Autoencoder-based phenotyping of ophthalmic images highlights genetic loci influencing retinal morphology and provides informative biomarkers

Motivation Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 41; no. 1
Main Authors Sergouniotis, Panagiotis I, Diakite, Adam, Gaurav, Kumar, Birney, Ewan, Fitzgerald, Tomas
Format Journal Article
LanguageEnglish
Published England Oxford University Press 26.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motivation Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability. Results We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31 135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically informative biomarkers. Availability and implementation Code and data links available at https://github.com/tf2/autoencoder-oct.
AbstractList Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability.MOTIVATIONGenome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability.We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31,135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically-informative biomarkers.RESULTSWe used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31,135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically-informative biomarkers.Code and data links available at https://github.com/tf2/autoencoder-oct.AVAILABILITYCode and data links available at https://github.com/tf2/autoencoder-oct.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Motivation Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability. Results We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31 135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically informative biomarkers. Availability and implementation Code and data links available at https://github.com/tf2/autoencoder-oct.
Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability. We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31 135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically informative biomarkers. Code and data links available at https://github.com/tf2/autoencoder-oct.
Author Fitzgerald, Tomas
Birney, Ewan
Gaurav, Kumar
Diakite, Adam
Sergouniotis, Panagiotis I
Author_xml – sequence: 1
  givenname: Panagiotis I
  orcidid: 0000-0003-0986-4123
  surname: Sergouniotis
  fullname: Sergouniotis, Panagiotis I
  email: panagiotis.sergouniotis@manchester.ac.uk
– sequence: 2
  givenname: Adam
  surname: Diakite
  fullname: Diakite, Adam
– sequence: 3
  givenname: Kumar
  surname: Gaurav
  fullname: Gaurav, Kumar
– sequence: 5
  givenname: Ewan
  surname: Birney
  fullname: Birney, Ewan
– sequence: 6
  givenname: Tomas
  orcidid: 0000-0002-2370-8496
  surname: Fitzgerald
  fullname: Fitzgerald, Tomas
  email: tomas@ebi.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39657956$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u3CAQxlGVqvnTvkLEsZdtYMHYPlVR1DaVIvXSntEYxjYtBhfslfYh8s4l2s0qufWAQMP3_WZG3yU5CzEgIdecfeKsFTediy70MU2wOJNvugWwFts35IILVW9kw_nZi_c5ucz5N2OsYpV6R85Fq6q6rdQFebxdl4jBRItp00FGS-cRQ1z2swsDjT2N87iM4CdnqJtgwExHN4y-nCXTAQOWAaiPxtEykF8L68mYSjmAp1NM8xh9HPYUQmGnuHO2ME7D75CWXSZIfzDl9-RtDz7jh-N9RX59_fLz7n7z8OPb97vbh42RTC6bLZfYNVCBNcy2su-qWvSNxRokSKwblMKCRVR2a_pGWg6saavO1n1nba1AXJHPB-68dhNag2FJ4PWcyoZpryM4_fonuFEPcac5ryuuRFsIH4-EFP-umBc9uWzQewgY16wFl0ptRcubIr1-2ezU5TmEIlAHgUkx54T9ScKZfkpbv05bH9MuRn4wxnX-X88_Z4a8hQ
Cites_doi 10.1016/S2589-7500(20)30160-6
10.1016/j.neuron.2019.12.002
10.1016/j.ajo.2021.09.015
10.48550/arXiv.2201.03898
10.1101/2024.03.19.24304547
10.1083/jcb.201201133
10.1016/j.ebiom.2023.104615
10.3389/fgene.2020.00157
10.1038/s42003-024-06096-7
10.1016/j.devcel.2022.02.018
10.1038/s41586-021-03911-7
10.1038/nrn.2015.1
10.1126/scitranslmed.adg4517
10.1038/s41467-023-38125-0
10.1056/NEJMra1012354
10.1371/journal.pgen.1009497
10.1038/ng1508
10.1038/s43586-022-00162-2
10.1093/bioinformatics/btac369
10.2337/db17-0464
10.1126/science.1127647
10.1093/nar/gkaa1027
10.1101/2020.08.30.20184846
10.1371/journal.pgen.1010587
10.48550/arXiv.1505.04597
10.7554/eLife.68943
10.1038/s41588-017-0009-4
10.1038/s41586-018-0571-7
10.1126/sciadv.abh2169
10.1016/j.celrep.2019.12.082
10.1093/nar/gkab1049
10.1146/annurev-genom-120319-095026
10.1016/j.celrep.2021.110031
10.1016/j.ophtha.2020.06.038
10.48550/arXiv.1511.06452
10.1101/2021.06.24.21259471
10.1038/s41588-024-01831-6
10.1038/s41586-018-0579-z
10.1016/j.ophtha.2015.11.009
10.48550/arXiv.1503.03832
10.1038/nature14539
10.1038/s41467-020-20851-4
10.1038/s42256-024-00801-1
10.1186/s12886-021-01975-7
10.1074/jbc.M112.416503
10.1093/nar/gkac1010
10.1371/journal.pgen.1011273
10.1038/s41591-018-0107-6
10.1136/bmjopen-2018-025077
10.1093/hmg/ddy422
10.1007/s00438-022-01969-0
10.1038/ng.2213
10.1109/TMI.2022.3218720
10.1038/s42256-021-00427-7
10.1016/j.preteyeres.2016.12.002
10.1038/s41467-024-50309-w
10.1038/s41588-021-00870-7
10.1001/jama.2018.11100
10.1038/s41591-020-0867-7
10.1038/ng.2335
ContentType Journal Article
Contributor Keane, Pearse
Allen, Naomi
Doney, Alexander
Harding, Simon
Fruttiger, Marcus
Gallacher, John
Sergouniotis, Panagiotis
Strouthidis, Nicholas
Lotery, Andrew
Mackie, Sarah
Lascaratos, Gerassimos
Macgillivray, Tom
Moore, Tony
Self, Jay
Pontikos, Nikolas
Williams, Cathy
Yates, Max
Hogg, Ruth
Steel, David
Williams, Katie
Yip, Jennifer
Mckibbin, Martin
Petzold, Axel
Chakravarthy, Usha
Aslam, Tariq
Carare, Roxana
Khaw, Peng Tee
Trucco, Emanuele
Tapp, Robyn
Rahi, Jugnoo
Ennis, Sarah
Thomas, Dhanes
Hysi, Pirro
Owen, Chris
Paterson, Euan
Oram, Richard
Morgan, James
O'Sullivan, Eoin
Luthert, Phil
Zheng, Yalin
Barman, Sarah
Littlejohns, Thomas
Atan, Denize
Foster, Paul
Bishop, Paul
Tufail, Adnan
Viswanathan, Ananth
Rudnicka, Alicja
Garway-Heath, David
Gibson, Jane
Khawaja, Anthony
Mckay, Gareth
Sivaprasad, Sobha
Dhillon, Bal
Day, Alexander
Mcguinness, Bernadette
Vitart, Veronique
Stratton, Irene
Sudlow, Cathie
Barrett, Jenny
Chua, Sharon
Braithwaite, Tasanee
Patel, Praveen
Black, Graeme
Hardcastle, Alison
Guggenheim, Jeremy
Sattar, Naveed
Woodside, Jayne
Sun, Zihan
Contributor_xml – sequence: 1
  givenname: Naomi
  surname: Allen
  fullname: Allen, Naomi
– sequence: 2
  givenname: Tariq
  surname: Aslam
  fullname: Aslam, Tariq
– sequence: 3
  givenname: Denize
  surname: Atan
  fullname: Atan, Denize
– sequence: 4
  givenname: Sarah
  surname: Barman
  fullname: Barman, Sarah
– sequence: 5
  givenname: Jenny
  surname: Barrett
  fullname: Barrett, Jenny
– sequence: 6
  givenname: Paul
  surname: Bishop
  fullname: Bishop, Paul
– sequence: 7
  givenname: Graeme
  surname: Black
  fullname: Black, Graeme
– sequence: 8
  givenname: Tasanee
  surname: Braithwaite
  fullname: Braithwaite, Tasanee
– sequence: 9
  givenname: Roxana
  surname: Carare
  fullname: Carare, Roxana
– sequence: 10
  givenname: Usha
  surname: Chakravarthy
  fullname: Chakravarthy, Usha
– sequence: 11
  givenname: Michelle
  surname: Chan
  fullname: Chan, Michelle
– sequence: 12
  givenname: Sharon
  surname: Chua
  fullname: Chua, Sharon
– sequence: 13
  givenname: Alexander
  surname: Day
  fullname: Day, Alexander
– sequence: 14
  givenname: Parul
  surname: Desai
  fullname: Desai, Parul
– sequence: 15
  givenname: Bal
  surname: Dhillon
  fullname: Dhillon, Bal
– sequence: 16
  givenname: Andrew
  surname: Dick
  fullname: Dick, Andrew
– sequence: 17
  givenname: Alexander
  surname: Doney
  fullname: Doney, Alexander
– sequence: 18
  givenname: Cathy
  surname: Egan
  fullname: Egan, Cathy
– sequence: 19
  givenname: Sarah
  surname: Ennis
  fullname: Ennis, Sarah
– sequence: 20
  givenname: Paul
  surname: Foster
  fullname: Foster, Paul
– sequence: 21
  givenname: Marcus
  surname: Fruttiger
  fullname: Fruttiger, Marcus
– sequence: 22
  givenname: John
  surname: Gallacher
  fullname: Gallacher, John
– sequence: 23
  givenname: David
  surname: Garway-Heath
  fullname: Garway-Heath, David
– sequence: 24
  givenname: Jane
  surname: Gibson
  fullname: Gibson, Jane
– sequence: 25
  givenname: Jeremy
  surname: Guggenheim
  fullname: Guggenheim, Jeremy
– sequence: 26
  givenname: Chris
  surname: Hammond
  fullname: Hammond, Chris
– sequence: 27
  givenname: Alison
  surname: Hardcastle
  fullname: Hardcastle, Alison
– sequence: 28
  givenname: Simon
  surname: Harding
  fullname: Harding, Simon
– sequence: 29
  givenname: Ruth
  surname: Hogg
  fullname: Hogg, Ruth
– sequence: 30
  givenname: Pirro
  surname: Hysi
  fullname: Hysi, Pirro
– sequence: 31
  givenname: Pearse
  surname: Keane
  fullname: Keane, Pearse
– sequence: 32
  givenname: Peng Tee
  surname: Khaw
  fullname: Khaw, Peng Tee
– sequence: 33
  givenname: Anthony
  surname: Khawaja
  fullname: Khawaja, Anthony
– sequence: 34
  givenname: Gerassimos
  surname: Lascaratos
  fullname: Lascaratos, Gerassimos
– sequence: 35
  givenname: Thomas
  surname: Littlejohns
  fullname: Littlejohns, Thomas
– sequence: 36
  givenname: Andrew
  surname: Lotery
  fullname: Lotery, Andrew
– sequence: 37
  givenname: Robert
  surname: Luben
  fullname: Luben, Robert
– sequence: 38
  givenname: Phil
  surname: Luthert
  fullname: Luthert, Phil
– sequence: 39
  givenname: Tom
  surname: Macgillivray
  fullname: Macgillivray, Tom
– sequence: 40
  givenname: Sarah
  surname: Mackie
  fullname: Mackie, Sarah
– sequence: 41
  givenname: Savita
  surname: Madhusudhan
  fullname: Madhusudhan, Savita
– sequence: 42
  givenname: Bernadette
  surname: Mcguinness
  fullname: Mcguinness, Bernadette
– sequence: 43
  givenname: Gareth
  surname: Mckay
  fullname: Mckay, Gareth
– sequence: 44
  givenname: Martin
  surname: Mckibbin
  fullname: Mckibbin, Martin
– sequence: 45
  givenname: Tony
  surname: Moore
  fullname: Moore, Tony
– sequence: 46
  givenname: James
  surname: Morgan
  fullname: Morgan, James
– sequence: 47
  givenname: Eoin
  surname: O'Sullivan
  fullname: O'Sullivan, Eoin
– sequence: 48
  givenname: Richard
  surname: Oram
  fullname: Oram, Richard
– sequence: 49
  givenname: Chris
  surname: Owen
  fullname: Owen, Chris
– sequence: 50
  givenname: Praveen
  surname: Patel
  fullname: Patel, Praveen
– sequence: 51
  givenname: Euan
  surname: Paterson
  fullname: Paterson, Euan
– sequence: 52
  givenname: Tunde
  surname: Peto
  fullname: Peto, Tunde
– sequence: 53
  givenname: Axel
  surname: Petzold
  fullname: Petzold, Axel
– sequence: 54
  givenname: Nikolas
  surname: Pontikos
  fullname: Pontikos, Nikolas
– sequence: 55
  givenname: Jugnoo
  surname: Rahi
  fullname: Rahi, Jugnoo
– sequence: 56
  givenname: Alicja
  surname: Rudnicka
  fullname: Rudnicka, Alicja
– sequence: 57
  givenname: Naveed
  surname: Sattar
  fullname: Sattar, Naveed
– sequence: 58
  givenname: Jay
  surname: Self
  fullname: Self, Jay
– sequence: 59
  givenname: Panagiotis
  surname: Sergouniotis
  fullname: Sergouniotis, Panagiotis
– sequence: 60
  givenname: Sobha
  surname: Sivaprasad
  fullname: Sivaprasad, Sobha
– sequence: 61
  givenname: David
  surname: Steel
  fullname: Steel, David
– sequence: 62
  givenname: Irene
  surname: Stratton
  fullname: Stratton, Irene
– sequence: 63
  givenname: Nicholas
  surname: Strouthidis
  fullname: Strouthidis, Nicholas
– sequence: 64
  givenname: Cathie
  surname: Sudlow
  fullname: Sudlow, Cathie
– sequence: 65
  givenname: Zihan
  surname: Sun
  fullname: Sun, Zihan
– sequence: 66
  givenname: Robyn
  surname: Tapp
  fullname: Tapp, Robyn
– sequence: 67
  givenname: Dhanes
  surname: Thomas
  fullname: Thomas, Dhanes
– sequence: 68
  givenname: Emanuele
  surname: Trucco
  fullname: Trucco, Emanuele
– sequence: 69
  givenname: Adnan
  surname: Tufail
  fullname: Tufail, Adnan
– sequence: 70
  givenname: Ananth
  surname: Viswanathan
  fullname: Viswanathan, Ananth
– sequence: 71
  givenname: Veronique
  surname: Vitart
  fullname: Vitart, Veronique
– sequence: 72
  givenname: Mike
  surname: Weedon
  fullname: Weedon, Mike
– sequence: 73
  givenname: Cathy
  surname: Williams
  fullname: Williams, Cathy
– sequence: 74
  givenname: Katie
  surname: Williams
  fullname: Williams, Katie
– sequence: 75
  givenname: Jayne
  surname: Woodside
  fullname: Woodside, Jayne
– sequence: 76
  givenname: Max
  surname: Yates
  fullname: Yates, Max
– sequence: 77
  givenname: Jennifer
  surname: Yip
  fullname: Yip, Jennifer
– sequence: 78
  givenname: Yalin
  surname: Zheng
  fullname: Zheng, Yalin
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
CorporateAuthor UK Biobank Eye and Vision Consortium
CorporateAuthor_xml – name: UK Biobank Eye and Vision Consortium
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btae732
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC11751639
39657956
10_1093_bioinformatics_btae732
10.1093/bioinformatics/btae732
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 224643/Z/21/Z
– fundername: ;
  grantid: 224643/Z/21/Z
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c404t-214eb8a5adc0d94fb573f8de7a4a4e78e43dadee6d2cf84d1a0895bd7fbdd76a3
IEDL.DBID TOX
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:40:59 EDT 2025
Thu Jul 10 17:53:52 EDT 2025
Sat May 31 02:12:49 EDT 2025
Tue Jul 01 02:34:06 EDT 2025
Mon Jun 30 08:34:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-214eb8a5adc0d94fb573f8de7a4a4e78e43dadee6d2cf84d1a0895bd7fbdd76a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0986-4123
0000-0002-2370-8496
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btae732
PMID 39657956
PQID 3146623918
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11751639
proquest_miscellaneous_3146623918
pubmed_primary_39657956
crossref_primary_10_1093_bioinformatics_btae732
oup_primary_10_1093_bioinformatics_btae732
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Dec-26
PublicationDateYYYYMMDD 2024-12-26
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec-26
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ochoa (2025012209311033300_btae732-B37) 2021; 49
Budu-Aggrey (2025012209311033300_btae732-B3) 2020
Li (2025012209311033300_btae732-B33) 2021; 21
Roman (2025012209311033300_btae732-B44) 2017; 66
Thomas (2025012209311033300_btae732-B53) 2022; 57
Dahl (2025012209311033300_btae732-B12) 2020; 21
Yun (2025012209311033300_btae732-B60) 2024; 56
Keenan (2025012209311033300_btae732-B29) 2021; 128
Sollis (2025012209311033300_btae732-B49) 2023; 51
Sheffield (2025012209311033300_btae732-B47) 2011; 364
Xie (2025012209311033300_btae732-B56) 2024; 20
Gharahkhani (2025012209311033300_btae732-B21) 2021; 12
Dornier (2025012209311033300_btae732-B17) 2012; 199
Elliott (2025012209311033300_btae732-B18) 2018; 562
Le Goallec (2025012209311033300_btae732-B31) 2022
Orozco (2025012209311033300_btae732-B39) 2020; 30
Bycroft (2025012209311033300_btae732-B5) 2018; 562
Currant (2025012209311033300_btae732-B10) 2023; 19
Yang (2025012209311033300_btae732-B57) 2012; 44
Gao (2025012209311033300_btae732-B20) 2019; 28
Patel (2025012209311033300_btae732-B40) 2024; 7
Hood (2025012209311033300_btae732-B27) 2017; 57
Currant (2025012209311033300_btae732-B11) 2021; 17
Yim (2025012209311033300_btae732-B58) 2020; 26
Bonazzola (2025012209311033300_btae732-B1) 2024; 6
Karlsson (2025012209311033300_btae732-B28) 2021; 7
Zekavat (2025012209311033300_btae732-B61)
Schroff (2025012209311033300_btae732-B46) 2015
Diaz-Pinto (2025012209311033300_btae732-B14) 2022; 4
Myers (2025012209311033300_btae732-B36) 2020; 11
Bouma (2025012209311033300_btae732-B2) 2022; 2
Turley (2025012209311033300_btae732-B54) 2018; 50
Chua (2025012209311033300_btae732-B6) 2019; 9
Hinton (2025012209311033300_btae732-B26) 2006; 313
LeCun (2025012209311033300_btae732-B32) 2015; 521
Mbatchou (2025012209311033300_btae732-B34) 2021; 53
De Fauw (2025012209311033300_btae732-B13) 2018; 24
Michelucci (2025012209311033300_btae732-B35) 2022
Kirchler (2025012209311033300_btae732-B30) 2022; 38
Gong (2025012209311033300_btae732-B22) 2022; 42
Zhou (2025012209311033300_btae732-B63) 2024
Song (2025012209311033300_btae732-B50) 2015
Hinton (2025012209311033300_btae732-B25) 2018; 320
Steinberg (2025012209311033300_btae732-B52) 2012; 44
Diaz-Torres (2025012209311033300_btae732-B15) 2023; 92
Cunningham (2025012209311033300_btae732-B9) 2022; 50
Espinosa (2025012209311033300_btae732-B19) 2023; 298
Oren (2025012209311033300_btae732-B38) 2020; 2
Patel (2025012209311033300_btae732-B41) 2016; 123
Chueh (2025012209311033300_btae732-B7) 2022; 235
Haining (2025012209311033300_btae732-B23) 2012; 287
Stefansson (2025012209311033300_btae732-B51) 2005; 37
Cortese (2025012209311033300_btae732-B8) 2021; 10
Donohue (2025012209311033300_btae732-B16) 2021; 37
Hasson (2025012209311033300_btae732-B24) 2020; 105
Zhao (2025012209311033300_btae732-B62)
Ronneberger (2025012209311033300_btae732-B45) 2015
Shi (2025012209311033300_btae732-B48) 2021; 598
Radhakrishnan (2025012209311033300_btae732-B43) 2023; 14
Wang (2025012209311033300_btae732-B55) 2016; 17
References_xml – volume: 2
  start-page: e486
  year: 2020
  ident: 2025012209311033300_btae732-B38
  article-title: Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30160-6
– volume: 105
  start-page: 416
  year: 2020
  ident: 2025012209311033300_btae732-B24
  article-title: Direct fit to nature: an evolutionary perspective on biological and artificial neural networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.12.002
– volume: 235
  start-page: 221
  year: 2022
  ident: 2025012209311033300_btae732-B7
  article-title: Identification of sex and age from macular optical coherence tomography and feature analysis using deep learning
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2021.09.015
– year: 2022
  ident: 2025012209311033300_btae732-B35
  doi: 10.48550/arXiv.2201.03898
– year: 2024
  ident: 2025012209311033300_btae732-B63
  doi: 10.1101/2024.03.19.24304547
– volume: 199
  start-page: 481
  year: 2012
  ident: 2025012209311033300_btae732-B17
  article-title: TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201201133
– volume: 92
  start-page: 104615
  year: 2023
  ident: 2025012209311033300_btae732-B15
  article-title: Disentangling the genetic overlap and causal relationships between primary open-angle glaucoma, brain morphology and four major neurodegenerative disorders
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2023.104615
– volume: 11
  start-page: 157
  year: 2020
  ident: 2025012209311033300_btae732-B36
  article-title: LDlinkR: an R package for rapidly calculating linkage disequilibrium statistics in diverse populations
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00157
– volume: 7
  start-page: 414
  year: 2024
  ident: 2025012209311033300_btae732-B40
  article-title: Unsupervised deep representation learning enables phenotype discovery for genetic association studies of brain imaging
  publication-title: Commun Biol
  doi: 10.1038/s42003-024-06096-7
– volume: 57
  start-page: 820
  year: 2022
  ident: 2025012209311033300_btae732-B53
  article-title: Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2022.02.018
– volume: 598
  start-page: 359
  year: 2021
  ident: 2025012209311033300_btae732-B48
  article-title: Structure-based classification of tauopathies
  publication-title: Nature
  doi: 10.1038/s41586-021-03911-7
– volume: 17
  start-page: 5
  year: 2016
  ident: 2025012209311033300_btae732-B55
  article-title: Tau in physiology and pathology
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn.2015.1
– ident: 2025012209311033300_btae732-B61
  doi: 10.1126/scitranslmed.adg4517
– volume: 14
  start-page: 2436
  year: 2023
  ident: 2025012209311033300_btae732-B43
  article-title: Cross-modal autoencoder framework learns holistic representations of cardiovascular state
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-38125-0
– volume: 364
  start-page: 1932
  year: 2011
  ident: 2025012209311033300_btae732-B47
  article-title: Genomics and the eye
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1012354
– volume: 17
  start-page: e1009497
  year: 2021
  ident: 2025012209311033300_btae732-B11
  article-title: Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1009497
– volume: 37
  start-page: 129
  year: 2005
  ident: 2025012209311033300_btae732-B51
  article-title: A common inversion under selection in Europeans
  publication-title: Nat Genet
  doi: 10.1038/ng1508
– volume: 2
  start-page: 79
  year: 2022
  ident: 2025012209311033300_btae732-B2
  article-title: Optical coherence tomography
  publication-title: Nat Rev Methods Primers
  doi: 10.1038/s43586-022-00162-2
– volume: 38
  start-page: 3621
  year: 2022
  ident: 2025012209311033300_btae732-B30
  article-title: transferGWAS: GWAS of images using deep transfer learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac369
– volume: 66
  start-page: 2521
  year: 2017
  ident: 2025012209311033300_btae732-B44
  article-title: A type 2 diabetes-associated functional regulatory variant in a pancreatic islet enhancer at the ADCY5 locus
  publication-title: Diabetes
  doi: 10.2337/db17-0464
– volume: 313
  start-page: 504
  year: 2006
  ident: 2025012209311033300_btae732-B26
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 49
  start-page: D1302
  year: 2021
  ident: 2025012209311033300_btae732-B37
  article-title: Open targets platform: supporting systematic drug-target identification and prioritisation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1027
– year: 2020
  ident: 2025012209311033300_btae732-B3
  article-title: The relationship between open angle glaucoma, optic disc morphology and Alzheimer’s disease: a Mendelian randomization study
  publication-title: bioRxiv
  doi: 10.1101/2020.08.30.20184846
– volume: 19
  start-page: e1010587
  year: 2023
  ident: 2025012209311033300_btae732-B10
  article-title: Sub-cellular level resolution of common genetic variation in the photoreceptor layer identifies continuum between rare disease and common variation
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1010587
– year: 2015
  ident: 2025012209311033300_btae732-B45
  doi: 10.48550/arXiv.1505.04597
– volume: 10
  start-page: e68943
  year: 2021
  ident: 2025012209311033300_btae732-B8
  article-title: Value signals guide abstraction during learning
  publication-title: Elife
  doi: 10.7554/eLife.68943
– volume: 50
  start-page: 229
  year: 2018
  ident: 2025012209311033300_btae732-B54
  article-title: Multi-trait analysis of genome-wide association summary statistics using MTAG
  publication-title: Nat Genet
  doi: 10.1038/s41588-017-0009-4
– volume: 562
  start-page: 210
  year: 2018
  ident: 2025012209311033300_btae732-B18
  article-title: Genome-wide association studies of brain imaging phenotypes in UK Biobank
  publication-title: Nature
  doi: 10.1038/s41586-018-0571-7
– volume: 7
  start-page: eabh2169
  year: 2021
  ident: 2025012209311033300_btae732-B28
  article-title: A single-cell type transcriptomics map of human tissues
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abh2169
– volume: 30
  start-page: 1246
  year: 2020
  ident: 2025012209311033300_btae732-B39
  article-title: Integration of eQTL and a single-cell atlas in the human eye identifies causal genes for age-related macular degeneration
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.12.082
– volume: 50
  start-page: D988
  year: 2022
  ident: 2025012209311033300_btae732-B9
  article-title: Ensembl 2022
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1049
– volume: 21
  start-page: 413
  year: 2020
  ident: 2025012209311033300_btae732-B12
  article-title: Genetic influences on disease subtypes
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev-genom-120319-095026
– volume: 37
  start-page: 110031
  year: 2021
  ident: 2025012209311033300_btae732-B16
  article-title: Parahippocampal latrophilin-2 (ADGRL2) expression controls topographical presubiculum to entorhinal cortex circuit connectivity
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.110031
– volume: 128
  start-page: 100
  year: 2021
  ident: 2025012209311033300_btae732-B29
  article-title: Retinal specialist versus artificial intelligence detection of retinal fluid from OCT: age-related eye disease study 2: 10-year follow-on study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.06.038
– year: 2015
  ident: 2025012209311033300_btae732-B50
  doi: 10.48550/arXiv.1511.06452
– year: 2022
  ident: 2025012209311033300_btae732-B31
  doi: 10.1101/2021.06.24.21259471
– volume: 56
  start-page: 1604
  year: 2024
  ident: 2025012209311033300_btae732-B60
  article-title: Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
  publication-title: Nat Genet
  doi: 10.1038/s41588-024-01831-6
– volume: 562
  start-page: 203
  year: 2018
  ident: 2025012209311033300_btae732-B5
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 123
  start-page: 829
  year: 2016
  ident: 2025012209311033300_btae732-B41
  article-title: Spectral-domain optical coherence tomography imaging in 67 321 adults: associations with macular thickness in the UK Biobank study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2015.11.009
– year: 2015
  ident: 2025012209311033300_btae732-B46
  doi: 10.48550/arXiv.1503.03832
– volume: 521
  start-page: 436
  year: 2015
  ident: 2025012209311033300_btae732-B32
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 1258
  year: 2021
  ident: 2025012209311033300_btae732-B21
  article-title: Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20851-4
– volume: 6
  start-page: 291
  year: 2024
  ident: 2025012209311033300_btae732-B1
  article-title: Unsupervised ensemble-based phenotyping enhances discoverability of genes related to left-ventricular morphology
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-024-00801-1
– volume: 21
  start-page: 220
  year: 2021
  ident: 2025012209311033300_btae732-B33
  article-title: Early neurovascular changes in the retina in preclinical diabetic retinopathy and its relation with blood glucose
  publication-title: BMC Ophthalmol
  doi: 10.1186/s12886-021-01975-7
– volume: 287
  start-page: 39753
  year: 2012
  ident: 2025012209311033300_btae732-B23
  article-title: The TspanC8 subgroup of tetraspanins interacts with a disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.416503
– volume: 51
  start-page: D977
  year: 2023
  ident: 2025012209311033300_btae732-B49
  article-title: The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac1010
– volume: 20
  start-page: e1011273
  year: 2024
  ident: 2025012209311033300_btae732-B56
  article-title: iGWAS: image-based genome-wide association of self-supervised deep phenotyping of retina fundus images
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1011273
– volume: 24
  start-page: 1342
  year: 2018
  ident: 2025012209311033300_btae732-B13
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0107-6
– volume: 9
  start-page: e025077
  year: 2019
  ident: 2025012209311033300_btae732-B6
  article-title: Cohort profile: design and methods in the Eye and Vision Consortium of UK Biobank
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2018-025077
– volume: 28
  start-page: 1162
  year: 2019
  ident: 2025012209311033300_btae732-B20
  article-title: Genome-wide association analyses identify 139 loci associated with macular thickness in the UK Biobank cohort
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddy422
– volume: 298
  start-page: 153
  year: 2023
  ident: 2025012209311033300_btae732-B19
  article-title: Neolithic expansion and the 17q21.31 inversion in Iberia: an evolutionary approach to H2 haplotype distribution in the Near East and Europe
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-022-01969-0
– volume: 44
  start-page: 369
  year: 2012
  ident: 2025012209311033300_btae732-B57
  article-title: Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
  publication-title: Nat Genet
  doi: 10.1038/ng.2213
– volume: 42
  start-page: 834
  year: 2022
  ident: 2025012209311033300_btae732-B22
  article-title: Supervised phenotype discovery from multimodal brain imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3218720
– volume: 4
  start-page: 55
  year: 2022
  ident: 2025012209311033300_btae732-B14
  article-title: Predicting myocardial infarction through retinal scans and minimal personal information
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00427-7
– volume: 57
  start-page: 46
  year: 2017
  ident: 2025012209311033300_btae732-B27
  article-title: Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT)
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2016.12.002
– ident: 2025012209311033300_btae732-B62
  doi: 10.1038/s41467-024-50309-w
– volume: 53
  start-page: 1097
  year: 2021
  ident: 2025012209311033300_btae732-B34
  article-title: Computationally efficient whole-genome regression for quantitative and binary traits
  publication-title: Nat Genet
  doi: 10.1038/s41588-021-00870-7
– volume: 320
  start-page: 1101
  year: 2018
  ident: 2025012209311033300_btae732-B25
  article-title: Deep learning—a technology with the potential to transform health care
  publication-title: JAMA
  doi: 10.1001/jama.2018.11100
– volume: 26
  start-page: 892
  year: 2020
  ident: 2025012209311033300_btae732-B58
  article-title: Predicting conversion to wet age-related macular degeneration using deep learning
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0867-7
– volume: 44
  start-page: 872
  year: 2012
  ident: 2025012209311033300_btae732-B52
  article-title: Structural diversity and African origin of the 17q21.31 inversion polymorphism
  publication-title: Nat Genet
  doi: 10.1038/ng.2335
SSID ssj0005056
Score 2.4831753
Snippet Motivation Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived...
Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Autoencoder
Biomarkers
Deep Learning
Genetic Loci
Genome-Wide Association Study
Humans
Male
Original Paper
Phenotype
Retina - diagnostic imaging
Tomography, Optical Coherence
Title Autoencoder-based phenotyping of ophthalmic images highlights genetic loci influencing retinal morphology and provides informative biomarkers
URI https://www.ncbi.nlm.nih.gov/pubmed/39657956
https://www.proquest.com/docview/3146623918
https://pubmed.ncbi.nlm.nih.gov/PMC11751639
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3RSuQwFA0iLPgiq-uu46pkwSehzLRJmuRRlhURdvdFYd7KTZMyBaeVaUfwI_znvbftzFphwX1umqQ9ac5Nc88JYxdeBwta2SjOZR7JwrsIWTGJpE9j8DOV5J2-4uev9OZe3s7VfIfFGy3M2y18K6aurAcTUTIunroWghY06yITk1v-3e_536QO5PONDvift44oaCRrexVdvk2SfMU61x_Z_hAu8qse3wO2E6pD9qE_QPL5E3u5Wrc1WVH6sIqIkDynnK26fSYZFK8LXj8u2gU8LMucl0ucOxpOBsUPtCRvOA4e0jByJLSSl8NxJXQjSRup3WWNMHRtcaiw7l621_Dt4z4FTgJ-yvFZNUfs_vrH3febaDhgIUIEZBslsQzOgAKfz7yVhVNaFMYHDRJk0CZI4cGHkPokL4z0McyMVc7rwnmvUxCf2W5VV-GYcQexCrYAp1KQqZAGrBTgHMZbM29yM2HTzTvPHnsfjazf_xbZGKVsQGnCLhGadxf-tkEww--DNj2gCvW6yQRSAYZ4NsYufOkR3dYpbKo0LhAnzIyw3hYg7-3xlapcdB7c5HCKoaw9-Z9efmV7CcZElA2TpKdst12twxnGNK077_4FnHeD-Q_DGgSX
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-based+phenotyping+of+ophthalmic+images+highlights+genetic+loci+influencing+retinal+morphology+and+provides+informative+biomarkers&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Sergouniotis%2C+Panagiotis+I&rft.au=Diakite%2C+Adam&rft.au=Gaurav%2C+Kumar&rft.au=Birney%2C+Ewan&rft.date=2024-12-26&rft.eissn=1367-4811&rft.volume=41&rft.issue=1&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae732&rft_id=info%3Apmid%2F39657956&rft.externalDocID=39657956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon