Degradation of 1,2,3-trichloropropane by unactivated persulfate and the implications for groundwater remediation

Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be “activated” to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system wa...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 865; p. 161201
Main Authors Liu, Shuyu, Gu, Chunyun, Zhang, Jiaxin, Luo, Chaoyi, Rong, Xun, Yue, Gangsen, Liu, Hanyu, Wen, Jing, Ma, Jie
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 20.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be “activated” to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO4·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO3−, Cl− and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation. [Display omitted] •Without additional activator, PS can effectively degrade 1,2,3-TCP in various water samples.•·OH and SO4·- are responsible for 1,2,3-TCP degradation by PS without explicit activation.•50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM).•Unactivated PS is a good candidate for the low permeable zone remediation.
AbstractList Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be “activated” to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO4·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO3−, Cl− and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation. [Display omitted] •Without additional activator, PS can effectively degrade 1,2,3-TCP in various water samples.•·OH and SO4·- are responsible for 1,2,3-TCP degradation by PS without explicit activation.•50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM).•Unactivated PS is a good candidate for the low permeable zone remediation.
Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be “activated” to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO₄·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO₃⁻, Cl⁻ and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation.
Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be "activated" to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO ·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO , Cl and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation.
Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be "activated" to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO4·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO3-, Cl- and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation.Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be "activated" to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO4·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO3-, Cl- and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation.
ArticleNumber 161201
Author Luo, Chaoyi
Yue, Gangsen
Gu, Chunyun
Liu, Shuyu
Zhang, Jiaxin
Rong, Xun
Wen, Jing
Liu, Hanyu
Ma, Jie
Author_xml – sequence: 1
  givenname: Shuyu
  surname: Liu
  fullname: Liu, Shuyu
– sequence: 2
  givenname: Chunyun
  surname: Gu
  fullname: Gu, Chunyun
– sequence: 3
  givenname: Jiaxin
  surname: Zhang
  fullname: Zhang, Jiaxin
– sequence: 4
  givenname: Chaoyi
  surname: Luo
  fullname: Luo, Chaoyi
– sequence: 5
  givenname: Xun
  surname: Rong
  fullname: Rong, Xun
– sequence: 6
  givenname: Gangsen
  surname: Yue
  fullname: Yue, Gangsen
– sequence: 7
  givenname: Hanyu
  surname: Liu
  fullname: Liu, Hanyu
– sequence: 8
  givenname: Jing
  surname: Wen
  fullname: Wen, Jing
– sequence: 9
  givenname: Jie
  surname: Ma
  fullname: Ma, Jie
  email: rubpmj@sina.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36581269$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv3CAUhVGVqpmk_Qstyy7iKQ8bzKKLKH2kUqRu2jXCcJ0w8oALeKL8-zIzaRbdJAiJK_GdI91zztBJiAEQ-kDJmhIqPm3W2foSC4TdmhHG1lRQRugrtKK9VA0lTJygFSFt3yih5Ck6y3lD6pE9fYNOueh6yoRaofkL3CbjTPEx4DhiesEueFOSt3dTTHGu1wTAwwNegrHF70wBh2dIeZnGOmMTHC53gP12nrw9-GQ8xoRvU1yCu69Mwgm24Pzh8y16PZopw7vH9xz9_vb119V1c_Pz-4-ry5vGtqQtDTOESxADUYq6XpBBDFwoZqykvWvF0I0tBWk6B61poaXj0PecCSfGGg_nip-jj0ffusKfBXLRW58tTFNdJy5Zc9rxGoYS5FmUyU6pTipJK_r-EV2GupKek9-a9KD_BVoBeQRsijknGJ8QSvS-Or3RT9XpfXX6WF1Vfv5PWbFDZCUZP71Af3nUQ0115yHtOQi2Bp_AFu2if9bjL3lDu1M
CitedBy_id crossref_primary_10_1080_09593330_2025_2450557
crossref_primary_10_1016_j_chemosphere_2024_142040
crossref_primary_10_3390_pr12112361
crossref_primary_10_1016_j_jwpe_2023_104466
Cites_doi 10.1061/(ASCE)0733-9372(2005)131:4(612)
10.1016/j.jhazmat.2010.03.039
10.1021/es903480k
10.1016/j.jhazmat.2020.124436
10.1080/20025891107717
10.1016/j.watres.2019.115221
10.1016/j.chemosphere.2020.128194
10.1021/es0263792
10.1016/0167-8809(89)90018-2
10.1016/j.cej.2019.04.213
10.1016/j.jhazmat.2015.11.011
10.1021/es062529n
10.1016/j.fct.2010.03.016
10.1021/acs.est.5b04323
10.3390/ijerph16152752
10.1016/j.watres.2008.06.022
10.1007/s11356-012-0859-3
10.1016/j.chemosphere.2017.10.101
10.1016/j.scitotenv.2006.08.028
10.1016/j.apcata.2016.11.001
10.1021/es204714w
10.1016/j.chemosphere.2017.09.148
10.1016/j.envres.2021.111371
10.2166/wst.2018.147
10.1016/j.cej.2018.08.013
10.1021/es062237m
10.1016/j.chemosphere.2008.08.043
10.1016/j.scitotenv.2007.06.030
10.1016/j.jece.2021.105627
10.1061/(ASCE)0733-9372(2001)127:4(337)
10.26599/JGSE.2015.9280018
10.1111/j.1745-6592.2010.01312.x
10.1016/j.chemosphere.2016.02.055
10.1128/aem.56.4.1169-1171.1990
10.1021/op010015x
10.1007/s11270-017-3322-8
10.1021/acs.est.1c08562
10.1063/1.555805
10.1080/15320383.2013.722142
10.1021/acs.est.8b00735
10.1007/s40726-019-00122-7
10.1002/awwa.1411
10.1016/S0045-6535(02)00330-2
10.1016/j.watres.2020.116401
10.1016/j.jhazmat.2008.07.110
10.1016/j.watres.2018.08.026
10.1021/acs.est.6b05392
10.1016/j.envpol.2017.09.085
10.1021/acs.est.9b01322
10.1016/j.cej.2020.124264
10.1029/2005WR004224
10.1016/j.chemosphere.2012.07.047
10.1080/713610970
10.1021/es00027a013
10.1021/es902595j
10.1021/jp0266648
10.1016/j.watres.2016.03.039
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2022.161201
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 36581269
10_1016_j_scitotenv_2022_161201
S004896972208305X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c404t-2a037e6b0991d860b6b3692ac718d46b5f41e7a5de4a4e41fb88326d6f0163393
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 03:40:21 EDT 2025
Thu Jul 10 18:43:13 EDT 2025
Wed Feb 19 02:24:02 EST 2025
Tue Jul 01 02:54:43 EDT 2025
Thu Apr 24 23:05:44 EDT 2025
Fri Feb 23 02:38:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil remediation
Peroxydisulfate
In-situ chemical oxidation
Contaminated site
Chlorinated hydrocarbon
Advanced oxidation process
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-2a037e6b0991d860b6b3692ac718d46b5f41e7a5de4a4e41fb88326d6f0163393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36581269
PQID 2759957971
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153781960
proquest_miscellaneous_2759957971
pubmed_primary_36581269
crossref_primary_10_1016_j_scitotenv_2022_161201
crossref_citationtrail_10_1016_j_scitotenv_2022_161201
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_161201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-20
PublicationDateYYYYMMDD 2023-03-20
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-20
  day: 20
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang, Wang, Liu, Wang, Zheng, Wu (bb0075) 2016; 304
Liang, Bruell, Marley, Sperry (bb0130) 2003; 12
Liu, He, Yang, Yao, Zhou (bb0140) 2021; 200
Yang, Wang, Yang, Shan, Zhang, Shao, Niu (bb0310) 2010; 179
Chapman, Parker (bb0025) 2005; 41
Li, Wei, Mak, Cai, Xu, Li, Yue (bb0110) 2009; 164
USEPA (bb0265) 2019
Matta, Hanna, Chiron (bb0180) 2007; 385
Sra, Thomson, Barker (bb0230) 2010; 44
Lynleigh and Love (bb0150) 2019; 111
Li, Han, Qian, Kong, Wang (bb0105) 2019; 16
Fagan, Villamena, Zweier, Weavers (bb0035) 2022; 56
Liang, Huang, Mohanty, Kurakalva (bb0120) 2008; 73
Waldemer, Tratnyek, Johnson, Nurmi (bb0280) 2007; 41
Yang, Banerjee, Brudvig, Kim, Pignatello (bb0320) 2018; 52
Yang, Ding, Zhou, Zhao, Ji, Wang, Chovelon, Xiu (bb0315) 2021; 263
Fu, Gao, Geng, Li, Wu, Ren (bb0045) 2019; 356
Westerhoff, Mezyk, Cooper, Minakata (bb0300) 2007; 41
Ozekin, Foundation (bb0200) 2016
Leistra, Boesten (bb0085) 1989; 26
Zhou, Liu, Sun, Lin, Ma, He, Ouyang (bb0340) 2019; 372
Ma, Yang, Jiang, Wen, Wang (bb0165) 2019; 389
Li, Han (bb0095) 2019; 41
Ma, Ma, Rong, Song, Wu, Lan, Feng, Qiu, Zhang (bb0160) 2021; 9
Liu, Zhang, Yin, Yang, Luo, Crittenden (bb0135) 2020; 388
Ma, Yang, Jiang, Xie, Li, Chen, Chen (bb0170) 2018; 190
Zhu (bb0345) 2005
Thomson, Neil, Nantes, Iseli, Ferreira, Ieda, Bechara, Freitas, Etelvino, Juliana (bb0250) 2017; 228
Sarathy, Salter, Nurmi, O’Brien Johnson, Johnson, Tratnyek (bb0215) 2010; 44
Zhang, Jiang, Shi-Hao, Chen, Kai, Song (bb0330) 2012; 19
Tong, Yuan, Ma, Jin, Liu, Cheng, Liu, Gan, Wang (bb0255) 2015; 50
Ma, Feng, Feng, Liao, Sun, Ma (bb0175) 2020; 171
Tardiff, Carson (bb0245) 2010; 48
Vella, Veronda (bb0275) 1992
Krembs, Siegrist, Crimi, Furrer, Petri (bb0080) 2010; 30
Nihemaiti, Permala, Croue (bb0195) 2020; 169
Ruiz, Yang, Lochbaum, Delafield, Pignatello, Li, Pedersen (bb0205) 2019; 53
Yu, Barker (bb0325) 2003; 107
Merrill, Suchomel, Varadhan, Asher, Deeb (bb0190) 2019; 5
Tratnyek, Sarathy, Fortuna (bb0260) 2008
Liang, Huang, Chen (bb0115) 2008; 42
Wu, Li, Qian, Chen (bb0305) 2013
Ma, Li, Yang, Li (bb0155) 2018; 2017
Sra, Thomson, Barker (bb0235) 2014; 23
Liang, Wang, Mohanty (bb0125) 2006; 370
Huang, Couttenye, Hoag (bb0065) 2002; 11
Wei, Villamena, Weavers (bb0295) 2017; 51
Anipsitakis, Dionysiou (bb0005) 2003; 37
Buxton, Greenstock, Helman, Ross (bb0020) 1988; 17
Stroo, Leeson, Marqusee, Johnson, Ward, Kavanaugh, Sale, Newell, Pennell, Lebrón (bb0240) 2012; 46
Luo, Jiang, Ma, Pang, Liu, Song, Guan, Li, Jin, Wu (bb0145) 2016; 96
Sra, Thomson, Barker (bb0225) 2011
Vannelli, Logan, Arciero, Hooper (bb0270) 1990; 56
Li, Han, Chun-Xiao, Gui (bb0100) 2015; 3
Gates-Anderson, Siegrist, Cline (bb0050) 2001; 127
Wang, Lan, Peng, Wang (bb0285) 2021; 408
Fang, Dionysiou, Zhou, Wang, Zhu, Fan, Cang, Wang (bb0040) 2013; 90
Watts, Teel (bb0290) 2005; 131
ITRC (bb0070) 2005
Singh, Lee (bb0220) 2001; 5
Betterton (bb0015) 1992; 26
Babcock, Harada, Lamichhane, Tsubota (bb0010) 2018; 233
Samin, Janssen (bb0210) 2012; 19
Zhou, Gao, Pang, Jiang, Yang, Ma, Yang, Duan, Guo (bb0335) 2018; 145
Levchuk, Màrquez, Sillanpää (bb0090) 2018; 192
Matzek, Carter (bb0185) 2016; 151
Danish, Gu, Lu, Brusseau, Ahmad, Naqvi, Farooq, Zaman, Fu, Miao (bb0030) 2017; 531
He, O'Shea (bb0055) 2020; 186
Huang, Couttenye, Hoag (bb0060) 2002; 49
Anipsitakis (10.1016/j.scitotenv.2022.161201_bb0005) 2003; 37
Krembs (10.1016/j.scitotenv.2022.161201_bb0080) 2010; 30
Wu (10.1016/j.scitotenv.2022.161201_bb0305) 2013
Matzek (10.1016/j.scitotenv.2022.161201_bb0185) 2016; 151
Sra (10.1016/j.scitotenv.2022.161201_bb0230) 2010; 44
Vella (10.1016/j.scitotenv.2022.161201_bb0275) 1992
Li (10.1016/j.scitotenv.2022.161201_bb0100) 2015; 3
Levchuk (10.1016/j.scitotenv.2022.161201_bb0090) 2018; 192
Babcock (10.1016/j.scitotenv.2022.161201_bb0010) 2018; 233
Ruiz (10.1016/j.scitotenv.2022.161201_bb0205) 2019; 53
Nihemaiti (10.1016/j.scitotenv.2022.161201_bb0195) 2020; 169
USEPA (10.1016/j.scitotenv.2022.161201_bb0265) 2019
Liang (10.1016/j.scitotenv.2022.161201_bb0115) 2008; 42
Ozekin (10.1016/j.scitotenv.2022.161201_bb0200) 2016
Tratnyek (10.1016/j.scitotenv.2022.161201_bb0260) 2008
Jiang (10.1016/j.scitotenv.2022.161201_bb0075) 2016; 304
Sra (10.1016/j.scitotenv.2022.161201_bb0235) 2014; 23
Yang (10.1016/j.scitotenv.2022.161201_bb0310) 2010; 179
Fagan (10.1016/j.scitotenv.2022.161201_bb0035) 2022; 56
Wei (10.1016/j.scitotenv.2022.161201_bb0295) 2017; 51
Huang (10.1016/j.scitotenv.2022.161201_bb0065) 2002; 11
Chapman (10.1016/j.scitotenv.2022.161201_bb0025) 2005; 41
Zhou (10.1016/j.scitotenv.2022.161201_bb0335) 2018; 145
Zhu (10.1016/j.scitotenv.2022.161201_bb0345) 2005
Li (10.1016/j.scitotenv.2022.161201_bb0110) 2009; 164
Liu (10.1016/j.scitotenv.2022.161201_bb0140) 2021; 200
ITRC (10.1016/j.scitotenv.2022.161201_bb0070) 2005
Waldemer (10.1016/j.scitotenv.2022.161201_bb0280) 2007; 41
Sra (10.1016/j.scitotenv.2022.161201_bb0225) 2011
Samin (10.1016/j.scitotenv.2022.161201_bb0210) 2012; 19
Tardiff (10.1016/j.scitotenv.2022.161201_bb0245) 2010; 48
Leistra (10.1016/j.scitotenv.2022.161201_bb0085) 1989; 26
Ma (10.1016/j.scitotenv.2022.161201_bb0165) 2019; 389
Liang (10.1016/j.scitotenv.2022.161201_bb0125) 2006; 370
Fu (10.1016/j.scitotenv.2022.161201_bb0045) 2019; 356
Betterton (10.1016/j.scitotenv.2022.161201_bb0015) 1992; 26
Zhang (10.1016/j.scitotenv.2022.161201_bb0330) 2012; 19
Zhou (10.1016/j.scitotenv.2022.161201_bb0340) 2019; 372
Lynleigh and Love (10.1016/j.scitotenv.2022.161201_bb0150) 2019; 111
Yu (10.1016/j.scitotenv.2022.161201_bb0325) 2003; 107
Huang (10.1016/j.scitotenv.2022.161201_bb0060) 2002; 49
Westerhoff (10.1016/j.scitotenv.2022.161201_bb0300) 2007; 41
Buxton (10.1016/j.scitotenv.2022.161201_bb0020) 1988; 17
Ma (10.1016/j.scitotenv.2022.161201_bb0160) 2021; 9
Stroo (10.1016/j.scitotenv.2022.161201_bb0240) 2012; 46
Wang (10.1016/j.scitotenv.2022.161201_bb0285) 2021; 408
Danish (10.1016/j.scitotenv.2022.161201_bb0030) 2017; 531
Gates-Anderson (10.1016/j.scitotenv.2022.161201_bb0050) 2001; 127
Yang (10.1016/j.scitotenv.2022.161201_bb0320) 2018; 52
Ma (10.1016/j.scitotenv.2022.161201_bb0175) 2020; 171
Sarathy (10.1016/j.scitotenv.2022.161201_bb0215) 2010; 44
Matta (10.1016/j.scitotenv.2022.161201_bb0180) 2007; 385
Liu (10.1016/j.scitotenv.2022.161201_bb0135) 2020; 388
Fang (10.1016/j.scitotenv.2022.161201_bb0040) 2013; 90
Liang (10.1016/j.scitotenv.2022.161201_bb0120) 2008; 73
Thomson (10.1016/j.scitotenv.2022.161201_bb0250) 2017; 228
Yang (10.1016/j.scitotenv.2022.161201_bb0315) 2021; 263
Li (10.1016/j.scitotenv.2022.161201_bb0095) 2019; 41
Ma (10.1016/j.scitotenv.2022.161201_bb0155) 2018; 2017
Luo (10.1016/j.scitotenv.2022.161201_bb0145) 2016; 96
Li (10.1016/j.scitotenv.2022.161201_bb0105) 2019; 16
Liang (10.1016/j.scitotenv.2022.161201_bb0130) 2003; 12
Tong (10.1016/j.scitotenv.2022.161201_bb0255) 2015; 50
Merrill (10.1016/j.scitotenv.2022.161201_bb0190) 2019; 5
Ma (10.1016/j.scitotenv.2022.161201_bb0170) 2018; 190
Singh (10.1016/j.scitotenv.2022.161201_bb0220) 2001; 5
Watts (10.1016/j.scitotenv.2022.161201_bb0290) 2005; 131
Vannelli (10.1016/j.scitotenv.2022.161201_bb0270) 1990; 56
He (10.1016/j.scitotenv.2022.161201_bb0055) 2020; 186
References_xml – volume: 263
  year: 2021
  ident: bb0315
  article-title: Direct oxidation of antibiotic trimethoprim by unactivated peroxymonosulfate via a nonradical transformation mechanism
  publication-title: Chemosphere
– volume: 171
  year: 2020
  ident: bb0175
  article-title: Characteristics and mechanisms of controlled-release KMnO_4 for groundwater remediation: experimental and modeling investigations
  publication-title: Water Res.
– volume: 408
  year: 2021
  ident: bb0285
  article-title: Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review
  publication-title: J. Hazard. Mater.
– volume: 44
  start-page: 787
  year: 2010
  end-page: 793
  ident: bb0215
  article-title: Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc
  publication-title: Environ. Sci. Technol.
– year: 2011
  ident: bb0225
  article-title: Persulfate Treatment of Gasoline-Range Organics
– volume: 46
  start-page: 6438
  year: 2012
  end-page: 6447
  ident: bb0240
  article-title: Chlorinated ethene source remediation: lessons learned
  publication-title: Environ. Sci. Technol.
– volume: 186
  year: 2020
  ident: bb0055
  article-title: Selective oxidation of H1-antihistamines by unactivated peroxymonosulfate (PMS): influence of inorganic anions and organic compounds
  publication-title: Water Res.
– start-page: 649
  year: 2013
  end-page: 652
  ident: bb0305
  publication-title: Groundwater Pollution in and Around a Paper Wastewater-irrigated Area, Northwest China
– volume: 19
  start-page: 3067
  year: 2012
  end-page: 3078
  ident: bb0210
  article-title: Transformation and biodegradation of 1,2,3-trichloropropane (TCP)
  publication-title: Environ. Sci. Pollut. Res.
– volume: 111
  start-page: 26
  year: 2019
  end-page: 33
  ident: bb0150
  article-title: 1,2,3-Trichloropropane: California's response to a persistent pollutant
  publication-title: J. Am. Water Works Assoc.
– volume: 151
  start-page: 178
  year: 2016
  end-page: 188
  ident: bb0185
  article-title: Activated persulfate for organic chemical degradation: a review
  publication-title: Chemosphere
– volume: 48
  start-page: 1488
  year: 2010
  end-page: 1510
  ident: bb0245
  article-title: Derivation of a reference dose and drinking water equivalent level for 1,2,3-trichloropropane
  publication-title: Food Chem. Toxicol.
– volume: 389
  year: 2019
  ident: bb0165
  article-title: Percarbonate persistence under different water chemistry conditions
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 42
  year: 2010
  end-page: 53
  ident: bb0080
  article-title: ISCO for groundwater remediation: analysis of field applications and performance
  publication-title: Groundw. Monit. Remediat.
– volume: 44
  start-page: 3098
  year: 2010
  end-page: 3104
  ident: bb0230
  article-title: Persistence of persulfate in uncontaminated aquifer materials
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 3729
  year: 2022
  end-page: 3738
  ident: bb0035
  article-title: In situ EPR spin trapping and competition kinetics demonstrate temperature-dependent mechanisms of synergistic radical production by ultrasonically activated persulfate
  publication-title: Environ. Sci. Technol.
– volume: 9
  year: 2021
  ident: bb0160
  article-title: Persulfate-based controlled release beads for in situ chemical oxidation of common organic pollutants
  publication-title: J. Environ. Chem. Eng.
– volume: 53
  start-page: 10845
  year: 2019
  end-page: 10854
  ident: bb0205
  article-title: Peroxymonosulfate oxidizes amino acids in water without activation
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 513
  year: 1988
  end-page: 886
  ident: bb0020
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (· OH/· O− in aqueous solution
  publication-title: J. Phys. Chem. Ref. Data
– volume: 200
  year: 2021
  ident: bb0140
  article-title: A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water
  publication-title: Environ. Res.
– volume: 50
  start-page: 214
  year: 2015
  end-page: 221
  ident: bb0255
  article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments
  publication-title: Environ. Sci. Technol.
– volume: 131
  start-page: 612
  year: 2005
  end-page: 622
  ident: bb0290
  article-title: Chemistry of modified Fenton's reagent (catalyzed H 2 O 2 propagations–CHP) for in situ soil and groundwater remediation
  publication-title: J. Environ. Eng.
– volume: 385
  start-page: 242
  year: 2007
  end-page: 251
  ident: bb0180
  article-title: Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals
  publication-title: Sci. Total Environ.
– volume: 388
  year: 2020
  ident: bb0135
  article-title: Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation
  publication-title: Chem. Eng. J.
– volume: 179
  start-page: 552
  year: 2010
  end-page: 558
  ident: bb0310
  article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide
  publication-title: J. Hazard. Mater.
– volume: 41
  start-page: 274
  year: 2019
  end-page: 278
  ident: bb0095
  article-title: Study of the degradation effect of 1,2,3-trichloropropane by different oxidation-reduction methods
  publication-title: Environ. Pollut. Control
– volume: 233
  start-page: 910
  year: 2018
  end-page: 915
  ident: bb0010
  article-title: Adsorption of 1, 2, 3-trichloropropane (TCP) to meet a MCL of 5 ppt
  publication-title: Environ. Pollut.
– year: 2019
  ident: bb0265
  article-title: Fifth Five-year Review Report
– volume: 23
  start-page: 820
  year: 2014
  end-page: 837
  ident: bb0235
  article-title: Stability of activated persulfate in the presence of aquifer solids
  publication-title: Soil Sediment Contam. Int. J.
– volume: 52
  start-page: 5911
  year: 2018
  end-page: 5919
  ident: bb0320
  article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 228
  year: 2019
  end-page: 237
  ident: bb0190
  article-title: Development and validation of technologies for remediation of 1,2,3-trichloropropane in groundwater
  publication-title: Curr. Pollut. Rep.
– volume: 356
  start-page: 1032
  year: 2019
  end-page: 1041
  ident: bb0045
  article-title: Degradation of three nonsteroidal anti-inflammatory drugs by UV/persulfate: degradation mechanisms, efficiency in effluents disposal - ScienceDirect
  publication-title: Chem. Eng. J.
– volume: 96
  start-page: 12
  year: 2016
  end-page: 21
  ident: bb0145
  article-title: Oxidation of the odorous compound 2, 4, 6-trichloroanisole by UV activated persulfate: kinetics, products, and pathways
  publication-title: Water Res.
– volume: 2017
  start-page: 340
  year: 2018
  end-page: 350
  ident: bb0155
  article-title: Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation of undesired degradation byproducts
  publication-title: Water Sci. Technol.
– volume: 5
  start-page: 599
  year: 2001
  end-page: 603
  ident: bb0220
  article-title: Permanganate: a green and versatile industrial oxidant
  publication-title: Org. Process Res. Dev.
– start-page: 75
  year: 1992
  end-page: 82
  ident: bb0275
  publication-title: Oxidation of Trichloroethylene: A Comparison of Potassium Permanganate and Fenton's Reagent
– volume: 145
  start-page: 210
  year: 2018
  end-page: 219
  ident: bb0335
  article-title: Oxidation of fluoroquinolone antibiotics by peroxymonosulfate without activation: kinetics, products, and antibacterial deactivation
  publication-title: Water Res.
– volume: 531
  start-page: 177
  year: 2017
  end-page: 186
  ident: bb0030
  article-title: An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite
  publication-title: Appl. Catal. A Gen.
– volume: 304
  start-page: 457
  year: 2016
  end-page: 466
  ident: bb0075
  article-title: The roles of polycarboxylates in Cr (VI)/sulfite reaction system: involvement of reactive oxygen species and intramolecular electron transfer
  publication-title: J. Hazard. Mater.
– volume: 3
  start-page: 156
  year: 2015
  end-page: 163
  ident: bb0100
  article-title: Comparison of 1,2,3-trichloropropane reduction and oxidation by nanoscale zero-valent iron, zinc and activated persulfate
  publication-title: J. Groundw. Sci. Eng.
– volume: 107
  start-page: 1313
  year: 2003
  end-page: 1324
  ident: bb0325
  article-title: Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism
  publication-title: J. Phys. Chem. A
– volume: 192
  start-page: 90
  year: 2018
  end-page: 104
  ident: bb0090
  article-title: Removal of natural organic matter (NOM) from water by ion exchange–a review
  publication-title: Chemosphere
– volume: 127
  start-page: 337
  year: 2001
  end-page: 347
  ident: bb0050
  article-title: Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils
  publication-title: J. Environ. Eng.
– volume: 164
  start-page: 26
  year: 2009
  end-page: 31
  ident: bb0110
  article-title: Degradation of diphenylamine by persulfate: performance optimization, kinetics and mechanism
  publication-title: J. Hazard. Mater.
– volume: 41
  start-page: 1010
  year: 2007
  end-page: 1015
  ident: bb0280
  article-title: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products
  publication-title: Environ. Sci. Technol.
– volume: 26
  start-page: 369
  year: 1989
  end-page: 389
  ident: bb0085
  article-title: Pesticide contamination of groundwater in western Europe
  publication-title: Agric. Ecosyst. Environ.
– start-page: 98
  year: 2005
  end-page: 99
  ident: bb0345
  publication-title: Groundwater Hydrology
– volume: 90
  start-page: 1573
  year: 2013
  end-page: 1580
  ident: bb0040
  article-title: Transformation of polychlorinated biphenyls by persulfate at ambient temperature
  publication-title: Chemosphere
– volume: 73
  start-page: 1540
  year: 2008
  end-page: 1543
  ident: bb0120
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere-Oxford-
– volume: 19
  start-page: 64
  year: 2012
  end-page: 68
  ident: bb0330
  article-title: Preliminary environmental investigation and risk assessment of an organic contaminated site
  publication-title: Saf. Environ. Eng.
– volume: 37
  start-page: 4790
  year: 2003
  ident: bb0005
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
– volume: 26
  start-page: 527
  year: 1992
  end-page: 532
  ident: bb0015
  article-title: Oxidation of alkyl sulfides by aqueous peroxymonosulfate
  publication-title: Environ. Sci. Technol.
– volume: 16
  start-page: 2752
  year: 2019
  ident: bb0105
  article-title: In situ persulfate oxidation of 1,2,3-trichloropropane in groundwater of North China Plain
  publication-title: Int. J. Environ. Res. Public Health
– volume: 11
  start-page: 447
  year: 2002
  end-page: 448
  ident: bb0065
  article-title: Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)
  publication-title: J.Soil Contam.
– volume: 12
  start-page: 207
  year: 2003
  end-page: 228
  ident: bb0130
  article-title: Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries
  publication-title: Soil Sediment Contam. Int. J.
– volume: 169
  year: 2020
  ident: bb0195
  article-title: Reactivity of unactivated peroxymonosulfate with nitrogenous compounds
  publication-title: Water Res.
– year: 2008
  ident: bb0260
  article-title: Fate and remediation of 1, 2, 3-trichloropropane. Monterey, CA: Proceedings of the Sixth International Conference on Remediation of Chlorinated and Recalcitrant Compounds
– volume: 51
  start-page: 3410
  year: 2017
  end-page: 3417
  ident: bb0295
  article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study
  publication-title: Environ. Sci. Technol.
– year: 2005
  ident: bb0070
  article-title: Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater
– volume: 372
  start-page: 836
  year: 2019
  end-page: 851
  ident: bb0340
  article-title: Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review
  publication-title: Chem. Eng. J.
– volume: 190
  start-page: 296
  year: 2018
  end-page: 306
  ident: bb0170
  article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water
  publication-title: Chemosphere
– volume: 56
  start-page: 1169
  year: 1990
  end-page: 1171
  ident: bb0270
  article-title: Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea
  publication-title: Appl. Environ. Microbiol.
– volume: 370
  start-page: 271
  year: 2006
  end-page: 277
  ident: bb0125
  article-title: Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C
  publication-title: Sci. Total Environ.
– volume: 228
  start-page: 146
  year: 2017
  ident: bb0250
  article-title: Natural persulfate activation for anthracene remediation in tropical environments
  publication-title: Water Air Soil Pollut.
– volume: 42
  start-page: 4091
  year: 2008
  end-page: 4100
  ident: bb0115
  article-title: Potential for activated persulfate degradation of BTEX contamination
  publication-title: Water Res.
– volume: 41
  start-page: 4640
  year: 2007
  end-page: 4646
  ident: bb0300
  article-title: Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates
  publication-title: Environ.Sci.Technol.
– volume: 41
  start-page: 2179
  year: 2005
  end-page: 2187
  ident: bb0025
  article-title: Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 413
  year: 2002
  end-page: 420
  ident: bb0060
  article-title: Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)
  publication-title: Chemosphere
– year: 2016
  ident: bb0200
  article-title: 1,2,3-Trichloropropane State of the Science
– volume: 131
  start-page: 612
  issue: 4
  year: 2005
  ident: 10.1016/j.scitotenv.2022.161201_bb0290
  article-title: Chemistry of modified Fenton's reagent (catalyzed H 2 O 2 propagations–CHP) for in situ soil and groundwater remediation
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2005)131:4(612)
– volume: 179
  start-page: 552
  issue: 1–3
  year: 2010
  ident: 10.1016/j.scitotenv.2022.161201_bb0310
  article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.03.039
– start-page: 649
  year: 2013
  ident: 10.1016/j.scitotenv.2022.161201_bb0305
– start-page: 98
  year: 2005
  ident: 10.1016/j.scitotenv.2022.161201_bb0345
– volume: 44
  start-page: 3098
  issue: 8
  year: 2010
  ident: 10.1016/j.scitotenv.2022.161201_bb0230
  article-title: Persistence of persulfate in uncontaminated aquifer materials
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903480k
– volume: 408
  year: 2021
  ident: 10.1016/j.scitotenv.2022.161201_bb0285
  article-title: Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124436
– volume: 11
  start-page: 447
  issue: 3
  year: 2002
  ident: 10.1016/j.scitotenv.2022.161201_bb0065
  article-title: Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)
  publication-title: J.Soil Contam.
  doi: 10.1080/20025891107717
– volume: 169
  year: 2020
  ident: 10.1016/j.scitotenv.2022.161201_bb0195
  article-title: Reactivity of unactivated peroxymonosulfate with nitrogenous compounds
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115221
– volume: 263
  year: 2021
  ident: 10.1016/j.scitotenv.2022.161201_bb0315
  article-title: Direct oxidation of antibiotic trimethoprim by unactivated peroxymonosulfate via a nonradical transformation mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128194
– volume: 37
  start-page: 4790
  issue: 20
  year: 2003
  ident: 10.1016/j.scitotenv.2022.161201_bb0005
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0263792
– volume: 26
  start-page: 369
  issue: 3–4
  year: 1989
  ident: 10.1016/j.scitotenv.2022.161201_bb0085
  article-title: Pesticide contamination of groundwater in western Europe
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/0167-8809(89)90018-2
– volume: 372
  start-page: 836
  year: 2019
  ident: 10.1016/j.scitotenv.2022.161201_bb0340
  article-title: Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.213
– volume: 304
  start-page: 457
  year: 2016
  ident: 10.1016/j.scitotenv.2022.161201_bb0075
  article-title: The roles of polycarboxylates in Cr (VI)/sulfite reaction system: involvement of reactive oxygen species and intramolecular electron transfer
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.11.011
– volume: 41
  start-page: 4640
  issue: 13
  year: 2007
  ident: 10.1016/j.scitotenv.2022.161201_bb0300
  article-title: Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates
  publication-title: Environ.Sci.Technol.
  doi: 10.1021/es062529n
– volume: 48
  start-page: 1488
  issue: 6
  year: 2010
  ident: 10.1016/j.scitotenv.2022.161201_bb0245
  article-title: Derivation of a reference dose and drinking water equivalent level for 1,2,3-trichloropropane
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2010.03.016
– volume: 50
  start-page: 214
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2022.161201_bb0255
  article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04323
– year: 2011
  ident: 10.1016/j.scitotenv.2022.161201_bb0225
– volume: 16
  start-page: 2752
  issue: 15
  year: 2019
  ident: 10.1016/j.scitotenv.2022.161201_bb0105
  article-title: In situ persulfate oxidation of 1,2,3-trichloropropane in groundwater of North China Plain
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16152752
– volume: 42
  start-page: 4091
  issue: 15
  year: 2008
  ident: 10.1016/j.scitotenv.2022.161201_bb0115
  article-title: Potential for activated persulfate degradation of BTEX contamination
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.06.022
– volume: 19
  start-page: 3067
  issue: 8
  year: 2012
  ident: 10.1016/j.scitotenv.2022.161201_bb0210
  article-title: Transformation and biodegradation of 1,2,3-trichloropropane (TCP)
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-012-0859-3
– year: 2005
  ident: 10.1016/j.scitotenv.2022.161201_bb0070
– year: 2019
  ident: 10.1016/j.scitotenv.2022.161201_bb0265
– volume: 192
  start-page: 90
  year: 2018
  ident: 10.1016/j.scitotenv.2022.161201_bb0090
  article-title: Removal of natural organic matter (NOM) from water by ion exchange–a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.10.101
– volume: 370
  start-page: 271
  issue: 2–3
  year: 2006
  ident: 10.1016/j.scitotenv.2022.161201_bb0125
  article-title: Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2006.08.028
– volume: 531
  start-page: 177
  year: 2017
  ident: 10.1016/j.scitotenv.2022.161201_bb0030
  article-title: An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2016.11.001
– volume: 46
  start-page: 6438
  issue: 12
  year: 2012
  ident: 10.1016/j.scitotenv.2022.161201_bb0240
  article-title: Chlorinated ethene source remediation: lessons learned
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es204714w
– volume: 190
  start-page: 296
  year: 2018
  ident: 10.1016/j.scitotenv.2022.161201_bb0170
  article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.09.148
– volume: 171
  issue: Mar. 15
  year: 2020
  ident: 10.1016/j.scitotenv.2022.161201_bb0175
  article-title: Characteristics and mechanisms of controlled-release KMnO_4 for groundwater remediation: experimental and modeling investigations
  publication-title: Water Res.
– volume: 200
  year: 2021
  ident: 10.1016/j.scitotenv.2022.161201_bb0140
  article-title: A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.111371
– volume: 2017
  start-page: 340
  issue: 2
  year: 2018
  ident: 10.1016/j.scitotenv.2022.161201_bb0155
  article-title: Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation of undesired degradation byproducts
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2018.147
– volume: 356
  start-page: 1032
  year: 2019
  ident: 10.1016/j.scitotenv.2022.161201_bb0045
  article-title: Degradation of three nonsteroidal anti-inflammatory drugs by UV/persulfate: degradation mechanisms, efficiency in effluents disposal - ScienceDirect
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.013
– volume: 41
  start-page: 1010
  issue: 3
  year: 2007
  ident: 10.1016/j.scitotenv.2022.161201_bb0280
  article-title: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062237m
– volume: 73
  start-page: 1540
  issue: 9
  year: 2008
  ident: 10.1016/j.scitotenv.2022.161201_bb0120
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere-Oxford-
  doi: 10.1016/j.chemosphere.2008.08.043
– volume: 19
  start-page: 64
  issue: 06
  year: 2012
  ident: 10.1016/j.scitotenv.2022.161201_bb0330
  article-title: Preliminary environmental investigation and risk assessment of an organic contaminated site
  publication-title: Saf. Environ. Eng.
– volume: 385
  start-page: 242
  issue: 1–3
  year: 2007
  ident: 10.1016/j.scitotenv.2022.161201_bb0180
  article-title: Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.06.030
– volume: 9
  issue: 5
  year: 2021
  ident: 10.1016/j.scitotenv.2022.161201_bb0160
  article-title: Persulfate-based controlled release beads for in situ chemical oxidation of common organic pollutants
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105627
– volume: 127
  start-page: 337
  issue: 4
  year: 2001
  ident: 10.1016/j.scitotenv.2022.161201_bb0050
  article-title: Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2001)127:4(337)
– year: 2016
  ident: 10.1016/j.scitotenv.2022.161201_bb0200
– volume: 3
  start-page: 156
  issue: 2
  year: 2015
  ident: 10.1016/j.scitotenv.2022.161201_bb0100
  article-title: Comparison of 1,2,3-trichloropropane reduction and oxidation by nanoscale zero-valent iron, zinc and activated persulfate
  publication-title: J. Groundw. Sci. Eng.
  doi: 10.26599/JGSE.2015.9280018
– volume: 30
  start-page: 42
  issue: 4
  year: 2010
  ident: 10.1016/j.scitotenv.2022.161201_bb0080
  article-title: ISCO for groundwater remediation: analysis of field applications and performance
  publication-title: Groundw. Monit. Remediat.
  doi: 10.1111/j.1745-6592.2010.01312.x
– volume: 151
  start-page: 178
  issue: May
  year: 2016
  ident: 10.1016/j.scitotenv.2022.161201_bb0185
  article-title: Activated persulfate for organic chemical degradation: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.02.055
– volume: 56
  start-page: 1169
  issue: 4
  year: 1990
  ident: 10.1016/j.scitotenv.2022.161201_bb0270
  article-title: Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.56.4.1169-1171.1990
– volume: 5
  start-page: 599
  issue: 6
  year: 2001
  ident: 10.1016/j.scitotenv.2022.161201_bb0220
  article-title: Permanganate: a green and versatile industrial oxidant
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op010015x
– volume: 228
  start-page: 146
  issue: 4
  year: 2017
  ident: 10.1016/j.scitotenv.2022.161201_bb0250
  article-title: Natural persulfate activation for anthracene remediation in tropical environments
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-017-3322-8
– volume: 56
  start-page: 3729
  issue: 6
  year: 2022
  ident: 10.1016/j.scitotenv.2022.161201_bb0035
  article-title: In situ EPR spin trapping and competition kinetics demonstrate temperature-dependent mechanisms of synergistic radical production by ultrasonically activated persulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c08562
– volume: 17
  start-page: 513
  issue: 2
  year: 1988
  ident: 10.1016/j.scitotenv.2022.161201_bb0020
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (· OH/· O− in aqueous solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555805
– volume: 23
  start-page: 820
  issue: 8
  year: 2014
  ident: 10.1016/j.scitotenv.2022.161201_bb0235
  article-title: Stability of activated persulfate in the presence of aquifer solids
  publication-title: Soil Sediment Contam. Int. J.
  doi: 10.1080/15320383.2013.722142
– volume: 52
  start-page: 5911
  issue: 10
  year: 2018
  ident: 10.1016/j.scitotenv.2022.161201_bb0320
  article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00735
– volume: 389
  year: 2019
  ident: 10.1016/j.scitotenv.2022.161201_bb0165
  article-title: Percarbonate persistence under different water chemistry conditions
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 228
  issue: 4
  year: 2019
  ident: 10.1016/j.scitotenv.2022.161201_bb0190
  article-title: Development and validation of technologies for remediation of 1,2,3-trichloropropane in groundwater
  publication-title: Curr. Pollut. Rep.
  doi: 10.1007/s40726-019-00122-7
– volume: 111
  start-page: 26
  issue: 12
  year: 2019
  ident: 10.1016/j.scitotenv.2022.161201_bb0150
  article-title: 1,2,3-Trichloropropane: California's response to a persistent pollutant
  publication-title: J. Am. Water Works Assoc.
  doi: 10.1002/awwa.1411
– volume: 41
  start-page: 274
  issue: 03
  year: 2019
  ident: 10.1016/j.scitotenv.2022.161201_bb0095
  article-title: Study of the degradation effect of 1,2,3-trichloropropane by different oxidation-reduction methods
  publication-title: Environ. Pollut. Control
– volume: 49
  start-page: 413
  issue: 4
  year: 2002
  ident: 10.1016/j.scitotenv.2022.161201_bb0060
  article-title: Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00330-2
– volume: 186
  year: 2020
  ident: 10.1016/j.scitotenv.2022.161201_bb0055
  article-title: Selective oxidation of H1-antihistamines by unactivated peroxymonosulfate (PMS): influence of inorganic anions and organic compounds
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116401
– volume: 164
  start-page: 26
  issue: 1
  year: 2009
  ident: 10.1016/j.scitotenv.2022.161201_bb0110
  article-title: Degradation of diphenylamine by persulfate: performance optimization, kinetics and mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.07.110
– volume: 145
  start-page: 210
  year: 2018
  ident: 10.1016/j.scitotenv.2022.161201_bb0335
  article-title: Oxidation of fluoroquinolone antibiotics by peroxymonosulfate without activation: kinetics, products, and antibacterial deactivation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.08.026
– volume: 51
  start-page: 3410
  issue: 6
  year: 2017
  ident: 10.1016/j.scitotenv.2022.161201_bb0295
  article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05392
– volume: 233
  start-page: 910
  year: 2018
  ident: 10.1016/j.scitotenv.2022.161201_bb0010
  article-title: Adsorption of 1, 2, 3-trichloropropane (TCP) to meet a MCL of 5 ppt
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.09.085
– start-page: 75
  year: 1992
  ident: 10.1016/j.scitotenv.2022.161201_bb0275
– volume: 53
  start-page: 10845
  issue: 18
  year: 2019
  ident: 10.1016/j.scitotenv.2022.161201_bb0205
  article-title: Peroxymonosulfate oxidizes amino acids in water without activation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01322
– year: 2008
  ident: 10.1016/j.scitotenv.2022.161201_bb0260
– volume: 388
  year: 2020
  ident: 10.1016/j.scitotenv.2022.161201_bb0135
  article-title: Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124264
– volume: 41
  start-page: 2179
  issue: 12
  year: 2005
  ident: 10.1016/j.scitotenv.2022.161201_bb0025
  article-title: Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004224
– volume: 90
  start-page: 1573
  issue: 5
  year: 2013
  ident: 10.1016/j.scitotenv.2022.161201_bb0040
  article-title: Transformation of polychlorinated biphenyls by persulfate at ambient temperature
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.07.047
– volume: 12
  start-page: 207
  issue: 2
  year: 2003
  ident: 10.1016/j.scitotenv.2022.161201_bb0130
  article-title: Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries
  publication-title: Soil Sediment Contam. Int. J.
  doi: 10.1080/713610970
– volume: 26
  start-page: 527
  issue: 3
  year: 1992
  ident: 10.1016/j.scitotenv.2022.161201_bb0015
  article-title: Oxidation of alkyl sulfides by aqueous peroxymonosulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00027a013
– volume: 44
  start-page: 787
  issue: 2
  year: 2010
  ident: 10.1016/j.scitotenv.2022.161201_bb0215
  article-title: Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902595j
– volume: 107
  start-page: 1313
  issue: 9
  year: 2003
  ident: 10.1016/j.scitotenv.2022.161201_bb0325
  article-title: Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0266648
– volume: 96
  start-page: 12
  year: 2016
  ident: 10.1016/j.scitotenv.2022.161201_bb0145
  article-title: Oxidation of the odorous compound 2, 4, 6-trichloroanisole by UV activated persulfate: kinetics, products, and pathways
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.03.039
SSID ssj0000781
Score 2.4384515
Snippet Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 161201
SubjectTerms Advanced oxidation process
Chlorinated hydrocarbon
Contaminated site
electron paramagnetic resonance spectroscopy
environment
groundwater
hydrogen peroxide
In-situ chemical oxidation
oxidation
Peroxydisulfate
pollutants
potassium permanganate
sodium percarbonate
Soil remediation
species
sulfates
temperature
Title Degradation of 1,2,3-trichloropropane by unactivated persulfate and the implications for groundwater remediation
URI https://dx.doi.org/10.1016/j.scitotenv.2022.161201
https://www.ncbi.nlm.nih.gov/pubmed/36581269
https://www.proquest.com/docview/2759957971
https://www.proquest.com/docview/3153781960
Volume 865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9KRRBE9LR6tpYIPnbbzcdmL30rteX0sA9i8d5C9pLQk7J7tHctfenf3pnL7tWC2gef9oMkhMxk5jfJfAB8Cl4pF73PBhWVMPOcZ5XRRWacyWPhHPfLbPvfTvTwVH0dF-M1OOxiYcitspX9SaYvpXX7Z69dzb3ZdEoxvmpgtCmFQBiRF2OKYFclcfnu7b2bByWzSbfMuLGx9QMfLxx33iA2vUJDUYhdRD-irQ7zBw31NwS61ETHL-FFCyHZQZrlK1gLdQ-epqKSNz3YOLqPXcNm7ea97MHzdETHUuTRa5h9pkQRqaYSayLjO2JHZpSx_wyN-AbngZIisOqGLWoKf7hCWOrZDPHi4jziO3O1Z4gf2fQ3r3SGIJhRqEjtr7HNBaPzR5_o_wZOj49-HA6ztgBDNlG5mmfC5bIMGqlouB_ovNKV1Ea4CSo0r3RVRMVD6QoflFNB8VgNUEBoryMur5RGbsB63dThHTAfRORonATnSmVwREcXtBPpgpR5VLIPult0O2mzk1ORjHPbuaH9sitqWaKWTdTqQ77qOEsJOh7vst9R1T7gNYtq5PHOHzs-sLgT6XoFadEsLq0oKXlbacp_tJGoYJAh0Wzsw9vERKtZSwSDXGjz_n-mtwnP8EuSl5zIt2B9frEIHxA2zavt5b7YhicHX0bDE3qOvv8c3QGW8Bsb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH6ioKqVEIJh6QAtRuqRQLzEGXNDLBoocAJpbpYztsUglIxgBsSlv73P42QAqZRDb1HyHFl-22f7LQA_nRXCeGuTThFamFlKk0LJLFFGpT4zhtpJtf2LS9m9Fme9rDcDh00uTAirrG1_tOkTa12_2atXc284GIQcX9FRUuWMIYxIs94nmBOovqGNwe7vlziPUM0mXjOjZiP5myAv_PGoQnD6iDtFxnYR_rC6PcxfXNR7EHTiik4WYaHGkOQgTnMJZlzZgs-xq-RzC1aPX5LXkKzW3ocWzMczOhJTj5ZheBQqRcSmSqTyhO6wHZ6Ekv03uIuvcB5oKhwpnsm4DPkPj4hLLRkiYBzfeXwmprQEASQZvApLJ4iCScgVKe0T0tyTcABpowCswPXJ8dVhN6k7MCR9kYpRwkzKcyeRjYrajkwLWXCpmOmjR7NCFpkX1OUms04Y4QT1RQcthLTS4_JyrvgqzJZV6b4BsY55irsTZ0wuFP7RhBvaPjeO89QL3gbZLLru1-XJQ5eMO93Eod3qKbd04JaO3GpDOh04jBU6Ph6y33BVvxE2jX7k48HbjRxoVMVwv4K8qMYPmuWheluu8n_QcPQwKJC4b2zDWhSi6aw5okHKpFr_n-ltwZfu1cW5Pj-9_LUBX_ELDyFzLN2E2dH92H1HDDUqfkx05A8EKxsG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+1%2C2%2C3-trichloropropane+by+unactivated+persulfate+and+the+implications+for+groundwater+remediation&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liu%2C+Shuyu&rft.au=Gu%2C+Chunyun&rft.au=Zhang%2C+Jiaxin&rft.au=Luo%2C+Chaoyi&rft.date=2023-03-20&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=865&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.161201&rft.externalDocID=S004896972208305X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon