Ballistocardiogram Artifact Reduction in Simultaneous EEG-fMRI Using Deep Learning

Objective: The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 68; no. 1; pp. 78 - 89
Main Authors McIntosh, James R., Yao, Jiaang, Hong, Linbi, Faller, Josef, Sajda, Paul
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2020.3004548

Cover

Loading…
Abstract Objective: The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs). Methods: EEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects. Results: We show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification. Conclusion: The presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings. Significance: We present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG.
AbstractList The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs). EEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects. We show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification. The presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings. We present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG.
Objective: The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs). Methods: EEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects. Results: We show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification. Conclusion: The presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings. Significance: We present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG.
The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs).OBJECTIVEThe concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs).EEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects.METHODSEEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects.We show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification.RESULTSWe show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification.The presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings.CONCLUSIONThe presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings.We present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG.SIGNIFICANCEWe present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG.
Author Yao, Jiaang
Sajda, Paul
McIntosh, James R.
Hong, Linbi
Faller, Josef
Author_xml – sequence: 1
  givenname: James R.
  orcidid: 0000-0002-3970-1619
  surname: McIntosh
  fullname: McIntosh, James R.
  email: j.mcintoshr@gmail.com
  organization: Department of Biomedical Engineering, Columbia University, New York, NY, USA
– sequence: 2
  givenname: Jiaang
  orcidid: 0000-0001-7062-2508
  surname: Yao
  fullname: Yao, Jiaang
  email: jy2951@columbia.edu
  organization: Department of Biomedical Engineering, Columbia University, New York, NY, USA
– sequence: 3
  givenname: Linbi
  surname: Hong
  fullname: Hong, Linbi
  organization: Department of Biomedical EngineeringColumbia University
– sequence: 4
  givenname: Josef
  orcidid: 0000-0001-7814-9292
  surname: Faller
  fullname: Faller, Josef
  organization: Department of Biomedical EngineeringColumbia University
– sequence: 5
  givenname: Paul
  surname: Sajda
  fullname: Sajda, Paul
  organization: Department of Biomedical Engineering, and the Data Science InstituteColumbia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32746037$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFD4CQUCQuXLKM_8XOBaktS6m0FdLSni3HcRZXib3YCRLfHke7XZUeOFkj_97Mm3ln6MQHbxF6i2GJMdSf7i5vV0sCBJYUgHEmX6AF5lyWhFN8ghYAWJY1qdkpOkvpIZdMsuoVOqVEsAqoWKDNpe57l8ZgdGxd2EY9FBdxdJ02Y7Gx7WRGF3zhfPHDDVM_am_DlIrV6rrsbjc3xX1yflt8sXZXrK2OPlev0ctO98m-Obzn6P7r6u7qW7n-fn1zdbEuDQM2lkTwusKG4gYL2gIlII1poGFYEyLbjnPKay6bDqpOA2EUOk5b0gpTd1haTM_R533f3dQMtjXWj1H3ahfdoOMfFbRT__5491Ntw28lJEjK5gYfDw1i-DXZNKrBJWP7fr-kmmdSAdlERj88Qx_CFH1eL1OCUCwwJZl6_9TR0crjuTOA94CJIaVouyOCQc2RqjlSNUeqDpFmjXimMW7Ucyp5Kdf_V_lur3TW2uOkGhNWsYr-BQQYrIY
CODEN IEBEAX
CitedBy_id crossref_primary_10_1088_1741_2552_ac1037
crossref_primary_10_1088_1741_2552_ac83f2
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_3389_fninf_2023_1205529
crossref_primary_10_3389_fnins_2022_951321
crossref_primary_10_1146_annurev_neuro_100220_093239
crossref_primary_10_1109_TCSII_2023_3266594
crossref_primary_10_1109_TIM_2023_3341114
crossref_primary_10_1007_s42979_023_01959_y
crossref_primary_10_1016_j_jneumeth_2022_109498
crossref_primary_10_1002_hbm_25965
crossref_primary_10_1016_j_optlastec_2023_110384
crossref_primary_10_1109_TBCAS_2023_3318699
Cites_doi 10.1523/JNEUROSCI.3540-07.2007
10.1006/nimg.2002.1125
10.1137/0717021
10.1016/j.neuroimage.2010.01.010
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.ijpsycho.2007.05.015
10.1016/j.neuroimage.2005.06.067
10.1146/annurev-vision-082114-035447
10.1016/j.clinph.2017.12.038
10.1523/JNEUROSCI.2649-13.2013
10.1101/465534
10.1016/j.neuroimage.2015.10.064
10.1088/1741-2552/aace8c
10.1186/s40708-018-0081-2
10.1109/NER.2019.8716994
10.1109/EUSIPCO.2015.7362708
10.1109/NER.2019.8716889
10.1038/s41593-018-0209-y
10.1038/tp.2016.287
10.1038/nature14539
10.1109/TBME.2008.2005952
10.1016/j.neuroimage.2006.09.037
10.1016/j.neuroimage.2004.09.041
10.1016/j.neuroimage.2017.06.059
10.1109/TBME.2006.875718
10.1523/JNEUROSCI.1677-17.2017
10.1016/0301-0511(83)90028-5
10.1016/j.jneumeth.2003.10.009
10.3389/fnins.2013.00267
10.1016/j.neuroimage.2005.06.060
10.1006/nimg.2000.0599
10.1016/j.neuroimage.2010.05.064
10.1006/nimg.1998.0361
10.1371/journal.pone.0091321
10.1002/hbm.23321
10.1016/j.neuroimage.2013.10.027
10.1088/1741-2552/14/2/026003
10.3389/fnins.2014.00258
10.1523/JNEUROSCI.0447-12.2012
10.1016/j.neuroimage.2015.06.088
10.1006/nimg.2001.0853
10.1016/j.neuroimage.2019.02.067
10.1016/j.neuroimage.2009.03.062
10.7554/eLife.38293
10.1038/ncomms9107
10.1016/j.neuroimage.2013.08.014
10.1523/JNEUROSCI.0631-13.2013
10.1073/pnas.1812995116
10.1016/j.neuroimage.2013.08.039
10.1162/neco.2009.05-08-793
10.1016/j.neuroimage.2013.02.016
10.1371/journal.pone.0153404
10.1016/j.jneumeth.2003.12.016
10.1016/j.brs.2018.12.924
10.1088/1741-2560/14/1/016003
10.1016/j.clinph.2005.08.034
10.1038/323533a0
10.1016/j.neubiorev.2017.01.002
10.1016/j.jneumeth.2014.06.021
10.1038/s41598-018-27187-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2020.3004548
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 89
ExternalDocumentID PMC7808341
32746037
10_1109_TBME_2020_3004548
9124646
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: 1G20RR030893-01
– fundername: Empire State Developmentapos;s Division of Science, Technology and Innovation
  grantid: C090171
  funderid: 10.13039/100011036
– fundername: National Institute of Mental Health
  grantid: R33MH106775
  funderid: 10.13039/100000025
– fundername: Army Research Laboratory
  grantid: W911NF-10-2-0022; W911NF-16-2-0008
  funderid: 10.13039/100006754
– fundername: Columbia University
  funderid: 10.13039/100006474
– fundername: Columbia University
  grantid: CU-ZI-MR-S-0006
  funderid: 10.13039/100006474
– fundername: NCRR NIH HHS
  grantid: G20 RR030893
– fundername: NIMH NIH HHS
  grantid: R33 MH106775
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c404t-275961c31b173d03208ccb0b41a228df5535958bf06fa02430f53d2d7c9f18e13
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:16:55 EDT 2025
Fri Jul 11 06:56:27 EDT 2025
Mon Jun 30 08:40:03 EDT 2025
Mon Jul 21 06:00:45 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Tue Jul 01 03:28:34 EDT 2025
Wed Aug 27 02:32:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-275961c31b173d03208ccb0b41a228df5535958bf06fa02430f53d2d7c9f18e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7814-9292
0000-0002-3970-1619
0000-0001-7062-2508
PMID 32746037
PQID 2472317132
PQPubID 85474
PageCount 12
ParticipantIDs ieee_primary_9124646
crossref_primary_10_1109_TBME_2020_3004548
crossref_citationtrail_10_1109_TBME_2020_3004548
pubmed_primary_32746037
proquest_journals_2472317132
proquest_miscellaneous_2430370958
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7808341
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
kingma (ref49) 2014
chung (ref41) 2014
ref55
ref11
ref10
abadi (ref50) 2016
(ref54) 2004; 3
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref43
qian (ref59) 2013
ref8
niazy (ref44) 2004
ref7
ref9
ref4
hastie (ref60) 2009
ref3
ref6
ref5
bergstra (ref53) 2013
rumelhart (ref40) 1986; 323
ref35
ref37
ref36
debener (ref22) 2010
goodfellow (ref39) 2016
ref31
ref33
ref32
ref1
ref38
abbasi-asl (ref34) 2018
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref65
ref21
ref28
chollet (ref51) 2015
ref27
ref29
ref62
ref61
lecun (ref30) 2015; 521
mulert (ref2) 2010
(ref52) 2016
References_xml – ident: ref58
  doi: 10.1523/JNEUROSCI.3540-07.2007
– start-page: 115
  year: 2013
  ident: ref53
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
  publication-title: Proc Int Conf Mach Learn
– ident: ref64
  doi: 10.1006/nimg.2002.1125
– ident: ref48
  doi: 10.1137/0717021
– ident: ref28
  doi: 10.1016/j.neuroimage.2010.01.010
– ident: ref57
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: ref24
  doi: 10.1016/j.ijpsycho.2007.05.015
– ident: ref20
  doi: 10.1016/j.neuroimage.2005.06.067
– ident: ref35
  doi: 10.1146/annurev-vision-082114-035447
– ident: ref17
  doi: 10.1016/j.clinph.2017.12.038
– ident: ref9
  doi: 10.1523/JNEUROSCI.2649-13.2013
– year: 2018
  ident: ref34
  article-title: The deeptune framework for modeling and characterizing neurons in visual cortex area V4
  doi: 10.1101/465534
– ident: ref66
  doi: 10.1016/j.neuroimage.2015.10.064
– ident: ref32
  doi: 10.1088/1741-2552/aace8c
– ident: ref37
  doi: 10.1186/s40708-018-0081-2
– volume: 3
  year: 2004
  ident: ref54
  article-title: Real time electrocardiogram QRS detection using combined adaptive threshold
  publication-title: Biomed Eng Online
– ident: ref3
  doi: 10.1109/NER.2019.8716994
– ident: ref6
  doi: 10.1109/EUSIPCO.2015.7362708
– year: 2016
  ident: ref52
  article-title: Hyperas
– year: 2013
  ident: ref59
  article-title: Glmnet for Matlab
– ident: ref71
  doi: 10.1109/NER.2019.8716889
– ident: ref33
  doi: 10.1038/s41593-018-0209-y
– ident: ref15
  doi: 10.1038/tp.2016.287
– volume: 521
  start-page: 436
  year: 2015
  ident: ref30
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref69
  doi: 10.1109/TBME.2008.2005952
– year: 2010
  ident: ref2
  publication-title: EEG-fMRI Physiological Basis Technique and Applications
– ident: ref26
  doi: 10.1016/j.neuroimage.2006.09.037
– ident: ref27
  doi: 10.1016/j.neuroimage.2004.09.041
– ident: ref12
  doi: 10.1016/j.neuroimage.2017.06.059
– ident: ref23
  doi: 10.1109/TBME.2006.875718
– ident: ref11
  doi: 10.1523/JNEUROSCI.1677-17.2017
– ident: ref63
  doi: 10.1016/0301-0511(83)90028-5
– ident: ref43
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref46
  doi: 10.3389/fnins.2013.00267
– ident: ref45
  doi: 10.1016/j.neuroimage.2005.06.060
– year: 2016
  ident: ref39
  publication-title: Deep Learning
– ident: ref19
  doi: 10.1006/nimg.2000.0599
– start-page: 135
  year: 2010
  ident: ref22
  article-title: EEG quality: Origin and reduction of the EEG cardiac-related artefact
  publication-title: EEG - fMRI Physiological Basis Technique and Applications
– year: 2015
  ident: ref51
  article-title: Keras
– ident: ref18
  doi: 10.1016/j.neuroimage.2010.05.064
– ident: ref21
  doi: 10.1006/nimg.1998.0361
– ident: ref42
  doi: 10.1371/journal.pone.0091321
– ident: ref16
  doi: 10.1002/hbm.23321
– ident: ref47
  doi: 10.1016/j.neuroimage.2013.10.027
– ident: ref67
  doi: 10.1088/1741-2552/14/2/026003
– ident: ref62
  doi: 10.3389/fnins.2014.00258
– ident: ref1
  doi: 10.1523/JNEUROSCI.0447-12.2012
– ident: ref29
  doi: 10.1016/j.neuroimage.2015.06.088
– year: 2014
  ident: ref49
  article-title: Adam: A method for stochastic optimization
– ident: ref5
  doi: 10.1006/nimg.2001.0853
– ident: ref70
  doi: 10.1016/j.neuroimage.2019.02.067
– ident: ref7
  doi: 10.1016/j.neuroimage.2009.03.062
– year: 2004
  ident: ref44
  article-title: Improved FMRI artifact reduction from simultaneously acquired EEG data using slice dependant template matching
– ident: ref10
  doi: 10.7554/eLife.38293
– ident: ref13
  doi: 10.1038/ncomms9107
– year: 2009
  ident: ref60
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref8
  doi: 10.1016/j.neuroimage.2013.08.014
– ident: ref14
  doi: 10.1523/JNEUROSCI.0631-13.2013
– ident: ref38
  doi: 10.1073/pnas.1812995116
– ident: ref65
  doi: 10.1016/j.neuroimage.2013.08.039
– year: 2016
  ident: ref50
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
– ident: ref4
  doi: 10.1162/neco.2009.05-08-793
– ident: ref73
  doi: 10.1016/j.neuroimage.2013.02.016
– ident: ref61
  doi: 10.1371/journal.pone.0153404
– ident: ref55
  doi: 10.1016/j.jneumeth.2003.12.016
– year: 2014
  ident: ref41
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– ident: ref72
  doi: 10.1016/j.brs.2018.12.924
– ident: ref31
  doi: 10.1088/1741-2560/14/1/016003
– ident: ref56
  doi: 10.1016/j.clinph.2005.08.034
– volume: 323
  start-page: 533
  year: 1986
  ident: ref40
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref36
  doi: 10.1016/j.neubiorev.2017.01.002
– ident: ref68
  doi: 10.1016/j.jneumeth.2014.06.021
– ident: ref25
  doi: 10.1038/s41598-018-27187-6
SSID ssj0014846
Score 2.4663322
Snippet Objective: The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much...
The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 78
SubjectTerms Algorithms
artifact removal
Bacillus Calmette-Guerin vaccine
ballistocardiogram
Ballistocardiograms
Ballistocardiography
BCG
Critical frequencies
Deep Learning
EEG
EKG
Electrocardiography
Electrodes
Electroencephalography
Electroencephalography (EEG)
Functional magnetic resonance imaging
functional magnetic resonance imaging (fMRI)
gated recurrent unit (GRU)
Hardware
Humans
Machine learning
Magnetic Resonance Imaging
Neural networks
Recurrent neural networks
Simultaneous discrimination learning
Spatial discrimination
Spatial resolution
Training
Title Ballistocardiogram Artifact Reduction in Simultaneous EEG-fMRI Using Deep Learning
URI https://ieeexplore.ieee.org/document/9124646
https://www.ncbi.nlm.nih.gov/pubmed/32746037
https://www.proquest.com/docview/2472317132
https://www.proquest.com/docview/2430370958
https://pubmed.ncbi.nlm.nih.gov/PMC7808341
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSB64NHSEijISD0hsrUdO48jhS0FKT0srdRbZDt2u2KVXdHdC78ej-ONtlWFuEXyQ45nLM94vvkG4LiQlWKFE97JYSoVkunUW61lapgyDvnkpMWIbn2Rn1-JH9fyegs-Dbkw1toAPrMj_Ayx_HZuVvhUdlL5yygX-TZse8etz9UaIgai7JNyKPMHmFciRjAZrU4uT-ux9wS5d1AD4xzW6Mu8N5ZTrH6-cR2F-iqPmZoPEZMbV9DZc6jXi--RJ79Gq6UemT8PeB3_9-9ewLNoi5LPvfK8hC3b7cHuBkPhHjypY-x9HyanajZDIgITIKyI6gpDMTWCTJABFmVMph35OUWYoursfHVHxuNvqasn30kAJ5Cv1i5IJHW9eQVXZ-PLL-dprMiQGkHFMuVetDkzGdOsyFqsvV4ao6kWTHFetk5KzPMttaO5U8h1SJ3MWt4WpnKstCw7gJ1u3tnXQGymtEKyMtlyYSutdMtoS_PKSe6EkwnQtWAaE-nKsWrGrAluC60aFGuDYm2iWBP4OAxZ9Fwd_-q8jyIYOsbdT-BoLf0mnua7hovCm8HenecJfBia_TnE4Eq_mw3-bFZ4g9XPfNgryzD3WtkSKO6p0dABOb7vt3TT28D1XZTeRhbszeOrfQtPOWJswpPQEewsf6_sO28kLfX7cDr-Ag5JCiQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkF74NFSGigQJE6IbG3HzuNIYcsWmh6WrdSbZTs2XXWVrejuhV-Px8lG26pC3CL5Icczo5nxzHwD8CEXpaK5497JoSrhgurEW61FYqgyDvHkhMWIbnWWjc759wtxsQGf-loYa21IPrMD_Ayx_HpulvhUdlh6ZZTx7AE89Hpf0LZaq48Z8KItyyHUizAreRfDpKQ8nBxVQ-8LMu-iBsw57NKXen8sI9j_fE0hhQ4r9xmbd3Mm15TQ8VOoVsdvc0-uBsuFHpg_d5Ad__f_nsGTzhqNP7fs8xw2bLMD22sYhTvwqOqi77swPlKzGUIRmJDEinldYSkWR8RjxIBFKsfTJv45xURF1dj58iYeDr8lrhqfxCE9If5q7XXcwbr-egHnx8PJl1HS9WRIDCd8kTBP3IyalGqapzV2Xy-M0URzqhgraicEVvoW2pHMKUQ7JE6kNatzUzpaWJruwWYzb-w-xDZVWiFcmagZt6VWuqakJlnpBHPciQjIijDSdIDl2DdjJoPjQkqJZJVIVtmRNYKP_ZLrFq3jX5N3kQT9xO72IzhYUV928nwjGc-9IewdehbB-37YSyKGV9rblPizae5NVr_zy5ZZ-r1XzBZBfouN-gmI8n17pJleBrTvvPBWMqev7j_tO3g8mlSn8vTk7Mdr2GKYcRMeiA5gc_F7ad94k2mh3wZJ-QsQxw1t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ballistocardiogram+Artifact+Reduction+in+Simultaneous+EEG-fMRI+Using+Deep+Learning&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=McIntosh%2C+James+R&rft.au=Yao%2C+Jiaang&rft.au=Hong%2C+Linbi&rft.au=Faller%2C+Josef&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=68&rft.issue=1&rft.spage=78&rft_id=info:doi/10.1109%2FTBME.2020.3004548&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon