Duodenal PKC-δ and Cholecystokinin Signaling Axis Regulates Glucose Production

Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK rema...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 60; no. 12; pp. 3148 - 3153
Main Authors BREEN, Danna M, YUE, Jessica T. Y, RASMUSSEN, Brittany A, KOKOROVIC, Andrea, CHEUNG, Grace W. C, LAM, Tony K. T
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.12.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production. We first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo. Immunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet-induced duodenal CCK resistance. In summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats.
AbstractList OBJECTIVEMetabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production. RESEARCH DESIGN AND METHODSWe first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo. RESULTSImmunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet-induced duodenal CCK resistance. CONCLUSIONSIn summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats.
OBJECTIVE Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production. RESEARCH DESIGN AND METHODS We first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo. RESULTS Immunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet–induced duodenal CCK resistance. CONCLUSIONS In summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats.
Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production. We first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo. Immunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet-induced duodenal CCK resistance. In summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats.
Author YUE, Jessica T. Y
LAM, Tony K. T
RASMUSSEN, Brittany A
KOKOROVIC, Andrea
BREEN, Danna M
CHEUNG, Grace W. C
Author_xml – sequence: 1
  givenname: Danna M
  surname: BREEN
  fullname: BREEN, Danna M
  organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
– sequence: 2
  givenname: Jessica T. Y
  surname: YUE
  fullname: YUE, Jessica T. Y
  organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
– sequence: 3
  givenname: Brittany A
  surname: RASMUSSEN
  fullname: RASMUSSEN, Brittany A
  organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
– sequence: 4
  givenname: Andrea
  surname: KOKOROVIC
  fullname: KOKOROVIC, Andrea
  organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
– sequence: 5
  givenname: Grace W. C
  surname: CHEUNG
  fullname: CHEUNG, Grace W. C
  organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
– sequence: 6
  givenname: Tony K. T
  surname: LAM
  fullname: LAM, Tony K. T
  organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25273946$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21984583$$D View this record in MEDLINE/PubMed
BookMark eNpVkMlOwzAQhi1URMty4AVQLghxCHhJYvuChMoqkIpYJG6W66UYXBviBMF78Rw8E6koBTSHOcynf2a-VdALMRgANhHcw4TQfT1GKIesxEtggDjhOcH0vgcGECKcI8ppH6ym9AghrLpaAX2MOCtKRgZgdNRGbYL02dXFMP_8yGTQ2fAheqPeUxOfXHAhu3GTjnBhkh2-uZRdm0nrZWNSdupbFZPJruqoW9W4GNbBspU-mY15XwN3J8e3w7P8cnR6Pjy8zFUBiyZHlaV0bBSzFeeWMSK1HJeYUoYQ11baQuGSacTLCimLNKOwQEzpAnNbWKbIGjj4zn1ux1OjlQlNLb14rt1U1u8iSif-T4J7EJP4Kkj3OydlF7AzD6jjS2tSI6YuKeO9DCa2SXBY8gqXGHXk7jep6phSbexiC4Ji5l_M_IuZ_47d-nvWgvwR3gHbc0AmJb2tZVAu_XKdA8KLinwBxWqQzg
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1146_annurev_med_042220_012821
crossref_primary_10_1016_j_cmet_2012_07_011
crossref_primary_10_1016_j_metabol_2014_02_015
crossref_primary_10_1016_j_cmet_2015_07_003
crossref_primary_10_1038_s41467_021_21235_y
crossref_primary_10_1016_j_cmet_2017_06_014
crossref_primary_10_3748_wjg_v22_i29_6706
crossref_primary_10_2337_db13_0523
crossref_primary_10_2337_db15_0148
crossref_primary_10_1309_LMO485SPYXBQANXJ
crossref_primary_10_1016_j_molmet_2021_101175
crossref_primary_10_1016_j_mce_2014_09_022
crossref_primary_10_1038_s41575_018_0062_1
crossref_primary_10_1530_JOE_16_0056
crossref_primary_10_1074_jbc_O114_556068
crossref_primary_10_1016_j_tem_2011_11_001
crossref_primary_10_1038_nm_2745
crossref_primary_10_1016_j_cmet_2017_09_019
crossref_primary_10_1016_j_tem_2013_04_005
crossref_primary_10_1016_j_cmet_2018_01_013
crossref_primary_10_1021_acs_jafc_1c00751
crossref_primary_10_1152_physrev_00031_2014
crossref_primary_10_1038_s12276_021_00677_w
crossref_primary_10_1053_j_gastro_2011_12_053
Cites_doi 10.1152/ajpgi.00434.2003
10.1038/nature06852
10.1016/j.cmet.2007.07.005
10.1172/JCI36714
10.1016/S0167-4889(02)00346-4
10.1002/1097-4644(20001215)79:4<686::AID-JCB160>3.0.CO;2-P
10.1146/annurev.physiol.63.1.77
10.2337/db08-0206
10.1038/nm0410-392
10.1074/jbc.M610482200
10.1152/ajpgi.00087.2004
10.1016/S0014-5793(98)00209-9
10.1016/S0092-8674(00)80709-6
10.1016/j.cmet.2009.07.005
10.1097/00006676-200010000-00003
10.1152/ajpgi.2000.279.2.G295
10.1053/j.gastro.2007.04.068
ContentType Journal Article
Copyright 2015 INIST-CNRS
2011 by the American Diabetes Association. 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: 2011 by the American Diabetes Association. 2011
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.2337/db11-0852
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 3153
ExternalDocumentID 10_2337_db11_0852
21984583
25273946
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: MOP-82701
GroupedDBID ---
.55
.GJ
.XZ
08P
08R
0R~
18M
1CY
29F
2WC
354
3V.
4.4
53G
5GY
5RE
5RS
5VS
6PF
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAKAS
AAQQT
AAUGY
AAWTL
AAYEP
AAYJJ
AAYOK
ABOCM
ABPTK
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADZCM
AEGXH
AENEX
AERZD
AFFNX
AFHIN
AFKRA
AHMBA
AI.
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BTFSW
BVXVI
C1A
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GICCO
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ~
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
IQODW
ITC
J5H
K-O
K2M
K9-
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5~
M7P
MVM
N4W
NAPCQ
O5R
O5S
O9-
OB3
OHH
OK1
OVD
P2P
PCD
PEA
PQQKQ
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
TEORI
TR2
UKHRP
VH1
VVN
W8F
WH7
WOQ
WOW
X7M
XOL
YFH
YHG
YOC
YQJ
ZA5
ZGI
ZXP
ZY1
~KM
AIZAD
ALIPV
CGR
CUY
CVF
ECM
EIF
HMCUK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c404t-16f77bec8f699f883adab52778119dfaf4c258d19561cf1d870418cd429f4f8c3
IEDL.DBID RPM
ISSN 0012-1797
IngestDate Tue Sep 17 21:26:16 EDT 2024
Sat Aug 17 03:18:44 EDT 2024
Fri Aug 23 03:32:22 EDT 2024
Sat Sep 28 07:59:28 EDT 2024
Sun Oct 22 16:06:22 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Endocrinopathy
Signal transduction
Cholecystokinin
Glucose
Neuropeptide
Diabetes mellitus
Language English
License CC BY 4.0
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-16f77bec8f699f883adab52778119dfaf4c258d19561cf1d870418cd429f4f8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219935/
PMID 21984583
PQID 905962521
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3219935
proquest_miscellaneous_905962521
crossref_primary_10_2337_db11_0852
pubmed_primary_21984583
pascalfrancis_primary_25273946
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2011
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 11039466 - Pancreas. 2000 Oct;21(3):231-9
19656488 - Cell Metab. 2009 Aug;10(2):99-109
19726875 - J Clin Invest. 2009 Sep;119(9):2577-89
17681145 - Cell Metab. 2007 Aug;6(2):99-104
17681171 - Gastroenterology. 2007 Aug;133(2):496-506
11181949 - Annu Rev Physiol. 2001;63:77-97
12431789 - Biochim Biophys Acta. 2002 Dec 16;1593(1):99-113
14715515 - Am J Physiol Gastrointest Liver Physiol. 2004 Feb;286(2):G183-8
21704002 - Gastroenterology. 2011 Nov;141(5):1720-7
18401341 - Nature. 2008 Apr 24;452(7190):1012-6
10199397 - Cell. 1999 Apr 2;97(1):9-12
20376051 - Nat Med. 2010 Apr;16(4):392-5
18511848 - Diabetes. 2008 Aug;57(8):2061-5
15117677 - Am J Physiol Gastrointest Liver Physiol. 2004 Sep;287(3):G582-91
10996858 - J Cell Biochem. 2000 Sep 14;79(4):686-94
17135234 - J Biol Chem. 2007 Jan 26;282(4):2707-16
9541008 - FEBS Lett. 1998 Mar 20;425(1):66-70
10915637 - Am J Physiol Gastrointest Liver Physiol. 2000 Aug;279(2):G295-303
Takahashi (2022031208474918700_B9) 2000; 21
Lam (2022031208474918700_B16) 2010; 16
Cheung (2022031208474918700_B2) 2009; 10
Ross (2022031208474918700_B3) 2008; 57
Caspi (2022031208474918700_B5) 2007; 6
2022031208474918700_B6
Chang (2022031208474918700_B8) 2000; 279
Satoh (2022031208474918700_B12) 2004; 287
Tapia (2022031208474918700_B11) 2002; 1593
Taylor (2022031208474918700_B14) 1999; 97
Némoz-Gaillard (2022031208474918700_B18) 1998; 425
Balogh (2022031208474918700_B7) 2000; 79
Wang (2022031208474918700_B1) 2008; 452
Moran (2022031208474918700_B13) 2004; 286
Benoit (2022031208474918700_B4) 2009; 119
Williams (2022031208474918700_B10) 2001; 63
Gastaldelli (2022031208474918700_B15) 2007; 133
Uchida (2022031208474918700_B17) 2007; 282
References_xml – volume: 286
  start-page: G183
  year: 2004
  ident: 2022031208474918700_B13
  article-title: Gastrointestinal satiety signals II. Cholecystokinin
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00434.2003
  contributor:
    fullname: Moran
– volume: 452
  start-page: 1012
  year: 2008
  ident: 2022031208474918700_B1
  article-title: Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production
  publication-title: Nature
  doi: 10.1038/nature06852
  contributor:
    fullname: Wang
– volume: 6
  start-page: 99
  year: 2007
  ident: 2022031208474918700_B5
  article-title: A balance of lipid-sensing mechanisms in the brain and liver
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2007.07.005
  contributor:
    fullname: Caspi
– volume: 119
  start-page: 2577
  year: 2009
  ident: 2022031208474918700_B4
  article-title: Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents
  publication-title: J Clin Invest
  doi: 10.1172/JCI36714
  contributor:
    fullname: Benoit
– ident: 2022031208474918700_B6
– volume: 1593
  start-page: 99
  year: 2002
  ident: 2022031208474918700_B11
  article-title: Cholecystokinin-stimulated tyrosine phosphorylation of PKC-delta in pancreatic acinar cells is regulated bidirectionally by PKC activation
  publication-title: Biochim Biophys Acta
  doi: 10.1016/S0167-4889(02)00346-4
  contributor:
    fullname: Tapia
– volume: 79
  start-page: 686
  year: 2000
  ident: 2022031208474918700_B7
  article-title: 1,25(OH)2-vitamin D3 affects the subcellular distribution of protein kinase C isoenzymes in rat duodenum: influence of aging
  publication-title: J Cell Biochem
  doi: 10.1002/1097-4644(20001215)79:4<686::AID-JCB160>3.0.CO;2-P
  contributor:
    fullname: Balogh
– volume: 63
  start-page: 77
  year: 2001
  ident: 2022031208474918700_B10
  article-title: Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.physiol.63.1.77
  contributor:
    fullname: Williams
– volume: 57
  start-page: 2061
  year: 2008
  ident: 2022031208474918700_B3
  article-title: Hypothalamic protein kinase C regulates glucose production
  publication-title: Diabetes
  doi: 10.2337/db08-0206
  contributor:
    fullname: Ross
– volume: 16
  start-page: 392
  year: 2010
  ident: 2022031208474918700_B16
  article-title: Neuronal regulation of homeostasis by nutrient sensing
  publication-title: Nat Med
  doi: 10.1038/nm0410-392
  contributor:
    fullname: Lam
– volume: 282
  start-page: 2707
  year: 2007
  ident: 2022031208474918700_B17
  article-title: Protein kinase Cdelta plays a non-redundant role in insulin secretion in pancreatic β cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M610482200
  contributor:
    fullname: Uchida
– volume: 287
  start-page: G582
  year: 2004
  ident: 2022031208474918700_B12
  article-title: PKC-delta and -epsilon regulate NF-kappaB activation induced by cholecystokinin and TNF-alpha in pancreatic acinar cells
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00087.2004
  contributor:
    fullname: Satoh
– volume: 425
  start-page: 66
  year: 1998
  ident: 2022031208474918700_B18
  article-title: Expression of SNARE proteins in enteroendocrine cell lines and functional role of tetanus toxin-sensitive proteins in cholecystokinin release
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(98)00209-9
  contributor:
    fullname: Némoz-Gaillard
– volume: 97
  start-page: 9
  year: 1999
  ident: 2022031208474918700_B14
  article-title: Deconstructing type 2 diabetes
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80709-6
  contributor:
    fullname: Taylor
– volume: 10
  start-page: 99
  year: 2009
  ident: 2022031208474918700_B2
  article-title: Intestinal cholecystokinin controls glucose production through a neuronal network
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2009.07.005
  contributor:
    fullname: Cheung
– volume: 21
  start-page: 231
  year: 2000
  ident: 2022031208474918700_B9
  article-title: Involvement of calmodulin and protein kinase C in cholecystokinin release by bombesin from STC-1 cells
  publication-title: Pancreas
  doi: 10.1097/00006676-200010000-00003
  contributor:
    fullname: Takahashi
– volume: 279
  start-page: G295
  year: 2000
  ident: 2022031208474918700_B8
  article-title: Cellular mechanism of sodium oleate-stimulated secretion of cholecystokinin and secretin
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.2000.279.2.G295
  contributor:
    fullname: Chang
– volume: 133
  start-page: 496
  year: 2007
  ident: 2022031208474918700_B15
  article-title: Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.04.068
  contributor:
    fullname: Gastaldelli
SSID ssj0006060
Score 2.2333102
Snippet Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A...
OBJECTIVE Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin...
OBJECTIVEMetabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 3148
SubjectTerms Animals
Biological and medical sciences
Cholecystokinin - metabolism
Diabetes. Impaired glucose tolerance
Duodenum - enzymology
Duodenum - metabolism
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fluorescent Antibody Technique
Glucose - metabolism
Male
Medical sciences
Metabolism
Protein Kinase C-delta - metabolism
Rats
Rats, Sprague-Dawley
Receptor, Cholecystokinin A - metabolism
Signal Transduction - physiology
Title Duodenal PKC-δ and Cholecystokinin Signaling Axis Regulates Glucose Production
URI https://www.ncbi.nlm.nih.gov/pubmed/21984583
https://search.proquest.com/docview/905962521
https://pubmed.ncbi.nlm.nih.gov/PMC3219935
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3batwwEB1ygVIopenVvSyi9NXZWJYs6TFxcyFl0yVtYN-MLFnJ0sa7dHeh_a9-R78pI8lOuyFPffGLJDBnxtIZa-YMwAejdY5M3qRFzWzKpOKpFiZLa77nGhwTTeaLk0dnxckFO53wyQbwvhYmJO2berrbfr_ebadXIbdyfm2GfZ7YcDwqc-rTzvhwEzbRQfsQvdt-kZHHupOMeu1NEeWEaJ6Loa3D_0BOgwSwkv7OcO08ejTXC4TGxZ4W95HOu7mT_xxGR0_gccciyX582x3YaNqn8GDU3ZM_g88fVzPcUHDK-FOZ_vlNdGtJGVrh_kK29813hSBfppeehbeXZP_ndEHOY1f6ZkGOYxo7GUc1WLTcc7g4OvxanqRd64TUsD22TLPCCYHmka5QykmZa6trToWvK1XWaccM5dL6YsHMuMziV8sy38eIKsecNPkL2GpnbfMKiNWGmkJybRvLHBVaS4lRlcJYyBnuTALvewCreVTIqDCy8IBXHvDKA57AYA3a25nUC8ApViRAeqwrdHB_a6HbZrZaVCo0CEKWkcDLCP3fxZ0NExBrRrmd4LWz10fQpYKGdudCr_975Rt4GH4vh8yWt7C1_LFq3iE_WdYD9MqJwKcsswFsHxyejc8HwUdvAGTG6uc
link.rule.ids 230,315,730,783,787,888,27936,27937,31732,33279,33757,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTQIkhDZ-BtiwEK9ZG8eO7cepsBW2bhVs0t4ix45HtS2taCvB_8Xfwd_E2U7GOvHEsx0p-u5sf2fffQfw3midI5M3aVExmzKpeKqFydKK912NY6LOfHHy6LgYnrHP5_x8DXhXCxOS9k012W2urnebybeQWzm7Nr0uT6w3Hg1y6tPOeO8ebOB67bMuSG83YOTksfIko159U0RBIZrnomercCPIaRABVtK_Gq6cSI9meo7guNjV4l-082725K3jaH8THrc8kuzF_92Ctbp5AvdH7Uv5Uzj5sJziloJTxoeD9PcvohtLBqEZ7k_ke5e-LwT5OrnwPLy5IHs_JnPyJfalr-fkICayk3HUg0XbPYOz_Y-ng2HaNk9IDeuzRZoVTgg0kHSFUk7KXFtdcSp8ZamyTjtmKJfWlwtmxmUW1y3LfCcjqhxz0uTPYb2ZNvVLIFYbagrJta0tc1RoLSXGVQqjIWe4Mwm86wAsZ1Ejo8TYwgNeesBLD3gCOyvQ3sykXgJOsSIB0mFdoov7dwvd1NPlvFShRRDyjAReROj_ftzaMAGxYpSbCV49e3UEnSqoaLdO9Oq_v3wLD4ano6Py6NPx4Wt4GC6bQ57LG1hffF_W28hWFtVO8M0_iTnq7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTZqQENr4MQLbsBCvWRrHju3HqVvZGB0VMGlvkWPHo2JLq7WV4P_i7-Bv4mynY0U88WxHir4729_Zd98BvDVaF8jkTVrWzKZMKp5qYfK05j3X4Jhocl-cPDwvTy7Y-0t-ea_VV0jaN_X4oL2-OWjHX0Nu5fTGZMs8sWw07BfUp53xbGpd9gA2cM32ymWg3m3CyMtj9UlOvQKniKJCtChEZutwK8hpEAJW0r8crpxKj6Z6hgC52NniX9Tz7wzKe0fSYAsed1ySHMZ_3oa1pn0Cm8PutfwpfDxaTHBbwSmjs3766yfRrSX90BD3B3K-b743BPk8vvJcvL0ih9_HM_Ip9qZvZuRdTGYno6gJi_Z7BheD4y_9k7RroJAa1mPzNC-dEGgk6UqlnJSFtrrmVPjqUmWddsxQLq0vGcyNyy2uXZb7bkZUOeakKZ7DejtpmxdArDbUlJJr21jmqNBaSoytFEZEznBnEnizBLCaRp2MCuMLD3jlAa884Ansr0B7N5N6GTjFygTIEusK3dy_Xei2mSxmlQptgpBrJLATof_zcWfDBMSKUe4meAXt1RF0rKCk3TnSy__-8jVsjo4G1YfT87NX8DDcN4dUl11Yn98umj0kLPN6P7jmb-qz7AI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Duodenal+PKC-%CE%B4+and+Cholecystokinin+Signaling+Axis+Regulates+Glucose+Production&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Breen%2C+Danna+M.&rft.au=Yue%2C+Jessica+T.Y.&rft.au=Rasmussen%2C+Brittany+A.&rft.au=Kokorovic%2C+Andrea&rft.date=2011-12-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=60&rft.issue=12&rft.spage=3148&rft.epage=3153&rft_id=info:doi/10.2337%2Fdb11-0852&rft_id=info%3Apmid%2F21984583&rft.externalDBID=PMC3219935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon