Autoencoder-based phenotyping of ophthalmic images highlights genetic loci influencing retinal morphology and provides informative biomarkers
Motivation Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 41; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
26.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motivation
Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability.
Results
We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31 135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically informative biomarkers.
Availability and implementation
Code and data links available at https://github.com/tf2/autoencoder-oct. |
---|---|
AbstractList | Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability.MOTIVATIONGenome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability.We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31,135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically-informative biomarkers.RESULTSWe used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31,135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically-informative biomarkers.Code and data links available at https://github.com/tf2/autoencoder-oct.AVAILABILITYCode and data links available at https://github.com/tf2/autoencoder-oct.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Motivation Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability. Results We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31 135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically informative biomarkers. Availability and implementation Code and data links available at https://github.com/tf2/autoencoder-oct. Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability. We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31 135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically informative biomarkers. Code and data links available at https://github.com/tf2/autoencoder-oct. |
Author | Fitzgerald, Tomas Birney, Ewan Gaurav, Kumar Diakite, Adam Sergouniotis, Panagiotis I |
Author_xml | – sequence: 1 givenname: Panagiotis I orcidid: 0000-0003-0986-4123 surname: Sergouniotis fullname: Sergouniotis, Panagiotis I email: panagiotis.sergouniotis@manchester.ac.uk – sequence: 2 givenname: Adam surname: Diakite fullname: Diakite, Adam – sequence: 3 givenname: Kumar surname: Gaurav fullname: Gaurav, Kumar – sequence: 5 givenname: Ewan surname: Birney fullname: Birney, Ewan – sequence: 6 givenname: Tomas orcidid: 0000-0002-2370-8496 surname: Fitzgerald fullname: Fitzgerald, Tomas email: tomas@ebi.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39657956$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9u3CAQxlGVqvnTvkLEsZdtYMHYPlVR1DaVIvXSntEYxjYtBhfslfYh8s4l2s0qufWAQMP3_WZG3yU5CzEgIdecfeKsFTediy70MU2wOJNvugWwFts35IILVW9kw_nZi_c5ucz5N2OsYpV6R85Fq6q6rdQFebxdl4jBRItp00FGS-cRQ1z2swsDjT2N87iM4CdnqJtgwExHN4y-nCXTAQOWAaiPxtEykF8L68mYSjmAp1NM8xh9HPYUQmGnuHO2ME7D75CWXSZIfzDl9-RtDz7jh-N9RX59_fLz7n7z8OPb97vbh42RTC6bLZfYNVCBNcy2su-qWvSNxRokSKwblMKCRVR2a_pGWg6saavO1n1nba1AXJHPB-68dhNag2FJ4PWcyoZpryM4_fonuFEPcac5ryuuRFsIH4-EFP-umBc9uWzQewgY16wFl0ptRcubIr1-2ezU5TmEIlAHgUkx54T9ScKZfkpbv05bH9MuRn4wxnX-X88_Z4a8hQ |
Cites_doi | 10.1016/S2589-7500(20)30160-6 10.1016/j.neuron.2019.12.002 10.1016/j.ajo.2021.09.015 10.48550/arXiv.2201.03898 10.1101/2024.03.19.24304547 10.1083/jcb.201201133 10.1016/j.ebiom.2023.104615 10.3389/fgene.2020.00157 10.1038/s42003-024-06096-7 10.1016/j.devcel.2022.02.018 10.1038/s41586-021-03911-7 10.1038/nrn.2015.1 10.1126/scitranslmed.adg4517 10.1038/s41467-023-38125-0 10.1056/NEJMra1012354 10.1371/journal.pgen.1009497 10.1038/ng1508 10.1038/s43586-022-00162-2 10.1093/bioinformatics/btac369 10.2337/db17-0464 10.1126/science.1127647 10.1093/nar/gkaa1027 10.1101/2020.08.30.20184846 10.1371/journal.pgen.1010587 10.48550/arXiv.1505.04597 10.7554/eLife.68943 10.1038/s41588-017-0009-4 10.1038/s41586-018-0571-7 10.1126/sciadv.abh2169 10.1016/j.celrep.2019.12.082 10.1093/nar/gkab1049 10.1146/annurev-genom-120319-095026 10.1016/j.celrep.2021.110031 10.1016/j.ophtha.2020.06.038 10.48550/arXiv.1511.06452 10.1101/2021.06.24.21259471 10.1038/s41588-024-01831-6 10.1038/s41586-018-0579-z 10.1016/j.ophtha.2015.11.009 10.48550/arXiv.1503.03832 10.1038/nature14539 10.1038/s41467-020-20851-4 10.1038/s42256-024-00801-1 10.1186/s12886-021-01975-7 10.1074/jbc.M112.416503 10.1093/nar/gkac1010 10.1371/journal.pgen.1011273 10.1038/s41591-018-0107-6 10.1136/bmjopen-2018-025077 10.1093/hmg/ddy422 10.1007/s00438-022-01969-0 10.1038/ng.2213 10.1109/TMI.2022.3218720 10.1038/s42256-021-00427-7 10.1016/j.preteyeres.2016.12.002 10.1038/s41467-024-50309-w 10.1038/s41588-021-00870-7 10.1001/jama.2018.11100 10.1038/s41591-020-0867-7 10.1038/ng.2335 |
ContentType | Journal Article |
Contributor | Keane, Pearse Allen, Naomi Doney, Alexander Harding, Simon Fruttiger, Marcus Gallacher, John Sergouniotis, Panagiotis Strouthidis, Nicholas Lotery, Andrew Mackie, Sarah Lascaratos, Gerassimos Macgillivray, Tom Moore, Tony Self, Jay Pontikos, Nikolas Williams, Cathy Yates, Max Hogg, Ruth Steel, David Williams, Katie Yip, Jennifer Mckibbin, Martin Petzold, Axel Chakravarthy, Usha Aslam, Tariq Carare, Roxana Khaw, Peng Tee Trucco, Emanuele Tapp, Robyn Rahi, Jugnoo Ennis, Sarah Thomas, Dhanes Hysi, Pirro Owen, Chris Paterson, Euan Oram, Richard Morgan, James O'Sullivan, Eoin Luthert, Phil Zheng, Yalin Barman, Sarah Littlejohns, Thomas Atan, Denize Foster, Paul Bishop, Paul Tufail, Adnan Viswanathan, Ananth Rudnicka, Alicja Garway-Heath, David Gibson, Jane Khawaja, Anthony Mckay, Gareth Sivaprasad, Sobha Dhillon, Bal Day, Alexander Mcguinness, Bernadette Vitart, Veronique Stratton, Irene Sudlow, Cathie Barrett, Jenny Chua, Sharon Braithwaite, Tasanee Patel, Praveen Black, Graeme Hardcastle, Alison Guggenheim, Jeremy Sattar, Naveed Woodside, Jayne Sun, Zihan |
Contributor_xml | – sequence: 1 givenname: Naomi surname: Allen fullname: Allen, Naomi – sequence: 2 givenname: Tariq surname: Aslam fullname: Aslam, Tariq – sequence: 3 givenname: Denize surname: Atan fullname: Atan, Denize – sequence: 4 givenname: Sarah surname: Barman fullname: Barman, Sarah – sequence: 5 givenname: Jenny surname: Barrett fullname: Barrett, Jenny – sequence: 6 givenname: Paul surname: Bishop fullname: Bishop, Paul – sequence: 7 givenname: Graeme surname: Black fullname: Black, Graeme – sequence: 8 givenname: Tasanee surname: Braithwaite fullname: Braithwaite, Tasanee – sequence: 9 givenname: Roxana surname: Carare fullname: Carare, Roxana – sequence: 10 givenname: Usha surname: Chakravarthy fullname: Chakravarthy, Usha – sequence: 11 givenname: Michelle surname: Chan fullname: Chan, Michelle – sequence: 12 givenname: Sharon surname: Chua fullname: Chua, Sharon – sequence: 13 givenname: Alexander surname: Day fullname: Day, Alexander – sequence: 14 givenname: Parul surname: Desai fullname: Desai, Parul – sequence: 15 givenname: Bal surname: Dhillon fullname: Dhillon, Bal – sequence: 16 givenname: Andrew surname: Dick fullname: Dick, Andrew – sequence: 17 givenname: Alexander surname: Doney fullname: Doney, Alexander – sequence: 18 givenname: Cathy surname: Egan fullname: Egan, Cathy – sequence: 19 givenname: Sarah surname: Ennis fullname: Ennis, Sarah – sequence: 20 givenname: Paul surname: Foster fullname: Foster, Paul – sequence: 21 givenname: Marcus surname: Fruttiger fullname: Fruttiger, Marcus – sequence: 22 givenname: John surname: Gallacher fullname: Gallacher, John – sequence: 23 givenname: David surname: Garway-Heath fullname: Garway-Heath, David – sequence: 24 givenname: Jane surname: Gibson fullname: Gibson, Jane – sequence: 25 givenname: Jeremy surname: Guggenheim fullname: Guggenheim, Jeremy – sequence: 26 givenname: Chris surname: Hammond fullname: Hammond, Chris – sequence: 27 givenname: Alison surname: Hardcastle fullname: Hardcastle, Alison – sequence: 28 givenname: Simon surname: Harding fullname: Harding, Simon – sequence: 29 givenname: Ruth surname: Hogg fullname: Hogg, Ruth – sequence: 30 givenname: Pirro surname: Hysi fullname: Hysi, Pirro – sequence: 31 givenname: Pearse surname: Keane fullname: Keane, Pearse – sequence: 32 givenname: Peng Tee surname: Khaw fullname: Khaw, Peng Tee – sequence: 33 givenname: Anthony surname: Khawaja fullname: Khawaja, Anthony – sequence: 34 givenname: Gerassimos surname: Lascaratos fullname: Lascaratos, Gerassimos – sequence: 35 givenname: Thomas surname: Littlejohns fullname: Littlejohns, Thomas – sequence: 36 givenname: Andrew surname: Lotery fullname: Lotery, Andrew – sequence: 37 givenname: Robert surname: Luben fullname: Luben, Robert – sequence: 38 givenname: Phil surname: Luthert fullname: Luthert, Phil – sequence: 39 givenname: Tom surname: Macgillivray fullname: Macgillivray, Tom – sequence: 40 givenname: Sarah surname: Mackie fullname: Mackie, Sarah – sequence: 41 givenname: Savita surname: Madhusudhan fullname: Madhusudhan, Savita – sequence: 42 givenname: Bernadette surname: Mcguinness fullname: Mcguinness, Bernadette – sequence: 43 givenname: Gareth surname: Mckay fullname: Mckay, Gareth – sequence: 44 givenname: Martin surname: Mckibbin fullname: Mckibbin, Martin – sequence: 45 givenname: Tony surname: Moore fullname: Moore, Tony – sequence: 46 givenname: James surname: Morgan fullname: Morgan, James – sequence: 47 givenname: Eoin surname: O'Sullivan fullname: O'Sullivan, Eoin – sequence: 48 givenname: Richard surname: Oram fullname: Oram, Richard – sequence: 49 givenname: Chris surname: Owen fullname: Owen, Chris – sequence: 50 givenname: Praveen surname: Patel fullname: Patel, Praveen – sequence: 51 givenname: Euan surname: Paterson fullname: Paterson, Euan – sequence: 52 givenname: Tunde surname: Peto fullname: Peto, Tunde – sequence: 53 givenname: Axel surname: Petzold fullname: Petzold, Axel – sequence: 54 givenname: Nikolas surname: Pontikos fullname: Pontikos, Nikolas – sequence: 55 givenname: Jugnoo surname: Rahi fullname: Rahi, Jugnoo – sequence: 56 givenname: Alicja surname: Rudnicka fullname: Rudnicka, Alicja – sequence: 57 givenname: Naveed surname: Sattar fullname: Sattar, Naveed – sequence: 58 givenname: Jay surname: Self fullname: Self, Jay – sequence: 59 givenname: Panagiotis surname: Sergouniotis fullname: Sergouniotis, Panagiotis – sequence: 60 givenname: Sobha surname: Sivaprasad fullname: Sivaprasad, Sobha – sequence: 61 givenname: David surname: Steel fullname: Steel, David – sequence: 62 givenname: Irene surname: Stratton fullname: Stratton, Irene – sequence: 63 givenname: Nicholas surname: Strouthidis fullname: Strouthidis, Nicholas – sequence: 64 givenname: Cathie surname: Sudlow fullname: Sudlow, Cathie – sequence: 65 givenname: Zihan surname: Sun fullname: Sun, Zihan – sequence: 66 givenname: Robyn surname: Tapp fullname: Tapp, Robyn – sequence: 67 givenname: Dhanes surname: Thomas fullname: Thomas, Dhanes – sequence: 68 givenname: Emanuele surname: Trucco fullname: Trucco, Emanuele – sequence: 69 givenname: Adnan surname: Tufail fullname: Tufail, Adnan – sequence: 70 givenname: Ananth surname: Viswanathan fullname: Viswanathan, Ananth – sequence: 71 givenname: Veronique surname: Vitart fullname: Vitart, Veronique – sequence: 72 givenname: Mike surname: Weedon fullname: Weedon, Mike – sequence: 73 givenname: Cathy surname: Williams fullname: Williams, Cathy – sequence: 74 givenname: Katie surname: Williams fullname: Williams, Katie – sequence: 75 givenname: Jayne surname: Woodside fullname: Woodside, Jayne – sequence: 76 givenname: Max surname: Yates fullname: Yates, Max – sequence: 77 givenname: Jennifer surname: Yip fullname: Yip, Jennifer – sequence: 78 givenname: Yalin surname: Zheng fullname: Zheng, Yalin |
Copyright | The Author(s) 2024. Published by Oxford University Press. 2024 The Author(s) 2024. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2024 – notice: The Author(s) 2024. Published by Oxford University Press. |
CorporateAuthor | UK Biobank Eye and Vision Consortium |
CorporateAuthor_xml | – name: UK Biobank Eye and Vision Consortium |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/btae732 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
ExternalDocumentID | PMC11751639 39657956 10_1093_bioinformatics_btae732 10.1093/bioinformatics/btae732 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 224643/Z/21/Z – fundername: ; grantid: 224643/Z/21/Z |
GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c404t-214eb8a5adc0d94fb573f8de7a4a4e78e43dadee6d2cf84d1a0895bd7fbdd76a3 |
IEDL.DBID | TOX |
ISSN | 1367-4811 1367-4803 |
IngestDate | Thu Aug 21 18:40:59 EDT 2025 Thu Jul 10 17:53:52 EDT 2025 Sat May 31 02:12:49 EDT 2025 Tue Jul 01 02:34:06 EDT 2025 Mon Jun 30 08:34:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-214eb8a5adc0d94fb573f8de7a4a4e78e43dadee6d2cf84d1a0895bd7fbdd76a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0986-4123 0000-0002-2370-8496 |
OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btae732 |
PMID | 39657956 |
PQID | 3146623918 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11751639 proquest_miscellaneous_3146623918 pubmed_primary_39657956 crossref_primary_10_1093_bioinformatics_btae732 oup_primary_10_1093_bioinformatics_btae732 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec-26 |
PublicationDateYYYYMMDD | 2024-12-26 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Ochoa (2025012209311033300_btae732-B37) 2021; 49 Budu-Aggrey (2025012209311033300_btae732-B3) 2020 Li (2025012209311033300_btae732-B33) 2021; 21 Roman (2025012209311033300_btae732-B44) 2017; 66 Thomas (2025012209311033300_btae732-B53) 2022; 57 Dahl (2025012209311033300_btae732-B12) 2020; 21 Yun (2025012209311033300_btae732-B60) 2024; 56 Keenan (2025012209311033300_btae732-B29) 2021; 128 Sollis (2025012209311033300_btae732-B49) 2023; 51 Sheffield (2025012209311033300_btae732-B47) 2011; 364 Xie (2025012209311033300_btae732-B56) 2024; 20 Gharahkhani (2025012209311033300_btae732-B21) 2021; 12 Dornier (2025012209311033300_btae732-B17) 2012; 199 Elliott (2025012209311033300_btae732-B18) 2018; 562 Le Goallec (2025012209311033300_btae732-B31) 2022 Orozco (2025012209311033300_btae732-B39) 2020; 30 Bycroft (2025012209311033300_btae732-B5) 2018; 562 Currant (2025012209311033300_btae732-B10) 2023; 19 Yang (2025012209311033300_btae732-B57) 2012; 44 Gao (2025012209311033300_btae732-B20) 2019; 28 Patel (2025012209311033300_btae732-B40) 2024; 7 Hood (2025012209311033300_btae732-B27) 2017; 57 Currant (2025012209311033300_btae732-B11) 2021; 17 Yim (2025012209311033300_btae732-B58) 2020; 26 Bonazzola (2025012209311033300_btae732-B1) 2024; 6 Karlsson (2025012209311033300_btae732-B28) 2021; 7 Zekavat (2025012209311033300_btae732-B61) Schroff (2025012209311033300_btae732-B46) 2015 Diaz-Pinto (2025012209311033300_btae732-B14) 2022; 4 Myers (2025012209311033300_btae732-B36) 2020; 11 Bouma (2025012209311033300_btae732-B2) 2022; 2 Turley (2025012209311033300_btae732-B54) 2018; 50 Chua (2025012209311033300_btae732-B6) 2019; 9 Hinton (2025012209311033300_btae732-B26) 2006; 313 LeCun (2025012209311033300_btae732-B32) 2015; 521 Mbatchou (2025012209311033300_btae732-B34) 2021; 53 De Fauw (2025012209311033300_btae732-B13) 2018; 24 Michelucci (2025012209311033300_btae732-B35) 2022 Kirchler (2025012209311033300_btae732-B30) 2022; 38 Gong (2025012209311033300_btae732-B22) 2022; 42 Zhou (2025012209311033300_btae732-B63) 2024 Song (2025012209311033300_btae732-B50) 2015 Hinton (2025012209311033300_btae732-B25) 2018; 320 Steinberg (2025012209311033300_btae732-B52) 2012; 44 Diaz-Torres (2025012209311033300_btae732-B15) 2023; 92 Cunningham (2025012209311033300_btae732-B9) 2022; 50 Espinosa (2025012209311033300_btae732-B19) 2023; 298 Oren (2025012209311033300_btae732-B38) 2020; 2 Patel (2025012209311033300_btae732-B41) 2016; 123 Chueh (2025012209311033300_btae732-B7) 2022; 235 Haining (2025012209311033300_btae732-B23) 2012; 287 Stefansson (2025012209311033300_btae732-B51) 2005; 37 Cortese (2025012209311033300_btae732-B8) 2021; 10 Donohue (2025012209311033300_btae732-B16) 2021; 37 Hasson (2025012209311033300_btae732-B24) 2020; 105 Zhao (2025012209311033300_btae732-B62) Ronneberger (2025012209311033300_btae732-B45) 2015 Shi (2025012209311033300_btae732-B48) 2021; 598 Radhakrishnan (2025012209311033300_btae732-B43) 2023; 14 Wang (2025012209311033300_btae732-B55) 2016; 17 |
References_xml | – volume: 2 start-page: e486 year: 2020 ident: 2025012209311033300_btae732-B38 article-title: Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30160-6 – volume: 105 start-page: 416 year: 2020 ident: 2025012209311033300_btae732-B24 article-title: Direct fit to nature: an evolutionary perspective on biological and artificial neural networks publication-title: Neuron doi: 10.1016/j.neuron.2019.12.002 – volume: 235 start-page: 221 year: 2022 ident: 2025012209311033300_btae732-B7 article-title: Identification of sex and age from macular optical coherence tomography and feature analysis using deep learning publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2021.09.015 – year: 2022 ident: 2025012209311033300_btae732-B35 doi: 10.48550/arXiv.2201.03898 – year: 2024 ident: 2025012209311033300_btae732-B63 doi: 10.1101/2024.03.19.24304547 – volume: 199 start-page: 481 year: 2012 ident: 2025012209311033300_btae732-B17 article-title: TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals publication-title: J Cell Biol doi: 10.1083/jcb.201201133 – volume: 92 start-page: 104615 year: 2023 ident: 2025012209311033300_btae732-B15 article-title: Disentangling the genetic overlap and causal relationships between primary open-angle glaucoma, brain morphology and four major neurodegenerative disorders publication-title: EBioMedicine doi: 10.1016/j.ebiom.2023.104615 – volume: 11 start-page: 157 year: 2020 ident: 2025012209311033300_btae732-B36 article-title: LDlinkR: an R package for rapidly calculating linkage disequilibrium statistics in diverse populations publication-title: Front Genet doi: 10.3389/fgene.2020.00157 – volume: 7 start-page: 414 year: 2024 ident: 2025012209311033300_btae732-B40 article-title: Unsupervised deep representation learning enables phenotype discovery for genetic association studies of brain imaging publication-title: Commun Biol doi: 10.1038/s42003-024-06096-7 – volume: 57 start-page: 820 year: 2022 ident: 2025012209311033300_btae732-B53 article-title: Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids publication-title: Dev Cell doi: 10.1016/j.devcel.2022.02.018 – volume: 598 start-page: 359 year: 2021 ident: 2025012209311033300_btae732-B48 article-title: Structure-based classification of tauopathies publication-title: Nature doi: 10.1038/s41586-021-03911-7 – volume: 17 start-page: 5 year: 2016 ident: 2025012209311033300_btae732-B55 article-title: Tau in physiology and pathology publication-title: Nat Rev Neurosci doi: 10.1038/nrn.2015.1 – ident: 2025012209311033300_btae732-B61 doi: 10.1126/scitranslmed.adg4517 – volume: 14 start-page: 2436 year: 2023 ident: 2025012209311033300_btae732-B43 article-title: Cross-modal autoencoder framework learns holistic representations of cardiovascular state publication-title: Nat Commun doi: 10.1038/s41467-023-38125-0 – volume: 364 start-page: 1932 year: 2011 ident: 2025012209311033300_btae732-B47 article-title: Genomics and the eye publication-title: N Engl J Med doi: 10.1056/NEJMra1012354 – volume: 17 start-page: e1009497 year: 2021 ident: 2025012209311033300_btae732-B11 article-title: Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1009497 – volume: 37 start-page: 129 year: 2005 ident: 2025012209311033300_btae732-B51 article-title: A common inversion under selection in Europeans publication-title: Nat Genet doi: 10.1038/ng1508 – volume: 2 start-page: 79 year: 2022 ident: 2025012209311033300_btae732-B2 article-title: Optical coherence tomography publication-title: Nat Rev Methods Primers doi: 10.1038/s43586-022-00162-2 – volume: 38 start-page: 3621 year: 2022 ident: 2025012209311033300_btae732-B30 article-title: transferGWAS: GWAS of images using deep transfer learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac369 – volume: 66 start-page: 2521 year: 2017 ident: 2025012209311033300_btae732-B44 article-title: A type 2 diabetes-associated functional regulatory variant in a pancreatic islet enhancer at the ADCY5 locus publication-title: Diabetes doi: 10.2337/db17-0464 – volume: 313 start-page: 504 year: 2006 ident: 2025012209311033300_btae732-B26 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 49 start-page: D1302 year: 2021 ident: 2025012209311033300_btae732-B37 article-title: Open targets platform: supporting systematic drug-target identification and prioritisation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1027 – year: 2020 ident: 2025012209311033300_btae732-B3 article-title: The relationship between open angle glaucoma, optic disc morphology and Alzheimer’s disease: a Mendelian randomization study publication-title: bioRxiv doi: 10.1101/2020.08.30.20184846 – volume: 19 start-page: e1010587 year: 2023 ident: 2025012209311033300_btae732-B10 article-title: Sub-cellular level resolution of common genetic variation in the photoreceptor layer identifies continuum between rare disease and common variation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1010587 – year: 2015 ident: 2025012209311033300_btae732-B45 doi: 10.48550/arXiv.1505.04597 – volume: 10 start-page: e68943 year: 2021 ident: 2025012209311033300_btae732-B8 article-title: Value signals guide abstraction during learning publication-title: Elife doi: 10.7554/eLife.68943 – volume: 50 start-page: 229 year: 2018 ident: 2025012209311033300_btae732-B54 article-title: Multi-trait analysis of genome-wide association summary statistics using MTAG publication-title: Nat Genet doi: 10.1038/s41588-017-0009-4 – volume: 562 start-page: 210 year: 2018 ident: 2025012209311033300_btae732-B18 article-title: Genome-wide association studies of brain imaging phenotypes in UK Biobank publication-title: Nature doi: 10.1038/s41586-018-0571-7 – volume: 7 start-page: eabh2169 year: 2021 ident: 2025012209311033300_btae732-B28 article-title: A single-cell type transcriptomics map of human tissues publication-title: Sci Adv doi: 10.1126/sciadv.abh2169 – volume: 30 start-page: 1246 year: 2020 ident: 2025012209311033300_btae732-B39 article-title: Integration of eQTL and a single-cell atlas in the human eye identifies causal genes for age-related macular degeneration publication-title: Cell Rep doi: 10.1016/j.celrep.2019.12.082 – volume: 50 start-page: D988 year: 2022 ident: 2025012209311033300_btae732-B9 article-title: Ensembl 2022 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab1049 – volume: 21 start-page: 413 year: 2020 ident: 2025012209311033300_btae732-B12 article-title: Genetic influences on disease subtypes publication-title: Annu Rev Genomics Hum Genet doi: 10.1146/annurev-genom-120319-095026 – volume: 37 start-page: 110031 year: 2021 ident: 2025012209311033300_btae732-B16 article-title: Parahippocampal latrophilin-2 (ADGRL2) expression controls topographical presubiculum to entorhinal cortex circuit connectivity publication-title: Cell Rep doi: 10.1016/j.celrep.2021.110031 – volume: 128 start-page: 100 year: 2021 ident: 2025012209311033300_btae732-B29 article-title: Retinal specialist versus artificial intelligence detection of retinal fluid from OCT: age-related eye disease study 2: 10-year follow-on study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2020.06.038 – year: 2015 ident: 2025012209311033300_btae732-B50 doi: 10.48550/arXiv.1511.06452 – year: 2022 ident: 2025012209311033300_btae732-B31 doi: 10.1101/2021.06.24.21259471 – volume: 56 start-page: 1604 year: 2024 ident: 2025012209311033300_btae732-B60 article-title: Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction publication-title: Nat Genet doi: 10.1038/s41588-024-01831-6 – volume: 562 start-page: 203 year: 2018 ident: 2025012209311033300_btae732-B5 article-title: The UK Biobank resource with deep phenotyping and genomic data publication-title: Nature doi: 10.1038/s41586-018-0579-z – volume: 123 start-page: 829 year: 2016 ident: 2025012209311033300_btae732-B41 article-title: Spectral-domain optical coherence tomography imaging in 67 321 adults: associations with macular thickness in the UK Biobank study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2015.11.009 – year: 2015 ident: 2025012209311033300_btae732-B46 doi: 10.48550/arXiv.1503.03832 – volume: 521 start-page: 436 year: 2015 ident: 2025012209311033300_btae732-B32 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 12 start-page: 1258 year: 2021 ident: 2025012209311033300_btae732-B21 article-title: Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries publication-title: Nat Commun doi: 10.1038/s41467-020-20851-4 – volume: 6 start-page: 291 year: 2024 ident: 2025012209311033300_btae732-B1 article-title: Unsupervised ensemble-based phenotyping enhances discoverability of genes related to left-ventricular morphology publication-title: Nat Mach Intell doi: 10.1038/s42256-024-00801-1 – volume: 21 start-page: 220 year: 2021 ident: 2025012209311033300_btae732-B33 article-title: Early neurovascular changes in the retina in preclinical diabetic retinopathy and its relation with blood glucose publication-title: BMC Ophthalmol doi: 10.1186/s12886-021-01975-7 – volume: 287 start-page: 39753 year: 2012 ident: 2025012209311033300_btae732-B23 article-title: The TspanC8 subgroup of tetraspanins interacts with a disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression publication-title: J Biol Chem doi: 10.1074/jbc.M112.416503 – volume: 51 start-page: D977 year: 2023 ident: 2025012209311033300_btae732-B49 article-title: The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac1010 – volume: 20 start-page: e1011273 year: 2024 ident: 2025012209311033300_btae732-B56 article-title: iGWAS: image-based genome-wide association of self-supervised deep phenotyping of retina fundus images publication-title: PLoS Genet doi: 10.1371/journal.pgen.1011273 – volume: 24 start-page: 1342 year: 2018 ident: 2025012209311033300_btae732-B13 article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease publication-title: Nat Med doi: 10.1038/s41591-018-0107-6 – volume: 9 start-page: e025077 year: 2019 ident: 2025012209311033300_btae732-B6 article-title: Cohort profile: design and methods in the Eye and Vision Consortium of UK Biobank publication-title: BMJ Open doi: 10.1136/bmjopen-2018-025077 – volume: 28 start-page: 1162 year: 2019 ident: 2025012209311033300_btae732-B20 article-title: Genome-wide association analyses identify 139 loci associated with macular thickness in the UK Biobank cohort publication-title: Hum Mol Genet doi: 10.1093/hmg/ddy422 – volume: 298 start-page: 153 year: 2023 ident: 2025012209311033300_btae732-B19 article-title: Neolithic expansion and the 17q21.31 inversion in Iberia: an evolutionary approach to H2 haplotype distribution in the Near East and Europe publication-title: Mol Genet Genomics doi: 10.1007/s00438-022-01969-0 – volume: 44 start-page: 369 year: 2012 ident: 2025012209311033300_btae732-B57 article-title: Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits publication-title: Nat Genet doi: 10.1038/ng.2213 – volume: 42 start-page: 834 year: 2022 ident: 2025012209311033300_btae732-B22 article-title: Supervised phenotype discovery from multimodal brain imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2022.3218720 – volume: 4 start-page: 55 year: 2022 ident: 2025012209311033300_btae732-B14 article-title: Predicting myocardial infarction through retinal scans and minimal personal information publication-title: Nat Mach Intell doi: 10.1038/s42256-021-00427-7 – volume: 57 start-page: 46 year: 2017 ident: 2025012209311033300_btae732-B27 article-title: Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT) publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2016.12.002 – ident: 2025012209311033300_btae732-B62 doi: 10.1038/s41467-024-50309-w – volume: 53 start-page: 1097 year: 2021 ident: 2025012209311033300_btae732-B34 article-title: Computationally efficient whole-genome regression for quantitative and binary traits publication-title: Nat Genet doi: 10.1038/s41588-021-00870-7 – volume: 320 start-page: 1101 year: 2018 ident: 2025012209311033300_btae732-B25 article-title: Deep learning—a technology with the potential to transform health care publication-title: JAMA doi: 10.1001/jama.2018.11100 – volume: 26 start-page: 892 year: 2020 ident: 2025012209311033300_btae732-B58 article-title: Predicting conversion to wet age-related macular degeneration using deep learning publication-title: Nat Med doi: 10.1038/s41591-020-0867-7 – volume: 44 start-page: 872 year: 2012 ident: 2025012209311033300_btae732-B52 article-title: Structural diversity and African origin of the 17q21.31 inversion polymorphism publication-title: Nat Genet doi: 10.1038/ng.2335 |
SSID | ssj0005056 |
Score | 2.4831753 |
Snippet | Motivation
Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived... Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Autoencoder Biomarkers Deep Learning Genetic Loci Genome-Wide Association Study Humans Male Original Paper Phenotype Retina - diagnostic imaging Tomography, Optical Coherence |
Title | Autoencoder-based phenotyping of ophthalmic images highlights genetic loci influencing retinal morphology and provides informative biomarkers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39657956 https://www.proquest.com/docview/3146623918 https://pubmed.ncbi.nlm.nih.gov/PMC11751639 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3RSuQwFA0iLPgiq-uu46pkwSehzLRJmuRRlhURdvdFYd7KTZMyBaeVaUfwI_znvbftzFphwX1umqQ9ac5Nc88JYxdeBwta2SjOZR7JwrsIWTGJpE9j8DOV5J2-4uev9OZe3s7VfIfFGy3M2y18K6aurAcTUTIunroWghY06yITk1v-3e_536QO5PONDvift44oaCRrexVdvk2SfMU61x_Z_hAu8qse3wO2E6pD9qE_QPL5E3u5Wrc1WVH6sIqIkDynnK26fSYZFK8LXj8u2gU8LMucl0ucOxpOBsUPtCRvOA4e0jByJLSSl8NxJXQjSRup3WWNMHRtcaiw7l621_Dt4z4FTgJ-yvFZNUfs_vrH3febaDhgIUIEZBslsQzOgAKfz7yVhVNaFMYHDRJk0CZI4cGHkPokL4z0McyMVc7rwnmvUxCf2W5VV-GYcQexCrYAp1KQqZAGrBTgHMZbM29yM2HTzTvPHnsfjazf_xbZGKVsQGnCLhGadxf-tkEww--DNj2gCvW6yQRSAYZ4NsYufOkR3dYpbKo0LhAnzIyw3hYg7-3xlapcdB7c5HCKoaw9-Z9efmV7CcZElA2TpKdst12twxnGNK077_4FnHeD-Q_DGgSX |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-based+phenotyping+of+ophthalmic+images+highlights+genetic+loci+influencing+retinal+morphology+and+provides+informative+biomarkers&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Sergouniotis%2C+Panagiotis+I&rft.au=Diakite%2C+Adam&rft.au=Gaurav%2C+Kumar&rft.au=Birney%2C+Ewan&rft.date=2024-12-26&rft.eissn=1367-4811&rft.volume=41&rft.issue=1&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae732&rft_id=info%3Apmid%2F39657956&rft.externalDocID=39657956 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |