A K-Means-Galactic Swarm Optimization-Based Clustering Algorithm with Otsu's Entropy for Brain Tumor Detection

Image segmentation is a technique in order to segment an image into various parts and derive meaningful information out of each one. In this article, problem of image segmentation is applied on brain MRI images. This is done in order to detect and capture the location, size and shape of five differe...

Full description

Saved in:
Bibliographic Details
Published inApplied artificial intelligence Vol. 33; no. 2; pp. 152 - 170
Main Authors Nanda, Satyasai Jagannath, Gulati, Ishank, Chauhan, Rajat, Modi, Rahul, Dhaked, Uttam
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 28.01.2019
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image segmentation is a technique in order to segment an image into various parts and derive meaningful information out of each one. In this article, problem of image segmentation is applied on brain MRI images. This is done in order to detect and capture the location, size and shape of five different types of tumors. Here, image segmentation is viewed as an clustering problem and a new hybrid K-means Galatic Swarm Optimization (GSO) algorithm is proposed for effective solution. The Otsus entropy measure is used as the fitness function for deriving the segments. Extensive simulation studies with five performance measures on five different brain MRI images reveal the superior performance of the proposed approach over GSO, Real Coded Genetic Algorithm (RCGA), and K-Means clustering algorithms.
AbstractList Image segmentation is a technique in order to segment an image into various parts and derive meaningful information out of each one. In this article, problem of image segmentation is applied on brain MRI images. This is done in order to detect and capture the location, size and shape of five different types of tumors. Here, image segmentation is viewed as an clustering problem and a new hybrid K-means Galatic Swarm Optimization (GSO) algorithm is proposed for effective solution. The Otsus entropy measure is used as the fitness function for deriving the segments. Extensive simulation studies with five performance measures on five different brain MRI images reveal the superior performance of the proposed approach over GSO, Real Coded Genetic Algorithm (RCGA), and K-Means clustering algorithms.
Author Chauhan, Rajat
Dhaked, Uttam
Modi, Rahul
Nanda, Satyasai Jagannath
Gulati, Ishank
Author_xml – sequence: 1
  givenname: Satyasai Jagannath
  surname: Nanda
  fullname: Nanda, Satyasai Jagannath
  email: nanda.satyasai@gmail.com
  organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology
– sequence: 2
  givenname: Ishank
  surname: Gulati
  fullname: Gulati, Ishank
  organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology
– sequence: 3
  givenname: Rajat
  surname: Chauhan
  fullname: Chauhan, Rajat
  organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology
– sequence: 4
  givenname: Rahul
  surname: Modi
  fullname: Modi, Rahul
  organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology
– sequence: 5
  givenname: Uttam
  surname: Dhaked
  fullname: Dhaked, Uttam
  organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology
BookMark eNp9kc1uEzEUhS1UJNLCIyBZYsFqgn9nPDvStJSKoiwoa-vWsYOjGTvYHkXh6fGQwpKNbdnnfNf3nkt0EWKwCL2lZEmJIh-IUryXVCwZoWpJJSeq7V-gRX3smlYKeYEWs6aZRa_QZc57QgjtOrpAYYW_NF8thNzcwQCmeIO_HSGNeHMofvS_oPgYmmvIdovXw5SLTT7s8GrYxeTLjxEf64o3JU_vM74NJcXDCbuY8HUCH_DjNNbzjS3WzKDX6KWDIds3z_sV-v7p9nH9uXnY3N2vVw-NEUSUhjracm6FbCV3qhWm472TpgNF4ckIw5TsJAPuBHQtMKCsV84yVvvetk-c8St0f-ZuI-z1IfkR0klH8PrPRUw7Dan2OlhNTWskVy3prRKtFX2dpSGOUW6ZA9NX1rsz65Diz8nmovdxSqF-XzPaKcZI9VSVPKtMijkn6_5VpUTPMem_Mek5Jv0cU_V9PPt8qFMb4RjTsNUFTkNMLkEwPmv-f8RvHmqZtA
CitedBy_id crossref_primary_10_3390_diagnostics13040668
crossref_primary_10_1109_ACCESS_2020_2988717
crossref_primary_10_1142_S0218001423560013
crossref_primary_10_1007_s11831_024_10128_0
crossref_primary_10_1016_j_measen_2024_101026
crossref_primary_10_1155_2021_6657849
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_1007_s11042_022_13636_y
crossref_primary_10_1002_jemt_23597
crossref_primary_10_1016_j_procs_2020_03_189
crossref_primary_10_1155_2022_1518177
crossref_primary_10_1007_s12065_021_00578_x
crossref_primary_10_1142_S0218001422520085
crossref_primary_10_3233_JIFS_212812
crossref_primary_10_1080_03091902_2022_2080882
crossref_primary_10_1155_2021_1141619
crossref_primary_10_1007_s11042_023_14861_9
crossref_primary_10_1515_bmt_2021_0313
crossref_primary_10_1016_j_asoc_2020_106651
Cites_doi 10.1016/j.asoc.2015.10.034
10.1109/TIM.2009.2030931
10.1016/j.measurement.2011.09.005
10.3923/jas.2014.66.71
10.1016/j.eswa.2013.10.059
10.1109/TMI.2002.803126
10.1016/S0031-3203(99)00137-5
10.4018/978-1-59140-753-9.ch001
10.1016/j.eswa.2010.09.151
10.1007/s10044-005-0015-5
10.1016/j.patrec.2009.09.011
10.1109/42.712136
10.2307/2346830
10.2174/1573405612666160128233258
10.1109/TELFOR.2015.7377512
10.1007/s12065-011-0048-1
10.1109/TSMC.1979.4310076
10.1109/TSMCC.2004.829274
10.1007/978-3-319-23989-7_60
10.1007/s10462-010-9155-0
10.1016/j.eswa.2006.12.012
ContentType Journal Article
Copyright 2018 Taylor & Francis 2018
2018 Taylor & Francis
Copyright_xml – notice: 2018 Taylor & Francis 2018
– notice: 2018 Taylor & Francis
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1080/08839514.2018.1530869
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1087-6545
EndPage 170
ExternalDocumentID oai_doaj_org_article_1c6c538609e846e49395c0f213e2fac9
10_1080_08839514_2018_1530869
1530869
Genre Articles
GroupedDBID .4S
.7F
.DC
.QJ
0R~
23M
2DF
30N
3YN
4.4
5GY
5VS
8VB
AAAVI
AAENE
AAJMT
ABBKH
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABJVF
ABPEM
ABPTK
ABQHQ
ABTAI
ACGEJ
ACGFS
ACGOD
ACNCT
ACTIO
ADCVX
ADXPE
AEGYZ
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
F5P
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
PQEST
PQQKQ
QWB
RIG
S-T
SNACF
TFL
TFT
TFW
TH9
TNC
TTHFI
TUS
TWF
UT5
UU3
V1K
ZL0
~S~
0YH
AAYXX
CITATION
K1G
7SC
8FD
JQ2
L7M
L~C
L~D
ACUHS
AHQJS
GROUPED_DOAJ
ID FETCH-LOGICAL-c404t-1f1633e45653f864c739f5c7a81abc4c285752a3f4a76a2a1298fe22869d6b323
IEDL.DBID DOA
ISSN 0883-9514
IngestDate Tue Dec 17 15:14:53 EST 2024
Tue Nov 05 22:32:14 EST 2024
Fri Dec 06 01:32:02 EST 2024
Tue Jul 04 18:19:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-1f1633e45653f864c739f5c7a81abc4c285752a3f4a76a2a1298fe22869d6b323
OpenAccessLink https://doaj.org/article/1c6c538609e846e49395c0f213e2fac9
PQID 2178220493
PQPubID 53050
PageCount 19
ParticipantIDs crossref_primary_10_1080_08839514_2018_1530869
proquest_journals_2178220493
doaj_primary_oai_doaj_org_article_1c6c538609e846e49395c0f213e2fac9
informaworld_taylorfrancis_310_1080_08839514_2018_1530869
PublicationCentury 2000
PublicationDate 2019-01-28
PublicationDateYYYYMMDD 2019-01-28
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-28
  day: 28
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Applied artificial intelligence
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – sequence: 0
  name: Taylor & Francis Group
– name: Taylor & Francis
– name: Taylor & Francis Ltd
References Bandyopadhyay D. S. K. (CIT0003) 2011; 2
CIT0030
CIT0010
CIT0032
CIT0020
CIT0001
CIT0012
CIT0022
CIT0033
Logeswari T. (CIT0019) 2010; 2
CIT0014
CIT0025
CIT0002
CIT0013
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0018
CIT0006
CIT0028
CIT0009
Kandwal R. (CIT0016) 2014; 4
References_xml – ident: CIT0024
  doi: 10.1016/j.asoc.2015.10.034
– ident: CIT0009
  doi: 10.1109/TIM.2009.2030931
– ident: CIT0028
  doi: 10.1016/j.measurement.2011.09.005
– ident: CIT0001
  doi: 10.3923/jas.2014.66.71
– ident: CIT0004
  doi: 10.1016/j.eswa.2013.10.059
– ident: CIT0007
  doi: 10.1109/TMI.2002.803126
– ident: CIT0020
  doi: 10.1016/S0031-3203(99)00137-5
– ident: CIT0033
  doi: 10.4018/978-1-59140-753-9.ch001
– ident: CIT0005
  doi: 10.1016/j.eswa.2010.09.151
– volume: 2
  start-page: 006
  issue: 1
  year: 2010
  ident: CIT0019
  publication-title: Journal of Cancer Research and Experimental Oncology
  contributor:
    fullname: Logeswari T.
– ident: CIT0025
  doi: 10.1007/s10044-005-0015-5
– ident: CIT0014
  doi: 10.1016/j.patrec.2009.09.011
– ident: CIT0010
  doi: 10.1109/42.712136
– ident: CIT0012
  doi: 10.2307/2346830
– ident: CIT0006
  doi: 10.2174/1573405612666160128233258
– ident: CIT0030
  doi: 10.1109/TELFOR.2015.7377512
– ident: CIT0022
  doi: 10.1007/s12065-011-0048-1
– volume: 4
  start-page: 97
  issue: 3
  year: 2014
  ident: CIT0016
  publication-title: International Journal of Advanced Research in Computer Science and Software Engineering
  contributor:
    fullname: Kandwal R.
– ident: CIT0026
  doi: 10.1109/TSMC.1979.4310076
– ident: CIT0013
  doi: 10.1109/TSMCC.2004.829274
– ident: CIT0018
  doi: 10.1007/978-3-319-23989-7_60
– ident: CIT0002
  doi: 10.1007/s10462-010-9155-0
– volume: 2
  start-page: 56
  issue: 1
  year: 2011
  ident: CIT0003
  publication-title: Journal of Global Research in Computer Science
  contributor:
    fullname: Bandyopadhyay D. S. K.
– ident: CIT0032
  doi: 10.1016/j.eswa.2006.12.012
SSID ssj0001771
Score 2.3589962
Snippet Image segmentation is a technique in order to segment an image into various parts and derive meaningful information out of each one. In this article, problem...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Publisher
StartPage 152
SubjectTerms Algorithms
Brain
Cluster analysis
Clustering
Computer simulation
Entropy of solution
Fitness
Genetic algorithms
Image detection
Image segmentation
Magnetic resonance imaging
Medical imaging
Optimization
Tumors
Vector quantization
Title A K-Means-Galactic Swarm Optimization-Based Clustering Algorithm with Otsu's Entropy for Brain Tumor Detection
URI https://www.tandfonline.com/doi/abs/10.1080/08839514.2018.1530869
https://www.proquest.com/docview/2178220493
https://doaj.org/article/1c6c538609e846e49395c0f213e2fac9
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLagEws3ohyVB1aXxHadeGyhBYGgAyCxWY5rA1IvtakQG3-Dv8cv4TlxEMfAwhY5lvL0Dr_vOe9A6ChJrM4ix0ECCSdcsIRInkoCnleaVKTw1v_RvboW53f84r51_2XUl88JK9sDl4w7jo0wYJQikhZcpeWSyZaJHI2ZpU6bsnQvolUwFc7gOClCLTAhRgBD8Kp2x3fVhjW_5NO60iYYPIB6-c0rFc37f7Qu_XVUF_6nt45WA3DE7ZLgDbRkx5torRrKgIONbqFpG1-SKwseiJzpYVEChW-e9WyE-3A6jELZJemA9xrgk-HCN0oA94Xbw4fJ7Cl_HGF_NYv7-Xzx_vo2x12fyj59wUAk7vh5Evh2MYLnU5sXWVzjbXTX696enJMwVoEYHvGcxA4wGLMeyjGXCm4SJl3LJDqNdWa4oX5oJ9XMcZ0ITTUggtRZSoFNA5ExynZQbTwZ212EdQZ4bmC5s1JwO2CwEYQDGCgDyRgu66hZsVVNy-4ZKq6akgY5KC8HFeRQRx3P_M_Nvvl1sQAqoYJKqL9Uoo7kV9GpvLj7cOWgEsX-IOCgkrMK1jxXELYBjoJYiu39B337aAU-6dPUCE0PUC2fLewhQJs8a6BlFl03Cl3-ALzw8N8
link.rule.ids 314,780,784,864,2102,27924,27925,59886,60675
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdgHODCxpcojOEDEieXxHYT-9iObYWt3YFO2s1yXHtDtOnUJkLw1_Oek0zbEOKwW5TYTvzx3vs95_n3CPmQ594WSZAwA7lkMhM501JpBpZXO5UpeIp_dCfTbHwmv54Pzm-chcGwSvShQ0MUEXU1CjduRnchcZ9AMgQgA9wSSVUfZBZwuX5IHg20UrjKRTK91sZpHp0urMKwTneK51_N3LJPkcb_DonpX0o7WqLDbeK6PjQBKD_6dVX03e879I736-QOedoCVTpsVtYz8sCXz8l2lwSCtjrhBSmH9JhNPFg8dmQX8cgV_fbTrpf0FLTRsj3myUZgLed0f1EjMQOYSzpcXKzW36vLJcWtYHpabeqPG3qAgfNXvygMBB1h9go6q5dw_dlXMWasfEnODg9m-2PWJnFgTiayYmkAxCc8AkcRVCZdLnQYuNyq1BZOOo4pQrkVQdo8s9wC_lDBcw6dnWeF4OIV2SpXpX9NqC0APc69DF5n0s8FFBw4JAgsrNNO6h7pd1NnrhquDpN2FKjtaBocTdOOZo-McIKvCyPVdryxWl-YVnJN6jIHViFLtAes5qWGdlwSeCo8D_DiHtE3l4ep4k5LaNKiGPGfD9jt1pJpdcfGgJMIqA08N_HmHk2_J4_Hs8mJOfkyPX5LnsAjjItjXO2SrWpd-3eApapiLwrLHw2AD1c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgSIgXNr5EYQw_IPHkktiuEz-227rBWIfEJvFmOY49EG1atYkQ_PXcJc40hhAPe4sS24k_7u53zvl3hLzJMm-LJEiYgUwyqUTGtMw1A8urXa5yeIp_dE9n6vhCfvgy6qMJNzGsEn3o0BFFtLoahXtVhj4i7h0IhgBggDsiaT4EkQVYru-SewrRL57iSGZXyjjNWp8LqzCs0x_i-Vczf5inlsX_BofpXzq7NUTTbVL0XejiT74Pm7oYul832B1v1ccd8jDCVDru1tUjcsdXj8l2nwKCRo3whFRjesJOPdg7dmTn7YEr-vmHXS_oGeiiRTzkySZgK0u6P2-QlgGMJR3PL5frb_XXBcWNYHpWb5q3G3qIYfOrnxTGgU4wdwU9bxZwfeDrNmKsekoupofn-8cspnBgTiayZmkAvCc8wkYRciVdJnQYuczmqS2cdBwThHIrgrSZstwC-siD5xw6W6pCcPGMbFXLyj8n1BaAHUsvg9dK-lJAwZFDesDCOu2kHpBhP3Nm1TF1mLQnQI2jaXA0TRzNAZng_F4VRqLt9sZyfWmi3JrUKQc2QSXaA1LzUkM7Lgk8FZ4HePGA6Ourw9TtPkvokqIY8Z8P2O2XkomaY2PARQTMBn6beHGLpl-T-58Opubj-9nJS_IAnmBQHOP5Ltmq141_BUCqLvZaUfkNoDUN-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+K-Means-Galactic+Swarm+Optimization-Based+Clustering+Algorithm+with+Otsu%E2%80%99s+Entropy+for+Brain+Tumor+Detection&rft.jtitle=Applied+artificial+intelligence&rft.au=Nanda%2C+Satyasai+Jagannath&rft.au=Gulati%2C+Ishank&rft.au=Chauhan%2C+Rajat&rft.au=Modi%2C+Rahul&rft.date=2019-01-28&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=33&rft.issue=2&rft.spage=152&rft.epage=170&rft_id=info:doi/10.1080%2F08839514.2018.1530869&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_08839514_2018_1530869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon