Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA

•First, the G/AgNFs/PMMA flexible substrate was fabricated by using a facilegraphene templated electroreduction method.•Second, the detection limit for R6G in-situ detectionby covering the G/AgNFs/PMMA flexible substrate can reach 10−14M.•Third, the G/AgNFs/PMMA flexible substrate can be used on rea...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 249; pp. 439 - 450
Main Authors Qiu, Hengwei, Wang, Minqiang, Jiang, Shouzhen, Zhang, Lin, Yang, Zhi, Li, Le, Li, Junjie, Cao, Minghui, Huang, Jin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •First, the G/AgNFs/PMMA flexible substrate was fabricated by using a facilegraphene templated electroreduction method.•Second, the detection limit for R6G in-situ detectionby covering the G/AgNFs/PMMA flexible substrate can reach 10−14M.•Third, the G/AgNFs/PMMA flexible substrate can be used on real-world objects with any arbitrary morphology. Flexible substrate consisted of PMMA-supported monolayer graphene with sandwiched Ag-nanoflowers (G/AgNFs/PMMA) for ultrasensitive, reproducible, and stable surface-enhanced Raman scattering (SERS) detection is reported. Graphene templated micro-current-assisted chemical reduction method was employed to support AgNFs growth, and uniform-distribution AgNFs with all directions nanotips can generate tremendous enhancement factor and intensive hotspots. The minimum detectable concentration (i.e., detection limit) for rhodamine 6G (R6G) in-situ detection by covering this as-synthesized G/AgNFs/PMMA flexible substrate can be as low as 10−14M. Moreover, graphene can effectively stabilize the SERS signals and protect AgNFs from oxidation, endowing this flexible substrate a long-term stability with maximum intensity deviation lower than 10%, for the quantitative measurements from spot-to-spot or substrate-to-substrate. In order to trial its practical applications with various real-world surfaces, the in-situ SERS detection of phenylalanine@apple, adenosine aqueous solution and methylene-blue@fish was performed by covering this G/AgNFs/PMMA flexible substrate. Clear Raman peaks can be obtained for all the selected samples with concentration of 10−10M and, importantly, good linear relationship between Raman intensity and molecular concentration indicates the potential application of the G/AgNFs/PMMA flexible substrate in quantitative determination. Thus, this high-efficiency and low-cost flexible SERS substrate may provide a new way for the molecular trace-detection in food security and environmental protection.
AbstractList •First, the G/AgNFs/PMMA flexible substrate was fabricated by using a facilegraphene templated electroreduction method.•Second, the detection limit for R6G in-situ detectionby covering the G/AgNFs/PMMA flexible substrate can reach 10−14M.•Third, the G/AgNFs/PMMA flexible substrate can be used on real-world objects with any arbitrary morphology. Flexible substrate consisted of PMMA-supported monolayer graphene with sandwiched Ag-nanoflowers (G/AgNFs/PMMA) for ultrasensitive, reproducible, and stable surface-enhanced Raman scattering (SERS) detection is reported. Graphene templated micro-current-assisted chemical reduction method was employed to support AgNFs growth, and uniform-distribution AgNFs with all directions nanotips can generate tremendous enhancement factor and intensive hotspots. The minimum detectable concentration (i.e., detection limit) for rhodamine 6G (R6G) in-situ detection by covering this as-synthesized G/AgNFs/PMMA flexible substrate can be as low as 10−14M. Moreover, graphene can effectively stabilize the SERS signals and protect AgNFs from oxidation, endowing this flexible substrate a long-term stability with maximum intensity deviation lower than 10%, for the quantitative measurements from spot-to-spot or substrate-to-substrate. In order to trial its practical applications with various real-world surfaces, the in-situ SERS detection of phenylalanine@apple, adenosine aqueous solution and methylene-blue@fish was performed by covering this G/AgNFs/PMMA flexible substrate. Clear Raman peaks can be obtained for all the selected samples with concentration of 10−10M and, importantly, good linear relationship between Raman intensity and molecular concentration indicates the potential application of the G/AgNFs/PMMA flexible substrate in quantitative determination. Thus, this high-efficiency and low-cost flexible SERS substrate may provide a new way for the molecular trace-detection in food security and environmental protection.
Author Qiu, Hengwei
Li, Junjie
Huang, Jin
Cao, Minghui
Wang, Minqiang
Li, Le
Jiang, Shouzhen
Zhang, Lin
Yang, Zhi
Author_xml – sequence: 1
  givenname: Hengwei
  surname: Qiu
  fullname: Qiu, Hengwei
  organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 2
  givenname: Minqiang
  surname: Wang
  fullname: Wang, Minqiang
  email: mqwang@mail.xjtu.edu.cn
  organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 3
  givenname: Shouzhen
  surname: Jiang
  fullname: Jiang, Shouzhen
  email: jiangsz@126.com
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 4
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 5
  givenname: Zhi
  surname: Yang
  fullname: Yang, Zhi
  organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 6
  givenname: Le
  surname: Li
  fullname: Li, Le
  organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 7
  givenname: Junjie
  surname: Li
  fullname: Li, Junjie
  organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 8
  givenname: Minghui
  surname: Cao
  fullname: Cao, Minghui
  organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 9
  givenname: Jin
  surname: Huang
  fullname: Huang, Jin
  organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
BookMark eNp9kMtuwjAQRa2KSgXaD-guP5AwTmKSqiuE6EMCtYJ2bfkxoUYmRnbo4-_riK66YDHyyLrH8j0jMmhdi4TcUsgo0Olkl4VWZjnQKoMyo7S-IENaV0VaQFUNyBDucpaWAOyKjELYAUBZTGFI1BqtEdJisncW1dEKn3ReKEw1dqg649pEioA6iUtj8dv02c1ivUnCUYYY7TBxTbL14vCBLU5m27QVrWus-0IfJq-r1eyaXDbCBrz5O8fk_WHxNn9Kly-Pz_PZMlUllF1KFWOopEDNWFNIVsTRTanrWENXIGVdiBzqegq6YDKnlCqNOZ1q1t_luhiT6vSu8i4Ejw1XphN9hfhNYzkF3rviOx5d8d4Vh5JHV5Gk_8iDN3vhf84y9ycGY6VPg54HZbBVqI2P4rh25gz9C4AfhOg
CitedBy_id crossref_primary_10_1002_admi_201801966
crossref_primary_10_1016_j_teac_2025_e00261
crossref_primary_10_1021_acsanm_0c02729
crossref_primary_10_1016_j_saa_2021_120092
crossref_primary_10_15406_mojabb_2020_04_00142
crossref_primary_10_1039_C8TC06305B
crossref_primary_10_1016_j_saa_2023_123445
crossref_primary_10_1016_j_surfin_2023_103169
crossref_primary_10_1016_j_tifs_2021_01_058
crossref_primary_10_1007_s00604_019_3257_4
crossref_primary_10_1039_D0RA03803B
crossref_primary_10_3390_s18103404
crossref_primary_10_1080_10408398_2022_2106547
crossref_primary_10_3390_chemosensors10100423
crossref_primary_10_1016_j_materresbull_2024_113107
crossref_primary_10_1016_j_sna_2022_113816
crossref_primary_10_1016_j_snb_2018_05_075
crossref_primary_10_1021_acsanm_3c00812
crossref_primary_10_1016_j_diamond_2022_108860
crossref_primary_10_29026_oea_2021_210048
crossref_primary_10_1007_s12161_018_1290_2
crossref_primary_10_1016_j_apsusc_2018_07_040
crossref_primary_10_1016_j_snb_2018_06_029
crossref_primary_10_1016_j_mtphys_2021_100378
crossref_primary_10_1016_j_saa_2023_123793
crossref_primary_10_1016_j_apmt_2018_12_013
crossref_primary_10_1021_acsphotonics_8b00028
crossref_primary_10_1039_C8CP00014J
crossref_primary_10_1016_j_cej_2024_153082
crossref_primary_10_1016_j_foodchem_2023_136692
crossref_primary_10_1016_j_talanta_2022_123701
crossref_primary_10_1016_j_talanta_2019_06_012
crossref_primary_10_1016_j_apsusc_2019_05_349
crossref_primary_10_1039_C9AY01366K
crossref_primary_10_1016_j_cej_2021_134240
crossref_primary_10_3390_mi14030667
crossref_primary_10_1016_j_tifs_2017_12_012
crossref_primary_10_1088_1361_6439_ab8908
crossref_primary_10_1039_C8RA08818G
crossref_primary_10_1380_ejssnt_2019_71
crossref_primary_10_1002_pssa_201701010
crossref_primary_10_1021_acsami_4c05642
crossref_primary_10_1039_C8TB00902C
crossref_primary_10_1007_s00604_024_06292_6
crossref_primary_10_1021_acsami_0c13828
crossref_primary_10_1016_j_saa_2023_123624
crossref_primary_10_1016_j_colsurfa_2018_09_059
crossref_primary_10_1016_j_omx_2023_100265
crossref_primary_10_1016_j_snb_2024_136685
crossref_primary_10_1016_j_apsusc_2020_146807
crossref_primary_10_1016_j_jallcom_2022_164622
crossref_primary_10_1002_advs_201900925
crossref_primary_10_1016_j_optmat_2021_111011
crossref_primary_10_1038_s41598_019_49077_1
crossref_primary_10_1021_acsphotonics_9b00645
crossref_primary_10_1021_acs_jafc_7b03075
crossref_primary_10_1007_s11468_021_01400_1
crossref_primary_10_1016_j_snb_2019_127107
crossref_primary_10_1002_adpr_202300291
crossref_primary_10_1021_acs_jafc_8b01702
crossref_primary_10_3390_nano13222968
crossref_primary_10_1002_admi_202100982
crossref_primary_10_1039_D2TA07653E
crossref_primary_10_1016_j_jelechem_2019_113512
crossref_primary_10_1016_j_saa_2021_120542
crossref_primary_10_1039_C9AN02149C
crossref_primary_10_1007_s10853_025_10731_x
crossref_primary_10_1016_j_tifs_2020_04_019
crossref_primary_10_1016_j_optmat_2023_114712
crossref_primary_10_1021_acsomega_8b00565
crossref_primary_10_1016_j_matchemphys_2022_127088
crossref_primary_10_1016_j_optmat_2023_114556
crossref_primary_10_1186_s40580_022_00319_5
crossref_primary_10_1002_adma_202405576
crossref_primary_10_1080_05704928_2019_1688826
crossref_primary_10_1021_acsapm_4c00903
crossref_primary_10_1016_j_optmat_2022_112196
crossref_primary_10_1364_BOE_434053
crossref_primary_10_1016_j_apsusc_2019_05_008
crossref_primary_10_1016_j_snb_2023_133736
crossref_primary_10_1002_admt_201800174
crossref_primary_10_3390_polym12020392
crossref_primary_10_1364_OE_454893
crossref_primary_10_1016_j_apsusc_2022_156117
crossref_primary_10_1016_j_saa_2023_123727
crossref_primary_10_1021_acs_langmuir_1c02119
crossref_primary_10_1016_j_nanoso_2022_100930
Cites_doi 10.1021/nl903414x
10.1021/am200737b
10.1039/c2nr00020b
10.1073/pnas.1018358108
10.1016/j.snb.2015.08.009
10.1039/C4RA12168F
10.1021/nl103161q
10.1038/nature04235
10.1021/nn800442q
10.1002/adma.201300635
10.1364/OE.18.014395
10.1002/smll.201202914
10.1038/nphoton.2010.186
10.1002/adma.201200645
10.1021/nn201606r
10.1007/s00216-009-2756-2
10.1038/nnano.2011.79
10.1021/nl404610c
10.1021/nn300989g
10.1063/1.3505335
10.1103/PhysRevE.62.4318
10.1002/adma.201305950
10.1016/0009-2614(74)85388-1
10.1126/science.1157996
10.1021/jp002435e
10.1021/ja01167a001
10.1021/ja0707106
10.1021/jp500751a
10.1126/science.1102896
10.1021/nn204156n
10.1039/b709739p
10.1103/PhysRevLett.96.207401
10.1021/am1009875
10.1039/c2cc31604h
10.1021/ac300397h
10.1038/nature08907
10.1103/PhysRevLett.96.113002
10.1039/b708839f
10.1039/b601494c
10.1002/smll.200900548
10.1126/science.275.5303.1102
10.1021/ja9037593
10.1073/pnas.1205478109
10.1021/jp0025476
10.1126/science.1171245
10.1103/PhysRevLett.97.187401
10.1039/c2cp43642f
10.1038/nmat1849
10.1039/a827241z
10.1103/RevModPhys.81.109
10.1039/c1nr10265f
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.snb.2017.04.118
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
EndPage 450
ExternalDocumentID 10_1016_j_snb_2017_04_118
S0925400517307281
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
WUQ
XFK
YK3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c404t-1c55ecbaed55f3b533b5df4d8873d70bb83a208860d35b2111cde216d588602d3
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Tue Jul 01 03:00:36 EDT 2025
Thu Apr 24 23:10:09 EDT 2025
Fri Feb 23 02:28:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Molecular detection
Flexible SERS substrate
Ag-nanoflowers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-1c55ecbaed55f3b533b5df4d8873d70bb83a208860d35b2111cde216d588602d3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_snb_2017_04_118
crossref_primary_10_1016_j_snb_2017_04_118
elsevier_sciencedirect_doi_10_1016_j_snb_2017_04_118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Natan (bib0030) 2006; 132
Liu, Hu, Zhang (bib0065) 2014; 118
Wang, Ni, Hu, Hao, Wong, Yu, Thong, Shen (bib0145) 2010; 97
Ren, Fang, Wang (bib0125) 2011; 5
Lamberti, Virga, Angelini, Ricci, Descrovi, Cocuzzaabc, Giorgis (bib0260) 2015; 5
Bao, Loh (bib0140) 2012; 6
Fleischman, Hendra, McQuillan (bib0005) 1974; 26
Wang, Liang, Zhang, Schroeder, Xie (bib0115) 2013; 25
Wu, Chu, Koh, Li (bib0135) 2010; 18
Xie, Ling, Fang, Zhang, Liu (bib0110) 2009; 131
Xu, Aizpurua, Kall, Apell (bib0050) 2000; 62
Xu, Jiang, Wang, Wei, Yue, Ma (bib0240) 2016; 222
Singh, Chu, Abell, Tripp, Zhao (bib0170) 2012; 4
Polavarapu, Liz-Marzan (bib0075) 2013; 15
Chung, Huh, Erickson (bib0155) 2011; 3
LaMer, Dinegar (bib0220) 1950; 72
Jensen, Malinsky, Haynes, Van Duyne (bib0235) 2000; 104
Persson, Zhao, Zhang (bib0055) 2006; 96
Liu, Cao, Song, Ai, Lu (bib0130) 2011; 3
Xie, Zhang, Lee, Wang (bib0195) 2008; 2
Ling, Xie, Fang, Xu, Zhang, Kong, Dresselhaus, Zhang, Liu (bib0060) 2010; 10
Neto, Guinea, Peres, Novoselov, Geim (bib0100) 2009; 81
Lim, Jeon, Hwang, Kim, Kwon, Suh, Nam (bib0215) 2011; 6
Campion, Kambhampati (bib0040) 1998; 27
Lee, Wei, Kysar, Hone (bib0105) 2008; 321
Lee, Tian, Singamaneni (bib0160) 2010; 2
Lee, Hahm, Vajtai, Hashim, Thurakitseree, Chipara, Ajayan, Hafner (bib0205) 2012; 24
Singh, Chu, Abell, Trippa, Zhao (bib0180) 2012; 4
Ling, Fang, Lee, Araujo, Zhang, Rodriguez-Nieva, Lin, Zhang, Kong, Dresselhaus (bib0120) 2014; 14
Yuan, Zhang, Chen, Wang, Du, Yasun, Tan (bib0210) 2011; 108
Tseng, Yu, Wan, Chen, Wang, Wu, Su, Han, Chen (bib0175) 2012; 84
Xu, Wang (bib0190) 2009; 5
Xu, Ling, Xiao, Dresselhaus, Kong, Xu, Liu, Zhang (bib0185) 2012; 109
Anger, Bharadwaj, Novotny (bib0265) 2006; 96
Michaels, Jiang, Brus (bib0230) 2000; 104
Zhang, Xu, Liu, Zhang, Xu, Chen, Sun (bib0165) 2012; 48
Wei, Su, Guo, Jiang, Zhong, Su, Fan, Lee, He (bib0035) 2013; 9
Geim, Novoselov (bib0090) 2007; 6
Pieczonka, Aroca (bib0015) 2008; 37
Fang, Du, Lebedkin, Li, Kruk, Kappes, Hahn (bib0200) 2010; 10
Qian, Nie (bib0020) 2008; 37
Zhang, Tan, Stormer, Kim (bib0085) 2005; 438
Nie, Emory (bib0010) 1997; 275
Zhao, Chen, Strasfeld, Bawendi (bib0225) 2007; 129
Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, Geim (bib0245) 2006; 97
Hudson, Chumanov (bib0025) 2009; 394
Otto, Mrozek, Grabhorn, Akemann (bib0045) 1992; 4
Bonaccorso, Sun, Hasan, Ferrari (bib0095) 2010; 4
Li, Cai, An, Kim, Nah, Yang, Piner, Velamakanni, Jung, Tutuc, Banerjee, Colombo, Ruoff (bib0250) 2009; 324
Kang, Kim, Oh, Park, Jeong (bib0255) 2014; 26
Huh, Park, Kim, Kim, Hong, Nam (bib0150) 2011; 5
Li, Huang, Ding, Yang, Li, Zhou, Fan, Zhang, Zhou, Wu, Ren, Wang, Tian (bib0070) 2010; 464
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib0080) 2004; 306
Geim (10.1016/j.snb.2017.04.118_bib0090) 2007; 6
Ling (10.1016/j.snb.2017.04.118_bib0060) 2010; 10
Fang (10.1016/j.snb.2017.04.118_bib0200) 2010; 10
Hudson (10.1016/j.snb.2017.04.118_bib0025) 2009; 394
Yuan (10.1016/j.snb.2017.04.118_bib0210) 2011; 108
Xie (10.1016/j.snb.2017.04.118_bib0195) 2008; 2
Novoselov (10.1016/j.snb.2017.04.118_bib0080) 2004; 306
Li (10.1016/j.snb.2017.04.118_bib0070) 2010; 464
Ferrari (10.1016/j.snb.2017.04.118_bib0245) 2006; 97
Pieczonka (10.1016/j.snb.2017.04.118_bib0015) 2008; 37
Tseng (10.1016/j.snb.2017.04.118_bib0175) 2012; 84
Polavarapu (10.1016/j.snb.2017.04.118_bib0075) 2013; 15
Natan (10.1016/j.snb.2017.04.118_bib0030) 2006; 132
Michaels (10.1016/j.snb.2017.04.118_bib0230) 2000; 104
Singh (10.1016/j.snb.2017.04.118_bib0180) 2012; 4
Ren (10.1016/j.snb.2017.04.118_bib0125) 2011; 5
Liu (10.1016/j.snb.2017.04.118_bib0130) 2011; 3
Kang (10.1016/j.snb.2017.04.118_bib0255) 2014; 26
Wang (10.1016/j.snb.2017.04.118_bib0145) 2010; 97
Chung (10.1016/j.snb.2017.04.118_bib0155) 2011; 3
Otto (10.1016/j.snb.2017.04.118_bib0045) 1992; 4
Neto (10.1016/j.snb.2017.04.118_bib0100) 2009; 81
Xu (10.1016/j.snb.2017.04.118_bib0240) 2016; 222
LaMer (10.1016/j.snb.2017.04.118_bib0220) 1950; 72
Persson (10.1016/j.snb.2017.04.118_bib0055) 2006; 96
Lee (10.1016/j.snb.2017.04.118_bib0160) 2010; 2
Huh (10.1016/j.snb.2017.04.118_bib0150) 2011; 5
Anger (10.1016/j.snb.2017.04.118_bib0265) 2006; 96
Nie (10.1016/j.snb.2017.04.118_bib0010) 1997; 275
Wu (10.1016/j.snb.2017.04.118_bib0135) 2010; 18
Xu (10.1016/j.snb.2017.04.118_bib0050) 2000; 62
Xu (10.1016/j.snb.2017.04.118_bib0190) 2009; 5
Zhang (10.1016/j.snb.2017.04.118_bib0165) 2012; 48
Xu (10.1016/j.snb.2017.04.118_bib0185) 2012; 109
Bao (10.1016/j.snb.2017.04.118_bib0140) 2012; 6
Lee (10.1016/j.snb.2017.04.118_bib0105) 2008; 321
Li (10.1016/j.snb.2017.04.118_bib0250) 2009; 324
Xie (10.1016/j.snb.2017.04.118_bib0110) 2009; 131
Singh (10.1016/j.snb.2017.04.118_bib0170) 2012; 4
Lamberti (10.1016/j.snb.2017.04.118_bib0260) 2015; 5
Fleischman (10.1016/j.snb.2017.04.118_bib0005) 1974; 26
Wang (10.1016/j.snb.2017.04.118_bib0115) 2013; 25
Wei (10.1016/j.snb.2017.04.118_bib0035) 2013; 9
Campion (10.1016/j.snb.2017.04.118_bib0040) 1998; 27
Zhao (10.1016/j.snb.2017.04.118_bib0225) 2007; 129
Zhang (10.1016/j.snb.2017.04.118_bib0085) 2005; 438
Liu (10.1016/j.snb.2017.04.118_bib0065) 2014; 118
Lim (10.1016/j.snb.2017.04.118_bib0215) 2011; 6
Lee (10.1016/j.snb.2017.04.118_bib0205) 2012; 24
Jensen (10.1016/j.snb.2017.04.118_bib0235) 2000; 104
Ling (10.1016/j.snb.2017.04.118_bib0120) 2014; 14
Bonaccorso (10.1016/j.snb.2017.04.118_bib0095) 2010; 4
Qian (10.1016/j.snb.2017.04.118_bib0020) 2008; 37
References_xml – volume: 118
  start-page: 8993
  year: 2014
  end-page: 8998
  ident: bib0065
  article-title: Few-layer graphene-encapsulated metal nanoparticles for surface enhanced Raman spectroscopy
  publication-title: J. Phys. Chem. C
– volume: 275
  start-page: 1102
  year: 1997
  end-page: 1106
  ident: bib0010
  article-title: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering
  publication-title: Science
– volume: 129
  start-page: 7647
  year: 2007
  end-page: 7656
  ident: bib0225
  article-title: Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3410
  year: 2012
  end-page: 3414
  ident: bib0180
  article-title: Flexible and mechanical strain resistant large area SERS active substrates
  publication-title: Nanoscale
– volume: 321
  start-page: 385
  year: 2008
  end-page: 388
  ident: bib0105
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
– volume: 5
  start-page: 2212
  year: 2009
  end-page: 2217
  ident: bib0190
  article-title: Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates
  publication-title: Small
– volume: 5
  start-page: 4404
  year: 2015
  end-page: 4410
  ident: bib0260
  article-title: Metal-elastomer nanostructures for tunable SERS and easy microfluidic integration
  publication-title: RSC Adv.
– volume: 6
  start-page: 3677
  year: 2012
  end-page: 3694
  ident: bib0140
  article-title: Graphene photonics, plasmonics, and broadband optoelectronic devices
  publication-title: ACS Nano
– volume: 24
  start-page: 5261
  year: 2012
  end-page: 5266
  ident: bib0205
  article-title: Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates
  publication-title: Adv. Mater.
– volume: 108
  start-page: 9331
  year: 2011
  end-page: 9336
  ident: bib0210
  article-title: Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors
  publication-title: PNAS
– volume: 96
  start-page: 207401
  year: 2006
  ident: bib0055
  article-title: Chemical contribution to surface-enhanced Raman scattering
  publication-title: Phys. Rev. Lett.
– volume: 324
  start-page: 1312
  year: 2009
  end-page: 1314
  ident: bib0250
  article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils
  publication-title: Science
– volume: 438
  start-page: 201
  year: 2005
  end-page: 204
  ident: bib0085
  article-title: Experimental observation of the quantum Hall effect and Berry's phase in graphene
  publication-title: Nature
– volume: 96
  start-page: 113002
  year: 2006
  ident: bib0265
  article-title: Enhancement and quenching of single-molecule fluorescence
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 2944
  year: 2011
  end-page: 2952
  ident: bib0130
  article-title: Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 14395
  year: 2010
  end-page: 14400
  ident: bib0135
  article-title: Highly sensitive graphene biosensors based on surface plasmon resonance
  publication-title: Opt. Express
– volume: 104
  start-page: 10549
  year: 2000
  end-page: 10556
  ident: bib0235
  article-title: Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  ident: bib0090
  article-title: The rise of graphene
  publication-title: Nat. Mater.
– volume: 4
  start-page: 611
  year: 2010
  end-page: 622
  ident: bib0095
  article-title: Graphene photonics and optoelectronics
  publication-title: Nat. Photonics
– volume: 10
  start-page: 5006
  year: 2010
  end-page: 5013
  ident: bib0200
  article-title: Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy
  publication-title: Nano Lett.
– volume: 14
  start-page: 3033
  year: 2014
  end-page: 3040
  ident: bib0120
  article-title: Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS
  publication-title: Nano Lett.
– volume: 15
  start-page: 5288
  year: 2013
  end-page: 5300
  ident: bib0075
  article-title: Towards low-cost flexible substrates for nanoplasmonic sensing
  publication-title: Phys. Chem. Chem. Phys.
– volume: 26
  start-page: 163
  year: 1974
  end-page: 166
  ident: bib0005
  article-title: Raman spectra of pyridine adsorbed at a silver electrode
  publication-title: Chem. Phys. Lett.
– volume: 25
  start-page: 4918
  year: 2013
  end-page: 4924
  ident: bib0115
  article-title: Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection
  publication-title: Adv. Mater.
– volume: 48
  start-page: 5913
  year: 2012
  end-page: 5915
  ident: bib0165
  article-title: Highly efficient SERS test strips
  publication-title: Chem. Commun.
– volume: 84
  start-page: 5140
  year: 2012
  end-page: 5145
  ident: bib0175
  article-title: Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection
  publication-title: Anal. Chem.
– volume: 464
  start-page: 392
  year: 2010
  end-page: 395
  ident: bib0070
  article-title: Shell-isolated nanoparticle-enhanced raman spectroscopy
  publication-title: Nature
– volume: 3
  start-page: 2903
  year: 2011
  end-page: 2908
  ident: bib0155
  article-title: Large area flexible SERS active substrates using engineered nanostructures
  publication-title: Nanoscale
– volume: 131
  start-page: 9890
  year: 2009
  end-page: 9891
  ident: bib0110
  article-title: Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2473
  year: 2008
  end-page: 2480
  ident: bib0195
  article-title: The synthesis of SERS-active gold nanoflower tags for in vivo applications
  publication-title: ACS nano
– volume: 27
  start-page: 241
  year: 1998
  end-page: 250
  ident: bib0040
  article-title: Surface-enhanced Raman scattering
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 2493
  year: 2013
  end-page: 2499
  ident: bib0035
  article-title: Molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection
  publication-title: Small
– volume: 2
  start-page: 3429
  year: 2010
  end-page: 3435
  ident: bib0160
  article-title: Paper-based SERS swab for rapid trace detection on real-world surfaces
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 3410
  year: 2012
  end-page: 3414
  ident: bib0170
  article-title: Flexible and mechanical strain resistant large area SERS active substrates
  publication-title: Nanoscale
– volume: 81
  start-page: 109
  year: 2009
  end-page: 162
  ident: bib0100
  article-title: The electronic properties of graphene
  publication-title: Rev. Mod. Phys.
– volume: 5
  start-page: 9799
  year: 2011
  end-page: 9806
  ident: bib0150
  article-title: UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering
  publication-title: ACS Nano
– volume: 104
  start-page: 11965
  year: 2000
  end-page: 11971
  ident: bib0230
  article-title: Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules
  publication-title: J. Phys. Chem. B
– volume: 97
  start-page: 187401
  year: 2006
  ident: bib0245
  article-title: Raman spectra of graphene and graphene layers
  publication-title: Phys. Rev. Lett.
– volume: 222
  start-page: 1175
  year: 2016
  end-page: 1183
  ident: bib0240
  article-title: Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering
  publication-title: Sens. Actuators B-Chem.
– volume: 26
  start-page: 4510
  year: 2014
  end-page: 4514
  ident: bib0255
  article-title: A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering
  publication-title: Adv. Mater.
– volume: 62
  start-page: 4318
  year: 2000
  end-page: 4324
  ident: bib0050
  article-title: Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering
  publication-title: Phys. Rev. E
– volume: 97
  start-page: 163111
  year: 2010
  ident: bib0145
  article-title: Gold on graphene as a substrate for surface enhanced Raman scattering study
  publication-title: Appl. Phys. Lett.
– volume: 37
  start-page: 946
  year: 2008
  end-page: 954
  ident: bib0015
  article-title: Single molecule analysis by surfaced-enhanced Raman scattering
  publication-title: Chem. Soc. Rev.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: bib0080
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 394
  start-page: 679
  year: 2009
  end-page: 686
  ident: bib0025
  article-title: Bioanalytical applications of SERS
  publication-title: Anal. Bioanal. Chem.
– volume: 6
  start-page: 452
  year: 2011
  end-page: 460
  ident: bib0215
  article-title: Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm Interior Gap
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 553
  year: 2010
  end-page: 561
  ident: bib0060
  article-title: Can graphene be used as a substrate for raman enhancement?
  publication-title: Nano Lett.
– volume: 4
  start-page: 1143
  year: 1992
  end-page: 1212
  ident: bib0045
  article-title: Surface enhanced raman scattering
  publication-title: J. Phys.: Condens. Matter
– volume: 5
  start-page: 6425
  year: 2011
  end-page: 6433
  ident: bib0125
  article-title: A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids
  publication-title: ACS Nano
– volume: 109
  start-page: 9281
  year: 2012
  end-page: 9286
  ident: bib0185
  article-title: Surface enhanced raman spectroscopy on a flat graphene surface
  publication-title: PNAS
– volume: 132
  start-page: 321
  year: 2006
  end-page: 328
  ident: bib0030
  article-title: Concluding remarks surface enhanced Raman scattering
  publication-title: Faraday Discuss.
– volume: 72
  start-page: 4847
  year: 1950
  end-page: 4854
  ident: bib0220
  article-title: Theory, production and mechanism of formation of monodispersed hydrosols
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 912
  year: 2008
  end-page: 920
  ident: bib0020
  article-title: Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 553
  year: 2010
  ident: 10.1016/j.snb.2017.04.118_bib0060
  article-title: Can graphene be used as a substrate for raman enhancement?
  publication-title: Nano Lett.
  doi: 10.1021/nl903414x
– volume: 3
  start-page: 2944
  year: 2011
  ident: 10.1016/j.snb.2017.04.118_bib0130
  article-title: Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200737b
– volume: 4
  start-page: 3410
  year: 2012
  ident: 10.1016/j.snb.2017.04.118_bib0170
  article-title: Flexible and mechanical strain resistant large area SERS active substrates
  publication-title: Nanoscale
  doi: 10.1039/c2nr00020b
– volume: 108
  start-page: 9331
  year: 2011
  ident: 10.1016/j.snb.2017.04.118_bib0210
  article-title: Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors
  publication-title: PNAS
  doi: 10.1073/pnas.1018358108
– volume: 222
  start-page: 1175
  year: 2016
  ident: 10.1016/j.snb.2017.04.118_bib0240
  article-title: Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2015.08.009
– volume: 5
  start-page: 4404
  year: 2015
  ident: 10.1016/j.snb.2017.04.118_bib0260
  article-title: Metal-elastomer nanostructures for tunable SERS and easy microfluidic integration
  publication-title: RSC Adv.
  doi: 10.1039/C4RA12168F
– volume: 10
  start-page: 5006
  year: 2010
  ident: 10.1016/j.snb.2017.04.118_bib0200
  article-title: Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy
  publication-title: Nano Lett.
  doi: 10.1021/nl103161q
– volume: 438
  start-page: 201
  year: 2005
  ident: 10.1016/j.snb.2017.04.118_bib0085
  article-title: Experimental observation of the quantum Hall effect and Berry's phase in graphene
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 2
  start-page: 2473
  year: 2008
  ident: 10.1016/j.snb.2017.04.118_bib0195
  article-title: The synthesis of SERS-active gold nanoflower tags for in vivo applications
  publication-title: ACS nano
  doi: 10.1021/nn800442q
– volume: 25
  start-page: 4918
  year: 2013
  ident: 10.1016/j.snb.2017.04.118_bib0115
  article-title: Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300635
– volume: 18
  start-page: 14395
  year: 2010
  ident: 10.1016/j.snb.2017.04.118_bib0135
  article-title: Highly sensitive graphene biosensors based on surface plasmon resonance
  publication-title: Opt. Express
  doi: 10.1364/OE.18.014395
– volume: 9
  start-page: 2493
  year: 2013
  ident: 10.1016/j.snb.2017.04.118_bib0035
  article-title: Molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection
  publication-title: Small
  doi: 10.1002/smll.201202914
– volume: 4
  start-page: 611
  year: 2010
  ident: 10.1016/j.snb.2017.04.118_bib0095
  article-title: Graphene photonics and optoelectronics
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 24
  start-page: 5261
  year: 2012
  ident: 10.1016/j.snb.2017.04.118_bib0205
  article-title: Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200645
– volume: 5
  start-page: 6425
  year: 2011
  ident: 10.1016/j.snb.2017.04.118_bib0125
  article-title: A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids
  publication-title: ACS Nano
  doi: 10.1021/nn201606r
– volume: 394
  start-page: 679
  year: 2009
  ident: 10.1016/j.snb.2017.04.118_bib0025
  article-title: Bioanalytical applications of SERS
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-009-2756-2
– volume: 6
  start-page: 452
  year: 2011
  ident: 10.1016/j.snb.2017.04.118_bib0215
  article-title: Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm Interior Gap
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.79
– volume: 14
  start-page: 3033
  year: 2014
  ident: 10.1016/j.snb.2017.04.118_bib0120
  article-title: Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2
  publication-title: Nano Lett.
  doi: 10.1021/nl404610c
– volume: 6
  start-page: 3677
  year: 2012
  ident: 10.1016/j.snb.2017.04.118_bib0140
  article-title: Graphene photonics, plasmonics, and broadband optoelectronic devices
  publication-title: ACS Nano
  doi: 10.1021/nn300989g
– volume: 4
  start-page: 1143
  year: 1992
  ident: 10.1016/j.snb.2017.04.118_bib0045
  article-title: Surface enhanced raman scattering
  publication-title: J. Phys.: Condens. Matter
– volume: 97
  start-page: 163111
  year: 2010
  ident: 10.1016/j.snb.2017.04.118_bib0145
  article-title: Gold on graphene as a substrate for surface enhanced Raman scattering study
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3505335
– volume: 62
  start-page: 4318
  year: 2000
  ident: 10.1016/j.snb.2017.04.118_bib0050
  article-title: Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.4318
– volume: 26
  start-page: 4510
  year: 2014
  ident: 10.1016/j.snb.2017.04.118_bib0255
  article-title: A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305950
– volume: 26
  start-page: 163
  year: 1974
  ident: 10.1016/j.snb.2017.04.118_bib0005
  article-title: Raman spectra of pyridine adsorbed at a silver electrode
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 321
  start-page: 385
  year: 2008
  ident: 10.1016/j.snb.2017.04.118_bib0105
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 104
  start-page: 10549
  year: 2000
  ident: 10.1016/j.snb.2017.04.118_bib0235
  article-title: Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp002435e
– volume: 72
  start-page: 4847
  year: 1950
  ident: 10.1016/j.snb.2017.04.118_bib0220
  article-title: Theory, production and mechanism of formation of monodispersed hydrosols
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01167a001
– volume: 129
  start-page: 7647
  year: 2007
  ident: 10.1016/j.snb.2017.04.118_bib0225
  article-title: Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0707106
– volume: 4
  start-page: 3410
  year: 2012
  ident: 10.1016/j.snb.2017.04.118_bib0180
  article-title: Flexible and mechanical strain resistant large area SERS active substrates
  publication-title: Nanoscale
  doi: 10.1039/c2nr00020b
– volume: 118
  start-page: 8993
  year: 2014
  ident: 10.1016/j.snb.2017.04.118_bib0065
  article-title: Few-layer graphene-encapsulated metal nanoparticles for surface enhanced Raman spectroscopy
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500751a
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.snb.2017.04.118_bib0080
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 5
  start-page: 9799
  year: 2011
  ident: 10.1016/j.snb.2017.04.118_bib0150
  article-title: UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering
  publication-title: ACS Nano
  doi: 10.1021/nn204156n
– volume: 37
  start-page: 946
  year: 2008
  ident: 10.1016/j.snb.2017.04.118_bib0015
  article-title: Single molecule analysis by surfaced-enhanced Raman scattering
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b709739p
– volume: 96
  start-page: 207401
  year: 2006
  ident: 10.1016/j.snb.2017.04.118_bib0055
  article-title: Chemical contribution to surface-enhanced Raman scattering
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.207401
– volume: 2
  start-page: 3429
  year: 2010
  ident: 10.1016/j.snb.2017.04.118_bib0160
  article-title: Paper-based SERS swab for rapid trace detection on real-world surfaces
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am1009875
– volume: 48
  start-page: 5913
  year: 2012
  ident: 10.1016/j.snb.2017.04.118_bib0165
  article-title: Highly efficient SERS test strips
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31604h
– volume: 84
  start-page: 5140
  year: 2012
  ident: 10.1016/j.snb.2017.04.118_bib0175
  article-title: Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection
  publication-title: Anal. Chem.
  doi: 10.1021/ac300397h
– volume: 464
  start-page: 392
  year: 2010
  ident: 10.1016/j.snb.2017.04.118_bib0070
  article-title: Shell-isolated nanoparticle-enhanced raman spectroscopy
  publication-title: Nature
  doi: 10.1038/nature08907
– volume: 96
  start-page: 113002
  year: 2006
  ident: 10.1016/j.snb.2017.04.118_bib0265
  article-title: Enhancement and quenching of single-molecule fluorescence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.113002
– volume: 37
  start-page: 912
  year: 2008
  ident: 10.1016/j.snb.2017.04.118_bib0020
  article-title: Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b708839f
– volume: 132
  start-page: 321
  year: 2006
  ident: 10.1016/j.snb.2017.04.118_bib0030
  article-title: Concluding remarks surface enhanced Raman scattering
  publication-title: Faraday Discuss.
  doi: 10.1039/b601494c
– volume: 5
  start-page: 2212
  year: 2009
  ident: 10.1016/j.snb.2017.04.118_bib0190
  article-title: Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates
  publication-title: Small
  doi: 10.1002/smll.200900548
– volume: 275
  start-page: 1102
  year: 1997
  ident: 10.1016/j.snb.2017.04.118_bib0010
  article-title: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– volume: 131
  start-page: 9890
  year: 2009
  ident: 10.1016/j.snb.2017.04.118_bib0110
  article-title: Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9037593
– volume: 109
  start-page: 9281
  year: 2012
  ident: 10.1016/j.snb.2017.04.118_bib0185
  article-title: Surface enhanced raman spectroscopy on a flat graphene surface
  publication-title: PNAS
  doi: 10.1073/pnas.1205478109
– volume: 104
  start-page: 11965
  year: 2000
  ident: 10.1016/j.snb.2017.04.118_bib0230
  article-title: Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0025476
– volume: 324
  start-page: 1312
  year: 2009
  ident: 10.1016/j.snb.2017.04.118_bib0250
  article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 97
  start-page: 187401
  year: 2006
  ident: 10.1016/j.snb.2017.04.118_bib0245
  article-title: Raman spectra of graphene and graphene layers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 15
  start-page: 5288
  year: 2013
  ident: 10.1016/j.snb.2017.04.118_bib0075
  article-title: Towards low-cost flexible substrates for nanoplasmonic sensing
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp43642f
– volume: 6
  start-page: 183
  year: 2007
  ident: 10.1016/j.snb.2017.04.118_bib0090
  article-title: The rise of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 27
  start-page: 241
  year: 1998
  ident: 10.1016/j.snb.2017.04.118_bib0040
  article-title: Surface-enhanced Raman scattering
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/a827241z
– volume: 81
  start-page: 109
  year: 2009
  ident: 10.1016/j.snb.2017.04.118_bib0100
  article-title: The electronic properties of graphene
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 3
  start-page: 2903
  year: 2011
  ident: 10.1016/j.snb.2017.04.118_bib0155
  article-title: Large area flexible SERS active substrates using engineered nanostructures
  publication-title: Nanoscale
  doi: 10.1039/c1nr10265f
SSID ssj0004360
Score 2.522776
Snippet •First, the G/AgNFs/PMMA flexible substrate was fabricated by using a facilegraphene templated electroreduction method.•Second, the detection limit for R6G...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 439
SubjectTerms Ag-nanoflowers
Flexible SERS substrate
Molecular detection
Title Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA
URI https://dx.doi.org/10.1016/j.snb.2017.04.118
Volume 249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGTsOa126THUlqq0iLWQm8h-5JKTUsbr_52Z7aJVlAP3pJlFsJm8s0M-eYbQq6ClvTdhxTZzDAutWKJShSDaAP5tTRGSKf2OWz2x_xuIiY10ql6YZBWWWL_GtMdWpcrXnma3mI69UZ-C4obpzEFfhq69mvOY_Tym_cvmgePXKcwGjO0rv5sOo7XKpfI7opR7TTAuR8_xaaNeNPbI7tlokjb62fZJzWTH5CdDfnAQ6KQT4ytT_S1GnJLi2WmDNOmcBSrnGKU0hQuLCpfou2o-ziiK8ALp0tL55Y60WrAPK_9zPIsn9uZG53mPQwG7SMy7nWfOn1WDk1givu8YIESwiiZGS2EjSRkc1JoyzWASaRjX8okykKAlqavIyGh_AuUNmHQ1ALXQh0dk3o-z80JoYJbGUqo_zLsePJ1Kw6NMhYSEqvR8pT41XGlqlQUx8EWs7Sijr2kcMIpnnDqcyg2klNy_bllsZbT-MuYV-8g_eYTKcD979vO_rftnGzj3Zqod0HqxfLNXELCUciG86gG2Wrf3veHH3Y21OQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BPQAH1PIQjz58gAuS2ZedbA49RC1RICRCBCRuy_qFQLBBZBHiwp_qH-yMs1uCVHqoxG3ltVf22J6H9ptvALajlgr9RUpcbrlQRvNUp5qjtUH_WlkrlWf7HDS6Z-LwXJ7PwK86F4ZglZXun-h0r62rlqCSZnB3dRUMwxYGN55jCs9pnEYVsrJnnx4xbht_P_iJm7wTx5390x9dXpUW4FqEouSRltJqlVsjpUsU-jxKGicMXrnENEOl0iSP8QI2QpNIhUFSpI2No4aR1BabBL87Cx8ErpLKJuw9v-BKROJTk2l2nKZX_0r1oLJxoQhO1iR61YgKjfzNGE4ZuM5HWKo8U9aeLP4TzNhiGRan-ApXQBOAmXKt2G1dVZeV97m23NjSY7oKRmbRMHxwRLVJfYf7J0M2RgXliXDZyDHPko1KNmhf8iIvRu7G12oLjvv99iqcvYso12CuGBV2HZgUTsUKA86cUqxC02rGVluHHpAz1HMDwlpcma4ozKmSxk1WY9WuM5RwRhLOQoHRTboBu3-G3E34O_7VWdR7kL06hBnal7eHbf7fsG8w3z3tH2VHB4PeFizQmwlK8DPMlfcP9gt6O6X66k8Xg4v3Ps6_AWwaEDE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+molecular+trace-detection+based+on+flexible+SERS+substrate+of+graphene%2FAg-nanoflowers%2FPMMA&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Qiu%2C+Hengwei&rft.au=Wang%2C+Minqiang&rft.au=Jiang%2C+Shouzhen&rft.au=Zhang%2C+Lin&rft.date=2017-10-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=249&rft.spage=439&rft.epage=450&rft_id=info:doi/10.1016%2Fj.snb.2017.04.118&rft.externalDocID=S0925400517307281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon