Land use and climate change effects on soil organic carbon in North and Northeast China

Soil is recognized as the largest carbon reservoir in the terrestrial ecosystem. Soil organic carbon (SOC) is vulnerable to changes in land use and climate. For a better understanding of the SOC dynamics and its driving factors, we collected data of the 1980s and 2000s in the North and Northeast Chi...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 647; pp. 1230 - 1238
Main Authors Zhou, Yin, Hartemink, Alfred E., Shi, Zhou, Liang, Zongzheng, Lu, Yanli
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil is recognized as the largest carbon reservoir in the terrestrial ecosystem. Soil organic carbon (SOC) is vulnerable to changes in land use and climate. For a better understanding of the SOC dynamics and its driving factors, we collected data of the 1980s and 2000s in the North and Northeast China and conducted the digital soil mapping for spatial variation of SOC for the respective period. In the 1980s, 585 soils were sampled and the area was resampled in 2003 and 2004 (1062 samples) in a 30-km grid. The main land use in the area was cropland, forest and grassland. The random forest was used to predict the SOC concentration and its temporal change using land use, terrain factors, vegetation index, vis-NIR spectra and climate factors as predictors. The average SOC concentration in 1985 was 10.0 g kg−1 compared to 12.5 g kg−1 in 2004. The SOC variation was similar over the two periods, and levels increased from south to north. The estimated SOC stock was 1.68 Pg in 1985 and 1.66 Pg in 2004, but the SOC changes were different under different land uses. Over the twenty-year period, average temperatures increased and large areas of forests and grassland were converted to cropland. SOC under cropland was increased by 0.094 Pg (+9%) whereas 0.089 Pg SOC was lost under forests (−25%) and 0.037 Pg in the soils under grassland (−25%). It is concluded that land use is the main drivers for SOC changes in this area while climate change had different contributions in different regions. SOC loss was remarkable under the land use conversion while cropland has considerable potential to sequester SOC. [Display omitted] •Digital soil mapping was efficient for evaluation of the SOC changes at large scale with limited data.•Topsoil organic carbon increased in North China and rapidly decreased in Northeast China, however its stock remained neutral.•Land use is the predominant driving factor of the SOC changes in North and Northeast China.
AbstractList Soil is recognized as the largest carbon reservoir in the terrestrial ecosystem. Soil organic carbon (SOC) is vulnerable to changes in land use and climate. For a better understanding of the SOC dynamics and its driving factors, we collected data of the 1980s and 2000s in the North and Northeast China and conducted the digital soil mapping for spatial variation of SOC for the respective period. In the 1980s, 585 soils were sampled and the area was resampled in 2003 and 2004 (1062 samples) in a 30-km grid. The main land use in the area was cropland, forest and grassland. The random forest was used to predict the SOC concentration and its temporal change using land use, terrain factors, vegetation index, vis-NIR spectra and climate factors as predictors. The average SOC concentration in 1985 was 10.0 g kg⁻¹ compared to 12.5 g kg⁻¹ in 2004. The SOC variation was similar over the two periods, and levels increased from south to north. The estimated SOC stock was 1.68 Pg in 1985 and 1.66 Pg in 2004, but the SOC changes were different under different land uses. Over the twenty-year period, average temperatures increased and large areas of forests and grassland were converted to cropland. SOC under cropland was increased by 0.094 Pg (+9%) whereas 0.089 Pg SOC was lost under forests (−25%) and 0.037 Pg in the soils under grassland (−25%). It is concluded that land use is the main drivers for SOC changes in this area while climate change had different contributions in different regions. SOC loss was remarkable under the land use conversion while cropland has considerable potential to sequester SOC.
Soil is recognized as the largest carbon reservoir in the terrestrial ecosystem. Soil organic carbon (SOC) is vulnerable to changes in land use and climate. For a better understanding of the SOC dynamics and its driving factors, we collected data of the 1980s and 2000s in the North and Northeast China and conducted the digital soil mapping for spatial variation of SOC for the respective period. In the 1980s, 585 soils were sampled and the area was resampled in 2003 and 2004 (1062 samples) in a 30-km grid. The main land use in the area was cropland, forest and grassland. The random forest was used to predict the SOC concentration and its temporal change using land use, terrain factors, vegetation index, vis-NIR spectra and climate factors as predictors. The average SOC concentration in 1985 was 10.0 g kg-1 compared to 12.5 g kg-1 in 2004. The SOC variation was similar over the two periods, and levels increased from south to north. The estimated SOC stock was 1.68 Pg in 1985 and 1.66 Pg in 2004, but the SOC changes were different under different land uses. Over the twenty-year period, average temperatures increased and large areas of forests and grassland were converted to cropland. SOC under cropland was increased by 0.094 Pg (+9%) whereas 0.089 Pg SOC was lost under forests (-25%) and 0.037 Pg in the soils under grassland (-25%). It is concluded that land use is the main drivers for SOC changes in this area while climate change had different contributions in different regions. SOC loss was remarkable under the land use conversion while cropland has considerable potential to sequester SOC.Soil is recognized as the largest carbon reservoir in the terrestrial ecosystem. Soil organic carbon (SOC) is vulnerable to changes in land use and climate. For a better understanding of the SOC dynamics and its driving factors, we collected data of the 1980s and 2000s in the North and Northeast China and conducted the digital soil mapping for spatial variation of SOC for the respective period. In the 1980s, 585 soils were sampled and the area was resampled in 2003 and 2004 (1062 samples) in a 30-km grid. The main land use in the area was cropland, forest and grassland. The random forest was used to predict the SOC concentration and its temporal change using land use, terrain factors, vegetation index, vis-NIR spectra and climate factors as predictors. The average SOC concentration in 1985 was 10.0 g kg-1 compared to 12.5 g kg-1 in 2004. The SOC variation was similar over the two periods, and levels increased from south to north. The estimated SOC stock was 1.68 Pg in 1985 and 1.66 Pg in 2004, but the SOC changes were different under different land uses. Over the twenty-year period, average temperatures increased and large areas of forests and grassland were converted to cropland. SOC under cropland was increased by 0.094 Pg (+9%) whereas 0.089 Pg SOC was lost under forests (-25%) and 0.037 Pg in the soils under grassland (-25%). It is concluded that land use is the main drivers for SOC changes in this area while climate change had different contributions in different regions. SOC loss was remarkable under the land use conversion while cropland has considerable potential to sequester SOC.
Soil is recognized as the largest carbon reservoir in the terrestrial ecosystem. Soil organic carbon (SOC) is vulnerable to changes in land use and climate. For a better understanding of the SOC dynamics and its driving factors, we collected data of the 1980s and 2000s in the North and Northeast China and conducted the digital soil mapping for spatial variation of SOC for the respective period. In the 1980s, 585 soils were sampled and the area was resampled in 2003 and 2004 (1062 samples) in a 30-km grid. The main land use in the area was cropland, forest and grassland. The random forest was used to predict the SOC concentration and its temporal change using land use, terrain factors, vegetation index, vis-NIR spectra and climate factors as predictors. The average SOC concentration in 1985 was 10.0 g kg compared to 12.5 g kg in 2004. The SOC variation was similar over the two periods, and levels increased from south to north. The estimated SOC stock was 1.68 Pg in 1985 and 1.66 Pg in 2004, but the SOC changes were different under different land uses. Over the twenty-year period, average temperatures increased and large areas of forests and grassland were converted to cropland. SOC under cropland was increased by 0.094 Pg (+9%) whereas 0.089 Pg SOC was lost under forests (-25%) and 0.037 Pg in the soils under grassland (-25%). It is concluded that land use is the main drivers for SOC changes in this area while climate change had different contributions in different regions. SOC loss was remarkable under the land use conversion while cropland has considerable potential to sequester SOC.
Soil is recognized as the largest carbon reservoir in the terrestrial ecosystem. Soil organic carbon (SOC) is vulnerable to changes in land use and climate. For a better understanding of the SOC dynamics and its driving factors, we collected data of the 1980s and 2000s in the North and Northeast China and conducted the digital soil mapping for spatial variation of SOC for the respective period. In the 1980s, 585 soils were sampled and the area was resampled in 2003 and 2004 (1062 samples) in a 30-km grid. The main land use in the area was cropland, forest and grassland. The random forest was used to predict the SOC concentration and its temporal change using land use, terrain factors, vegetation index, vis-NIR spectra and climate factors as predictors. The average SOC concentration in 1985 was 10.0 g kg−1 compared to 12.5 g kg−1 in 2004. The SOC variation was similar over the two periods, and levels increased from south to north. The estimated SOC stock was 1.68 Pg in 1985 and 1.66 Pg in 2004, but the SOC changes were different under different land uses. Over the twenty-year period, average temperatures increased and large areas of forests and grassland were converted to cropland. SOC under cropland was increased by 0.094 Pg (+9%) whereas 0.089 Pg SOC was lost under forests (−25%) and 0.037 Pg in the soils under grassland (−25%). It is concluded that land use is the main drivers for SOC changes in this area while climate change had different contributions in different regions. SOC loss was remarkable under the land use conversion while cropland has considerable potential to sequester SOC. [Display omitted] •Digital soil mapping was efficient for evaluation of the SOC changes at large scale with limited data.•Topsoil organic carbon increased in North China and rapidly decreased in Northeast China, however its stock remained neutral.•Land use is the predominant driving factor of the SOC changes in North and Northeast China.
Author Hartemink, Alfred E.
Zhou, Yin
Liang, Zongzheng
Lu, Yanli
Shi, Zhou
Author_xml – sequence: 1
  givenname: Yin
  orcidid: 0000-0002-9611-0524
  surname: Zhou
  fullname: Zhou, Yin
  organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, Hangzhou, 310058, China
– sequence: 2
  givenname: Alfred E.
  surname: Hartemink
  fullname: Hartemink, Alfred E.
  organization: University of Wisconsin-Madison, Department of Soil Science, FD Hole Soils lab, 1525 Observatory Drive, Madison 53706, USA
– sequence: 3
  givenname: Zhou
  surname: Shi
  fullname: Shi, Zhou
  email: shizhou@zju.edu.cn
  organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, Hangzhou, 310058, China
– sequence: 4
  givenname: Zongzheng
  surname: Liang
  fullname: Liang, Zongzheng
  organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, Hangzhou, 310058, China
– sequence: 5
  givenname: Yanli
  surname: Lu
  fullname: Lu, Yanli
  organization: Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30180331$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rGzEQxUVJaZy0X6HVsZd1Z7S72tWhh2D6D0xyachRaLWzscxaSiU5kG9fOU566MViYEbi_Ubw3gU788ETY58Qlggov2yXybocMvnHpQDsl1AK5Ru2wL5TFYKQZ2wB0PSVkqo7ZxcpbaGcrsd37LwuCNQ1Ltjd2viR7xPxQ7ez25lM3G6MvydO00Q2Jx48T8HNPMR7453l1sShvDnPr0PMm2f0eSKTMl9tnDfv2dvJzIk-vPRLdvv92-_Vz2p98-PX6mpd2QaaXIm2NwIaVB0qaFE1nQRBQgprp26YGmzlYDvR1qrB0Y4KpJBmMKbc-tYOTX3JPh_3PsTwZ08p651LlubZeAr7pAW2tcRatnBaCkr1qgaFRfrxRbofdjTqh1h8iU_61bci-HoU2BhSijTpEofJLvgcjZs1gj7kpLf6X076kJOGUigL3_3Hv35xmrw6klRcfXQUDzrylkYXS1h6DO7kjr_PzLCD
CitedBy_id crossref_primary_10_1016_j_agee_2022_108141
crossref_primary_10_1080_15324982_2023_2284889
crossref_primary_10_1080_17565529_2020_1844129
crossref_primary_10_1016_j_still_2024_106248
crossref_primary_10_5194_essd_17_517_2025
crossref_primary_10_3390_su15118511
crossref_primary_10_1007_s40003_019_00410_0
crossref_primary_10_1007_s11356_019_07526_4
crossref_primary_10_1016_j_ecolind_2023_111208
crossref_primary_10_3390_agronomy14102263
crossref_primary_10_1002_hyp_70017
crossref_primary_10_1016_j_scitotenv_2024_171179
crossref_primary_10_1016_j_scitotenv_2021_149247
crossref_primary_10_14770_jgsk_2022_58_1_117
crossref_primary_10_3390_agronomy12102532
crossref_primary_10_1016_j_scitotenv_2018_10_206
crossref_primary_10_3390_agriculture12040488
crossref_primary_10_1016_j_still_2025_106475
crossref_primary_10_3390_rs12010085
crossref_primary_10_1007_s10668_021_01343_x
crossref_primary_10_1016_j_jclepro_2020_123674
crossref_primary_10_3390_rs11070736
crossref_primary_10_3390_f14061204
crossref_primary_10_1002_ldr_4498
crossref_primary_10_1007_s11769_021_1179_7
crossref_primary_10_1111_1755_6724_14266
crossref_primary_10_1002_ldr_4895
crossref_primary_10_2139_ssrn_4129089
crossref_primary_10_1016_j_compag_2023_107885
crossref_primary_10_1016_j_catena_2022_106311
crossref_primary_10_1016_j_catena_2024_108333
crossref_primary_10_1016_j_jenvman_2023_119598
crossref_primary_10_1016_j_still_2019_104465
crossref_primary_10_1016_j_geoderma_2021_115442
crossref_primary_10_1016_j_scitotenv_2022_160602
crossref_primary_10_3390_agriculture14101774
crossref_primary_10_1016_j_scitotenv_2019_06_030
crossref_primary_10_1016_j_geoderma_2023_116571
crossref_primary_10_1016_j_geodrs_2022_e00590
crossref_primary_10_3390_ijerph192215201
crossref_primary_10_2139_ssrn_3983963
crossref_primary_10_1016_j_geoderma_2021_115567
crossref_primary_10_1016_j_geoderma_2021_115600
crossref_primary_10_1016_j_resconrec_2022_106549
crossref_primary_10_1016_j_gecco_2023_e02432
crossref_primary_10_1016_j_jclepro_2022_135268
crossref_primary_10_1186_s13021_021_00195_2
crossref_primary_10_5194_soil_9_351_2023
crossref_primary_10_1080_10106049_2024_2322083
crossref_primary_10_1007_s40808_024_02158_1
crossref_primary_10_3390_land13050618
crossref_primary_10_1016_j_catena_2024_108522
crossref_primary_10_1016_j_scitotenv_2021_150910
crossref_primary_10_1016_j_catena_2021_105934
crossref_primary_10_1016_j_geoderma_2025_117212
crossref_primary_10_1016_j_jhydrol_2021_126110
crossref_primary_10_3390_agronomy11071438
crossref_primary_10_1016_j_spc_2024_03_029
crossref_primary_10_1016_j_asr_2024_07_040
crossref_primary_10_1016_j_jag_2020_102182
crossref_primary_10_1016_j_scitotenv_2022_155443
crossref_primary_10_2478_eko_2020_0003
crossref_primary_10_1109_ACCESS_2021_3107507
crossref_primary_10_1016_j_scitotenv_2022_159194
crossref_primary_10_1111_gcbb_12915
crossref_primary_10_1016_j_catena_2024_108633
crossref_primary_10_3390_w14101668
crossref_primary_10_1073_pnas_2317332121
crossref_primary_10_1016_j_scitotenv_2023_161973
crossref_primary_10_3390_agronomy13102664
crossref_primary_10_1007_s44246_025_00194_9
crossref_primary_10_3390_agronomy11071433
crossref_primary_10_1016_j_catena_2023_107369
crossref_primary_10_3390_su142013585
crossref_primary_10_1016_j_cageo_2019_104392
crossref_primary_10_1111_gcb_16154
crossref_primary_10_1016_j_apsoil_2024_105442
crossref_primary_10_3390_rs15205033
crossref_primary_10_1007_s12665_022_10588_2
crossref_primary_10_3390_land11050696
crossref_primary_10_1016_j_ecolind_2021_108353
crossref_primary_10_1016_j_scitotenv_2019_05_332
crossref_primary_10_1016_j_ecolind_2023_111082
crossref_primary_10_3390_rs14102504
crossref_primary_10_1007_s42729_019_00137_5
crossref_primary_10_5194_soil_8_541_2022
crossref_primary_10_3390_rs14061303
crossref_primary_10_24011_barofd_886267
crossref_primary_10_1002_ldr_4226
crossref_primary_10_52547_ifej_9_17_97
crossref_primary_10_1016_j_cej_2024_148970
crossref_primary_10_3389_fpls_2022_1009631
crossref_primary_10_2139_ssrn_3996866
crossref_primary_10_1016_j_csag_2024_100025
crossref_primary_10_1109_JSTARS_2024_3491804
crossref_primary_10_3390_molecules26082124
crossref_primary_10_1016_j_rser_2024_114878
crossref_primary_10_1038_s41597_024_04158_3
crossref_primary_10_1038_s41598_021_90543_6
crossref_primary_10_18182_tjf_1117835
crossref_primary_10_1016_j_geoderma_2023_116383
crossref_primary_10_1016_j_catena_2023_107188
crossref_primary_10_1016_j_jtherbio_2022_103434
crossref_primary_10_1002_ldr_3487
crossref_primary_10_1007_s11104_022_05506_1
crossref_primary_10_1016_j_ese_2021_100108
crossref_primary_10_1016_j_still_2022_105526
crossref_primary_10_1080_10106049_2024_2441388
crossref_primary_10_1186_s13021_024_00255_3
crossref_primary_10_1016_j_catena_2021_105442
crossref_primary_10_1016_j_scitotenv_2019_02_408
crossref_primary_10_1088_1748_9326_aca41e
crossref_primary_10_1016_j_geoderma_2019_05_031
crossref_primary_10_1002_ldr_4293
crossref_primary_10_1007_s11998_022_00719_6
crossref_primary_10_1088_1755_1315_626_1_012025
crossref_primary_10_3389_fsoil_2022_877261
crossref_primary_10_1002_saj2_20644
crossref_primary_10_1016_j_agee_2024_109411
crossref_primary_10_1016_j_catena_2021_105723
crossref_primary_10_1016_j_geoderma_2023_116652
crossref_primary_10_3389_fsoil_2022_890437
crossref_primary_10_3390_land13070900
crossref_primary_10_1016_j_eja_2024_127323
crossref_primary_10_3390_su12062259
crossref_primary_10_1016_j_ecolind_2020_106508
crossref_primary_10_1016_j_agee_2023_108481
crossref_primary_10_1016_j_scitotenv_2020_141721
crossref_primary_10_3389_fenvs_2022_915329
crossref_primary_10_1007_s11104_024_06867_5
crossref_primary_10_1177_00368504221113186
crossref_primary_10_1007_s10653_021_01059_x
crossref_primary_10_1016_j_jia_2022_08_072
crossref_primary_10_1371_journal_pone_0225952
crossref_primary_10_1016_j_ecolind_2023_111453
crossref_primary_10_3390_app131910666
crossref_primary_10_1016_j_still_2019_104410
crossref_primary_10_1016_j_scitotenv_2021_145384
crossref_primary_10_1007_s11368_020_02809_7
crossref_primary_10_1016_j_geoderma_2021_115356
crossref_primary_10_3390_agronomy13030897
crossref_primary_10_1007_s12665_024_11876_9
crossref_primary_10_1016_j_fecs_2023_100101
crossref_primary_10_1016_j_jclepro_2021_127430
crossref_primary_10_1016_j_jenvman_2025_124482
crossref_primary_10_1016_j_matchemphys_2022_125705
crossref_primary_10_1111_1755_6724_15211
crossref_primary_10_3390_ijerph17165697
crossref_primary_10_1007_s12517_023_11177_8
crossref_primary_10_1038_s41561_021_00892_0
crossref_primary_10_1007_s13157_023_01705_3
crossref_primary_10_1016_j_catena_2023_107603
crossref_primary_10_1016_j_geodrs_2022_e00561
crossref_primary_10_1016_j_jclepro_2023_139854
crossref_primary_10_3390_f13050675
Cites_doi 10.1073/pnas.1002592107
10.1038/srep32525
10.1007/s11434-006-2056-6
10.1016/j.scitotenv.2018.02.209
10.2136/sh2004.4.0129
10.1007/s10533-004-2222-3
10.1029/2009GB003484
10.1016/j.scitotenv.2014.06.088
10.1111/gcb.12889
10.1007/s11284-006-0033-9
10.2307/2532051
10.1016/j.envsci.2010.07.004
10.1016/j.gloplacha.2011.12.005
10.1111/j.1365-2486.2010.02336.x
10.1126/science.1175084
10.1111/gcb.12508
10.1016/j.rse.2003.10.018
10.1016/0038-0717(94)00242-S
10.1038/srep21842
10.1046/j.1354-1013.2002.00486.x
10.1111/gcb.12569
10.1097/00010694-198911000-00009
10.1016/j.jag.2016.09.002
10.1016/j.gecco.2015.12.004
10.1007/s10533-007-9109-z
10.1016/j.rse.2017.08.023
10.1111/ejss.12272
10.1038/nature04514
10.1111/j.1365-2486.2011.02408.x
10.1002/2015JG002929
10.1007/s11430-009-0118-8
10.1016/S0016-7061(99)00003-8
10.1016/S0016-7061(03)00223-4
10.1111/j.1475-2743.2002.tb00227.x
10.1016/j.still.2013.08.010
10.2136/sssaj1980.03615995004400040005x
10.1111/gcb.13068
10.1038/nature07944
10.1007/s11442-014-1082-6
10.1016/j.agee.2017.05.003
10.2136/sssaj1991.03615995005500020030x
10.1007/s12571-012-0225-9
10.1046/j.1365-2486.2003.00590.x
10.5194/bgd-8-723-2011
10.1023/A:1010933404324
10.1016/j.agee.2011.06.002
10.1016/j.geoderma.2016.02.006
10.1111/gcb.13898
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2018.08.016
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 1238
ExternalDocumentID 30180331
10_1016_j_scitotenv_2018_08_016
S0048969718329851
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c404t-258a20419719051947602e262ccf7bf4156bc7253941dcd90626abaa41d85cb43
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Sun Aug 24 03:53:56 EDT 2025
Fri Jul 11 11:33:44 EDT 2025
Wed Feb 19 02:42:23 EST 2025
Tue Jul 01 01:21:49 EDT 2025
Thu Apr 24 23:05:06 EDT 2025
Fri Feb 23 02:48:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Climate change
Digital soil mapping
Land use change
Soil carbon change
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-258a20419719051947602e262ccf7bf4156bc7253941dcd90626abaa41d85cb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9611-0524
PMID 30180331
PQID 2099893091
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2153613650
proquest_miscellaneous_2099893091
pubmed_primary_30180331
crossref_citationtrail_10_1016_j_scitotenv_2018_08_016
crossref_primary_10_1016_j_scitotenv_2018_08_016
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_08_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-10
PublicationDateYYYYMMDD 2019-01-10
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-10
  day: 10
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ou, Rousseau, Wang (bb0130) 2017; 245
Wiesmeier, Poeplau, Sierra (bb0215) 2016; 6
Grinand, Le Maire, Vieilledent (bb0055) 2017; 54
Breiman (bb0015) 2001; 45
Xiong, Grunwald, Myers (bb0225) 2014; 493
Yang, Zhang, Yang (bb0250) 2016; 6
Zhou, Biswas, Ma (bb0270) 2016; 271
Don, Schumacher, Freibauer (bb0045) 2011; 17
NASA Land Processes Distributed Active Archive Center (LP DAAC) (bb0120) 2001
Ye, Fang, Ren (bb0255) 2009; 52
USGS (bb0195) 2006
Costa Junior, Corbeels, Bernoux (bb0025) 2013; 134
Liu, Kuang, Zhang (bb0095) 2014; 24
Song, Li, Pan, Zhang (bb0175) 2005; 74
Ma, Shi, Zhou (bb0100) 2017; 200
Schrumpf, Schulze, Kaiser, Schumacher (bb0155) 2011; 8
Smith, House, Bustamante (bb5000) 2016; 22
Nadeu, Gobin, Fiener (bb0115) 2015; 21
Yu, Huang, Zhang (bb0265) 2012; 82
Yu, Fang, Gao (bb0260) 2006; 21
Falloon, Smith (bb0050) 2002; 18
Deng, Liu, Shangguan (bb0035) 2014; 20
Kirschbaum (bb0085) 1995; 27
Lin (bb0090) 1989; 45
Guo, Gifford (bb0060) 2002; 8
Shi, Yu, Warner (bb0160) 2004; 45
Manrique, Jones (bb0105) 1991; 55
Yang, Mohammat, Feng (bb0245) 2007; 84
Oksanen, Blanchet, Kindt (bb0125) 2016
Huang, Sun (bb0070) 2006; 51
R Core Team (bb0145) 2013
Alexander (bb0005) 1980; 44
Han, Wiesmeier, Conant (bb0065) 2018; 24
Stow, Hope, McGuire (bb0180) 2004; 89
Sun, Huang, Zhang (bb0185) 2010; 24
Chen, Martin, Saby (bb0020) 2018; 630
Shi, Tao, Liu (bb0165) 2013; 5
Wu, Guo, Peng (bb0220) 2003; 9
Tucker, Pinzon, Brown (bb0190) 2004
Xu, Zhang, Zheng (bb0230) 2006; 15
Viscarra Rossel, Webster, Bui (bb0205) 2014; 20
Sanchez, Ahamed, Carré (bb0150) 2009; 325
Bishop, McBratney, Laslett (bb0010) 1999; 91
McBratney, Santos, Minasny (bb0110) 2003; 117
IPCC (bb0080) 2013
Deng, Zhu, Tang (bb0040) 2016; 5
Van Wesemael, Paustian, Meersmans (bb0200) 2010; 107
Poeplau, Don, Vesterdal (bb0140) 2011; 17
Huntington, Johnson, Johnson (bb0075) 1989; 148
Xu, Xu, Chen (bb0235) 2010; 13
Shi, Ji, Viscarra Rossel (bb0170) 2015; 66
Davidson, Janssens (bb0030) 2006; 440
Wang, Wilkes, Zhang (bb0210) 2011; 142
Xu, He, Yu (bb0240) 2015; 120
Piao, Fang, Ciais (bb0135) 2009; 458
Shi (10.1016/j.scitotenv.2018.08.016_bb0165) 2013; 5
Stow (10.1016/j.scitotenv.2018.08.016_bb0180) 2004; 89
Poeplau (10.1016/j.scitotenv.2018.08.016_bb0140) 2011; 17
Viscarra Rossel (10.1016/j.scitotenv.2018.08.016_bb0205) 2014; 20
Han (10.1016/j.scitotenv.2018.08.016_bb0065) 2018; 24
Smith (10.1016/j.scitotenv.2018.08.016_bb5000) 2016; 22
Liu (10.1016/j.scitotenv.2018.08.016_bb0095) 2014; 24
Yu (10.1016/j.scitotenv.2018.08.016_bb0265) 2012; 82
Oksanen (10.1016/j.scitotenv.2018.08.016_bb0125)
Guo (10.1016/j.scitotenv.2018.08.016_bb0060) 2002; 8
Shi (10.1016/j.scitotenv.2018.08.016_bb0170) 2015; 66
Zhou (10.1016/j.scitotenv.2018.08.016_bb0270) 2016; 271
Deng (10.1016/j.scitotenv.2018.08.016_bb0040) 2016; 5
Wu (10.1016/j.scitotenv.2018.08.016_bb0220) 2003; 9
Piao (10.1016/j.scitotenv.2018.08.016_bb0135) 2009; 458
Ou (10.1016/j.scitotenv.2018.08.016_bb0130) 2017; 245
Don (10.1016/j.scitotenv.2018.08.016_bb0045) 2011; 17
Manrique (10.1016/j.scitotenv.2018.08.016_bb0105) 1991; 55
Sanchez (10.1016/j.scitotenv.2018.08.016_bb0150) 2009; 325
Wang (10.1016/j.scitotenv.2018.08.016_bb0210) 2011; 142
Kirschbaum (10.1016/j.scitotenv.2018.08.016_bb0085) 1995; 27
Yu (10.1016/j.scitotenv.2018.08.016_bb0260) 2006; 21
Xu (10.1016/j.scitotenv.2018.08.016_bb0230) 2006; 15
Bishop (10.1016/j.scitotenv.2018.08.016_bb0010) 1999; 91
McBratney (10.1016/j.scitotenv.2018.08.016_bb0110) 2003; 117
Xu (10.1016/j.scitotenv.2018.08.016_bb0240) 2015; 120
Ye (10.1016/j.scitotenv.2018.08.016_bb0255) 2009; 52
Huang (10.1016/j.scitotenv.2018.08.016_bb0070) 2006; 51
Lin (10.1016/j.scitotenv.2018.08.016_bb0090) 1989; 45
Schrumpf (10.1016/j.scitotenv.2018.08.016_bb0155) 2011; 8
Sun (10.1016/j.scitotenv.2018.08.016_bb0185) 2010; 24
IPCC (10.1016/j.scitotenv.2018.08.016_bb0080) 2013
Shi (10.1016/j.scitotenv.2018.08.016_bb0160) 2004; 45
NASA Land Processes Distributed Active Archive Center (LP DAAC) (10.1016/j.scitotenv.2018.08.016_bb0120) 2001
Tucker (10.1016/j.scitotenv.2018.08.016_bb0190) 2004
Song (10.1016/j.scitotenv.2018.08.016_bb0175) 2005; 74
USGS (10.1016/j.scitotenv.2018.08.016_bb0195) 2006
R Core Team (10.1016/j.scitotenv.2018.08.016_bb0145) 2013
Nadeu (10.1016/j.scitotenv.2018.08.016_bb0115) 2015; 21
Alexander (10.1016/j.scitotenv.2018.08.016_bb0005) 1980; 44
Yang (10.1016/j.scitotenv.2018.08.016_bb0245) 2007; 84
Xiong (10.1016/j.scitotenv.2018.08.016_bb0225) 2014; 493
Huntington (10.1016/j.scitotenv.2018.08.016_bb0075) 1989; 148
Costa Junior (10.1016/j.scitotenv.2018.08.016_bb0025) 2013; 134
Xu (10.1016/j.scitotenv.2018.08.016_bb0235) 2010; 13
Yang (10.1016/j.scitotenv.2018.08.016_bb0250) 2016; 6
Falloon (10.1016/j.scitotenv.2018.08.016_bb0050) 2002; 18
Van Wesemael (10.1016/j.scitotenv.2018.08.016_bb0200) 2010; 107
Deng (10.1016/j.scitotenv.2018.08.016_bb0035) 2014; 20
Wiesmeier (10.1016/j.scitotenv.2018.08.016_bb0215) 2016; 6
Chen (10.1016/j.scitotenv.2018.08.016_bb0020) 2018; 630
Grinand (10.1016/j.scitotenv.2018.08.016_bb0055) 2017; 54
Breiman (10.1016/j.scitotenv.2018.08.016_bb0015) 2001; 45
Ma (10.1016/j.scitotenv.2018.08.016_bb0100) 2017; 200
Davidson (10.1016/j.scitotenv.2018.08.016_bb0030) 2006; 440
References_xml – volume: 74
  start-page: 47
  year: 2005
  end-page: 62
  ident: bb0175
  article-title: Topsoil organic carbon storage of China and its loss by cultivation
  publication-title: Biogeochemistry
– volume: 9
  start-page: 305
  year: 2003
  end-page: 315
  ident: bb0220
  article-title: Land use induced changes of organic carbon storage in soils of China
  publication-title: Glob. Chang. Biol.
– volume: 55
  start-page: 476
  year: 1991
  end-page: 481
  ident: bb0105
  article-title: Bulk density of soils in relation to soil physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 45
  start-page: 129
  year: 2004
  end-page: 136
  ident: bb0160
  article-title: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system
  publication-title: Soil Surv. Horiz.
– volume: 51
  start-page: 1785
  year: 2006
  end-page: 1803
  ident: bb0070
  article-title: Changes in topsoil organic carbon of croplands in mainland China over the last two decades
  publication-title: Chin. Sci. Bull.
– volume: 54
  start-page: 1
  year: 2017
  end-page: 14
  ident: bb0055
  article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 21
  start-page: 855
  year: 2006
  end-page: 867
  ident: bb0260
  article-title: Soil organic carbon budget and fertility variation of black soils in Northeast China
  publication-title: Ecol. Res.
– volume: 271
  start-page: 71
  year: 2016
  end-page: 79
  ident: bb0270
  article-title: Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain
  publication-title: Geoderma
– volume: 13
  start-page: 793
  year: 2010
  end-page: 800
  ident: bb0235
  article-title: Soil loss and conservation in the black soil region of Northeast China: a retrospective study
  publication-title: Environ. Sci. Pol.
– volume: 18
  start-page: 101
  year: 2002
  end-page: 111
  ident: bb0050
  article-title: Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application
  publication-title: Soil Use Manag.
– volume: 66
  start-page: 679
  year: 2015
  end-page: 687
  ident: bb0170
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library
  publication-title: Eur. J. Soil Sci.
– volume: 6
  start-page: 32525
  year: 2016
  ident: bb0215
  article-title: Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends
  publication-title: Sci. Rep.
– volume: 8
  start-page: 345
  year: 2002
  end-page: 360
  ident: bb0060
  article-title: Soil carbon stocks and land use change: a meta-analysis
  publication-title: Glob. Chang. Biol.
– year: 2001
  ident: bb0120
  article-title: MODIS Land Products
– volume: 245
  start-page: 22
  year: 2017
  end-page: 31
  ident: bb0130
  article-title: Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—a case study of the Black Soil Region of Northeastern China
  publication-title: Agric. Ecosyst. Environ.
– volume: 22
  start-page: 1008
  year: 2016
  end-page: 1028
  ident: bb5000
  article-title: Global change pressures on soils from land use and management
  publication-title: Glob. Chang. Biol.
– volume: 120
  start-page: 1567
  year: 2015
  end-page: 1575
  ident: bb0240
  article-title: Differences in pedotransfer functions of bulk density lead to high uncertainty in soil organic carbon estimation at regional scales: evidence from Chinese terrestrial ecosystems
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 24
  year: 2010
  ident: bb0185
  article-title: Carbon sequestration and its potential in agricultural soils of China
  publication-title: Glob. Biogeochem. Cycles
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  ident: bb0090
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 142
  start-page: 329
  year: 2011
  end-page: 340
  ident: bb0210
  article-title: Management and land use change effects on soil carbon in northern China's grasslands: a synthesis
  publication-title: Agric. Ecosyst. Environ.
– volume: 200
  start-page: 378
  year: 2017
  end-page: 395
  ident: bb0100
  article-title: A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies removed
  publication-title: Remote Sens. Environ.
– volume: 134
  start-page: 207
  year: 2013
  end-page: 212
  ident: bb0025
  article-title: Assessing soil carbon storage rates under no-tillage: comparing the synchronic and diachronic approaches
  publication-title: Soil Tillage Res.
– volume: 6
  start-page: 21842
  year: 2016
  ident: bb0250
  article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan Plateau
  publication-title: Sci. Rep.
– volume: 20
  start-page: 2953
  year: 2014
  end-page: 2970
  ident: bb0205
  article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
  publication-title: Glob. Chang. Biol.
– volume: 15
  start-page: 74
  year: 2006
  end-page: 79
  ident: bb0230
  article-title: Influence of economic development level on topsoil organic carbon over time
  publication-title: Ecol. Environ.
– volume: 440
  start-page: 165
  year: 2006
  ident: bb0030
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 458
  start-page: 1009
  year: 2009
  ident: bb0135
  article-title: The carbon balance of terrestrial ecosystems in China
  publication-title: Nature
– volume: 52
  start-page: 1172
  year: 2009
  end-page: 1182
  ident: bb0255
  article-title: Cropland cover change in Northeast China during the past 300 years
  publication-title: Sci. China Ser. D Earth Sci.
– volume: 630
  start-page: 389
  year: 2018
  end-page: 400
  ident: bb0020
  article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 753
  year: 1995
  end-page: 760
  ident: bb0085
  article-title: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage
  publication-title: Soil Biol. Biochem.
– volume: 24
  start-page: 987
  year: 2018
  end-page: 1000
  ident: bb0065
  article-title: Large soil organic carbon increase due to improved agronomic management in the North China Plain from 1980s to 2010s
  publication-title: Glob. Chang. Biol.
– volume: 24
  start-page: 195
  year: 2014
  end-page: 210
  ident: bb0095
  article-title: Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s
  publication-title: J. Geogr. Sci.
– volume: 8
  start-page: 723
  year: 2011
  end-page: 769
  ident: bb0155
  article-title: How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?
  publication-title: Biogeosciences
– volume: 44
  start-page: 689
  year: 1980
  end-page: 692
  ident: bb0005
  article-title: Bulk densities of California soils in relation to other soil properties 1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 82
  start-page: 115
  year: 2012
  end-page: 128
  ident: bb0265
  article-title: Modeling soil organic carbon change in croplands of China, 1980–2009
  publication-title: Glob. Planet. Chang.
– volume: 107
  start-page: 14926
  year: 2010
  end-page: 14930
  ident: bb0200
  article-title: Agricultural management explains historic changes in regional soil carbon stocks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 17
  start-page: 2415
  year: 2011
  end-page: 2427
  ident: bb0140
  article-title: Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach
  publication-title: Glob. Chang. Biol.
– year: 2016
  ident: bb0125
  article-title: vegan: community ecology package. R package version 2
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0015
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0110
  article-title: On digital soil mapping
  publication-title: Geoderma
– year: 2004
  ident: bb0190
  article-title: Global Inventory Modeling and Mapping Studies, NA94apr15b.n11-VIg, 2.0
– volume: 493
  start-page: 974
  year: 2014
  end-page: 982
  ident: bb0225
  article-title: Interaction effects of climate and land use/land cover change on soil organic carbon sequestration
  publication-title: Sci. Total Environ.
– volume: 148
  start-page: 380
  year: 1989
  end-page: 386
  ident: bb0075
  article-title: Carbon, organic matter, and bulk density relationships in a forested spodosol
  publication-title: Soil Sci.
– volume: 5
  start-page: 127
  year: 2016
  end-page: 138
  ident: bb0040
  article-title: Global patterns of the effects of land-use changes on soil carbon stocks
  publication-title: Glob. Ecol. Conserv.
– volume: 5
  start-page: 69
  year: 2013
  end-page: 82
  ident: bb0165
  article-title: Changes in quantity and quality of cropland and the implications for grain production in the Huang-Huai-Hai Plain of China
  publication-title: Food Sec.
– volume: 325
  start-page: 680
  year: 2009
  end-page: 681
  ident: bb0150
  article-title: Digital soil map of the world
  publication-title: Science
– start-page: 1
  year: 2013
  end-page: 30
  ident: bb0080
  article-title: Summary for policy makers
  publication-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 17
  start-page: 1658
  year: 2011
  end-page: 1670
  ident: bb0045
  article-title: Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis
  publication-title: Glob. Chang. Biol.
– year: 2013
  ident: bb0145
  article-title: R: A Language and Environment for Statistical Computing
– volume: 20
  start-page: 3544
  year: 2014
  end-page: 3556
  ident: bb0035
  article-title: Land-use conversion and changing soil carbon stocks in China's ‘Grain-for-Green’ Program: a synthesis
  publication-title: Glob. Chang. Biol.
– volume: 21
  start-page: 3181
  year: 2015
  end-page: 3192
  ident: bb0115
  article-title: Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes
  publication-title: Glob. Chang. Biol.
– volume: 89
  start-page: 281
  year: 2004
  end-page: 308
  ident: bb0180
  article-title: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems
  publication-title: Remote Sens. Environ.
– volume: 84
  start-page: 131
  year: 2007
  end-page: 141
  ident: bb0245
  article-title: Storage, patterns and environmental controls of soil organic carbon in China
  publication-title: Biogeochemistry
– volume: 91
  start-page: 27
  year: 1999
  end-page: 45
  ident: bb0010
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
– year: 2006
  ident: bb0195
  article-title: Shuttle Radar Topography Mission, 1 Arc Second scenes
– volume: 107
  start-page: 14926
  issue: 33
  year: 2010
  ident: 10.1016/j.scitotenv.2018.08.016_bb0200
  article-title: Agricultural management explains historic changes in regional soil carbon stocks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1002592107
– volume: 6
  start-page: 32525
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.016_bb0215
  article-title: Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends
  publication-title: Sci. Rep.
  doi: 10.1038/srep32525
– volume: 51
  start-page: 1785
  issue: 15
  year: 2006
  ident: 10.1016/j.scitotenv.2018.08.016_bb0070
  article-title: Changes in topsoil organic carbon of croplands in mainland China over the last two decades
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-006-2056-6
– volume: 630
  start-page: 389
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.016_bb0020
  article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.209
– volume: 45
  start-page: 129
  issue: 4
  year: 2004
  ident: 10.1016/j.scitotenv.2018.08.016_bb0160
  article-title: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system
  publication-title: Soil Surv. Horiz.
  doi: 10.2136/sh2004.4.0129
– volume: 74
  start-page: 47
  issue: 1
  year: 2005
  ident: 10.1016/j.scitotenv.2018.08.016_bb0175
  article-title: Topsoil organic carbon storage of China and its loss by cultivation
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-004-2222-3
– volume: 24
  issue: 3
  year: 2010
  ident: 10.1016/j.scitotenv.2018.08.016_bb0185
  article-title: Carbon sequestration and its potential in agricultural soils of China
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2009GB003484
– volume: 493
  start-page: 974
  year: 2014
  ident: 10.1016/j.scitotenv.2018.08.016_bb0225
  article-title: Interaction effects of climate and land use/land cover change on soil organic carbon sequestration
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.06.088
– volume: 21
  start-page: 3181
  issue: 8
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.016_bb0115
  article-title: Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12889
– volume: 21
  start-page: 855
  issue: 6
  year: 2006
  ident: 10.1016/j.scitotenv.2018.08.016_bb0260
  article-title: Soil organic carbon budget and fertility variation of black soils in Northeast China
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-006-0033-9
– year: 2013
  ident: 10.1016/j.scitotenv.2018.08.016_bb0145
– volume: 45
  start-page: 255
  year: 1989
  ident: 10.1016/j.scitotenv.2018.08.016_bb0090
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 13
  start-page: 793
  issue: 8
  year: 2010
  ident: 10.1016/j.scitotenv.2018.08.016_bb0235
  article-title: Soil loss and conservation in the black soil region of Northeast China: a retrospective study
  publication-title: Environ. Sci. Pol.
  doi: 10.1016/j.envsci.2010.07.004
– volume: 82
  start-page: 115
  year: 2012
  ident: 10.1016/j.scitotenv.2018.08.016_bb0265
  article-title: Modeling soil organic carbon change in croplands of China, 1980–2009
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2011.12.005
– volume: 17
  start-page: 1658
  issue: 4
  year: 2011
  ident: 10.1016/j.scitotenv.2018.08.016_bb0045
  article-title: Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02336.x
– year: 2004
  ident: 10.1016/j.scitotenv.2018.08.016_bb0190
– volume: 325
  start-page: 680
  issue: 5941
  year: 2009
  ident: 10.1016/j.scitotenv.2018.08.016_bb0150
  article-title: Digital soil map of the world
  publication-title: Science
  doi: 10.1126/science.1175084
– volume: 20
  start-page: 3544
  issue: 11
  year: 2014
  ident: 10.1016/j.scitotenv.2018.08.016_bb0035
  article-title: Land-use conversion and changing soil carbon stocks in China's ‘Grain-for-Green’ Program: a synthesis
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12508
– volume: 15
  start-page: 74
  year: 2006
  ident: 10.1016/j.scitotenv.2018.08.016_bb0230
  article-title: Influence of economic development level on topsoil organic carbon over time
  publication-title: Ecol. Environ.
– volume: 89
  start-page: 281
  issue: 3
  year: 2004
  ident: 10.1016/j.scitotenv.2018.08.016_bb0180
  article-title: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.10.018
– volume: 27
  start-page: 753
  issue: 6
  year: 1995
  ident: 10.1016/j.scitotenv.2018.08.016_bb0085
  article-title: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(94)00242-S
– volume: 6
  start-page: 21842
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.016_bb0250
  article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan Plateau
  publication-title: Sci. Rep.
  doi: 10.1038/srep21842
– volume: 8
  start-page: 345
  issue: 4
  year: 2002
  ident: 10.1016/j.scitotenv.2018.08.016_bb0060
  article-title: Soil carbon stocks and land use change: a meta-analysis
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1354-1013.2002.00486.x
– ident: 10.1016/j.scitotenv.2018.08.016_bb0125
– volume: 20
  start-page: 2953
  issue: 9
  year: 2014
  ident: 10.1016/j.scitotenv.2018.08.016_bb0205
  article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12569
– volume: 148
  start-page: 380
  issue: 5
  year: 1989
  ident: 10.1016/j.scitotenv.2018.08.016_bb0075
  article-title: Carbon, organic matter, and bulk density relationships in a forested spodosol
  publication-title: Soil Sci.
  doi: 10.1097/00010694-198911000-00009
– year: 2001
  ident: 10.1016/j.scitotenv.2018.08.016_bb0120
– year: 2006
  ident: 10.1016/j.scitotenv.2018.08.016_bb0195
– volume: 54
  start-page: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.016_bb0055
  article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.09.002
– volume: 5
  start-page: 127
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.016_bb0040
  article-title: Global patterns of the effects of land-use changes on soil carbon stocks
  publication-title: Glob. Ecol. Conserv.
  doi: 10.1016/j.gecco.2015.12.004
– volume: 84
  start-page: 131
  issue: 2
  year: 2007
  ident: 10.1016/j.scitotenv.2018.08.016_bb0245
  article-title: Storage, patterns and environmental controls of soil organic carbon in China
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9109-z
– volume: 200
  start-page: 378
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.016_bb0100
  article-title: A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies removed
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.023
– volume: 66
  start-page: 679
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.016_bb0170
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12272
– volume: 440
  start-page: 165
  issue: 7081
  year: 2006
  ident: 10.1016/j.scitotenv.2018.08.016_bb0030
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
  doi: 10.1038/nature04514
– volume: 17
  start-page: 2415
  issue: 7
  year: 2011
  ident: 10.1016/j.scitotenv.2018.08.016_bb0140
  article-title: Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02408.x
– volume: 120
  start-page: 1567
  issue: 8
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.016_bb0240
  article-title: Differences in pedotransfer functions of bulk density lead to high uncertainty in soil organic carbon estimation at regional scales: evidence from Chinese terrestrial ecosystems
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/2015JG002929
– volume: 52
  start-page: 1172
  issue: 8
  year: 2009
  ident: 10.1016/j.scitotenv.2018.08.016_bb0255
  article-title: Cropland cover change in Northeast China during the past 300 years
  publication-title: Sci. China Ser. D Earth Sci.
  doi: 10.1007/s11430-009-0118-8
– volume: 91
  start-page: 27
  issue: 1
  year: 1999
  ident: 10.1016/j.scitotenv.2018.08.016_bb0010
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(99)00003-8
– volume: 117
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.scitotenv.2018.08.016_bb0110
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– start-page: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2018.08.016_bb0080
  article-title: Summary for policy makers
– volume: 18
  start-page: 101
  issue: 2
  year: 2002
  ident: 10.1016/j.scitotenv.2018.08.016_bb0050
  article-title: Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2002.tb00227.x
– volume: 134
  start-page: 207
  year: 2013
  ident: 10.1016/j.scitotenv.2018.08.016_bb0025
  article-title: Assessing soil carbon storage rates under no-tillage: comparing the synchronic and diachronic approaches
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2013.08.010
– volume: 44
  start-page: 689
  issue: 4
  year: 1980
  ident: 10.1016/j.scitotenv.2018.08.016_bb0005
  article-title: Bulk densities of California soils in relation to other soil properties 1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400040005x
– volume: 22
  start-page: 1008
  issue: 3
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.016_bb5000
  article-title: Global change pressures on soils from land use and management
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13068
– volume: 458
  start-page: 1009
  issue: 7241
  year: 2009
  ident: 10.1016/j.scitotenv.2018.08.016_bb0135
  article-title: The carbon balance of terrestrial ecosystems in China
  publication-title: Nature
  doi: 10.1038/nature07944
– volume: 24
  start-page: 195
  issue: 2
  year: 2014
  ident: 10.1016/j.scitotenv.2018.08.016_bb0095
  article-title: Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-014-1082-6
– volume: 245
  start-page: 22
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.016_bb0130
  article-title: Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—a case study of the Black Soil Region of Northeastern China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.05.003
– volume: 55
  start-page: 476
  issue: 2
  year: 1991
  ident: 10.1016/j.scitotenv.2018.08.016_bb0105
  article-title: Bulk density of soils in relation to soil physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1991.03615995005500020030x
– volume: 5
  start-page: 69
  issue: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2018.08.016_bb0165
  article-title: Changes in quantity and quality of cropland and the implications for grain production in the Huang-Huai-Hai Plain of China
  publication-title: Food Sec.
  doi: 10.1007/s12571-012-0225-9
– volume: 9
  start-page: 305
  issue: 3
  year: 2003
  ident: 10.1016/j.scitotenv.2018.08.016_bb0220
  article-title: Land use induced changes of organic carbon storage in soils of China
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1365-2486.2003.00590.x
– volume: 8
  start-page: 723
  year: 2011
  ident: 10.1016/j.scitotenv.2018.08.016_bb0155
  article-title: How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?
  publication-title: Biogeosciences
  doi: 10.5194/bgd-8-723-2011
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.scitotenv.2018.08.016_bb0015
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 142
  start-page: 329
  issue: 3
  year: 2011
  ident: 10.1016/j.scitotenv.2018.08.016_bb0210
  article-title: Management and land use change effects on soil carbon in northern China's grasslands: a synthesis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.06.002
– volume: 271
  start-page: 71
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.016_bb0270
  article-title: Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.02.006
– volume: 24
  start-page: 987
  issue: 3
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.016_bb0065
  article-title: Large soil organic carbon increase due to improved agronomic management in the North China Plain from 1980s to 2010s
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13898
SSID ssj0000781
Score 2.627953
Snippet Soil is recognized as the largest carbon reservoir in the terrestrial ecosystem. Soil organic carbon (SOC) is vulnerable to changes in land use and climate....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1230
SubjectTerms China
Climate change
climatic factors
cropland
Digital soil mapping
forests
grasslands
Land use change
landscapes
soil
Soil carbon change
soil organic carbon
soil surveys
temperature
temporal variation
terrestrial ecosystems
vegetation index
Title Land use and climate change effects on soil organic carbon in North and Northeast China
URI https://dx.doi.org/10.1016/j.scitotenv.2018.08.016
https://www.ncbi.nlm.nih.gov/pubmed/30180331
https://www.proquest.com/docview/2099893091
https://www.proquest.com/docview/2153613650
Volume 647
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9wwDBelZTAYpb2u260feNDXrLHjOEnfSmm57bY-jJX2zTiOAxlHUnp3hb70b59kJ1cK6_qwp8TGCkaSLTnWTwI4UspmouYuqjMbRzJLqqhAsxhJYSqL7jmvPVzsx6WaXMlvN-nNGpwNWBgKq-z3_rCn-9267znuuXl82zSE8ZV5oYqMlLLIPYxayoy0_MvjU5gHJbMJt8y4sHH0sxgv_O6iQ9_0nmK8cp_Lkwqf_91CveSBekt0sQWbvQvJTsMst2HNtSN4E4pKPoxg9_wJu4bD-sU7H8G78IuOBeTRDlx_N23FlnPH6GlnDTqvjgUkMOvjPFjXsnnXzFio_mSZNXcl9jUt8zc-ntS_UQ0g5qtxv4eri_NfZ5Oor7MQWRnLRSTS3IhYcmQlZesqkImxcEIJa-usrOmIV6JE06SQvLIVZTZWpjQGW3lqS5nswnrbte4jMFkJ6VSuVJ7UeJZKS8W5c5kzwljDq3QMauCttn0ScqqFMdNDtNlvvRKKJqFoqpLJ1RjiFeFtyMPxOsnJIDz9TKU0WovXiT8P4ta44OgWxbSuW841YY1Rm9HP-scYtCOKAgjjMXwIurKadUIp05KEf_qf6e3BW2xRpBva0X1YX9wt3QF6R4vy0Kv_IWycfp1OLuk5_Xk9_QPyrQ_b
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgQSqmChdCkfRoJjaOI4TlKpBwSttnTbUyt6M47jSKlWSdXsFvXCn-IPMhM7W1UCekA97a43Ezkee2Ycv5kH8F5Kk_IqskGVmjAQaVwGObrFQHBdGgzPo6pPFzs8kpMT8fU0OV2BX0MuDMEqve13Nr231r5ly4_m1nldU46vyHKZpzQpcwwcPLLywF79wH1bt7P_BZX8gfO93ePPk8BTCwRGhGIe8CTTPBQRSlOBqlykMuSWS25MlRYV7WoKfIgkzkVUmpKK-UpdaI2_ssQUIsb73oP7As0F0SZ8_HmNK6HqOe5YGy0Jdu8GqAwfZN5iMHxJoLKsLx5KTOt_dol_C3l717f3BNZ8zMo-uWF5Ciu2GcEDx2J5NYL13etkObzMW4tuBI_dO0HmUp2ewbepbkq26CyjTzOrMVq2zKUeMw8sYW3DuraeMUc3ZZjRFwW21Q3rj5h60f4bkQ6xnv77OZzcyeivw2rTNnYDmCi5sDKTMosr3LwlhYwia1OruTY6KpMxyGFslfFVz4l8Y6YGeNuZWipFkVIU0XJGcgzhUvDcFf64XWR7UJ66MYcVuqfbhd8N6la4wunYRje2XXSKkptx-WBg949r0HFJQiyGY3jh5sqy1zHVaIvj6OX_dO8tPJwcH07VdP_oYBMe4T8Es0Mn_gpW5xcL-xpDs3nxpl8KDL7f9dr7DRnkR5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+use+and+climate+change+effects+on+soil+organic+carbon+in+North+and+Northeast+China&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhou%2C+Yin&rft.au=Hartemink%2C+Alfred+E&rft.au=Shi%2C+Zhou&rft.au=Liang%2C+Zongzheng&rft.date=2019-01-10&rft.eissn=1879-1026&rft.volume=647&rft.spage=1230&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.08.016&rft_id=info%3Apmid%2F30180331&rft.externalDocID=30180331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon