 2015
Cranmer (10.1016/j.csda.2023.107762_br0070) 2020; 117
Gerber (10.1016/j.csda.2023.107762_br0190) 2020
Bergstra (10.1016/j.csda.2023.107762_br0040) 2013; vol. 13
Rudi (10.1016/j.csda.2023.107762_br0450) 2021
Mitchell (10.1016/j.csda.2023.107762_br0330) 2004; 109
Xia (10.1016/j.csda.2023.107762_br0570) 2012; 117
Beaumont (10.1016/j.csda.2023.107762_br0020) 2009; 96
Abdar (10.1016/j.csda.2023.107762_br0010) 2021
Jiang (10.1016/j.csda.2023.107762_br0250) 2017
Davis (10.1016/j.csda.2023.107762_br0100) 2013
Oberguggenberger (10.1016/j.csda.2023.107762_br0370) 2008; 86
Xia (10.1016/j.csda.2023.107762_br0560) 2012; 117
Stephenson (10.1016/j.csda.2023.107762_br0490) 2005; 92
Davison (10.1016/j.csda.2023.107762_br0110) 2012; 27
Juba (10.1016/j.csda.2023.107762_br0260) 2019
Friedman (10.1016/j.csda.2023.107762_br0170) 2001; vol. 1
Ribatet (10.1016/j.csda.2023.107762_br0430) 2008
Tawn (10.1016/j.csda.2023.107762_br0500) 1988; 75
Lueckmann (10.1016/j.csda.2023.107762_br0320) 2021
Erhardt (10.1016/j.csda.2023.107762_br0150) 2012; 56
Snoek (10.1016/j.csda.2023.107762_br0480) 2012
Moores (10.1016/j.csda.2023.107762_br0350) 2020; 15
Hastie (10.1016/j.csda.2023.107762_br0210) 2009
Thibaud (10.1016/j.csda.2023.107762_br0520) 2016; 10
References_xml – year: 2021
  ident: br0450
  article-title: Parameter estimation with dense and convolutional neural networks applied to the Fitzhugh-Nagumo ODE
  publication-title: Mathematical and Scientific Machine Learning
– start-page: 5
  year: 2011
  end-page: 42
  ident: br0540
  article-title: An overview of composite likelihood methods
  publication-title: Stat. Sin.
– year: 2003
  ident: br0340
  article-title: Statistical Inference and Simulation for Spatial Point Processes
– volume: 15
  start-page: 1
  year: 2020
  end-page: 27
  ident: br0350
  article-title: Scalable Bayesian inference for the inverse temperature of a hidden Potts model
  publication-title: Bayesian Anal.
– start-page: 1595
  year: 2017
  end-page: 1618
  ident: br0250
  article-title: Learning summary statistic for approximate Bayesian computation via deep neural network
  publication-title: Stat. Sin.
– start-page: 173
  year: 2020
  end-page: 191
  ident: br0410
  article-title: Convolutional neural networks
  publication-title: Machine Learning
– start-page: e382
  year: 2020
  ident: br0190
  article-title: Fast covariance parameter estimation of spatial Gaussian process models using neural networks
  publication-title: Stat
– start-page: 373
  year: 2006
  end-page: 390
  ident: br0060
  article-title: Variograms for spatial max-stable random fields
  publication-title: Dependence in Probability and Statistics
– year: 2007
  ident: br0130
  article-title: Extreme Value Theory: An Introduction
– volume: 27
  start-page: 161
  year: 2012
  end-page: 186
  ident: br0110
  article-title: Statistical modeling of spatial extremes
  publication-title: Stat. Sci.
– volume: 74
  start-page: 419
  year: 2012
  end-page: 474
  ident: br0160
  article-title: Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
– volume: 109
  year: 2004
  ident: br0330
  article-title: The multi-institution North American land data assimilation system (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system
  publication-title: J. Geophys. Res., Atmos.
– year: 2014
  ident: br0290
  article-title: Adam: a method for stochastic optimization
– volume: 10
  start-page: 2303
  year: 2016
  end-page: 2324
  ident: br0520
  article-title: Bayesian inference for the Brown–Resnick process, with an application to extreme low temperatures
  publication-title: Ann. Appl. Stat.
– year: 2021
  ident: br0010
  article-title: A review of uncertainty quantification in deep learning: techniques, applications and challenges
  publication-title: Inf. Fusion
– volume: vol. 1
  year: 2001
  ident: br0170
  article-title: The Elements of Statistical Learning
  publication-title: Springer Series in Statistics
– volume: 86
  start-page: 1093
  year: 2008
  end-page: 1101
  ident: br0370
  article-title: Reliability bounds through random sets: non-parametric methods and geotechnical applications
  publication-title: Comput. Struct.
– start-page: 203
  year: 1982
  end-page: 226
  ident: br0510
  article-title: Financial returns modelled by the product of two stochastic processes-a study of the daily sugar prices 1961-75
  publication-title: Time Series Analysis: Theory and Practice, vol. 1
– volume: 92
  start-page: 213
  year: 2005
  end-page: 227
  ident: br0490
  article-title: Exploiting occurrence times in likelihood inference for componentwise maxima
  publication-title: Biometrika
– volume: 466
  start-page: 1102
  year: 2010
  end-page: 1104
  ident: br0550
  article-title: Statistical inference for noisy nonlinear ecological dynamic systems
  publication-title: Nature
– start-page: 437
  year: 2012
  end-page: 478
  ident: br0030
  article-title: Practical recommendations for gradient-based training of deep architectures
  publication-title: Neural Networks: Tricks of the Trade
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  ident: br0200
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Stat. Assoc.
– year: 2009
  ident: br0210
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 117
  start-page: 30055
  year: 2020
  end-page: 30062
  ident: br0070
  article-title: The frontier of simulation-based inference
  publication-title: Proc. Natl. Acad. Sci.
– volume: vol. 13
  start-page: 20
  year: 2013
  ident: br0040
  article-title: Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms
  publication-title: Proceedings of the 12th Python in Science Conference
– start-page: 1436
  year: 2018
  end-page: 1443
  ident: br0310
  article-title: Deep inference for covariance estimation: learning Gaussian noise models for state estimation
  publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA)
– volume: 141
  start-page: 3047
  year: 2011
  end-page: 3054
  ident: br0580
  article-title: On the robustness of maximum composite likelihood estimate
  publication-title: J. Stat. Plan. Inference
– volume: 96
  start-page: 983
  year: 2009
  end-page: 990
  ident: br0020
  article-title: Adaptive approximate Bayesian computation
  publication-title: Biometrika
– year: 2008
  ident: br0300
  article-title: Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology
– volume: 2
  start-page: 79
  year: 2016
  end-page: 103
  ident: br0220
  article-title: Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (gev) distributions
  publication-title: Adv. Stat. Climatol. Meteorol. Oceanogr.
– volume: 25
  start-page: 1212
  year: 2016
  end-page: 1229
  ident: br0050
  article-title: High-order composite likelihood inference for max-stable distributions and processes
  publication-title: J. Comput. Graph. Stat.
– year: 2020
  ident: br0420
  article-title: Bayesflow: learning complex stochastic models with invertible neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 25
  year: 2012
  ident: br0480
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 79
  year: 2016
  end-page: 103
  ident: br0230
  article-title: Likelihood estimators for multivariate extremes
  publication-title: Extremes
– volume: 12
  start-page: 1194
  year: 1984
  end-page: 1204
  ident: br0120
  article-title: A spectral representation for max-stable processes
  publication-title: Ann. Probab.
– volume: 56
  start-page: 1468
  year: 2012
  end-page: 1481
  ident: br0150
  article-title: Approximate Bayesian computing for spatial extremes
  publication-title: Comput. Stat. Data Anal.
– volume: 2
  start-page: 36
  year: 2017
  end-page: 49
  ident: br0080
  article-title: Neural nets for indirect inference
  publication-title: Econom. Stat.
– volume: 105
  start-page: 263
  year: 2010
  end-page: 277
  ident: br0380
  article-title: Likelihood-based inference for max-stable processes
  publication-title: J. Am. Stat. Assoc.
– start-page: 452
  year: 2015
  end-page: 473
  ident: br0470
  article-title: A two-step approach to model precipitation extremes in California based on max-stable and marginal point processes
  publication-title: Ann. Appl. Stat.
– start-page: 813
  year: 2012
  end-page: 845
  ident: br0440
  article-title: Bayesian inference from composite likelihoods, with an application to spatial extremes
  publication-title: Stat. Sin.
– year: 2006
  ident: br0360
  article-title: An Introduction to Random Sets
– year: 2017
  ident: br0090
  article-title: Deep Gaussian covariance network
– volume: 75
  start-page: 397
  year: 1988
  end-page: 415
  ident: br0500
  article-title: Bivariate extreme value theory: models and estimation
  publication-title: Biometrika
– volume: 117
  year: 2012
  ident: br0560
  article-title: Continental-scale water and energy flux analysis and validation for North American land data assimilation system project phase 2 (NLDAS-2): 2. validation of model-simulated streamflow
  publication-title: J. Geophys. Res., Atmos.
– start-page: 1028
  year: 2016
  end-page: 1036
  ident: br0390
  article-title: Fast
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
  ident: br0400
  article-title: Automatic Differentiation in Pytorch
– start-page: 791
  year: 2013
  end-page: 819
  ident: br0100
  article-title: Statistical inference for max-stable processes in space and time
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
– volume: 23
  start-page: 295
  year: 2014
  end-page: 315
  ident: br0140
  article-title: Estimation and prediction in spatial models with block composite likelihoods
  publication-title: J. Comput. Graph. Stat.
– volume: 13
  start-page: 3760
  year: 2000
  end-page: 3788
  ident: br0280
  article-title: Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean gcm
  publication-title: J. Climate
– volume: 102
  start-page: 855
  year: 2015
  end-page: 870
  ident: br0530
  article-title: Efficient inference and simulation for elliptical Pareto processes
  publication-title: Biometrika
– volume: 117
  year: 2012
  ident: br0570
  article-title: Continental-scale water and energy flux analysis and validation for the North American land data assimilation system project phase 2 (NLDAS-2): 1. intercomparison and application of model products
  publication-title: J. Geophys. Res., Atmos.
– start-page: 4039
  year: 2019
  end-page: 4048
  ident: br0260
  article-title: Precision-recall versus accuracy and the role of large data sets
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33
– volume: 8
  start-page: e218
  year: 2019
  ident: br0240
  article-title: Full likelihood inference for max-stable data
  publication-title: Stat
– volume: 37
  start-page: 2042
  year: 2009
  end-page: 2065
  ident: br0270
  article-title: Stationary max-stable fields associated to negative definite functions
  publication-title: Ann. Probab.
– year: 2008
  ident: br0430
  article-title: SpatialExtremes: An R-Package for Modelling Spatial Extremes
– volume: 5
  start-page: 33
  year: 2002
  end-page: 44
  ident: br0460
  article-title: Models for stationary max-stable random fields
  publication-title: Extremes
– start-page: 481
  year: 2011
  end-page: 488
  ident: br0180
  article-title: On the likelihood function of Gaussian max-stable processes
  publication-title: Biometrika
– start-page: 343
  year: 2021
  end-page: 351
  ident: br0320
  article-title: Benchmarking simulation-based inference
  publication-title: International Conference on Artificial Intelligence and Statistics
– start-page: 1595
  year: 2017
  ident: 10.1016/j.csda.2023.107762_br0250
  article-title: Learning summary statistic for approximate Bayesian computation via deep neural network
  publication-title: Stat. Sin.
– volume: 19
  start-page: 79
  issue: 1
  year: 2016
  ident: 10.1016/j.csda.2023.107762_br0230
  article-title: Likelihood estimators for multivariate extremes
  publication-title: Extremes
  doi: 10.1007/s10687-015-0230-4
– volume: 141
  start-page: 3047
  issue: 9
  year: 2011
  ident: 10.1016/j.csda.2023.107762_br0580
  article-title: On the robustness of maximum composite likelihood estimate
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2011.03.026
– volume: 23
  start-page: 295
  issue: 2
  year: 2014
  ident: 10.1016/j.csda.2023.107762_br0140
  article-title: Estimation and prediction in spatial models with block composite likelihoods
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2012.760460
– start-page: 813
  year: 2012
  ident: 10.1016/j.csda.2023.107762_br0440
  article-title: Bayesian inference from composite likelihoods, with an application to spatial extremes
  publication-title: Stat. Sin.
– year: 2003
  ident: 10.1016/j.csda.2023.107762_br0340
– start-page: 481
  year: 2011
  ident: 10.1016/j.csda.2023.107762_br0180
  article-title: On the likelihood function of Gaussian max-stable processes
  publication-title: Biometrika
  doi: 10.1093/biomet/asr020
– start-page: 452
  year: 2015
  ident: 10.1016/j.csda.2023.107762_br0470
  article-title: A two-step approach to model precipitation extremes in California based on max-stable and marginal point processes
  publication-title: Ann. Appl. Stat.
– year: 2008
  ident: 10.1016/j.csda.2023.107762_br0430
– volume: vol. 13
  start-page: 20
  year: 2013
  ident: 10.1016/j.csda.2023.107762_br0040
  article-title: Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms
– volume: 25
  start-page: 1212
  issue: 4
  year: 2016
  ident: 10.1016/j.csda.2023.107762_br0050
  article-title: High-order composite likelihood inference for max-stable distributions and processes
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2015.1086656
– volume: 109
  issue: D7
  year: 2004
  ident: 10.1016/j.csda.2023.107762_br0330
  article-title: The multi-institution North American land data assimilation system (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system
  publication-title: J. Geophys. Res., Atmos.
  doi: 10.1029/2003JD003823
– volume: 27
  start-page: 161
  issue: 2
  year: 2012
  ident: 10.1016/j.csda.2023.107762_br0110
  article-title: Statistical modeling of spatial extremes
  publication-title: Stat. Sci.
  doi: 10.1214/11-STS376
– volume: 56
  start-page: 1468
  issue: 6
  year: 2012
  ident: 10.1016/j.csda.2023.107762_br0150
  article-title: Approximate Bayesian computing for spatial extremes
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2011.12.003
– volume: 12
  start-page: 1194
  issue: 4
  year: 1984
  ident: 10.1016/j.csda.2023.107762_br0120
  article-title: A spectral representation for max-stable processes
  publication-title: Ann. Probab.
– start-page: 4039
  year: 2019
  ident: 10.1016/j.csda.2023.107762_br0260
  article-title: Precision-recall versus accuracy and the role of large data sets
– volume: 5
  start-page: 33
  issue: 1
  year: 2002
  ident: 10.1016/j.csda.2023.107762_br0460
  article-title: Models for stationary max-stable random fields
  publication-title: Extremes
  doi: 10.1023/A:1020977924878
– volume: 102
  start-page: 855
  issue: 4
  year: 2015
  ident: 10.1016/j.csda.2023.107762_br0530
  article-title: Efficient inference and simulation for elliptical Pareto processes
  publication-title: Biometrika
  doi: 10.1093/biomet/asv045
– ident: 10.1016/j.csda.2023.107762_br0090
– volume: 86
  start-page: 1093
  issue: 10
  year: 2008
  ident: 10.1016/j.csda.2023.107762_br0370
  article-title: Reliability bounds through random sets: non-parametric methods and geotechnical applications
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.05.040
– year: 2021
  ident: 10.1016/j.csda.2023.107762_br0010
  article-title: A review of uncertainty quantification in deep learning: techniques, applications and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.05.008
– volume: 117
  issue: D3
  year: 2012
  ident: 10.1016/j.csda.2023.107762_br0560
  article-title: Continental-scale water and energy flux analysis and validation for North American land data assimilation system project phase 2 (NLDAS-2): 2. validation of model-simulated streamflow
  publication-title: J. Geophys. Res., Atmos.
– volume: 2
  start-page: 79
  issue: 1
  year: 2016
  ident: 10.1016/j.csda.2023.107762_br0220
  article-title: Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (gev) distributions
  publication-title: Adv. Stat. Climatol. Meteorol. Oceanogr.
  doi: 10.5194/ascmo-2-79-2016
– volume: 2
  start-page: 36
  year: 2017
  ident: 10.1016/j.csda.2023.107762_br0080
  article-title: Neural nets for indirect inference
  publication-title: Econom. Stat.
– year: 2009
  ident: 10.1016/j.csda.2023.107762_br0210
– volume: 10
  start-page: 2303
  issue: 4
  year: 2016
  ident: 10.1016/j.csda.2023.107762_br0520
  article-title: Bayesian inference for the Brown–Resnick process, with an application to extreme low temperatures
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/16-AOAS980
– start-page: e382
  year: 2020
  ident: 10.1016/j.csda.2023.107762_br0190
  article-title: Fast covariance parameter estimation of spatial Gaussian process models using neural networks
  publication-title: Stat
– start-page: 173
  year: 2020
  ident: 10.1016/j.csda.2023.107762_br0410
  article-title: Convolutional neural networks
– volume: 117
  start-page: 30055
  issue: 48
  year: 2020
  ident: 10.1016/j.csda.2023.107762_br0070
  article-title: The frontier of simulation-based inference
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1912789117
– volume: 37
  start-page: 2042
  issue: 5
  year: 2009
  ident: 10.1016/j.csda.2023.107762_br0270
  article-title: Stationary max-stable fields associated to negative definite functions
  publication-title: Ann. Probab.
  doi: 10.1214/09-AOP455
– year: 2008
  ident: 10.1016/j.csda.2023.107762_br0300
– start-page: 1028
  year: 2016
  ident: 10.1016/j.csda.2023.107762_br0390
  article-title: Fast ε-free inference of simulation models with Bayesian conditional density estimation
– start-page: 25
  year: 2012
  ident: 10.1016/j.csda.2023.107762_br0480
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 466
  start-page: 1102
  issue: 7310
  year: 2010
  ident: 10.1016/j.csda.2023.107762_br0550
  article-title: Statistical inference for noisy nonlinear ecological dynamic systems
  publication-title: Nature
  doi: 10.1038/nature09319
– start-page: 343
  year: 2021
  ident: 10.1016/j.csda.2023.107762_br0320
  article-title: Benchmarking simulation-based inference
– volume: 13
  start-page: 3760
  issue: 21
  year: 2000
  ident: 10.1016/j.csda.2023.107762_br0280
  article-title: Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean gcm
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2000)013<3760:CITEIA>2.0.CO;2
– start-page: 203
  year: 1982
  ident: 10.1016/j.csda.2023.107762_br0510
  article-title: Financial returns modelled by the product of two stochastic processes-a study of the daily sugar prices 1961-75
– volume: 105
  start-page: 263
  issue: 489
  year: 2010
  ident: 10.1016/j.csda.2023.107762_br0380
  article-title: Likelihood-based inference for max-stable processes
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.tm08577
– start-page: 373
  year: 2006
  ident: 10.1016/j.csda.2023.107762_br0060
  article-title: Variograms for spatial max-stable random fields
– ident: 10.1016/j.csda.2023.107762_br0290
– volume: 74
  start-page: 419
  issue: 3
  year: 2012
  ident: 10.1016/j.csda.2023.107762_br0160
  article-title: Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
  doi: 10.1111/j.1467-9868.2011.01010.x
– start-page: 1436
  year: 2018
  ident: 10.1016/j.csda.2023.107762_br0310
  article-title: Deep inference for covariance estimation: learning Gaussian noise models for state estimation
– volume: 15
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.csda.2023.107762_br0350
  article-title: Scalable Bayesian inference for the inverse temperature of a hidden Potts model
  publication-title: Bayesian Anal.
  doi: 10.1214/18-BA1130
– volume: 117
  issue: D3
  year: 2012
  ident: 10.1016/j.csda.2023.107762_br0570
  article-title: Continental-scale water and energy flux analysis and validation for the North American land data assimilation system project phase 2 (NLDAS-2): 1. intercomparison and application of model products
  publication-title: J. Geophys. Res., Atmos.
– start-page: 437
  year: 2012
  ident: 10.1016/j.csda.2023.107762_br0030
  article-title: Practical recommendations for gradient-based training of deep architectures
– start-page: 791
  year: 2013
  ident: 10.1016/j.csda.2023.107762_br0100
  article-title: Statistical inference for max-stable processes in space and time
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
  doi: 10.1111/rssb.12012
– volume: 96
  start-page: 983
  issue: 4
  year: 2009
  ident: 10.1016/j.csda.2023.107762_br0020
  article-title: Adaptive approximate Bayesian computation
  publication-title: Biometrika
  doi: 10.1093/biomet/asp052
– start-page: 5
  year: 2011
  ident: 10.1016/j.csda.2023.107762_br0540
  article-title: An overview of composite likelihood methods
  publication-title: Stat. Sin.
– volume: 75
  start-page: 397
  issue: 3
  year: 1988
  ident: 10.1016/j.csda.2023.107762_br0500
  article-title: Bivariate extreme value theory: models and estimation
  publication-title: Biometrika
  doi: 10.1093/biomet/75.3.397
– volume: 8
  start-page: e218
  issue: 1
  year: 2019
  ident: 10.1016/j.csda.2023.107762_br0240
  article-title: Full likelihood inference for max-stable data
  publication-title: Stat
  doi: 10.1002/sta4.218
– volume: vol. 1
  year: 2001
  ident: 10.1016/j.csda.2023.107762_br0170
  article-title: The Elements of Statistical Learning
– year: 2021
  ident: 10.1016/j.csda.2023.107762_br0450
  article-title: Parameter estimation with dense and convolutional neural networks applied to the Fitzhugh-Nagumo ODE
– volume: 102
  start-page: 359
  issue: 477
  year: 2007
  ident: 10.1016/j.csda.2023.107762_br0200
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000001437
– year: 2017
  ident: 10.1016/j.csda.2023.107762_br0400
– year: 2020
  ident: 10.1016/j.csda.2023.107762_br0420
  article-title: Bayesflow: learning complex stochastic models with invertible neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 92
  start-page: 213
  issue: 1
  year: 2005
  ident: 10.1016/j.csda.2023.107762_br0490
  article-title: Exploiting occurrence times in likelihood inference for componentwise maxima
  publication-title: Biometrika
  doi: 10.1093/biomet/92.1.213
– year: 2007
  ident: 10.1016/j.csda.2023.107762_br0130
– year: 2006
  ident: 10.1016/j.csda.2023.107762_br0360
SSID ssj0002478
Score 2.5070252
Snippet The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107762
SubjectTerms data analysis
data collection
Deep neural networks
Intractable likelihood
Max-stable distributions
Parameter estimation
statistics
Title Neural networks for parameter estimation in intractable models
URI https://dx.doi.org/10.1016/j.csda.2023.107762
https://www.proquest.com/docview/2834208232
https://www.osti.gov/biblio/2331353
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sQ5HRW8SZ1N07S9CGM4psMd_IHegnlJYaLdsNvVv933mnYi4g5CoTTk0fKSvnwh3_seY6d0-MUjHIEASFRbZsJPJRhfWwLogY0vbKn2OZbDR3HzHD03WL_OhSFaZRX7XUwvo3XV0q282Z1NJt17ItCnIg4RRNN5E2WUCxHTLD___KZ5cOGiMel7U-8qccZxvKAwpD3EQ2yIY8n_WpyaU_zffkXrcgkabLHNCjt6Pfd526xh8x22cbsUXi122SWJbWCf3LG7Cw8xqUfy3u9Ee_FIUsPlKnoTuuaUI0XJU15ZEafYY4-Dq4f-0K9KJPggLsTc55rqtUjQWQIIvjLcTcnURoHWHDKTGFLbwgVcpggDsliazBqIQUASZBq0jMJ91synuT1gHo8NgDQ2lLhFimyoTZJIaSFIwfAkgxYLat8oqPTDqYzFm6qJYq-K_KnIn8r5s8XOljYzp56xsndUu1z9mAMKw_tKuzaND9mQ8C0QQwiNeBhSUY8WO6mHTeGvQ-chL7mdLgqFyIrIBYgpD__55jZbpyfHOTtizfnHwh4jSJnrTjkLO2ytdz0ajuk-unsafQFz8OYv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC6G8eB6EB8rjqNuBPe0xDGdpJMcFGTXYXyMl1Xw1rtd3YERzYiZQbz4p_yDVqUTl2VZD8JATp0uEqq6q6rpr74C2OXLLxGTBQJkUm2ZR34m0fjacoIe2GTfVmyfF3JwFZ1ex9cteGlqYRhWWft-59Mrb12P9Gpt9u5Ho95PBtBnURJSEs33TUmNrDyzT490bisPTn6Qkb8K0T--_D7w69YCPkb70cQXmvucSNR5ipS05HQKkZmNA60F5iY1zFJFgU9mFD7zRJrcGkwwwjTINWrJrSLI789F5C64bcLe8x9ciYic-2dCcf69ulLHgcqwNEx2JEIaSBIp_hcN22Pa4P-Ehyrm9ZdgsU5WvSOnj2Vo2WIFFoZvTK_lKhwyuwfNKRycvPQoCfaYT_yOcTYec3i44khvxM-Ei7K4WsurWvCUn-FqJopbg3YxLuw6eCIxiNLYUNKZLLahNmkqpcUgQyPSHDsQNLpRWBOWc9-MW9Ug024U61OxPpXTZwe-vcncO7qOd2fHjcrVX4tOUTx5V67L9mEZZtpFhiSRkAhD7iLSgZ3GbIr2Kl_A_C7seFoqSuUYzUBJ7MYHv_wF5geXw3N1fnJx1oVP_MYB3jahPXmY2i3KkCZ6u1qRHvya9RZ4BW2oIH0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+networks+for+parameter+estimation+in+intractable+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Lenzi%2C+Amanda&rft.au=Bessac%2C+Julie&rft.au=Rudi%2C+Johann&rft.au=Stein%2C+Michael+L.&rft.date=2023-09-01&rft.issn=0167-9473&rft.volume=185&rft.spage=107762&rft_id=info:doi/10.1016%2Fj.csda.2023.107762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2023_107762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon