Degradation of 1,2,3-trichloropropane by unactivated persulfate and the implications for groundwater remediation
Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be “activated” to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system wa...
Saved in:
Published in | The Science of the total environment Vol. 865; p. 161201 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
20.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be “activated” to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO4·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO3−, Cl− and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation.
[Display omitted]
•Without additional activator, PS can effectively degrade 1,2,3-TCP in various water samples.•·OH and SO4·- are responsible for 1,2,3-TCP degradation by PS without explicit activation.•50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM).•Unactivated PS is a good candidate for the low permeable zone remediation. |
---|---|
AbstractList | Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be “activated” to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO4·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO3−, Cl− and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation.
[Display omitted]
•Without additional activator, PS can effectively degrade 1,2,3-TCP in various water samples.•·OH and SO4·- are responsible for 1,2,3-TCP degradation by PS without explicit activation.•50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM).•Unactivated PS is a good candidate for the low permeable zone remediation. Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be “activated” to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO₄·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO₃⁻, Cl⁻ and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation. Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be "activated" to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO ·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO , Cl and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation. Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be "activated" to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO4·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO3-, Cl- and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation.Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be "activated" to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 μM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO4·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO3-, Cl- and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation. |
ArticleNumber | 161201 |
Author | Luo, Chaoyi Yue, Gangsen Gu, Chunyun Liu, Shuyu Zhang, Jiaxin Rong, Xun Wen, Jing Liu, Hanyu Ma, Jie |
Author_xml | – sequence: 1 givenname: Shuyu surname: Liu fullname: Liu, Shuyu – sequence: 2 givenname: Chunyun surname: Gu fullname: Gu, Chunyun – sequence: 3 givenname: Jiaxin surname: Zhang fullname: Zhang, Jiaxin – sequence: 4 givenname: Chaoyi surname: Luo fullname: Luo, Chaoyi – sequence: 5 givenname: Xun surname: Rong fullname: Rong, Xun – sequence: 6 givenname: Gangsen surname: Yue fullname: Yue, Gangsen – sequence: 7 givenname: Hanyu surname: Liu fullname: Liu, Hanyu – sequence: 8 givenname: Jing surname: Wen fullname: Wen, Jing – sequence: 9 givenname: Jie surname: Ma fullname: Ma, Jie email: rubpmj@sina.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36581269$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv3CAUhVGVqpmk_Qstyy7iKQ8bzKKLKH2kUqRu2jXCcJ0w8oALeKL8-zIzaRbdJAiJK_GdI91zztBJiAEQ-kDJmhIqPm3W2foSC4TdmhHG1lRQRugrtKK9VA0lTJygFSFt3yih5Ck6y3lD6pE9fYNOueh6yoRaofkL3CbjTPEx4DhiesEueFOSt3dTTHGu1wTAwwNegrHF70wBh2dIeZnGOmMTHC53gP12nrw9-GQ8xoRvU1yCu69Mwgm24Pzh8y16PZopw7vH9xz9_vb119V1c_Pz-4-ry5vGtqQtDTOESxADUYq6XpBBDFwoZqykvWvF0I0tBWk6B61poaXj0PecCSfGGg_nip-jj0ffusKfBXLRW58tTFNdJy5Zc9rxGoYS5FmUyU6pTipJK_r-EV2GupKek9-a9KD_BVoBeQRsijknGJ8QSvS-Or3RT9XpfXX6WF1Vfv5PWbFDZCUZP71Af3nUQ0115yHtOQi2Bp_AFu2if9bjL3lDu1M |
CitedBy_id | crossref_primary_10_1080_09593330_2025_2450557 crossref_primary_10_1016_j_chemosphere_2024_142040 crossref_primary_10_3390_pr12112361 crossref_primary_10_1016_j_jwpe_2023_104466 |
Cites_doi | 10.1061/(ASCE)0733-9372(2005)131:4(612) 10.1016/j.jhazmat.2010.03.039 10.1021/es903480k 10.1016/j.jhazmat.2020.124436 10.1080/20025891107717 10.1016/j.watres.2019.115221 10.1016/j.chemosphere.2020.128194 10.1021/es0263792 10.1016/0167-8809(89)90018-2 10.1016/j.cej.2019.04.213 10.1016/j.jhazmat.2015.11.011 10.1021/es062529n 10.1016/j.fct.2010.03.016 10.1021/acs.est.5b04323 10.3390/ijerph16152752 10.1016/j.watres.2008.06.022 10.1007/s11356-012-0859-3 10.1016/j.chemosphere.2017.10.101 10.1016/j.scitotenv.2006.08.028 10.1016/j.apcata.2016.11.001 10.1021/es204714w 10.1016/j.chemosphere.2017.09.148 10.1016/j.envres.2021.111371 10.2166/wst.2018.147 10.1016/j.cej.2018.08.013 10.1021/es062237m 10.1016/j.chemosphere.2008.08.043 10.1016/j.scitotenv.2007.06.030 10.1016/j.jece.2021.105627 10.1061/(ASCE)0733-9372(2001)127:4(337) 10.26599/JGSE.2015.9280018 10.1111/j.1745-6592.2010.01312.x 10.1016/j.chemosphere.2016.02.055 10.1128/aem.56.4.1169-1171.1990 10.1021/op010015x 10.1007/s11270-017-3322-8 10.1021/acs.est.1c08562 10.1063/1.555805 10.1080/15320383.2013.722142 10.1021/acs.est.8b00735 10.1007/s40726-019-00122-7 10.1002/awwa.1411 10.1016/S0045-6535(02)00330-2 10.1016/j.watres.2020.116401 10.1016/j.jhazmat.2008.07.110 10.1016/j.watres.2018.08.026 10.1021/acs.est.6b05392 10.1016/j.envpol.2017.09.085 10.1021/acs.est.9b01322 10.1016/j.cej.2020.124264 10.1029/2005WR004224 10.1016/j.chemosphere.2012.07.047 10.1080/713610970 10.1021/es00027a013 10.1021/es902595j 10.1021/jp0266648 10.1016/j.watres.2016.03.039 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2022.161201 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 36581269 10_1016_j_scitotenv_2022_161201 S004896972208305X |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-2a037e6b0991d860b6b3692ac718d46b5f41e7a5de4a4e41fb88326d6f0163393 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 03:40:21 EDT 2025 Thu Jul 10 18:43:13 EDT 2025 Wed Feb 19 02:24:02 EST 2025 Tue Jul 01 02:54:43 EDT 2025 Thu Apr 24 23:05:44 EDT 2025 Fri Feb 23 02:38:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil remediation Peroxydisulfate In-situ chemical oxidation Contaminated site Chlorinated hydrocarbon Advanced oxidation process |
Language | English |
License | Copyright © 2022. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-2a037e6b0991d860b6b3692ac718d46b5f41e7a5de4a4e41fb88326d6f0163393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 36581269 |
PQID | 2759957971 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153781960 proquest_miscellaneous_2759957971 pubmed_primary_36581269 crossref_primary_10_1016_j_scitotenv_2022_161201 crossref_citationtrail_10_1016_j_scitotenv_2022_161201 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_161201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-20 |
PublicationDateYYYYMMDD | 2023-03-20 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jiang, Wang, Liu, Wang, Zheng, Wu (bb0075) 2016; 304 Liang, Bruell, Marley, Sperry (bb0130) 2003; 12 Liu, He, Yang, Yao, Zhou (bb0140) 2021; 200 Yang, Wang, Yang, Shan, Zhang, Shao, Niu (bb0310) 2010; 179 Chapman, Parker (bb0025) 2005; 41 Li, Wei, Mak, Cai, Xu, Li, Yue (bb0110) 2009; 164 USEPA (bb0265) 2019 Matta, Hanna, Chiron (bb0180) 2007; 385 Sra, Thomson, Barker (bb0230) 2010; 44 Lynleigh and Love (bb0150) 2019; 111 Li, Han, Qian, Kong, Wang (bb0105) 2019; 16 Fagan, Villamena, Zweier, Weavers (bb0035) 2022; 56 Liang, Huang, Mohanty, Kurakalva (bb0120) 2008; 73 Waldemer, Tratnyek, Johnson, Nurmi (bb0280) 2007; 41 Yang, Banerjee, Brudvig, Kim, Pignatello (bb0320) 2018; 52 Yang, Ding, Zhou, Zhao, Ji, Wang, Chovelon, Xiu (bb0315) 2021; 263 Fu, Gao, Geng, Li, Wu, Ren (bb0045) 2019; 356 Westerhoff, Mezyk, Cooper, Minakata (bb0300) 2007; 41 Ozekin, Foundation (bb0200) 2016 Leistra, Boesten (bb0085) 1989; 26 Zhou, Liu, Sun, Lin, Ma, He, Ouyang (bb0340) 2019; 372 Ma, Yang, Jiang, Wen, Wang (bb0165) 2019; 389 Li, Han (bb0095) 2019; 41 Ma, Ma, Rong, Song, Wu, Lan, Feng, Qiu, Zhang (bb0160) 2021; 9 Liu, Zhang, Yin, Yang, Luo, Crittenden (bb0135) 2020; 388 Ma, Yang, Jiang, Xie, Li, Chen, Chen (bb0170) 2018; 190 Zhu (bb0345) 2005 Thomson, Neil, Nantes, Iseli, Ferreira, Ieda, Bechara, Freitas, Etelvino, Juliana (bb0250) 2017; 228 Sarathy, Salter, Nurmi, O’Brien Johnson, Johnson, Tratnyek (bb0215) 2010; 44 Zhang, Jiang, Shi-Hao, Chen, Kai, Song (bb0330) 2012; 19 Tong, Yuan, Ma, Jin, Liu, Cheng, Liu, Gan, Wang (bb0255) 2015; 50 Ma, Feng, Feng, Liao, Sun, Ma (bb0175) 2020; 171 Tardiff, Carson (bb0245) 2010; 48 Vella, Veronda (bb0275) 1992 Krembs, Siegrist, Crimi, Furrer, Petri (bb0080) 2010; 30 Nihemaiti, Permala, Croue (bb0195) 2020; 169 Ruiz, Yang, Lochbaum, Delafield, Pignatello, Li, Pedersen (bb0205) 2019; 53 Yu, Barker (bb0325) 2003; 107 Merrill, Suchomel, Varadhan, Asher, Deeb (bb0190) 2019; 5 Tratnyek, Sarathy, Fortuna (bb0260) 2008 Liang, Huang, Chen (bb0115) 2008; 42 Wu, Li, Qian, Chen (bb0305) 2013 Ma, Li, Yang, Li (bb0155) 2018; 2017 Sra, Thomson, Barker (bb0235) 2014; 23 Liang, Wang, Mohanty (bb0125) 2006; 370 Huang, Couttenye, Hoag (bb0065) 2002; 11 Wei, Villamena, Weavers (bb0295) 2017; 51 Anipsitakis, Dionysiou (bb0005) 2003; 37 Buxton, Greenstock, Helman, Ross (bb0020) 1988; 17 Stroo, Leeson, Marqusee, Johnson, Ward, Kavanaugh, Sale, Newell, Pennell, Lebrón (bb0240) 2012; 46 Luo, Jiang, Ma, Pang, Liu, Song, Guan, Li, Jin, Wu (bb0145) 2016; 96 Sra, Thomson, Barker (bb0225) 2011 Vannelli, Logan, Arciero, Hooper (bb0270) 1990; 56 Li, Han, Chun-Xiao, Gui (bb0100) 2015; 3 Gates-Anderson, Siegrist, Cline (bb0050) 2001; 127 Wang, Lan, Peng, Wang (bb0285) 2021; 408 Fang, Dionysiou, Zhou, Wang, Zhu, Fan, Cang, Wang (bb0040) 2013; 90 Watts, Teel (bb0290) 2005; 131 ITRC (bb0070) 2005 Singh, Lee (bb0220) 2001; 5 Betterton (bb0015) 1992; 26 Babcock, Harada, Lamichhane, Tsubota (bb0010) 2018; 233 Samin, Janssen (bb0210) 2012; 19 Zhou, Gao, Pang, Jiang, Yang, Ma, Yang, Duan, Guo (bb0335) 2018; 145 Levchuk, Màrquez, Sillanpää (bb0090) 2018; 192 Matzek, Carter (bb0185) 2016; 151 Danish, Gu, Lu, Brusseau, Ahmad, Naqvi, Farooq, Zaman, Fu, Miao (bb0030) 2017; 531 He, O'Shea (bb0055) 2020; 186 Huang, Couttenye, Hoag (bb0060) 2002; 49 Anipsitakis (10.1016/j.scitotenv.2022.161201_bb0005) 2003; 37 Krembs (10.1016/j.scitotenv.2022.161201_bb0080) 2010; 30 Wu (10.1016/j.scitotenv.2022.161201_bb0305) 2013 Matzek (10.1016/j.scitotenv.2022.161201_bb0185) 2016; 151 Sra (10.1016/j.scitotenv.2022.161201_bb0230) 2010; 44 Vella (10.1016/j.scitotenv.2022.161201_bb0275) 1992 Li (10.1016/j.scitotenv.2022.161201_bb0100) 2015; 3 Levchuk (10.1016/j.scitotenv.2022.161201_bb0090) 2018; 192 Babcock (10.1016/j.scitotenv.2022.161201_bb0010) 2018; 233 Ruiz (10.1016/j.scitotenv.2022.161201_bb0205) 2019; 53 Nihemaiti (10.1016/j.scitotenv.2022.161201_bb0195) 2020; 169 USEPA (10.1016/j.scitotenv.2022.161201_bb0265) 2019 Liang (10.1016/j.scitotenv.2022.161201_bb0115) 2008; 42 Ozekin (10.1016/j.scitotenv.2022.161201_bb0200) 2016 Tratnyek (10.1016/j.scitotenv.2022.161201_bb0260) 2008 Jiang (10.1016/j.scitotenv.2022.161201_bb0075) 2016; 304 Sra (10.1016/j.scitotenv.2022.161201_bb0235) 2014; 23 Yang (10.1016/j.scitotenv.2022.161201_bb0310) 2010; 179 Fagan (10.1016/j.scitotenv.2022.161201_bb0035) 2022; 56 Wei (10.1016/j.scitotenv.2022.161201_bb0295) 2017; 51 Huang (10.1016/j.scitotenv.2022.161201_bb0065) 2002; 11 Chapman (10.1016/j.scitotenv.2022.161201_bb0025) 2005; 41 Zhou (10.1016/j.scitotenv.2022.161201_bb0335) 2018; 145 Zhu (10.1016/j.scitotenv.2022.161201_bb0345) 2005 Li (10.1016/j.scitotenv.2022.161201_bb0110) 2009; 164 Liu (10.1016/j.scitotenv.2022.161201_bb0140) 2021; 200 ITRC (10.1016/j.scitotenv.2022.161201_bb0070) 2005 Waldemer (10.1016/j.scitotenv.2022.161201_bb0280) 2007; 41 Sra (10.1016/j.scitotenv.2022.161201_bb0225) 2011 Samin (10.1016/j.scitotenv.2022.161201_bb0210) 2012; 19 Tardiff (10.1016/j.scitotenv.2022.161201_bb0245) 2010; 48 Leistra (10.1016/j.scitotenv.2022.161201_bb0085) 1989; 26 Ma (10.1016/j.scitotenv.2022.161201_bb0165) 2019; 389 Liang (10.1016/j.scitotenv.2022.161201_bb0125) 2006; 370 Fu (10.1016/j.scitotenv.2022.161201_bb0045) 2019; 356 Betterton (10.1016/j.scitotenv.2022.161201_bb0015) 1992; 26 Zhang (10.1016/j.scitotenv.2022.161201_bb0330) 2012; 19 Zhou (10.1016/j.scitotenv.2022.161201_bb0340) 2019; 372 Lynleigh and Love (10.1016/j.scitotenv.2022.161201_bb0150) 2019; 111 Yu (10.1016/j.scitotenv.2022.161201_bb0325) 2003; 107 Huang (10.1016/j.scitotenv.2022.161201_bb0060) 2002; 49 Westerhoff (10.1016/j.scitotenv.2022.161201_bb0300) 2007; 41 Buxton (10.1016/j.scitotenv.2022.161201_bb0020) 1988; 17 Ma (10.1016/j.scitotenv.2022.161201_bb0160) 2021; 9 Stroo (10.1016/j.scitotenv.2022.161201_bb0240) 2012; 46 Wang (10.1016/j.scitotenv.2022.161201_bb0285) 2021; 408 Danish (10.1016/j.scitotenv.2022.161201_bb0030) 2017; 531 Gates-Anderson (10.1016/j.scitotenv.2022.161201_bb0050) 2001; 127 Yang (10.1016/j.scitotenv.2022.161201_bb0320) 2018; 52 Ma (10.1016/j.scitotenv.2022.161201_bb0175) 2020; 171 Sarathy (10.1016/j.scitotenv.2022.161201_bb0215) 2010; 44 Matta (10.1016/j.scitotenv.2022.161201_bb0180) 2007; 385 Liu (10.1016/j.scitotenv.2022.161201_bb0135) 2020; 388 Fang (10.1016/j.scitotenv.2022.161201_bb0040) 2013; 90 Liang (10.1016/j.scitotenv.2022.161201_bb0120) 2008; 73 Thomson (10.1016/j.scitotenv.2022.161201_bb0250) 2017; 228 Yang (10.1016/j.scitotenv.2022.161201_bb0315) 2021; 263 Li (10.1016/j.scitotenv.2022.161201_bb0095) 2019; 41 Ma (10.1016/j.scitotenv.2022.161201_bb0155) 2018; 2017 Luo (10.1016/j.scitotenv.2022.161201_bb0145) 2016; 96 Li (10.1016/j.scitotenv.2022.161201_bb0105) 2019; 16 Liang (10.1016/j.scitotenv.2022.161201_bb0130) 2003; 12 Tong (10.1016/j.scitotenv.2022.161201_bb0255) 2015; 50 Merrill (10.1016/j.scitotenv.2022.161201_bb0190) 2019; 5 Ma (10.1016/j.scitotenv.2022.161201_bb0170) 2018; 190 Singh (10.1016/j.scitotenv.2022.161201_bb0220) 2001; 5 Watts (10.1016/j.scitotenv.2022.161201_bb0290) 2005; 131 Vannelli (10.1016/j.scitotenv.2022.161201_bb0270) 1990; 56 He (10.1016/j.scitotenv.2022.161201_bb0055) 2020; 186 |
References_xml | – volume: 263 year: 2021 ident: bb0315 article-title: Direct oxidation of antibiotic trimethoprim by unactivated peroxymonosulfate via a nonradical transformation mechanism publication-title: Chemosphere – volume: 171 year: 2020 ident: bb0175 article-title: Characteristics and mechanisms of controlled-release KMnO_4 for groundwater remediation: experimental and modeling investigations publication-title: Water Res. – volume: 408 year: 2021 ident: bb0285 article-title: Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review publication-title: J. Hazard. Mater. – volume: 44 start-page: 787 year: 2010 end-page: 793 ident: bb0215 article-title: Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc publication-title: Environ. Sci. Technol. – year: 2011 ident: bb0225 article-title: Persulfate Treatment of Gasoline-Range Organics – volume: 46 start-page: 6438 year: 2012 end-page: 6447 ident: bb0240 article-title: Chlorinated ethene source remediation: lessons learned publication-title: Environ. Sci. Technol. – volume: 186 year: 2020 ident: bb0055 article-title: Selective oxidation of H1-antihistamines by unactivated peroxymonosulfate (PMS): influence of inorganic anions and organic compounds publication-title: Water Res. – start-page: 649 year: 2013 end-page: 652 ident: bb0305 publication-title: Groundwater Pollution in and Around a Paper Wastewater-irrigated Area, Northwest China – volume: 19 start-page: 3067 year: 2012 end-page: 3078 ident: bb0210 article-title: Transformation and biodegradation of 1,2,3-trichloropropane (TCP) publication-title: Environ. Sci. Pollut. Res. – volume: 111 start-page: 26 year: 2019 end-page: 33 ident: bb0150 article-title: 1,2,3-Trichloropropane: California's response to a persistent pollutant publication-title: J. Am. Water Works Assoc. – volume: 151 start-page: 178 year: 2016 end-page: 188 ident: bb0185 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere – volume: 48 start-page: 1488 year: 2010 end-page: 1510 ident: bb0245 article-title: Derivation of a reference dose and drinking water equivalent level for 1,2,3-trichloropropane publication-title: Food Chem. Toxicol. – volume: 389 year: 2019 ident: bb0165 article-title: Percarbonate persistence under different water chemistry conditions publication-title: Chem. Eng. J. – volume: 30 start-page: 42 year: 2010 end-page: 53 ident: bb0080 article-title: ISCO for groundwater remediation: analysis of field applications and performance publication-title: Groundw. Monit. Remediat. – volume: 44 start-page: 3098 year: 2010 end-page: 3104 ident: bb0230 article-title: Persistence of persulfate in uncontaminated aquifer materials publication-title: Environ. Sci. Technol. – volume: 56 start-page: 3729 year: 2022 end-page: 3738 ident: bb0035 article-title: In situ EPR spin trapping and competition kinetics demonstrate temperature-dependent mechanisms of synergistic radical production by ultrasonically activated persulfate publication-title: Environ. Sci. Technol. – volume: 9 year: 2021 ident: bb0160 article-title: Persulfate-based controlled release beads for in situ chemical oxidation of common organic pollutants publication-title: J. Environ. Chem. Eng. – volume: 53 start-page: 10845 year: 2019 end-page: 10854 ident: bb0205 article-title: Peroxymonosulfate oxidizes amino acids in water without activation publication-title: Environ. Sci. Technol. – volume: 17 start-page: 513 year: 1988 end-page: 886 ident: bb0020 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (· OH/· O− in aqueous solution publication-title: J. Phys. Chem. Ref. Data – volume: 200 year: 2021 ident: bb0140 article-title: A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water publication-title: Environ. Res. – volume: 50 start-page: 214 year: 2015 end-page: 221 ident: bb0255 article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments publication-title: Environ. Sci. Technol. – volume: 131 start-page: 612 year: 2005 end-page: 622 ident: bb0290 article-title: Chemistry of modified Fenton's reagent (catalyzed H 2 O 2 propagations–CHP) for in situ soil and groundwater remediation publication-title: J. Environ. Eng. – volume: 385 start-page: 242 year: 2007 end-page: 251 ident: bb0180 article-title: Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals publication-title: Sci. Total Environ. – volume: 388 year: 2020 ident: bb0135 article-title: Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation publication-title: Chem. Eng. J. – volume: 179 start-page: 552 year: 2010 end-page: 558 ident: bb0310 article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. – volume: 41 start-page: 274 year: 2019 end-page: 278 ident: bb0095 article-title: Study of the degradation effect of 1,2,3-trichloropropane by different oxidation-reduction methods publication-title: Environ. Pollut. Control – volume: 233 start-page: 910 year: 2018 end-page: 915 ident: bb0010 article-title: Adsorption of 1, 2, 3-trichloropropane (TCP) to meet a MCL of 5 ppt publication-title: Environ. Pollut. – year: 2019 ident: bb0265 article-title: Fifth Five-year Review Report – volume: 23 start-page: 820 year: 2014 end-page: 837 ident: bb0235 article-title: Stability of activated persulfate in the presence of aquifer solids publication-title: Soil Sediment Contam. Int. J. – volume: 52 start-page: 5911 year: 2018 end-page: 5919 ident: bb0320 article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate publication-title: Environ. Sci. Technol. – volume: 5 start-page: 228 year: 2019 end-page: 237 ident: bb0190 article-title: Development and validation of technologies for remediation of 1,2,3-trichloropropane in groundwater publication-title: Curr. Pollut. Rep. – volume: 356 start-page: 1032 year: 2019 end-page: 1041 ident: bb0045 article-title: Degradation of three nonsteroidal anti-inflammatory drugs by UV/persulfate: degradation mechanisms, efficiency in effluents disposal - ScienceDirect publication-title: Chem. Eng. J. – volume: 96 start-page: 12 year: 2016 end-page: 21 ident: bb0145 article-title: Oxidation of the odorous compound 2, 4, 6-trichloroanisole by UV activated persulfate: kinetics, products, and pathways publication-title: Water Res. – volume: 2017 start-page: 340 year: 2018 end-page: 350 ident: bb0155 article-title: Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation of undesired degradation byproducts publication-title: Water Sci. Technol. – volume: 5 start-page: 599 year: 2001 end-page: 603 ident: bb0220 article-title: Permanganate: a green and versatile industrial oxidant publication-title: Org. Process Res. Dev. – start-page: 75 year: 1992 end-page: 82 ident: bb0275 publication-title: Oxidation of Trichloroethylene: A Comparison of Potassium Permanganate and Fenton's Reagent – volume: 145 start-page: 210 year: 2018 end-page: 219 ident: bb0335 article-title: Oxidation of fluoroquinolone antibiotics by peroxymonosulfate without activation: kinetics, products, and antibacterial deactivation publication-title: Water Res. – volume: 531 start-page: 177 year: 2017 end-page: 186 ident: bb0030 article-title: An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite publication-title: Appl. Catal. A Gen. – volume: 304 start-page: 457 year: 2016 end-page: 466 ident: bb0075 article-title: The roles of polycarboxylates in Cr (VI)/sulfite reaction system: involvement of reactive oxygen species and intramolecular electron transfer publication-title: J. Hazard. Mater. – volume: 3 start-page: 156 year: 2015 end-page: 163 ident: bb0100 article-title: Comparison of 1,2,3-trichloropropane reduction and oxidation by nanoscale zero-valent iron, zinc and activated persulfate publication-title: J. Groundw. Sci. Eng. – volume: 107 start-page: 1313 year: 2003 end-page: 1324 ident: bb0325 article-title: Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism publication-title: J. Phys. Chem. A – volume: 192 start-page: 90 year: 2018 end-page: 104 ident: bb0090 article-title: Removal of natural organic matter (NOM) from water by ion exchange–a review publication-title: Chemosphere – volume: 127 start-page: 337 year: 2001 end-page: 347 ident: bb0050 article-title: Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils publication-title: J. Environ. Eng. – volume: 164 start-page: 26 year: 2009 end-page: 31 ident: bb0110 article-title: Degradation of diphenylamine by persulfate: performance optimization, kinetics and mechanism publication-title: J. Hazard. Mater. – volume: 41 start-page: 1010 year: 2007 end-page: 1015 ident: bb0280 article-title: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products publication-title: Environ. Sci. Technol. – volume: 26 start-page: 369 year: 1989 end-page: 389 ident: bb0085 article-title: Pesticide contamination of groundwater in western Europe publication-title: Agric. Ecosyst. Environ. – start-page: 98 year: 2005 end-page: 99 ident: bb0345 publication-title: Groundwater Hydrology – volume: 90 start-page: 1573 year: 2013 end-page: 1580 ident: bb0040 article-title: Transformation of polychlorinated biphenyls by persulfate at ambient temperature publication-title: Chemosphere – volume: 73 start-page: 1540 year: 2008 end-page: 1543 ident: bb0120 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere-Oxford- – volume: 19 start-page: 64 year: 2012 end-page: 68 ident: bb0330 article-title: Preliminary environmental investigation and risk assessment of an organic contaminated site publication-title: Saf. Environ. Eng. – volume: 37 start-page: 4790 year: 2003 ident: bb0005 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. – volume: 26 start-page: 527 year: 1992 end-page: 532 ident: bb0015 article-title: Oxidation of alkyl sulfides by aqueous peroxymonosulfate publication-title: Environ. Sci. Technol. – volume: 16 start-page: 2752 year: 2019 ident: bb0105 article-title: In situ persulfate oxidation of 1,2,3-trichloropropane in groundwater of North China Plain publication-title: Int. J. Environ. Res. Public Health – volume: 11 start-page: 447 year: 2002 end-page: 448 ident: bb0065 article-title: Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) publication-title: J.Soil Contam. – volume: 12 start-page: 207 year: 2003 end-page: 228 ident: bb0130 article-title: Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries publication-title: Soil Sediment Contam. Int. J. – volume: 169 year: 2020 ident: bb0195 article-title: Reactivity of unactivated peroxymonosulfate with nitrogenous compounds publication-title: Water Res. – year: 2008 ident: bb0260 article-title: Fate and remediation of 1, 2, 3-trichloropropane. Monterey, CA: Proceedings of the Sixth International Conference on Remediation of Chlorinated and Recalcitrant Compounds – volume: 51 start-page: 3410 year: 2017 end-page: 3417 ident: bb0295 article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study publication-title: Environ. Sci. Technol. – year: 2005 ident: bb0070 article-title: Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater – volume: 372 start-page: 836 year: 2019 end-page: 851 ident: bb0340 article-title: Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review publication-title: Chem. Eng. J. – volume: 190 start-page: 296 year: 2018 end-page: 306 ident: bb0170 article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water publication-title: Chemosphere – volume: 56 start-page: 1169 year: 1990 end-page: 1171 ident: bb0270 article-title: Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea publication-title: Appl. Environ. Microbiol. – volume: 370 start-page: 271 year: 2006 end-page: 277 ident: bb0125 article-title: Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C publication-title: Sci. Total Environ. – volume: 228 start-page: 146 year: 2017 ident: bb0250 article-title: Natural persulfate activation for anthracene remediation in tropical environments publication-title: Water Air Soil Pollut. – volume: 42 start-page: 4091 year: 2008 end-page: 4100 ident: bb0115 article-title: Potential for activated persulfate degradation of BTEX contamination publication-title: Water Res. – volume: 41 start-page: 4640 year: 2007 end-page: 4646 ident: bb0300 article-title: Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates publication-title: Environ.Sci.Technol. – volume: 41 start-page: 2179 year: 2005 end-page: 2187 ident: bb0025 article-title: Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation publication-title: Water Resour. Res. – volume: 49 start-page: 413 year: 2002 end-page: 420 ident: bb0060 article-title: Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) publication-title: Chemosphere – year: 2016 ident: bb0200 article-title: 1,2,3-Trichloropropane State of the Science – volume: 131 start-page: 612 issue: 4 year: 2005 ident: 10.1016/j.scitotenv.2022.161201_bb0290 article-title: Chemistry of modified Fenton's reagent (catalyzed H 2 O 2 propagations–CHP) for in situ soil and groundwater remediation publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2005)131:4(612) – volume: 179 start-page: 552 issue: 1–3 year: 2010 ident: 10.1016/j.scitotenv.2022.161201_bb0310 article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.03.039 – start-page: 649 year: 2013 ident: 10.1016/j.scitotenv.2022.161201_bb0305 – start-page: 98 year: 2005 ident: 10.1016/j.scitotenv.2022.161201_bb0345 – volume: 44 start-page: 3098 issue: 8 year: 2010 ident: 10.1016/j.scitotenv.2022.161201_bb0230 article-title: Persistence of persulfate in uncontaminated aquifer materials publication-title: Environ. Sci. Technol. doi: 10.1021/es903480k – volume: 408 year: 2021 ident: 10.1016/j.scitotenv.2022.161201_bb0285 article-title: Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124436 – volume: 11 start-page: 447 issue: 3 year: 2002 ident: 10.1016/j.scitotenv.2022.161201_bb0065 article-title: Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) publication-title: J.Soil Contam. doi: 10.1080/20025891107717 – volume: 169 year: 2020 ident: 10.1016/j.scitotenv.2022.161201_bb0195 article-title: Reactivity of unactivated peroxymonosulfate with nitrogenous compounds publication-title: Water Res. doi: 10.1016/j.watres.2019.115221 – volume: 263 year: 2021 ident: 10.1016/j.scitotenv.2022.161201_bb0315 article-title: Direct oxidation of antibiotic trimethoprim by unactivated peroxymonosulfate via a nonradical transformation mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128194 – volume: 37 start-page: 4790 issue: 20 year: 2003 ident: 10.1016/j.scitotenv.2022.161201_bb0005 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 26 start-page: 369 issue: 3–4 year: 1989 ident: 10.1016/j.scitotenv.2022.161201_bb0085 article-title: Pesticide contamination of groundwater in western Europe publication-title: Agric. Ecosyst. Environ. doi: 10.1016/0167-8809(89)90018-2 – volume: 372 start-page: 836 year: 2019 ident: 10.1016/j.scitotenv.2022.161201_bb0340 article-title: Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.213 – volume: 304 start-page: 457 year: 2016 ident: 10.1016/j.scitotenv.2022.161201_bb0075 article-title: The roles of polycarboxylates in Cr (VI)/sulfite reaction system: involvement of reactive oxygen species and intramolecular electron transfer publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.11.011 – volume: 41 start-page: 4640 issue: 13 year: 2007 ident: 10.1016/j.scitotenv.2022.161201_bb0300 article-title: Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates publication-title: Environ.Sci.Technol. doi: 10.1021/es062529n – volume: 48 start-page: 1488 issue: 6 year: 2010 ident: 10.1016/j.scitotenv.2022.161201_bb0245 article-title: Derivation of a reference dose and drinking water equivalent level for 1,2,3-trichloropropane publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2010.03.016 – volume: 50 start-page: 214 issue: 1 year: 2015 ident: 10.1016/j.scitotenv.2022.161201_bb0255 article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04323 – year: 2011 ident: 10.1016/j.scitotenv.2022.161201_bb0225 – volume: 16 start-page: 2752 issue: 15 year: 2019 ident: 10.1016/j.scitotenv.2022.161201_bb0105 article-title: In situ persulfate oxidation of 1,2,3-trichloropropane in groundwater of North China Plain publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16152752 – volume: 42 start-page: 4091 issue: 15 year: 2008 ident: 10.1016/j.scitotenv.2022.161201_bb0115 article-title: Potential for activated persulfate degradation of BTEX contamination publication-title: Water Res. doi: 10.1016/j.watres.2008.06.022 – volume: 19 start-page: 3067 issue: 8 year: 2012 ident: 10.1016/j.scitotenv.2022.161201_bb0210 article-title: Transformation and biodegradation of 1,2,3-trichloropropane (TCP) publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-0859-3 – year: 2005 ident: 10.1016/j.scitotenv.2022.161201_bb0070 – year: 2019 ident: 10.1016/j.scitotenv.2022.161201_bb0265 – volume: 192 start-page: 90 year: 2018 ident: 10.1016/j.scitotenv.2022.161201_bb0090 article-title: Removal of natural organic matter (NOM) from water by ion exchange–a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.101 – volume: 370 start-page: 271 issue: 2–3 year: 2006 ident: 10.1016/j.scitotenv.2022.161201_bb0125 article-title: Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2006.08.028 – volume: 531 start-page: 177 year: 2017 ident: 10.1016/j.scitotenv.2022.161201_bb0030 article-title: An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2016.11.001 – volume: 46 start-page: 6438 issue: 12 year: 2012 ident: 10.1016/j.scitotenv.2022.161201_bb0240 article-title: Chlorinated ethene source remediation: lessons learned publication-title: Environ. Sci. Technol. doi: 10.1021/es204714w – volume: 190 start-page: 296 year: 2018 ident: 10.1016/j.scitotenv.2022.161201_bb0170 article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.148 – volume: 171 issue: Mar. 15 year: 2020 ident: 10.1016/j.scitotenv.2022.161201_bb0175 article-title: Characteristics and mechanisms of controlled-release KMnO_4 for groundwater remediation: experimental and modeling investigations publication-title: Water Res. – volume: 200 year: 2021 ident: 10.1016/j.scitotenv.2022.161201_bb0140 article-title: A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water publication-title: Environ. Res. doi: 10.1016/j.envres.2021.111371 – volume: 2017 start-page: 340 issue: 2 year: 2018 ident: 10.1016/j.scitotenv.2022.161201_bb0155 article-title: Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation of undesired degradation byproducts publication-title: Water Sci. Technol. doi: 10.2166/wst.2018.147 – volume: 356 start-page: 1032 year: 2019 ident: 10.1016/j.scitotenv.2022.161201_bb0045 article-title: Degradation of three nonsteroidal anti-inflammatory drugs by UV/persulfate: degradation mechanisms, efficiency in effluents disposal - ScienceDirect publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.013 – volume: 41 start-page: 1010 issue: 3 year: 2007 ident: 10.1016/j.scitotenv.2022.161201_bb0280 article-title: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products publication-title: Environ. Sci. Technol. doi: 10.1021/es062237m – volume: 73 start-page: 1540 issue: 9 year: 2008 ident: 10.1016/j.scitotenv.2022.161201_bb0120 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere-Oxford- doi: 10.1016/j.chemosphere.2008.08.043 – volume: 19 start-page: 64 issue: 06 year: 2012 ident: 10.1016/j.scitotenv.2022.161201_bb0330 article-title: Preliminary environmental investigation and risk assessment of an organic contaminated site publication-title: Saf. Environ. Eng. – volume: 385 start-page: 242 issue: 1–3 year: 2007 ident: 10.1016/j.scitotenv.2022.161201_bb0180 article-title: Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.06.030 – volume: 9 issue: 5 year: 2021 ident: 10.1016/j.scitotenv.2022.161201_bb0160 article-title: Persulfate-based controlled release beads for in situ chemical oxidation of common organic pollutants publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105627 – volume: 127 start-page: 337 issue: 4 year: 2001 ident: 10.1016/j.scitotenv.2022.161201_bb0050 article-title: Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2001)127:4(337) – year: 2016 ident: 10.1016/j.scitotenv.2022.161201_bb0200 – volume: 3 start-page: 156 issue: 2 year: 2015 ident: 10.1016/j.scitotenv.2022.161201_bb0100 article-title: Comparison of 1,2,3-trichloropropane reduction and oxidation by nanoscale zero-valent iron, zinc and activated persulfate publication-title: J. Groundw. Sci. Eng. doi: 10.26599/JGSE.2015.9280018 – volume: 30 start-page: 42 issue: 4 year: 2010 ident: 10.1016/j.scitotenv.2022.161201_bb0080 article-title: ISCO for groundwater remediation: analysis of field applications and performance publication-title: Groundw. Monit. Remediat. doi: 10.1111/j.1745-6592.2010.01312.x – volume: 151 start-page: 178 issue: May year: 2016 ident: 10.1016/j.scitotenv.2022.161201_bb0185 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.055 – volume: 56 start-page: 1169 issue: 4 year: 1990 ident: 10.1016/j.scitotenv.2022.161201_bb0270 article-title: Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.56.4.1169-1171.1990 – volume: 5 start-page: 599 issue: 6 year: 2001 ident: 10.1016/j.scitotenv.2022.161201_bb0220 article-title: Permanganate: a green and versatile industrial oxidant publication-title: Org. Process Res. Dev. doi: 10.1021/op010015x – volume: 228 start-page: 146 issue: 4 year: 2017 ident: 10.1016/j.scitotenv.2022.161201_bb0250 article-title: Natural persulfate activation for anthracene remediation in tropical environments publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-017-3322-8 – volume: 56 start-page: 3729 issue: 6 year: 2022 ident: 10.1016/j.scitotenv.2022.161201_bb0035 article-title: In situ EPR spin trapping and competition kinetics demonstrate temperature-dependent mechanisms of synergistic radical production by ultrasonically activated persulfate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08562 – volume: 17 start-page: 513 issue: 2 year: 1988 ident: 10.1016/j.scitotenv.2022.161201_bb0020 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (· OH/· O− in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 23 start-page: 820 issue: 8 year: 2014 ident: 10.1016/j.scitotenv.2022.161201_bb0235 article-title: Stability of activated persulfate in the presence of aquifer solids publication-title: Soil Sediment Contam. Int. J. doi: 10.1080/15320383.2013.722142 – volume: 52 start-page: 5911 issue: 10 year: 2018 ident: 10.1016/j.scitotenv.2022.161201_bb0320 article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00735 – volume: 389 year: 2019 ident: 10.1016/j.scitotenv.2022.161201_bb0165 article-title: Percarbonate persistence under different water chemistry conditions publication-title: Chem. Eng. J. – volume: 5 start-page: 228 issue: 4 year: 2019 ident: 10.1016/j.scitotenv.2022.161201_bb0190 article-title: Development and validation of technologies for remediation of 1,2,3-trichloropropane in groundwater publication-title: Curr. Pollut. Rep. doi: 10.1007/s40726-019-00122-7 – volume: 111 start-page: 26 issue: 12 year: 2019 ident: 10.1016/j.scitotenv.2022.161201_bb0150 article-title: 1,2,3-Trichloropropane: California's response to a persistent pollutant publication-title: J. Am. Water Works Assoc. doi: 10.1002/awwa.1411 – volume: 41 start-page: 274 issue: 03 year: 2019 ident: 10.1016/j.scitotenv.2022.161201_bb0095 article-title: Study of the degradation effect of 1,2,3-trichloropropane by different oxidation-reduction methods publication-title: Environ. Pollut. Control – volume: 49 start-page: 413 issue: 4 year: 2002 ident: 10.1016/j.scitotenv.2022.161201_bb0060 article-title: Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00330-2 – volume: 186 year: 2020 ident: 10.1016/j.scitotenv.2022.161201_bb0055 article-title: Selective oxidation of H1-antihistamines by unactivated peroxymonosulfate (PMS): influence of inorganic anions and organic compounds publication-title: Water Res. doi: 10.1016/j.watres.2020.116401 – volume: 164 start-page: 26 issue: 1 year: 2009 ident: 10.1016/j.scitotenv.2022.161201_bb0110 article-title: Degradation of diphenylamine by persulfate: performance optimization, kinetics and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.07.110 – volume: 145 start-page: 210 year: 2018 ident: 10.1016/j.scitotenv.2022.161201_bb0335 article-title: Oxidation of fluoroquinolone antibiotics by peroxymonosulfate without activation: kinetics, products, and antibacterial deactivation publication-title: Water Res. doi: 10.1016/j.watres.2018.08.026 – volume: 51 start-page: 3410 issue: 6 year: 2017 ident: 10.1016/j.scitotenv.2022.161201_bb0295 article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05392 – volume: 233 start-page: 910 year: 2018 ident: 10.1016/j.scitotenv.2022.161201_bb0010 article-title: Adsorption of 1, 2, 3-trichloropropane (TCP) to meet a MCL of 5 ppt publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.09.085 – start-page: 75 year: 1992 ident: 10.1016/j.scitotenv.2022.161201_bb0275 – volume: 53 start-page: 10845 issue: 18 year: 2019 ident: 10.1016/j.scitotenv.2022.161201_bb0205 article-title: Peroxymonosulfate oxidizes amino acids in water without activation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01322 – year: 2008 ident: 10.1016/j.scitotenv.2022.161201_bb0260 – volume: 388 year: 2020 ident: 10.1016/j.scitotenv.2022.161201_bb0135 article-title: Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124264 – volume: 41 start-page: 2179 issue: 12 year: 2005 ident: 10.1016/j.scitotenv.2022.161201_bb0025 article-title: Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation publication-title: Water Resour. Res. doi: 10.1029/2005WR004224 – volume: 90 start-page: 1573 issue: 5 year: 2013 ident: 10.1016/j.scitotenv.2022.161201_bb0040 article-title: Transformation of polychlorinated biphenyls by persulfate at ambient temperature publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.07.047 – volume: 12 start-page: 207 issue: 2 year: 2003 ident: 10.1016/j.scitotenv.2022.161201_bb0130 article-title: Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries publication-title: Soil Sediment Contam. Int. J. doi: 10.1080/713610970 – volume: 26 start-page: 527 issue: 3 year: 1992 ident: 10.1016/j.scitotenv.2022.161201_bb0015 article-title: Oxidation of alkyl sulfides by aqueous peroxymonosulfate publication-title: Environ. Sci. Technol. doi: 10.1021/es00027a013 – volume: 44 start-page: 787 issue: 2 year: 2010 ident: 10.1016/j.scitotenv.2022.161201_bb0215 article-title: Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc publication-title: Environ. Sci. Technol. doi: 10.1021/es902595j – volume: 107 start-page: 1313 issue: 9 year: 2003 ident: 10.1016/j.scitotenv.2022.161201_bb0325 article-title: Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism publication-title: J. Phys. Chem. A doi: 10.1021/jp0266648 – volume: 96 start-page: 12 year: 2016 ident: 10.1016/j.scitotenv.2022.161201_bb0145 article-title: Oxidation of the odorous compound 2, 4, 6-trichloroanisole by UV activated persulfate: kinetics, products, and pathways publication-title: Water Res. doi: 10.1016/j.watres.2016.03.039 |
SSID | ssj0000781 |
Score | 2.4384515 |
Snippet | Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 161201 |
SubjectTerms | Advanced oxidation process Chlorinated hydrocarbon Contaminated site electron paramagnetic resonance spectroscopy environment groundwater hydrogen peroxide In-situ chemical oxidation oxidation Peroxydisulfate pollutants potassium permanganate sodium percarbonate Soil remediation species sulfates temperature |
Title | Degradation of 1,2,3-trichloropropane by unactivated persulfate and the implications for groundwater remediation |
URI | https://dx.doi.org/10.1016/j.scitotenv.2022.161201 https://www.ncbi.nlm.nih.gov/pubmed/36581269 https://www.proquest.com/docview/2759957971 https://www.proquest.com/docview/3153781960 |
Volume | 865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9KRRBE9LR6tpYIPnbbzcdmL30rteX0sA9i8d5C9pLQk7J7tHctfenf3pnL7tWC2gef9oMkhMxk5jfJfAB8Cl4pF73PBhWVMPOcZ5XRRWacyWPhHPfLbPvfTvTwVH0dF-M1OOxiYcitspX9SaYvpXX7Z69dzb3ZdEoxvmpgtCmFQBiRF2OKYFclcfnu7b2bByWzSbfMuLGx9QMfLxx33iA2vUJDUYhdRD-irQ7zBw31NwS61ETHL-FFCyHZQZrlK1gLdQ-epqKSNz3YOLqPXcNm7ea97MHzdETHUuTRa5h9pkQRqaYSayLjO2JHZpSx_wyN-AbngZIisOqGLWoKf7hCWOrZDPHi4jziO3O1Z4gf2fQ3r3SGIJhRqEjtr7HNBaPzR5_o_wZOj49-HA6ztgBDNlG5mmfC5bIMGqlouB_ovNKV1Ea4CSo0r3RVRMVD6QoflFNB8VgNUEBoryMur5RGbsB63dThHTAfRORonATnSmVwREcXtBPpgpR5VLIPult0O2mzk1ORjHPbuaH9sitqWaKWTdTqQ77qOEsJOh7vst9R1T7gNYtq5PHOHzs-sLgT6XoFadEsLq0oKXlbacp_tJGoYJAh0Wzsw9vERKtZSwSDXGjz_n-mtwnP8EuSl5zIt2B9frEIHxA2zavt5b7YhicHX0bDE3qOvv8c3QGW8Bsb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH6ioKqVEIJh6QAtRuqRQLzEGXNDLBoocAJpbpYztsUglIxgBsSlv73P42QAqZRDb1HyHFl-22f7LQA_nRXCeGuTThFamFlKk0LJLFFGpT4zhtpJtf2LS9m9Fme9rDcDh00uTAirrG1_tOkTa12_2atXc284GIQcX9FRUuWMIYxIs94nmBOovqGNwe7vlziPUM0mXjOjZiP5myAv_PGoQnD6iDtFxnYR_rC6PcxfXNR7EHTiik4WYaHGkOQgTnMJZlzZgs-xq-RzC1aPX5LXkKzW3ocWzMczOhJTj5ZheBQqRcSmSqTyhO6wHZ6Ekv03uIuvcB5oKhwpnsm4DPkPj4hLLRkiYBzfeXwmprQEASQZvApLJ4iCScgVKe0T0tyTcABpowCswPXJ8dVhN6k7MCR9kYpRwkzKcyeRjYrajkwLWXCpmOmjR7NCFpkX1OUms04Y4QT1RQcthLTS4_JyrvgqzJZV6b4BsY55irsTZ0wuFP7RhBvaPjeO89QL3gbZLLru1-XJQ5eMO93Eod3qKbd04JaO3GpDOh04jBU6Ph6y33BVvxE2jX7k48HbjRxoVMVwv4K8qMYPmuWheluu8n_QcPQwKJC4b2zDWhSi6aw5okHKpFr_n-ltwZfu1cW5Pj-9_LUBX_ELDyFzLN2E2dH92H1HDDUqfkx05A8EKxsG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+1%2C2%2C3-trichloropropane+by+unactivated+persulfate+and+the+implications+for+groundwater+remediation&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liu%2C+Shuyu&rft.au=Gu%2C+Chunyun&rft.au=Zhang%2C+Jiaxin&rft.au=Luo%2C+Chaoyi&rft.date=2023-03-20&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=865&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.161201&rft.externalDocID=S004896972208305X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |