A K-Means-Galactic Swarm Optimization-Based Clustering Algorithm with Otsu's Entropy for Brain Tumor Detection
Image segmentation is a technique in order to segment an image into various parts and derive meaningful information out of each one. In this article, problem of image segmentation is applied on brain MRI images. This is done in order to detect and capture the location, size and shape of five differe...
Saved in:
Published in | Applied artificial intelligence Vol. 33; no. 2; pp. 152 - 170 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
28.01.2019
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Image segmentation is a technique in order to segment an image into various parts and derive meaningful information out of each one. In this article, problem of image segmentation is applied on brain MRI images. This is done in order to detect and capture the location, size and shape of five different types of tumors. Here, image segmentation is viewed as an clustering problem and a new hybrid K-means Galatic Swarm Optimization (GSO) algorithm is proposed for effective solution. The Otsus entropy measure is used as the fitness function for deriving the segments. Extensive simulation studies with five performance measures on five different brain MRI images reveal the superior performance of the proposed approach over GSO, Real Coded Genetic Algorithm (RCGA), and K-Means clustering algorithms. |
---|---|
AbstractList | Image segmentation is a technique in order to segment an image into various parts and derive meaningful information out of each one. In this article, problem of image segmentation is applied on brain MRI images. This is done in order to detect and capture the location, size and shape of five different types of tumors. Here, image segmentation is viewed as an clustering problem and a new hybrid K-means Galatic Swarm Optimization (GSO) algorithm is proposed for effective solution. The Otsus entropy measure is used as the fitness function for deriving the segments. Extensive simulation studies with five performance measures on five different brain MRI images reveal the superior performance of the proposed approach over GSO, Real Coded Genetic Algorithm (RCGA), and K-Means clustering algorithms. |
Author | Chauhan, Rajat Dhaked, Uttam Modi, Rahul Nanda, Satyasai Jagannath Gulati, Ishank |
Author_xml | – sequence: 1 givenname: Satyasai Jagannath surname: Nanda fullname: Nanda, Satyasai Jagannath email: nanda.satyasai@gmail.com organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology – sequence: 2 givenname: Ishank surname: Gulati fullname: Gulati, Ishank organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology – sequence: 3 givenname: Rajat surname: Chauhan fullname: Chauhan, Rajat organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology – sequence: 4 givenname: Rahul surname: Modi fullname: Modi, Rahul organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology – sequence: 5 givenname: Uttam surname: Dhaked fullname: Dhaked, Uttam organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology |
BookMark | eNp9kc1uEzEUhS1UJNLCIyBZYsFqgn9nPDvStJSKoiwoa-vWsYOjGTvYHkXh6fGQwpKNbdnnfNf3nkt0EWKwCL2lZEmJIh-IUryXVCwZoWpJJSeq7V-gRX3smlYKeYEWs6aZRa_QZc57QgjtOrpAYYW_NF8thNzcwQCmeIO_HSGNeHMofvS_oPgYmmvIdovXw5SLTT7s8GrYxeTLjxEf64o3JU_vM74NJcXDCbuY8HUCH_DjNNbzjS3WzKDX6KWDIds3z_sV-v7p9nH9uXnY3N2vVw-NEUSUhjracm6FbCV3qhWm472TpgNF4ckIw5TsJAPuBHQtMKCsV84yVvvetk-c8St0f-ZuI-z1IfkR0klH8PrPRUw7Dan2OlhNTWskVy3prRKtFX2dpSGOUW6ZA9NX1rsz65Diz8nmovdxSqF-XzPaKcZI9VSVPKtMijkn6_5VpUTPMem_Mek5Jv0cU_V9PPt8qFMb4RjTsNUFTkNMLkEwPmv-f8RvHmqZtA |
CitedBy_id | crossref_primary_10_3390_diagnostics13040668 crossref_primary_10_1109_ACCESS_2020_2988717 crossref_primary_10_1142_S0218001423560013 crossref_primary_10_1007_s11831_024_10128_0 crossref_primary_10_1016_j_measen_2024_101026 crossref_primary_10_1155_2021_6657849 crossref_primary_10_1016_j_ins_2022_11_139 crossref_primary_10_1007_s11042_022_13636_y crossref_primary_10_1002_jemt_23597 crossref_primary_10_1016_j_procs_2020_03_189 crossref_primary_10_1155_2022_1518177 crossref_primary_10_1007_s12065_021_00578_x crossref_primary_10_1142_S0218001422520085 crossref_primary_10_3233_JIFS_212812 crossref_primary_10_1080_03091902_2022_2080882 crossref_primary_10_1155_2021_1141619 crossref_primary_10_1007_s11042_023_14861_9 crossref_primary_10_1515_bmt_2021_0313 crossref_primary_10_1016_j_asoc_2020_106651 |
Cites_doi | 10.1016/j.asoc.2015.10.034 10.1109/TIM.2009.2030931 10.1016/j.measurement.2011.09.005 10.3923/jas.2014.66.71 10.1016/j.eswa.2013.10.059 10.1109/TMI.2002.803126 10.1016/S0031-3203(99)00137-5 10.4018/978-1-59140-753-9.ch001 10.1016/j.eswa.2010.09.151 10.1007/s10044-005-0015-5 10.1016/j.patrec.2009.09.011 10.1109/42.712136 10.2307/2346830 10.2174/1573405612666160128233258 10.1109/TELFOR.2015.7377512 10.1007/s12065-011-0048-1 10.1109/TSMC.1979.4310076 10.1109/TSMCC.2004.829274 10.1007/978-3-319-23989-7_60 10.1007/s10462-010-9155-0 10.1016/j.eswa.2006.12.012 |
ContentType | Journal Article |
Copyright | 2018 Taylor & Francis 2018 2018 Taylor & Francis |
Copyright_xml | – notice: 2018 Taylor & Francis 2018 – notice: 2018 Taylor & Francis |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.1080/08839514.2018.1530869 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1087-6545 |
EndPage | 170 |
ExternalDocumentID | oai_doaj_org_article_1c6c538609e846e49395c0f213e2fac9 10_1080_08839514_2018_1530869 1530869 |
Genre | Articles |
GroupedDBID | .4S .7F .DC .QJ 0R~ 23M 2DF 30N 3YN 4.4 5GY 5VS 8VB AAAVI AAENE AAJMT ABBKH ABCCY ABDBF ABFIM ABHAV ABIVO ABJVF ABPEM ABPTK ABQHQ ABTAI ACGEJ ACGFS ACGOD ACNCT ACTIO ADCVX ADXPE AEGYZ AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AGMYJ AHDLD AIJEM AIRXU AJWEG AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EAP EBR EBS EBU ECS EDO EJD EMK EPL EST ESX E~A E~B F5P FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 NX~ O9- P2P PQEST PQQKQ QWB RIG S-T SNACF TFL TFT TFW TH9 TNC TTHFI TUS TWF UT5 UU3 V1K ZL0 ~S~ 0YH AAYXX CITATION K1G 7SC 8FD JQ2 L7M L~C L~D ACUHS AHQJS GROUPED_DOAJ |
ID | FETCH-LOGICAL-c404t-1f1633e45653f864c739f5c7a81abc4c285752a3f4a76a2a1298fe22869d6b323 |
IEDL.DBID | DOA |
ISSN | 0883-9514 |
IngestDate | Tue Dec 17 15:14:53 EST 2024 Tue Nov 05 22:32:14 EST 2024 Fri Dec 06 01:32:02 EST 2024 Tue Jul 04 18:19:04 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-1f1633e45653f864c739f5c7a81abc4c285752a3f4a76a2a1298fe22869d6b323 |
OpenAccessLink | https://doaj.org/article/1c6c538609e846e49395c0f213e2fac9 |
PQID | 2178220493 |
PQPubID | 53050 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1080_08839514_2018_1530869 proquest_journals_2178220493 doaj_primary_oai_doaj_org_article_1c6c538609e846e49395c0f213e2fac9 informaworld_taylorfrancis_310_1080_08839514_2018_1530869 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-28 |
PublicationDateYYYYMMDD | 2019-01-28 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Applied artificial intelligence |
PublicationYear | 2019 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – sequence: 0 name: Taylor & Francis Group – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Bandyopadhyay D. S. K. (CIT0003) 2011; 2 CIT0030 CIT0010 CIT0032 CIT0020 CIT0001 CIT0012 CIT0022 CIT0033 Logeswari T. (CIT0019) 2010; 2 CIT0014 CIT0025 CIT0002 CIT0013 CIT0024 CIT0005 CIT0004 CIT0026 CIT0007 CIT0018 CIT0006 CIT0028 CIT0009 Kandwal R. (CIT0016) 2014; 4 |
References_xml | – ident: CIT0024 doi: 10.1016/j.asoc.2015.10.034 – ident: CIT0009 doi: 10.1109/TIM.2009.2030931 – ident: CIT0028 doi: 10.1016/j.measurement.2011.09.005 – ident: CIT0001 doi: 10.3923/jas.2014.66.71 – ident: CIT0004 doi: 10.1016/j.eswa.2013.10.059 – ident: CIT0007 doi: 10.1109/TMI.2002.803126 – ident: CIT0020 doi: 10.1016/S0031-3203(99)00137-5 – ident: CIT0033 doi: 10.4018/978-1-59140-753-9.ch001 – ident: CIT0005 doi: 10.1016/j.eswa.2010.09.151 – volume: 2 start-page: 006 issue: 1 year: 2010 ident: CIT0019 publication-title: Journal of Cancer Research and Experimental Oncology contributor: fullname: Logeswari T. – ident: CIT0025 doi: 10.1007/s10044-005-0015-5 – ident: CIT0014 doi: 10.1016/j.patrec.2009.09.011 – ident: CIT0010 doi: 10.1109/42.712136 – ident: CIT0012 doi: 10.2307/2346830 – ident: CIT0006 doi: 10.2174/1573405612666160128233258 – ident: CIT0030 doi: 10.1109/TELFOR.2015.7377512 – ident: CIT0022 doi: 10.1007/s12065-011-0048-1 – volume: 4 start-page: 97 issue: 3 year: 2014 ident: CIT0016 publication-title: International Journal of Advanced Research in Computer Science and Software Engineering contributor: fullname: Kandwal R. – ident: CIT0026 doi: 10.1109/TSMC.1979.4310076 – ident: CIT0013 doi: 10.1109/TSMCC.2004.829274 – ident: CIT0018 doi: 10.1007/978-3-319-23989-7_60 – ident: CIT0002 doi: 10.1007/s10462-010-9155-0 – volume: 2 start-page: 56 issue: 1 year: 2011 ident: CIT0003 publication-title: Journal of Global Research in Computer Science contributor: fullname: Bandyopadhyay D. S. K. – ident: CIT0032 doi: 10.1016/j.eswa.2006.12.012 |
SSID | ssj0001771 |
Score | 2.3589962 |
Snippet | Image segmentation is a technique in order to segment an image into various parts and derive meaningful information out of each one. In this article, problem... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 152 |
SubjectTerms | Algorithms Brain Cluster analysis Clustering Computer simulation Entropy of solution Fitness Genetic algorithms Image detection Image segmentation Magnetic resonance imaging Medical imaging Optimization Tumors Vector quantization |
Title | A K-Means-Galactic Swarm Optimization-Based Clustering Algorithm with Otsu's Entropy for Brain Tumor Detection |
URI | https://www.tandfonline.com/doi/abs/10.1080/08839514.2018.1530869 https://www.proquest.com/docview/2178220493 https://doaj.org/article/1c6c538609e846e49395c0f213e2fac9 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLagEws3ohyVB1aXxHadeGyhBYGgAyCxWY5rA1IvtakQG3-Dv8cv4TlxEMfAwhY5lvL0Dr_vOe9A6ChJrM4ix0ECCSdcsIRInkoCnleaVKTw1v_RvboW53f84r51_2XUl88JK9sDl4w7jo0wYJQikhZcpeWSyZaJHI2ZpU6bsnQvolUwFc7gOClCLTAhRgBD8Kp2x3fVhjW_5NO60iYYPIB6-c0rFc37f7Qu_XVUF_6nt45WA3DE7ZLgDbRkx5torRrKgIONbqFpG1-SKwseiJzpYVEChW-e9WyE-3A6jELZJemA9xrgk-HCN0oA94Xbw4fJ7Cl_HGF_NYv7-Xzx_vo2x12fyj59wUAk7vh5Evh2MYLnU5sXWVzjbXTX696enJMwVoEYHvGcxA4wGLMeyjGXCm4SJl3LJDqNdWa4oX5oJ9XMcZ0ITTUggtRZSoFNA5ExynZQbTwZ212EdQZ4bmC5s1JwO2CwEYQDGCgDyRgu66hZsVVNy-4ZKq6akgY5KC8HFeRQRx3P_M_Nvvl1sQAqoYJKqL9Uoo7kV9GpvLj7cOWgEsX-IOCgkrMK1jxXELYBjoJYiu39B337aAU-6dPUCE0PUC2fLewhQJs8a6BlFl03Cl3-ALzw8N8 |
link.rule.ids | 314,780,784,864,2102,27924,27925,59886,60675 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdgHODCxpcojOEDEieXxHYT-9iObYWt3YFO2s1yXHtDtOnUJkLw1_Oek0zbEOKwW5TYTvzx3vs95_n3CPmQ594WSZAwA7lkMhM501JpBpZXO5UpeIp_dCfTbHwmv54Pzm-chcGwSvShQ0MUEXU1CjduRnchcZ9AMgQgA9wSSVUfZBZwuX5IHg20UrjKRTK91sZpHp0urMKwTneK51_N3LJPkcb_DonpX0o7WqLDbeK6PjQBKD_6dVX03e879I736-QOedoCVTpsVtYz8sCXz8l2lwSCtjrhBSmH9JhNPFg8dmQX8cgV_fbTrpf0FLTRsj3myUZgLed0f1EjMQOYSzpcXKzW36vLJcWtYHpabeqPG3qAgfNXvygMBB1h9go6q5dw_dlXMWasfEnODg9m-2PWJnFgTiayYmkAxCc8AkcRVCZdLnQYuNyq1BZOOo4pQrkVQdo8s9wC_lDBcw6dnWeF4OIV2SpXpX9NqC0APc69DF5n0s8FFBw4JAgsrNNO6h7pd1NnrhquDpN2FKjtaBocTdOOZo-McIKvCyPVdryxWl-YVnJN6jIHViFLtAes5qWGdlwSeCo8D_DiHtE3l4ep4k5LaNKiGPGfD9jt1pJpdcfGgJMIqA08N_HmHk2_J4_Hs8mJOfkyPX5LnsAjjItjXO2SrWpd-3eApapiLwrLHw2AD1c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgSIgXNr5EYQw_IPHkktiuEz-227rBWIfEJvFmOY49EG1atYkQ_PXcJc40hhAPe4sS24k_7u53zvl3hLzJMm-LJEiYgUwyqUTGtMw1A8urXa5yeIp_dE9n6vhCfvgy6qMJNzGsEn3o0BFFtLoahXtVhj4i7h0IhgBggDsiaT4EkQVYru-SewrRL57iSGZXyjjNWp8LqzCs0x_i-Vczf5inlsX_BofpXzq7NUTTbVL0XejiT74Pm7oYul832B1v1ccd8jDCVDru1tUjcsdXj8l2nwKCRo3whFRjesJOPdg7dmTn7YEr-vmHXS_oGeiiRTzkySZgK0u6P2-QlgGMJR3PL5frb_XXBcWNYHpWb5q3G3qIYfOrnxTGgU4wdwU9bxZwfeDrNmKsekoupofn-8cspnBgTiayZmkAvCc8wkYRciVdJnQYuczmqS2cdBwThHIrgrSZstwC-siD5xw6W6pCcPGMbFXLyj8n1BaAHUsvg9dK-lJAwZFDesDCOu2kHpBhP3Nm1TF1mLQnQI2jaXA0TRzNAZng_F4VRqLt9sZyfWmi3JrUKQc2QSXaA1LzUkM7Lgk8FZ4HePGA6Ourw9TtPkvokqIY8Z8P2O2XkomaY2PARQTMBn6beHGLpl-T-58Opubj-9nJS_IAnmBQHOP5Ltmq141_BUCqLvZaUfkNoDUN-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+K-Means-Galactic+Swarm+Optimization-Based+Clustering+Algorithm+with+Otsu%E2%80%99s+Entropy+for+Brain+Tumor+Detection&rft.jtitle=Applied+artificial+intelligence&rft.au=Nanda%2C+Satyasai+Jagannath&rft.au=Gulati%2C+Ishank&rft.au=Chauhan%2C+Rajat&rft.au=Modi%2C+Rahul&rft.date=2019-01-28&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=33&rft.issue=2&rft.spage=152&rft.epage=170&rft_id=info:doi/10.1080%2F08839514.2018.1530869&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_08839514_2018_1530869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon |