Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA
•First, the G/AgNFs/PMMA flexible substrate was fabricated by using a facilegraphene templated electroreduction method.•Second, the detection limit for R6G in-situ detectionby covering the G/AgNFs/PMMA flexible substrate can reach 10−14M.•Third, the G/AgNFs/PMMA flexible substrate can be used on rea...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 249; pp. 439 - 450 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •First, the G/AgNFs/PMMA flexible substrate was fabricated by using a facilegraphene templated electroreduction method.•Second, the detection limit for R6G in-situ detectionby covering the G/AgNFs/PMMA flexible substrate can reach 10−14M.•Third, the G/AgNFs/PMMA flexible substrate can be used on real-world objects with any arbitrary morphology.
Flexible substrate consisted of PMMA-supported monolayer graphene with sandwiched Ag-nanoflowers (G/AgNFs/PMMA) for ultrasensitive, reproducible, and stable surface-enhanced Raman scattering (SERS) detection is reported. Graphene templated micro-current-assisted chemical reduction method was employed to support AgNFs growth, and uniform-distribution AgNFs with all directions nanotips can generate tremendous enhancement factor and intensive hotspots. The minimum detectable concentration (i.e., detection limit) for rhodamine 6G (R6G) in-situ detection by covering this as-synthesized G/AgNFs/PMMA flexible substrate can be as low as 10−14M. Moreover, graphene can effectively stabilize the SERS signals and protect AgNFs from oxidation, endowing this flexible substrate a long-term stability with maximum intensity deviation lower than 10%, for the quantitative measurements from spot-to-spot or substrate-to-substrate. In order to trial its practical applications with various real-world surfaces, the in-situ SERS detection of phenylalanine@apple, adenosine aqueous solution and methylene-blue@fish was performed by covering this G/AgNFs/PMMA flexible substrate. Clear Raman peaks can be obtained for all the selected samples with concentration of 10−10M and, importantly, good linear relationship between Raman intensity and molecular concentration indicates the potential application of the G/AgNFs/PMMA flexible substrate in quantitative determination. Thus, this high-efficiency and low-cost flexible SERS substrate may provide a new way for the molecular trace-detection in food security and environmental protection. |
---|---|
AbstractList | •First, the G/AgNFs/PMMA flexible substrate was fabricated by using a facilegraphene templated electroreduction method.•Second, the detection limit for R6G in-situ detectionby covering the G/AgNFs/PMMA flexible substrate can reach 10−14M.•Third, the G/AgNFs/PMMA flexible substrate can be used on real-world objects with any arbitrary morphology.
Flexible substrate consisted of PMMA-supported monolayer graphene with sandwiched Ag-nanoflowers (G/AgNFs/PMMA) for ultrasensitive, reproducible, and stable surface-enhanced Raman scattering (SERS) detection is reported. Graphene templated micro-current-assisted chemical reduction method was employed to support AgNFs growth, and uniform-distribution AgNFs with all directions nanotips can generate tremendous enhancement factor and intensive hotspots. The minimum detectable concentration (i.e., detection limit) for rhodamine 6G (R6G) in-situ detection by covering this as-synthesized G/AgNFs/PMMA flexible substrate can be as low as 10−14M. Moreover, graphene can effectively stabilize the SERS signals and protect AgNFs from oxidation, endowing this flexible substrate a long-term stability with maximum intensity deviation lower than 10%, for the quantitative measurements from spot-to-spot or substrate-to-substrate. In order to trial its practical applications with various real-world surfaces, the in-situ SERS detection of phenylalanine@apple, adenosine aqueous solution and methylene-blue@fish was performed by covering this G/AgNFs/PMMA flexible substrate. Clear Raman peaks can be obtained for all the selected samples with concentration of 10−10M and, importantly, good linear relationship between Raman intensity and molecular concentration indicates the potential application of the G/AgNFs/PMMA flexible substrate in quantitative determination. Thus, this high-efficiency and low-cost flexible SERS substrate may provide a new way for the molecular trace-detection in food security and environmental protection. |
Author | Qiu, Hengwei Li, Junjie Huang, Jin Cao, Minghui Wang, Minqiang Li, Le Jiang, Shouzhen Zhang, Lin Yang, Zhi |
Author_xml | – sequence: 1 givenname: Hengwei surname: Qiu fullname: Qiu, Hengwei organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 2 givenname: Minqiang surname: Wang fullname: Wang, Minqiang email: mqwang@mail.xjtu.edu.cn organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 3 givenname: Shouzhen surname: Jiang fullname: Jiang, Shouzhen email: jiangsz@126.com organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 4 givenname: Lin surname: Zhang fullname: Zhang, Lin organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 5 givenname: Zhi surname: Yang fullname: Yang, Zhi organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 6 givenname: Le surname: Li fullname: Li, Le organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 7 givenname: Junjie surname: Li fullname: Li, Junjie organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 8 givenname: Minghui surname: Cao fullname: Cao, Minghui organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 9 givenname: Jin surname: Huang fullname: Huang, Jin organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
BookMark | eNp9kMtuwjAQRa2KSgXaD-guP5AwTmKSqiuE6EMCtYJ2bfkxoUYmRnbo4-_riK66YDHyyLrH8j0jMmhdi4TcUsgo0Olkl4VWZjnQKoMyo7S-IENaV0VaQFUNyBDucpaWAOyKjELYAUBZTGFI1BqtEdJisncW1dEKn3ReKEw1dqg649pEioA6iUtj8dv02c1ivUnCUYYY7TBxTbL14vCBLU5m27QVrWus-0IfJq-r1eyaXDbCBrz5O8fk_WHxNn9Kly-Pz_PZMlUllF1KFWOopEDNWFNIVsTRTanrWENXIGVdiBzqegq6YDKnlCqNOZ1q1t_luhiT6vSu8i4Ejw1XphN9hfhNYzkF3rviOx5d8d4Vh5JHV5Gk_8iDN3vhf84y9ycGY6VPg54HZbBVqI2P4rh25gz9C4AfhOg |
CitedBy_id | crossref_primary_10_1002_admi_201801966 crossref_primary_10_1016_j_teac_2025_e00261 crossref_primary_10_1021_acsanm_0c02729 crossref_primary_10_1016_j_saa_2021_120092 crossref_primary_10_15406_mojabb_2020_04_00142 crossref_primary_10_1039_C8TC06305B crossref_primary_10_1016_j_saa_2023_123445 crossref_primary_10_1016_j_surfin_2023_103169 crossref_primary_10_1016_j_tifs_2021_01_058 crossref_primary_10_1007_s00604_019_3257_4 crossref_primary_10_1039_D0RA03803B crossref_primary_10_3390_s18103404 crossref_primary_10_1080_10408398_2022_2106547 crossref_primary_10_3390_chemosensors10100423 crossref_primary_10_1016_j_materresbull_2024_113107 crossref_primary_10_1016_j_sna_2022_113816 crossref_primary_10_1016_j_snb_2018_05_075 crossref_primary_10_1021_acsanm_3c00812 crossref_primary_10_1016_j_diamond_2022_108860 crossref_primary_10_29026_oea_2021_210048 crossref_primary_10_1007_s12161_018_1290_2 crossref_primary_10_1016_j_apsusc_2018_07_040 crossref_primary_10_1016_j_snb_2018_06_029 crossref_primary_10_1016_j_mtphys_2021_100378 crossref_primary_10_1016_j_saa_2023_123793 crossref_primary_10_1016_j_apmt_2018_12_013 crossref_primary_10_1021_acsphotonics_8b00028 crossref_primary_10_1039_C8CP00014J crossref_primary_10_1016_j_cej_2024_153082 crossref_primary_10_1016_j_foodchem_2023_136692 crossref_primary_10_1016_j_talanta_2022_123701 crossref_primary_10_1016_j_talanta_2019_06_012 crossref_primary_10_1016_j_apsusc_2019_05_349 crossref_primary_10_1039_C9AY01366K crossref_primary_10_1016_j_cej_2021_134240 crossref_primary_10_3390_mi14030667 crossref_primary_10_1016_j_tifs_2017_12_012 crossref_primary_10_1088_1361_6439_ab8908 crossref_primary_10_1039_C8RA08818G crossref_primary_10_1380_ejssnt_2019_71 crossref_primary_10_1002_pssa_201701010 crossref_primary_10_1021_acsami_4c05642 crossref_primary_10_1039_C8TB00902C crossref_primary_10_1007_s00604_024_06292_6 crossref_primary_10_1021_acsami_0c13828 crossref_primary_10_1016_j_saa_2023_123624 crossref_primary_10_1016_j_colsurfa_2018_09_059 crossref_primary_10_1016_j_omx_2023_100265 crossref_primary_10_1016_j_snb_2024_136685 crossref_primary_10_1016_j_apsusc_2020_146807 crossref_primary_10_1016_j_jallcom_2022_164622 crossref_primary_10_1002_advs_201900925 crossref_primary_10_1016_j_optmat_2021_111011 crossref_primary_10_1038_s41598_019_49077_1 crossref_primary_10_1021_acsphotonics_9b00645 crossref_primary_10_1021_acs_jafc_7b03075 crossref_primary_10_1007_s11468_021_01400_1 crossref_primary_10_1016_j_snb_2019_127107 crossref_primary_10_1002_adpr_202300291 crossref_primary_10_1021_acs_jafc_8b01702 crossref_primary_10_3390_nano13222968 crossref_primary_10_1002_admi_202100982 crossref_primary_10_1039_D2TA07653E crossref_primary_10_1016_j_jelechem_2019_113512 crossref_primary_10_1016_j_saa_2021_120542 crossref_primary_10_1039_C9AN02149C crossref_primary_10_1007_s10853_025_10731_x crossref_primary_10_1016_j_tifs_2020_04_019 crossref_primary_10_1016_j_optmat_2023_114712 crossref_primary_10_1021_acsomega_8b00565 crossref_primary_10_1016_j_matchemphys_2022_127088 crossref_primary_10_1016_j_optmat_2023_114556 crossref_primary_10_1186_s40580_022_00319_5 crossref_primary_10_1002_adma_202405576 crossref_primary_10_1080_05704928_2019_1688826 crossref_primary_10_1021_acsapm_4c00903 crossref_primary_10_1016_j_optmat_2022_112196 crossref_primary_10_1364_BOE_434053 crossref_primary_10_1016_j_apsusc_2019_05_008 crossref_primary_10_1016_j_snb_2023_133736 crossref_primary_10_1002_admt_201800174 crossref_primary_10_3390_polym12020392 crossref_primary_10_1364_OE_454893 crossref_primary_10_1016_j_apsusc_2022_156117 crossref_primary_10_1016_j_saa_2023_123727 crossref_primary_10_1021_acs_langmuir_1c02119 crossref_primary_10_1016_j_nanoso_2022_100930 |
Cites_doi | 10.1021/nl903414x 10.1021/am200737b 10.1039/c2nr00020b 10.1073/pnas.1018358108 10.1016/j.snb.2015.08.009 10.1039/C4RA12168F 10.1021/nl103161q 10.1038/nature04235 10.1021/nn800442q 10.1002/adma.201300635 10.1364/OE.18.014395 10.1002/smll.201202914 10.1038/nphoton.2010.186 10.1002/adma.201200645 10.1021/nn201606r 10.1007/s00216-009-2756-2 10.1038/nnano.2011.79 10.1021/nl404610c 10.1021/nn300989g 10.1063/1.3505335 10.1103/PhysRevE.62.4318 10.1002/adma.201305950 10.1016/0009-2614(74)85388-1 10.1126/science.1157996 10.1021/jp002435e 10.1021/ja01167a001 10.1021/ja0707106 10.1021/jp500751a 10.1126/science.1102896 10.1021/nn204156n 10.1039/b709739p 10.1103/PhysRevLett.96.207401 10.1021/am1009875 10.1039/c2cc31604h 10.1021/ac300397h 10.1038/nature08907 10.1103/PhysRevLett.96.113002 10.1039/b708839f 10.1039/b601494c 10.1002/smll.200900548 10.1126/science.275.5303.1102 10.1021/ja9037593 10.1073/pnas.1205478109 10.1021/jp0025476 10.1126/science.1171245 10.1103/PhysRevLett.97.187401 10.1039/c2cp43642f 10.1038/nmat1849 10.1039/a827241z 10.1103/RevModPhys.81.109 10.1039/c1nr10265f |
ContentType | Journal Article |
Copyright | 2017 |
Copyright_xml | – notice: 2017 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.snb.2017.04.118 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
EndPage | 450 |
ExternalDocumentID | 10_1016_j_snb_2017_04_118 S0925400517307281 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SST SSZ T5K TN5 WUQ XFK YK3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c404t-1c55ecbaed55f3b533b5df4d8873d70bb83a208860d35b2111cde216d588602d3 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Tue Jul 01 03:00:36 EDT 2025 Thu Apr 24 23:10:09 EDT 2025 Fri Feb 23 02:28:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molecular detection Flexible SERS substrate Ag-nanoflowers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-1c55ecbaed55f3b533b5df4d8873d70bb83a208860d35b2111cde216d588602d3 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_snb_2017_04_118 crossref_primary_10_1016_j_snb_2017_04_118 elsevier_sciencedirect_doi_10_1016_j_snb_2017_04_118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Natan (bib0030) 2006; 132 Liu, Hu, Zhang (bib0065) 2014; 118 Wang, Ni, Hu, Hao, Wong, Yu, Thong, Shen (bib0145) 2010; 97 Ren, Fang, Wang (bib0125) 2011; 5 Lamberti, Virga, Angelini, Ricci, Descrovi, Cocuzzaabc, Giorgis (bib0260) 2015; 5 Bao, Loh (bib0140) 2012; 6 Fleischman, Hendra, McQuillan (bib0005) 1974; 26 Wang, Liang, Zhang, Schroeder, Xie (bib0115) 2013; 25 Wu, Chu, Koh, Li (bib0135) 2010; 18 Xie, Ling, Fang, Zhang, Liu (bib0110) 2009; 131 Xu, Aizpurua, Kall, Apell (bib0050) 2000; 62 Xu, Jiang, Wang, Wei, Yue, Ma (bib0240) 2016; 222 Singh, Chu, Abell, Tripp, Zhao (bib0170) 2012; 4 Polavarapu, Liz-Marzan (bib0075) 2013; 15 Chung, Huh, Erickson (bib0155) 2011; 3 LaMer, Dinegar (bib0220) 1950; 72 Jensen, Malinsky, Haynes, Van Duyne (bib0235) 2000; 104 Persson, Zhao, Zhang (bib0055) 2006; 96 Liu, Cao, Song, Ai, Lu (bib0130) 2011; 3 Xie, Zhang, Lee, Wang (bib0195) 2008; 2 Ling, Xie, Fang, Xu, Zhang, Kong, Dresselhaus, Zhang, Liu (bib0060) 2010; 10 Neto, Guinea, Peres, Novoselov, Geim (bib0100) 2009; 81 Lim, Jeon, Hwang, Kim, Kwon, Suh, Nam (bib0215) 2011; 6 Campion, Kambhampati (bib0040) 1998; 27 Lee, Wei, Kysar, Hone (bib0105) 2008; 321 Lee, Tian, Singamaneni (bib0160) 2010; 2 Lee, Hahm, Vajtai, Hashim, Thurakitseree, Chipara, Ajayan, Hafner (bib0205) 2012; 24 Singh, Chu, Abell, Trippa, Zhao (bib0180) 2012; 4 Ling, Fang, Lee, Araujo, Zhang, Rodriguez-Nieva, Lin, Zhang, Kong, Dresselhaus (bib0120) 2014; 14 Yuan, Zhang, Chen, Wang, Du, Yasun, Tan (bib0210) 2011; 108 Tseng, Yu, Wan, Chen, Wang, Wu, Su, Han, Chen (bib0175) 2012; 84 Xu, Wang (bib0190) 2009; 5 Xu, Ling, Xiao, Dresselhaus, Kong, Xu, Liu, Zhang (bib0185) 2012; 109 Anger, Bharadwaj, Novotny (bib0265) 2006; 96 Michaels, Jiang, Brus (bib0230) 2000; 104 Zhang, Xu, Liu, Zhang, Xu, Chen, Sun (bib0165) 2012; 48 Wei, Su, Guo, Jiang, Zhong, Su, Fan, Lee, He (bib0035) 2013; 9 Geim, Novoselov (bib0090) 2007; 6 Pieczonka, Aroca (bib0015) 2008; 37 Fang, Du, Lebedkin, Li, Kruk, Kappes, Hahn (bib0200) 2010; 10 Qian, Nie (bib0020) 2008; 37 Zhang, Tan, Stormer, Kim (bib0085) 2005; 438 Nie, Emory (bib0010) 1997; 275 Zhao, Chen, Strasfeld, Bawendi (bib0225) 2007; 129 Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, Geim (bib0245) 2006; 97 Hudson, Chumanov (bib0025) 2009; 394 Otto, Mrozek, Grabhorn, Akemann (bib0045) 1992; 4 Bonaccorso, Sun, Hasan, Ferrari (bib0095) 2010; 4 Li, Cai, An, Kim, Nah, Yang, Piner, Velamakanni, Jung, Tutuc, Banerjee, Colombo, Ruoff (bib0250) 2009; 324 Kang, Kim, Oh, Park, Jeong (bib0255) 2014; 26 Huh, Park, Kim, Kim, Hong, Nam (bib0150) 2011; 5 Li, Huang, Ding, Yang, Li, Zhou, Fan, Zhang, Zhou, Wu, Ren, Wang, Tian (bib0070) 2010; 464 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib0080) 2004; 306 Geim (10.1016/j.snb.2017.04.118_bib0090) 2007; 6 Ling (10.1016/j.snb.2017.04.118_bib0060) 2010; 10 Fang (10.1016/j.snb.2017.04.118_bib0200) 2010; 10 Hudson (10.1016/j.snb.2017.04.118_bib0025) 2009; 394 Yuan (10.1016/j.snb.2017.04.118_bib0210) 2011; 108 Xie (10.1016/j.snb.2017.04.118_bib0195) 2008; 2 Novoselov (10.1016/j.snb.2017.04.118_bib0080) 2004; 306 Li (10.1016/j.snb.2017.04.118_bib0070) 2010; 464 Ferrari (10.1016/j.snb.2017.04.118_bib0245) 2006; 97 Pieczonka (10.1016/j.snb.2017.04.118_bib0015) 2008; 37 Tseng (10.1016/j.snb.2017.04.118_bib0175) 2012; 84 Polavarapu (10.1016/j.snb.2017.04.118_bib0075) 2013; 15 Natan (10.1016/j.snb.2017.04.118_bib0030) 2006; 132 Michaels (10.1016/j.snb.2017.04.118_bib0230) 2000; 104 Singh (10.1016/j.snb.2017.04.118_bib0180) 2012; 4 Ren (10.1016/j.snb.2017.04.118_bib0125) 2011; 5 Liu (10.1016/j.snb.2017.04.118_bib0130) 2011; 3 Kang (10.1016/j.snb.2017.04.118_bib0255) 2014; 26 Wang (10.1016/j.snb.2017.04.118_bib0145) 2010; 97 Chung (10.1016/j.snb.2017.04.118_bib0155) 2011; 3 Otto (10.1016/j.snb.2017.04.118_bib0045) 1992; 4 Neto (10.1016/j.snb.2017.04.118_bib0100) 2009; 81 Xu (10.1016/j.snb.2017.04.118_bib0240) 2016; 222 LaMer (10.1016/j.snb.2017.04.118_bib0220) 1950; 72 Persson (10.1016/j.snb.2017.04.118_bib0055) 2006; 96 Lee (10.1016/j.snb.2017.04.118_bib0160) 2010; 2 Huh (10.1016/j.snb.2017.04.118_bib0150) 2011; 5 Anger (10.1016/j.snb.2017.04.118_bib0265) 2006; 96 Nie (10.1016/j.snb.2017.04.118_bib0010) 1997; 275 Wu (10.1016/j.snb.2017.04.118_bib0135) 2010; 18 Xu (10.1016/j.snb.2017.04.118_bib0050) 2000; 62 Xu (10.1016/j.snb.2017.04.118_bib0190) 2009; 5 Zhang (10.1016/j.snb.2017.04.118_bib0165) 2012; 48 Xu (10.1016/j.snb.2017.04.118_bib0185) 2012; 109 Bao (10.1016/j.snb.2017.04.118_bib0140) 2012; 6 Lee (10.1016/j.snb.2017.04.118_bib0105) 2008; 321 Li (10.1016/j.snb.2017.04.118_bib0250) 2009; 324 Xie (10.1016/j.snb.2017.04.118_bib0110) 2009; 131 Singh (10.1016/j.snb.2017.04.118_bib0170) 2012; 4 Lamberti (10.1016/j.snb.2017.04.118_bib0260) 2015; 5 Fleischman (10.1016/j.snb.2017.04.118_bib0005) 1974; 26 Wang (10.1016/j.snb.2017.04.118_bib0115) 2013; 25 Wei (10.1016/j.snb.2017.04.118_bib0035) 2013; 9 Campion (10.1016/j.snb.2017.04.118_bib0040) 1998; 27 Zhao (10.1016/j.snb.2017.04.118_bib0225) 2007; 129 Zhang (10.1016/j.snb.2017.04.118_bib0085) 2005; 438 Liu (10.1016/j.snb.2017.04.118_bib0065) 2014; 118 Lim (10.1016/j.snb.2017.04.118_bib0215) 2011; 6 Lee (10.1016/j.snb.2017.04.118_bib0205) 2012; 24 Jensen (10.1016/j.snb.2017.04.118_bib0235) 2000; 104 Ling (10.1016/j.snb.2017.04.118_bib0120) 2014; 14 Bonaccorso (10.1016/j.snb.2017.04.118_bib0095) 2010; 4 Qian (10.1016/j.snb.2017.04.118_bib0020) 2008; 37 |
References_xml | – volume: 118 start-page: 8993 year: 2014 end-page: 8998 ident: bib0065 article-title: Few-layer graphene-encapsulated metal nanoparticles for surface enhanced Raman spectroscopy publication-title: J. Phys. Chem. C – volume: 275 start-page: 1102 year: 1997 end-page: 1106 ident: bib0010 article-title: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering publication-title: Science – volume: 129 start-page: 7647 year: 2007 end-page: 7656 ident: bib0225 article-title: Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3410 year: 2012 end-page: 3414 ident: bib0180 article-title: Flexible and mechanical strain resistant large area SERS active substrates publication-title: Nanoscale – volume: 321 start-page: 385 year: 2008 end-page: 388 ident: bib0105 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science – volume: 5 start-page: 2212 year: 2009 end-page: 2217 ident: bib0190 article-title: Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates publication-title: Small – volume: 5 start-page: 4404 year: 2015 end-page: 4410 ident: bib0260 article-title: Metal-elastomer nanostructures for tunable SERS and easy microfluidic integration publication-title: RSC Adv. – volume: 6 start-page: 3677 year: 2012 end-page: 3694 ident: bib0140 article-title: Graphene photonics, plasmonics, and broadband optoelectronic devices publication-title: ACS Nano – volume: 24 start-page: 5261 year: 2012 end-page: 5266 ident: bib0205 article-title: Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates publication-title: Adv. Mater. – volume: 108 start-page: 9331 year: 2011 end-page: 9336 ident: bib0210 article-title: Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors publication-title: PNAS – volume: 96 start-page: 207401 year: 2006 ident: bib0055 article-title: Chemical contribution to surface-enhanced Raman scattering publication-title: Phys. Rev. Lett. – volume: 324 start-page: 1312 year: 2009 end-page: 1314 ident: bib0250 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: Science – volume: 438 start-page: 201 year: 2005 end-page: 204 ident: bib0085 article-title: Experimental observation of the quantum Hall effect and Berry's phase in graphene publication-title: Nature – volume: 96 start-page: 113002 year: 2006 ident: bib0265 article-title: Enhancement and quenching of single-molecule fluorescence publication-title: Phys. Rev. Lett. – volume: 3 start-page: 2944 year: 2011 end-page: 2952 ident: bib0130 article-title: Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 14395 year: 2010 end-page: 14400 ident: bib0135 article-title: Highly sensitive graphene biosensors based on surface plasmon resonance publication-title: Opt. Express – volume: 104 start-page: 10549 year: 2000 end-page: 10556 ident: bib0235 article-title: Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles publication-title: J. Phys. Chem. B – volume: 6 start-page: 183 year: 2007 end-page: 191 ident: bib0090 article-title: The rise of graphene publication-title: Nat. Mater. – volume: 4 start-page: 611 year: 2010 end-page: 622 ident: bib0095 article-title: Graphene photonics and optoelectronics publication-title: Nat. Photonics – volume: 10 start-page: 5006 year: 2010 end-page: 5013 ident: bib0200 article-title: Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy publication-title: Nano Lett. – volume: 14 start-page: 3033 year: 2014 end-page: 3040 ident: bib0120 article-title: Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS publication-title: Nano Lett. – volume: 15 start-page: 5288 year: 2013 end-page: 5300 ident: bib0075 article-title: Towards low-cost flexible substrates for nanoplasmonic sensing publication-title: Phys. Chem. Chem. Phys. – volume: 26 start-page: 163 year: 1974 end-page: 166 ident: bib0005 article-title: Raman spectra of pyridine adsorbed at a silver electrode publication-title: Chem. Phys. Lett. – volume: 25 start-page: 4918 year: 2013 end-page: 4924 ident: bib0115 article-title: Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection publication-title: Adv. Mater. – volume: 48 start-page: 5913 year: 2012 end-page: 5915 ident: bib0165 article-title: Highly efficient SERS test strips publication-title: Chem. Commun. – volume: 84 start-page: 5140 year: 2012 end-page: 5145 ident: bib0175 article-title: Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection publication-title: Anal. Chem. – volume: 464 start-page: 392 year: 2010 end-page: 395 ident: bib0070 article-title: Shell-isolated nanoparticle-enhanced raman spectroscopy publication-title: Nature – volume: 3 start-page: 2903 year: 2011 end-page: 2908 ident: bib0155 article-title: Large area flexible SERS active substrates using engineered nanostructures publication-title: Nanoscale – volume: 131 start-page: 9890 year: 2009 end-page: 9891 ident: bib0110 article-title: Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2473 year: 2008 end-page: 2480 ident: bib0195 article-title: The synthesis of SERS-active gold nanoflower tags for in vivo applications publication-title: ACS nano – volume: 27 start-page: 241 year: 1998 end-page: 250 ident: bib0040 article-title: Surface-enhanced Raman scattering publication-title: Chem. Soc. Rev. – volume: 9 start-page: 2493 year: 2013 end-page: 2499 ident: bib0035 article-title: Molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection publication-title: Small – volume: 2 start-page: 3429 year: 2010 end-page: 3435 ident: bib0160 article-title: Paper-based SERS swab for rapid trace detection on real-world surfaces publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 3410 year: 2012 end-page: 3414 ident: bib0170 article-title: Flexible and mechanical strain resistant large area SERS active substrates publication-title: Nanoscale – volume: 81 start-page: 109 year: 2009 end-page: 162 ident: bib0100 article-title: The electronic properties of graphene publication-title: Rev. Mod. Phys. – volume: 5 start-page: 9799 year: 2011 end-page: 9806 ident: bib0150 article-title: UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering publication-title: ACS Nano – volume: 104 start-page: 11965 year: 2000 end-page: 11971 ident: bib0230 article-title: Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules publication-title: J. Phys. Chem. B – volume: 97 start-page: 187401 year: 2006 ident: bib0245 article-title: Raman spectra of graphene and graphene layers publication-title: Phys. Rev. Lett. – volume: 222 start-page: 1175 year: 2016 end-page: 1183 ident: bib0240 article-title: Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering publication-title: Sens. Actuators B-Chem. – volume: 26 start-page: 4510 year: 2014 end-page: 4514 ident: bib0255 article-title: A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering publication-title: Adv. Mater. – volume: 62 start-page: 4318 year: 2000 end-page: 4324 ident: bib0050 article-title: Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering publication-title: Phys. Rev. E – volume: 97 start-page: 163111 year: 2010 ident: bib0145 article-title: Gold on graphene as a substrate for surface enhanced Raman scattering study publication-title: Appl. Phys. Lett. – volume: 37 start-page: 946 year: 2008 end-page: 954 ident: bib0015 article-title: Single molecule analysis by surfaced-enhanced Raman scattering publication-title: Chem. Soc. Rev. – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bib0080 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 394 start-page: 679 year: 2009 end-page: 686 ident: bib0025 article-title: Bioanalytical applications of SERS publication-title: Anal. Bioanal. Chem. – volume: 6 start-page: 452 year: 2011 end-page: 460 ident: bib0215 article-title: Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm Interior Gap publication-title: Nat. Nanotechnol. – volume: 10 start-page: 553 year: 2010 end-page: 561 ident: bib0060 article-title: Can graphene be used as a substrate for raman enhancement? publication-title: Nano Lett. – volume: 4 start-page: 1143 year: 1992 end-page: 1212 ident: bib0045 article-title: Surface enhanced raman scattering publication-title: J. Phys.: Condens. Matter – volume: 5 start-page: 6425 year: 2011 end-page: 6433 ident: bib0125 article-title: A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids publication-title: ACS Nano – volume: 109 start-page: 9281 year: 2012 end-page: 9286 ident: bib0185 article-title: Surface enhanced raman spectroscopy on a flat graphene surface publication-title: PNAS – volume: 132 start-page: 321 year: 2006 end-page: 328 ident: bib0030 article-title: Concluding remarks surface enhanced Raman scattering publication-title: Faraday Discuss. – volume: 72 start-page: 4847 year: 1950 end-page: 4854 ident: bib0220 article-title: Theory, production and mechanism of formation of monodispersed hydrosols publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 912 year: 2008 end-page: 920 ident: bib0020 article-title: Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications publication-title: Chem. Soc. Rev. – volume: 10 start-page: 553 year: 2010 ident: 10.1016/j.snb.2017.04.118_bib0060 article-title: Can graphene be used as a substrate for raman enhancement? publication-title: Nano Lett. doi: 10.1021/nl903414x – volume: 3 start-page: 2944 year: 2011 ident: 10.1016/j.snb.2017.04.118_bib0130 article-title: Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am200737b – volume: 4 start-page: 3410 year: 2012 ident: 10.1016/j.snb.2017.04.118_bib0170 article-title: Flexible and mechanical strain resistant large area SERS active substrates publication-title: Nanoscale doi: 10.1039/c2nr00020b – volume: 108 start-page: 9331 year: 2011 ident: 10.1016/j.snb.2017.04.118_bib0210 article-title: Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors publication-title: PNAS doi: 10.1073/pnas.1018358108 – volume: 222 start-page: 1175 year: 2016 ident: 10.1016/j.snb.2017.04.118_bib0240 article-title: Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2015.08.009 – volume: 5 start-page: 4404 year: 2015 ident: 10.1016/j.snb.2017.04.118_bib0260 article-title: Metal-elastomer nanostructures for tunable SERS and easy microfluidic integration publication-title: RSC Adv. doi: 10.1039/C4RA12168F – volume: 10 start-page: 5006 year: 2010 ident: 10.1016/j.snb.2017.04.118_bib0200 article-title: Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy publication-title: Nano Lett. doi: 10.1021/nl103161q – volume: 438 start-page: 201 year: 2005 ident: 10.1016/j.snb.2017.04.118_bib0085 article-title: Experimental observation of the quantum Hall effect and Berry's phase in graphene publication-title: Nature doi: 10.1038/nature04235 – volume: 2 start-page: 2473 year: 2008 ident: 10.1016/j.snb.2017.04.118_bib0195 article-title: The synthesis of SERS-active gold nanoflower tags for in vivo applications publication-title: ACS nano doi: 10.1021/nn800442q – volume: 25 start-page: 4918 year: 2013 ident: 10.1016/j.snb.2017.04.118_bib0115 article-title: Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection publication-title: Adv. Mater. doi: 10.1002/adma.201300635 – volume: 18 start-page: 14395 year: 2010 ident: 10.1016/j.snb.2017.04.118_bib0135 article-title: Highly sensitive graphene biosensors based on surface plasmon resonance publication-title: Opt. Express doi: 10.1364/OE.18.014395 – volume: 9 start-page: 2493 year: 2013 ident: 10.1016/j.snb.2017.04.118_bib0035 article-title: Molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection publication-title: Small doi: 10.1002/smll.201202914 – volume: 4 start-page: 611 year: 2010 ident: 10.1016/j.snb.2017.04.118_bib0095 article-title: Graphene photonics and optoelectronics publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 24 start-page: 5261 year: 2012 ident: 10.1016/j.snb.2017.04.118_bib0205 article-title: Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates publication-title: Adv. Mater. doi: 10.1002/adma.201200645 – volume: 5 start-page: 6425 year: 2011 ident: 10.1016/j.snb.2017.04.118_bib0125 article-title: A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids publication-title: ACS Nano doi: 10.1021/nn201606r – volume: 394 start-page: 679 year: 2009 ident: 10.1016/j.snb.2017.04.118_bib0025 article-title: Bioanalytical applications of SERS publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-009-2756-2 – volume: 6 start-page: 452 year: 2011 ident: 10.1016/j.snb.2017.04.118_bib0215 article-title: Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm Interior Gap publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.79 – volume: 14 start-page: 3033 year: 2014 ident: 10.1016/j.snb.2017.04.118_bib0120 article-title: Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2 publication-title: Nano Lett. doi: 10.1021/nl404610c – volume: 6 start-page: 3677 year: 2012 ident: 10.1016/j.snb.2017.04.118_bib0140 article-title: Graphene photonics, plasmonics, and broadband optoelectronic devices publication-title: ACS Nano doi: 10.1021/nn300989g – volume: 4 start-page: 1143 year: 1992 ident: 10.1016/j.snb.2017.04.118_bib0045 article-title: Surface enhanced raman scattering publication-title: J. Phys.: Condens. Matter – volume: 97 start-page: 163111 year: 2010 ident: 10.1016/j.snb.2017.04.118_bib0145 article-title: Gold on graphene as a substrate for surface enhanced Raman scattering study publication-title: Appl. Phys. Lett. doi: 10.1063/1.3505335 – volume: 62 start-page: 4318 year: 2000 ident: 10.1016/j.snb.2017.04.118_bib0050 article-title: Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.4318 – volume: 26 start-page: 4510 year: 2014 ident: 10.1016/j.snb.2017.04.118_bib0255 article-title: A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering publication-title: Adv. Mater. doi: 10.1002/adma.201305950 – volume: 26 start-page: 163 year: 1974 ident: 10.1016/j.snb.2017.04.118_bib0005 article-title: Raman spectra of pyridine adsorbed at a silver electrode publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 321 start-page: 385 year: 2008 ident: 10.1016/j.snb.2017.04.118_bib0105 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science doi: 10.1126/science.1157996 – volume: 104 start-page: 10549 year: 2000 ident: 10.1016/j.snb.2017.04.118_bib0235 article-title: Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles publication-title: J. Phys. Chem. B doi: 10.1021/jp002435e – volume: 72 start-page: 4847 year: 1950 ident: 10.1016/j.snb.2017.04.118_bib0220 article-title: Theory, production and mechanism of formation of monodispersed hydrosols publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01167a001 – volume: 129 start-page: 7647 year: 2007 ident: 10.1016/j.snb.2017.04.118_bib0225 article-title: Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0707106 – volume: 4 start-page: 3410 year: 2012 ident: 10.1016/j.snb.2017.04.118_bib0180 article-title: Flexible and mechanical strain resistant large area SERS active substrates publication-title: Nanoscale doi: 10.1039/c2nr00020b – volume: 118 start-page: 8993 year: 2014 ident: 10.1016/j.snb.2017.04.118_bib0065 article-title: Few-layer graphene-encapsulated metal nanoparticles for surface enhanced Raman spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/jp500751a – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.snb.2017.04.118_bib0080 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 5 start-page: 9799 year: 2011 ident: 10.1016/j.snb.2017.04.118_bib0150 article-title: UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering publication-title: ACS Nano doi: 10.1021/nn204156n – volume: 37 start-page: 946 year: 2008 ident: 10.1016/j.snb.2017.04.118_bib0015 article-title: Single molecule analysis by surfaced-enhanced Raman scattering publication-title: Chem. Soc. Rev. doi: 10.1039/b709739p – volume: 96 start-page: 207401 year: 2006 ident: 10.1016/j.snb.2017.04.118_bib0055 article-title: Chemical contribution to surface-enhanced Raman scattering publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.207401 – volume: 2 start-page: 3429 year: 2010 ident: 10.1016/j.snb.2017.04.118_bib0160 article-title: Paper-based SERS swab for rapid trace detection on real-world surfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am1009875 – volume: 48 start-page: 5913 year: 2012 ident: 10.1016/j.snb.2017.04.118_bib0165 article-title: Highly efficient SERS test strips publication-title: Chem. Commun. doi: 10.1039/c2cc31604h – volume: 84 start-page: 5140 year: 2012 ident: 10.1016/j.snb.2017.04.118_bib0175 article-title: Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection publication-title: Anal. Chem. doi: 10.1021/ac300397h – volume: 464 start-page: 392 year: 2010 ident: 10.1016/j.snb.2017.04.118_bib0070 article-title: Shell-isolated nanoparticle-enhanced raman spectroscopy publication-title: Nature doi: 10.1038/nature08907 – volume: 96 start-page: 113002 year: 2006 ident: 10.1016/j.snb.2017.04.118_bib0265 article-title: Enhancement and quenching of single-molecule fluorescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.113002 – volume: 37 start-page: 912 year: 2008 ident: 10.1016/j.snb.2017.04.118_bib0020 article-title: Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/b708839f – volume: 132 start-page: 321 year: 2006 ident: 10.1016/j.snb.2017.04.118_bib0030 article-title: Concluding remarks surface enhanced Raman scattering publication-title: Faraday Discuss. doi: 10.1039/b601494c – volume: 5 start-page: 2212 year: 2009 ident: 10.1016/j.snb.2017.04.118_bib0190 article-title: Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates publication-title: Small doi: 10.1002/smll.200900548 – volume: 275 start-page: 1102 year: 1997 ident: 10.1016/j.snb.2017.04.118_bib0010 article-title: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 131 start-page: 9890 year: 2009 ident: 10.1016/j.snb.2017.04.118_bib0110 article-title: Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9037593 – volume: 109 start-page: 9281 year: 2012 ident: 10.1016/j.snb.2017.04.118_bib0185 article-title: Surface enhanced raman spectroscopy on a flat graphene surface publication-title: PNAS doi: 10.1073/pnas.1205478109 – volume: 104 start-page: 11965 year: 2000 ident: 10.1016/j.snb.2017.04.118_bib0230 article-title: Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules publication-title: J. Phys. Chem. B doi: 10.1021/jp0025476 – volume: 324 start-page: 1312 year: 2009 ident: 10.1016/j.snb.2017.04.118_bib0250 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: Science doi: 10.1126/science.1171245 – volume: 97 start-page: 187401 year: 2006 ident: 10.1016/j.snb.2017.04.118_bib0245 article-title: Raman spectra of graphene and graphene layers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 15 start-page: 5288 year: 2013 ident: 10.1016/j.snb.2017.04.118_bib0075 article-title: Towards low-cost flexible substrates for nanoplasmonic sensing publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp43642f – volume: 6 start-page: 183 year: 2007 ident: 10.1016/j.snb.2017.04.118_bib0090 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 27 start-page: 241 year: 1998 ident: 10.1016/j.snb.2017.04.118_bib0040 article-title: Surface-enhanced Raman scattering publication-title: Chem. Soc. Rev. doi: 10.1039/a827241z – volume: 81 start-page: 109 year: 2009 ident: 10.1016/j.snb.2017.04.118_bib0100 article-title: The electronic properties of graphene publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 3 start-page: 2903 year: 2011 ident: 10.1016/j.snb.2017.04.118_bib0155 article-title: Large area flexible SERS active substrates using engineered nanostructures publication-title: Nanoscale doi: 10.1039/c1nr10265f |
SSID | ssj0004360 |
Score | 2.522776 |
Snippet | •First, the G/AgNFs/PMMA flexible substrate was fabricated by using a facilegraphene templated electroreduction method.•Second, the detection limit for R6G... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 439 |
SubjectTerms | Ag-nanoflowers Flexible SERS substrate Molecular detection |
Title | Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA |
URI | https://dx.doi.org/10.1016/j.snb.2017.04.118 |
Volume | 249 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGTsOa126THUlqq0iLWQm8h-5JKTUsbr_52Z7aJVlAP3pJlFsJm8s0M-eYbQq6ClvTdhxTZzDAutWKJShSDaAP5tTRGSKf2OWz2x_xuIiY10ql6YZBWWWL_GtMdWpcrXnma3mI69UZ-C4obpzEFfhq69mvOY_Tym_cvmgePXKcwGjO0rv5sOo7XKpfI7opR7TTAuR8_xaaNeNPbI7tlokjb62fZJzWTH5CdDfnAQ6KQT4ytT_S1GnJLi2WmDNOmcBSrnGKU0hQuLCpfou2o-ziiK8ALp0tL55Y60WrAPK_9zPIsn9uZG53mPQwG7SMy7nWfOn1WDk1givu8YIESwiiZGS2EjSRkc1JoyzWASaRjX8okykKAlqavIyGh_AuUNmHQ1ALXQh0dk3o-z80JoYJbGUqo_zLsePJ1Kw6NMhYSEqvR8pT41XGlqlQUx8EWs7Sijr2kcMIpnnDqcyg2klNy_bllsZbT-MuYV-8g_eYTKcD979vO_rftnGzj3Zqod0HqxfLNXELCUciG86gG2Wrf3veHH3Y21OQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BPQAH1PIQjz58gAuS2ZedbA49RC1RICRCBCRuy_qFQLBBZBHiwp_qH-yMs1uCVHqoxG3ltVf22J6H9ptvALajlgr9RUpcbrlQRvNUp5qjtUH_WlkrlWf7HDS6Z-LwXJ7PwK86F4ZglZXun-h0r62rlqCSZnB3dRUMwxYGN55jCs9pnEYVsrJnnx4xbht_P_iJm7wTx5390x9dXpUW4FqEouSRltJqlVsjpUsU-jxKGicMXrnENEOl0iSP8QI2QpNIhUFSpI2No4aR1BabBL87Cx8ErpLKJuw9v-BKROJTk2l2nKZX_0r1oLJxoQhO1iR61YgKjfzNGE4ZuM5HWKo8U9aeLP4TzNhiGRan-ApXQBOAmXKt2G1dVZeV97m23NjSY7oKRmbRMHxwRLVJfYf7J0M2RgXliXDZyDHPko1KNmhf8iIvRu7G12oLjvv99iqcvYso12CuGBV2HZgUTsUKA86cUqxC02rGVluHHpAz1HMDwlpcma4ozKmSxk1WY9WuM5RwRhLOQoHRTboBu3-G3E34O_7VWdR7kL06hBnal7eHbf7fsG8w3z3tH2VHB4PeFizQmwlK8DPMlfcP9gt6O6X66k8Xg4v3Ps6_AWwaEDE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+molecular+trace-detection+based+on+flexible+SERS+substrate+of+graphene%2FAg-nanoflowers%2FPMMA&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Qiu%2C+Hengwei&rft.au=Wang%2C+Minqiang&rft.au=Jiang%2C+Shouzhen&rft.au=Zhang%2C+Lin&rft.date=2017-10-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=249&rft.spage=439&rft.epage=450&rft_id=info:doi/10.1016%2Fj.snb.2017.04.118&rft.externalDocID=S0925400517307281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |