Ballistocardiogram Artifact Reduction in Simultaneous EEG-fMRI Using Deep Learning
Objective: The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifa...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 68; no. 1; pp. 78 - 89 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2020.3004548 |
Cover
Loading…
Abstract | Objective: The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs). Methods: EEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects. Results: We show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification. Conclusion: The presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings. Significance: We present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG. |
---|---|
AbstractList | The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs).
EEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects.
We show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification.
The presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings.
We present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG. Objective: The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs). Methods: EEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects. Results: We show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification. Conclusion: The presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings. Significance: We present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG. The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs).OBJECTIVEThe concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG. This is not ideal as the BCG signal propagates in a manner which is non-linearly dependent on the electrocardiogram (ECG). In this paper, we present a novel method for BCG artifact suppression using recurrent neural networks (RNNs).EEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects.METHODSEEG signals were recovered by training RNNs on the nonlinear mappings between ECG and the BCG corrupted EEG. We evaluated our model's performance against the commonly used Optimal Basis Set (OBS) method at the level of individual subjects, and investigated generalization across subjects.We show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification.RESULTSWe show that our algorithm can generate larger average power reduction of the BCG at critical frequencies, while simultaneously improving task relevant EEG based classification.The presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings.CONCLUSIONThe presented deep learning architecture can be used to reduce BCG related artifacts in EEG-fMRI recordings.We present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG.SIGNIFICANCEWe present a deep learning approach that can be used to suppress the BCG artifact in EEG-fMRI without the use of additional hardware. This method may have scope to be combined with current hardware methods, operate in real-time and be used for direct modeling of the BCG. |
Author | Yao, Jiaang Sajda, Paul McIntosh, James R. Hong, Linbi Faller, Josef |
Author_xml | – sequence: 1 givenname: James R. orcidid: 0000-0002-3970-1619 surname: McIntosh fullname: McIntosh, James R. email: j.mcintoshr@gmail.com organization: Department of Biomedical Engineering, Columbia University, New York, NY, USA – sequence: 2 givenname: Jiaang orcidid: 0000-0001-7062-2508 surname: Yao fullname: Yao, Jiaang email: jy2951@columbia.edu organization: Department of Biomedical Engineering, Columbia University, New York, NY, USA – sequence: 3 givenname: Linbi surname: Hong fullname: Hong, Linbi organization: Department of Biomedical EngineeringColumbia University – sequence: 4 givenname: Josef orcidid: 0000-0001-7814-9292 surname: Faller fullname: Faller, Josef organization: Department of Biomedical EngineeringColumbia University – sequence: 5 givenname: Paul surname: Sajda fullname: Sajda, Paul organization: Department of Biomedical Engineering, and the Data Science InstituteColumbia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32746037$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFD4CQUCQuXLKM_8XOBaktS6m0FdLSni3HcRZXib3YCRLfHke7XZUeOFkj_97Mm3ln6MQHbxF6i2GJMdSf7i5vV0sCBJYUgHEmX6AF5lyWhFN8ghYAWJY1qdkpOkvpIZdMsuoVOqVEsAqoWKDNpe57l8ZgdGxd2EY9FBdxdJ02Y7Gx7WRGF3zhfPHDDVM_am_DlIrV6rrsbjc3xX1yflt8sXZXrK2OPlev0ctO98m-Obzn6P7r6u7qW7n-fn1zdbEuDQM2lkTwusKG4gYL2gIlII1poGFYEyLbjnPKay6bDqpOA2EUOk5b0gpTd1haTM_R533f3dQMtjXWj1H3ahfdoOMfFbRT__5491Ntw28lJEjK5gYfDw1i-DXZNKrBJWP7fr-kmmdSAdlERj88Qx_CFH1eL1OCUCwwJZl6_9TR0crjuTOA94CJIaVouyOCQc2RqjlSNUeqDpFmjXimMW7Ucyp5Kdf_V_lur3TW2uOkGhNWsYr-BQQYrIY |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac1037 crossref_primary_10_1088_1741_2552_ac83f2 crossref_primary_10_1016_j_neuroimage_2025_121123 crossref_primary_10_3389_fninf_2023_1205529 crossref_primary_10_3389_fnins_2022_951321 crossref_primary_10_1146_annurev_neuro_100220_093239 crossref_primary_10_1109_TCSII_2023_3266594 crossref_primary_10_1109_TIM_2023_3341114 crossref_primary_10_1007_s42979_023_01959_y crossref_primary_10_1016_j_jneumeth_2022_109498 crossref_primary_10_1002_hbm_25965 crossref_primary_10_1016_j_optlastec_2023_110384 crossref_primary_10_1109_TBCAS_2023_3318699 |
Cites_doi | 10.1523/JNEUROSCI.3540-07.2007 10.1006/nimg.2002.1125 10.1137/0717021 10.1016/j.neuroimage.2010.01.010 10.1111/j.2517-6161.1995.tb02031.x 10.1016/j.ijpsycho.2007.05.015 10.1016/j.neuroimage.2005.06.067 10.1146/annurev-vision-082114-035447 10.1016/j.clinph.2017.12.038 10.1523/JNEUROSCI.2649-13.2013 10.1101/465534 10.1016/j.neuroimage.2015.10.064 10.1088/1741-2552/aace8c 10.1186/s40708-018-0081-2 10.1109/NER.2019.8716994 10.1109/EUSIPCO.2015.7362708 10.1109/NER.2019.8716889 10.1038/s41593-018-0209-y 10.1038/tp.2016.287 10.1038/nature14539 10.1109/TBME.2008.2005952 10.1016/j.neuroimage.2006.09.037 10.1016/j.neuroimage.2004.09.041 10.1016/j.neuroimage.2017.06.059 10.1109/TBME.2006.875718 10.1523/JNEUROSCI.1677-17.2017 10.1016/0301-0511(83)90028-5 10.1016/j.jneumeth.2003.10.009 10.3389/fnins.2013.00267 10.1016/j.neuroimage.2005.06.060 10.1006/nimg.2000.0599 10.1016/j.neuroimage.2010.05.064 10.1006/nimg.1998.0361 10.1371/journal.pone.0091321 10.1002/hbm.23321 10.1016/j.neuroimage.2013.10.027 10.1088/1741-2552/14/2/026003 10.3389/fnins.2014.00258 10.1523/JNEUROSCI.0447-12.2012 10.1016/j.neuroimage.2015.06.088 10.1006/nimg.2001.0853 10.1016/j.neuroimage.2019.02.067 10.1016/j.neuroimage.2009.03.062 10.7554/eLife.38293 10.1038/ncomms9107 10.1016/j.neuroimage.2013.08.014 10.1523/JNEUROSCI.0631-13.2013 10.1073/pnas.1812995116 10.1016/j.neuroimage.2013.08.039 10.1162/neco.2009.05-08-793 10.1016/j.neuroimage.2013.02.016 10.1371/journal.pone.0153404 10.1016/j.jneumeth.2003.12.016 10.1016/j.brs.2018.12.924 10.1088/1741-2560/14/1/016003 10.1016/j.clinph.2005.08.034 10.1038/323533a0 10.1016/j.neubiorev.2017.01.002 10.1016/j.jneumeth.2014.06.021 10.1038/s41598-018-27187-6 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2020.3004548 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 89 |
ExternalDocumentID | PMC7808341 32746037 10_1109_TBME_2020_3004548 9124646 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH grantid: 1G20RR030893-01 – fundername: Empire State Developmentapos;s Division of Science, Technology and Innovation grantid: C090171 funderid: 10.13039/100011036 – fundername: National Institute of Mental Health grantid: R33MH106775 funderid: 10.13039/100000025 – fundername: Army Research Laboratory grantid: W911NF-10-2-0022; W911NF-16-2-0008 funderid: 10.13039/100006754 – fundername: Columbia University funderid: 10.13039/100006474 – fundername: Columbia University grantid: CU-ZI-MR-S-0006 funderid: 10.13039/100006474 – fundername: NCRR NIH HHS grantid: G20 RR030893 – fundername: NIMH NIH HHS grantid: R33 MH106775 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c404t-275961c31b173d03208ccb0b41a228df5535958bf06fa02430f53d2d7c9f18e13 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 18:16:55 EDT 2025 Fri Jul 11 06:56:27 EDT 2025 Mon Jun 30 08:40:03 EDT 2025 Mon Jul 21 06:00:45 EDT 2025 Thu Apr 24 22:55:42 EDT 2025 Tue Jul 01 03:28:34 EDT 2025 Wed Aug 27 02:32:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-275961c31b173d03208ccb0b41a228df5535958bf06fa02430f53d2d7c9f18e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7814-9292 0000-0002-3970-1619 0000-0001-7062-2508 |
PMID | 32746037 |
PQID | 2472317132 |
PQPubID | 85474 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9124646 crossref_primary_10_1109_TBME_2020_3004548 crossref_citationtrail_10_1109_TBME_2020_3004548 pubmed_primary_32746037 proquest_journals_2472317132 proquest_miscellaneous_2430370958 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7808341 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 kingma (ref49) 2014 chung (ref41) 2014 ref55 ref11 ref10 abadi (ref50) 2016 (ref54) 2004; 3 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref43 qian (ref59) 2013 ref8 niazy (ref44) 2004 ref7 ref9 ref4 hastie (ref60) 2009 ref3 ref6 ref5 bergstra (ref53) 2013 rumelhart (ref40) 1986; 323 ref35 ref37 ref36 debener (ref22) 2010 goodfellow (ref39) 2016 ref31 ref33 ref32 ref1 ref38 abbasi-asl (ref34) 2018 ref71 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref65 ref21 ref28 chollet (ref51) 2015 ref27 ref29 ref62 ref61 lecun (ref30) 2015; 521 mulert (ref2) 2010 (ref52) 2016 |
References_xml | – ident: ref58 doi: 10.1523/JNEUROSCI.3540-07.2007 – start-page: 115 year: 2013 ident: ref53 article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures publication-title: Proc Int Conf Mach Learn – ident: ref64 doi: 10.1006/nimg.2002.1125 – ident: ref48 doi: 10.1137/0717021 – ident: ref28 doi: 10.1016/j.neuroimage.2010.01.010 – ident: ref57 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: ref24 doi: 10.1016/j.ijpsycho.2007.05.015 – ident: ref20 doi: 10.1016/j.neuroimage.2005.06.067 – ident: ref35 doi: 10.1146/annurev-vision-082114-035447 – ident: ref17 doi: 10.1016/j.clinph.2017.12.038 – ident: ref9 doi: 10.1523/JNEUROSCI.2649-13.2013 – year: 2018 ident: ref34 article-title: The deeptune framework for modeling and characterizing neurons in visual cortex area V4 doi: 10.1101/465534 – ident: ref66 doi: 10.1016/j.neuroimage.2015.10.064 – ident: ref32 doi: 10.1088/1741-2552/aace8c – ident: ref37 doi: 10.1186/s40708-018-0081-2 – volume: 3 year: 2004 ident: ref54 article-title: Real time electrocardiogram QRS detection using combined adaptive threshold publication-title: Biomed Eng Online – ident: ref3 doi: 10.1109/NER.2019.8716994 – ident: ref6 doi: 10.1109/EUSIPCO.2015.7362708 – year: 2016 ident: ref52 article-title: Hyperas – year: 2013 ident: ref59 article-title: Glmnet for Matlab – ident: ref71 doi: 10.1109/NER.2019.8716889 – ident: ref33 doi: 10.1038/s41593-018-0209-y – ident: ref15 doi: 10.1038/tp.2016.287 – volume: 521 start-page: 436 year: 2015 ident: ref30 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref69 doi: 10.1109/TBME.2008.2005952 – year: 2010 ident: ref2 publication-title: EEG-fMRI Physiological Basis Technique and Applications – ident: ref26 doi: 10.1016/j.neuroimage.2006.09.037 – ident: ref27 doi: 10.1016/j.neuroimage.2004.09.041 – ident: ref12 doi: 10.1016/j.neuroimage.2017.06.059 – ident: ref23 doi: 10.1109/TBME.2006.875718 – ident: ref11 doi: 10.1523/JNEUROSCI.1677-17.2017 – ident: ref63 doi: 10.1016/0301-0511(83)90028-5 – ident: ref43 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref46 doi: 10.3389/fnins.2013.00267 – ident: ref45 doi: 10.1016/j.neuroimage.2005.06.060 – year: 2016 ident: ref39 publication-title: Deep Learning – ident: ref19 doi: 10.1006/nimg.2000.0599 – start-page: 135 year: 2010 ident: ref22 article-title: EEG quality: Origin and reduction of the EEG cardiac-related artefact publication-title: EEG - fMRI Physiological Basis Technique and Applications – year: 2015 ident: ref51 article-title: Keras – ident: ref18 doi: 10.1016/j.neuroimage.2010.05.064 – ident: ref21 doi: 10.1006/nimg.1998.0361 – ident: ref42 doi: 10.1371/journal.pone.0091321 – ident: ref16 doi: 10.1002/hbm.23321 – ident: ref47 doi: 10.1016/j.neuroimage.2013.10.027 – ident: ref67 doi: 10.1088/1741-2552/14/2/026003 – ident: ref62 doi: 10.3389/fnins.2014.00258 – ident: ref1 doi: 10.1523/JNEUROSCI.0447-12.2012 – ident: ref29 doi: 10.1016/j.neuroimage.2015.06.088 – year: 2014 ident: ref49 article-title: Adam: A method for stochastic optimization – ident: ref5 doi: 10.1006/nimg.2001.0853 – ident: ref70 doi: 10.1016/j.neuroimage.2019.02.067 – ident: ref7 doi: 10.1016/j.neuroimage.2009.03.062 – year: 2004 ident: ref44 article-title: Improved FMRI artifact reduction from simultaneously acquired EEG data using slice dependant template matching – ident: ref10 doi: 10.7554/eLife.38293 – ident: ref13 doi: 10.1038/ncomms9107 – year: 2009 ident: ref60 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – ident: ref8 doi: 10.1016/j.neuroimage.2013.08.014 – ident: ref14 doi: 10.1523/JNEUROSCI.0631-13.2013 – ident: ref38 doi: 10.1073/pnas.1812995116 – ident: ref65 doi: 10.1016/j.neuroimage.2013.08.039 – year: 2016 ident: ref50 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems – ident: ref4 doi: 10.1162/neco.2009.05-08-793 – ident: ref73 doi: 10.1016/j.neuroimage.2013.02.016 – ident: ref61 doi: 10.1371/journal.pone.0153404 – ident: ref55 doi: 10.1016/j.jneumeth.2003.12.016 – year: 2014 ident: ref41 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – ident: ref72 doi: 10.1016/j.brs.2018.12.924 – ident: ref31 doi: 10.1088/1741-2560/14/1/016003 – ident: ref56 doi: 10.1016/j.clinph.2005.08.034 – volume: 323 start-page: 533 year: 1986 ident: ref40 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: ref36 doi: 10.1016/j.neubiorev.2017.01.002 – ident: ref68 doi: 10.1016/j.jneumeth.2014.06.021 – ident: ref25 doi: 10.1038/s41598-018-27187-6 |
SSID | ssj0014846 |
Score | 2.4663322 |
Snippet | Objective: The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much... The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 78 |
SubjectTerms | Algorithms artifact removal Bacillus Calmette-Guerin vaccine ballistocardiogram Ballistocardiograms Ballistocardiography BCG Critical frequencies Deep Learning EEG EKG Electrocardiography Electrodes Electroencephalography Electroencephalography (EEG) Functional magnetic resonance imaging functional magnetic resonance imaging (fMRI) gated recurrent unit (GRU) Hardware Humans Machine learning Magnetic Resonance Imaging Neural networks Recurrent neural networks Simultaneous discrimination learning Spatial discrimination Spatial resolution Training |
Title | Ballistocardiogram Artifact Reduction in Simultaneous EEG-fMRI Using Deep Learning |
URI | https://ieeexplore.ieee.org/document/9124646 https://www.ncbi.nlm.nih.gov/pubmed/32746037 https://www.proquest.com/docview/2472317132 https://www.proquest.com/docview/2430370958 https://pubmed.ncbi.nlm.nih.gov/PMC7808341 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSB64NHSEijISD0hsrUdO48jhS0FKT0srdRbZDt2u2KVXdHdC78ej-ONtlWFuEXyQ45nLM94vvkG4LiQlWKFE97JYSoVkunUW61lapgyDvnkpMWIbn2Rn1-JH9fyegs-Dbkw1toAPrMj_Ayx_HZuVvhUdlL5yygX-TZse8etz9UaIgai7JNyKPMHmFciRjAZrU4uT-ux9wS5d1AD4xzW6Mu8N5ZTrH6-cR2F-iqPmZoPEZMbV9DZc6jXi--RJ79Gq6UemT8PeB3_9-9ewLNoi5LPvfK8hC3b7cHuBkPhHjypY-x9HyanajZDIgITIKyI6gpDMTWCTJABFmVMph35OUWYoursfHVHxuNvqasn30kAJ5Cv1i5IJHW9eQVXZ-PLL-dprMiQGkHFMuVetDkzGdOsyFqsvV4ao6kWTHFetk5KzPMttaO5U8h1SJ3MWt4WpnKstCw7gJ1u3tnXQGymtEKyMtlyYSutdMtoS_PKSe6EkwnQtWAaE-nKsWrGrAluC60aFGuDYm2iWBP4OAxZ9Fwd_-q8jyIYOsbdT-BoLf0mnua7hovCm8HenecJfBia_TnE4Eq_mw3-bFZ4g9XPfNgryzD3WtkSKO6p0dABOb7vt3TT28D1XZTeRhbszeOrfQtPOWJswpPQEewsf6_sO28kLfX7cDr-Ag5JCiQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkF74NFSGigQJE6IbG3HzuNIYcsWmh6WrdSbZTs2XXWVrejuhV-Px8lG26pC3CL5Icczo5nxzHwD8CEXpaK5497JoSrhgurEW61FYqgyDvHkhMWIbnWWjc759wtxsQGf-loYa21IPrMD_Ayx_HpulvhUdlh6ZZTx7AE89Hpf0LZaq48Z8KItyyHUizAreRfDpKQ8nBxVQ-8LMu-iBsw57NKXen8sI9j_fE0hhQ4r9xmbd3Mm15TQ8VOoVsdvc0-uBsuFHpg_d5Ad__f_nsGTzhqNP7fs8xw2bLMD22sYhTvwqOqi77swPlKzGUIRmJDEinldYSkWR8RjxIBFKsfTJv45xURF1dj58iYeDr8lrhqfxCE9If5q7XXcwbr-egHnx8PJl1HS9WRIDCd8kTBP3IyalGqapzV2Xy-M0URzqhgraicEVvoW2pHMKUQ7JE6kNatzUzpaWJruwWYzb-w-xDZVWiFcmagZt6VWuqakJlnpBHPciQjIijDSdIDl2DdjJoPjQkqJZJVIVtmRNYKP_ZLrFq3jX5N3kQT9xO72IzhYUV928nwjGc-9IewdehbB-37YSyKGV9rblPizae5NVr_zy5ZZ-r1XzBZBfouN-gmI8n17pJleBrTvvPBWMqev7j_tO3g8mlSn8vTk7Mdr2GKYcRMeiA5gc_F7ad94k2mh3wZJ-QsQxw1t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ballistocardiogram+Artifact+Reduction+in+Simultaneous+EEG-fMRI+Using+Deep+Learning&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=McIntosh%2C+James+R&rft.au=Yao%2C+Jiaang&rft.au=Hong%2C+Linbi&rft.au=Faller%2C+Josef&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=68&rft.issue=1&rft.spage=78&rft_id=info:doi/10.1109%2FTBME.2020.3004548&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |