Duodenal PKC-δ and Cholecystokinin Signaling Axis Regulates Glucose Production
Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK rema...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 60; no. 12; pp. 3148 - 3153 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.12.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production.
We first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo.
Immunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet-induced duodenal CCK resistance.
In summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats. |
---|---|
AbstractList | OBJECTIVEMetabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production. RESEARCH DESIGN AND METHODSWe first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo. RESULTSImmunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet-induced duodenal CCK resistance. CONCLUSIONSIn summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats. OBJECTIVE Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production. RESEARCH DESIGN AND METHODS We first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo. RESULTS Immunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet–induced duodenal CCK resistance. CONCLUSIONS In summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats. Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production. We first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo. Immunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet-induced duodenal CCK resistance. In summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats. |
Author | YUE, Jessica T. Y LAM, Tony K. T RASMUSSEN, Brittany A KOKOROVIC, Andrea BREEN, Danna M CHEUNG, Grace W. C |
Author_xml | – sequence: 1 givenname: Danna M surname: BREEN fullname: BREEN, Danna M organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada – sequence: 2 givenname: Jessica T. Y surname: YUE fullname: YUE, Jessica T. Y organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada – sequence: 3 givenname: Brittany A surname: RASMUSSEN fullname: RASMUSSEN, Brittany A organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada – sequence: 4 givenname: Andrea surname: KOKOROVIC fullname: KOKOROVIC, Andrea organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada – sequence: 5 givenname: Grace W. C surname: CHEUNG fullname: CHEUNG, Grace W. C organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada – sequence: 6 givenname: Tony K. T surname: LAM fullname: LAM, Tony K. T organization: Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25273946$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21984583$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkMlOwzAQhi1URMty4AVQLghxCHhJYvuChMoqkIpYJG6W66UYXBviBMF78Rw8E6koBTSHOcynf2a-VdALMRgANhHcw4TQfT1GKIesxEtggDjhOcH0vgcGECKcI8ppH6ym9AghrLpaAX2MOCtKRgZgdNRGbYL02dXFMP_8yGTQ2fAheqPeUxOfXHAhu3GTjnBhkh2-uZRdm0nrZWNSdupbFZPJruqoW9W4GNbBspU-mY15XwN3J8e3w7P8cnR6Pjy8zFUBiyZHlaV0bBSzFeeWMSK1HJeYUoYQ11baQuGSacTLCimLNKOwQEzpAnNbWKbIGjj4zn1ux1OjlQlNLb14rt1U1u8iSif-T4J7EJP4Kkj3OydlF7AzD6jjS2tSI6YuKeO9DCa2SXBY8gqXGHXk7jep6phSbexiC4Ji5l_M_IuZ_47d-nvWgvwR3gHbc0AmJb2tZVAu_XKdA8KLinwBxWqQzg |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1146_annurev_med_042220_012821 crossref_primary_10_1016_j_cmet_2012_07_011 crossref_primary_10_1016_j_metabol_2014_02_015 crossref_primary_10_1016_j_cmet_2015_07_003 crossref_primary_10_1038_s41467_021_21235_y crossref_primary_10_1016_j_cmet_2017_06_014 crossref_primary_10_3748_wjg_v22_i29_6706 crossref_primary_10_2337_db13_0523 crossref_primary_10_2337_db15_0148 crossref_primary_10_1309_LMO485SPYXBQANXJ crossref_primary_10_1016_j_molmet_2021_101175 crossref_primary_10_1016_j_mce_2014_09_022 crossref_primary_10_1038_s41575_018_0062_1 crossref_primary_10_1530_JOE_16_0056 crossref_primary_10_1074_jbc_O114_556068 crossref_primary_10_1016_j_tem_2011_11_001 crossref_primary_10_1038_nm_2745 crossref_primary_10_1016_j_cmet_2017_09_019 crossref_primary_10_1016_j_tem_2013_04_005 crossref_primary_10_1016_j_cmet_2018_01_013 crossref_primary_10_1021_acs_jafc_1c00751 crossref_primary_10_1152_physrev_00031_2014 crossref_primary_10_1038_s12276_021_00677_w crossref_primary_10_1053_j_gastro_2011_12_053 |
Cites_doi | 10.1152/ajpgi.00434.2003 10.1038/nature06852 10.1016/j.cmet.2007.07.005 10.1172/JCI36714 10.1016/S0167-4889(02)00346-4 10.1002/1097-4644(20001215)79:4<686::AID-JCB160>3.0.CO;2-P 10.1146/annurev.physiol.63.1.77 10.2337/db08-0206 10.1038/nm0410-392 10.1074/jbc.M610482200 10.1152/ajpgi.00087.2004 10.1016/S0014-5793(98)00209-9 10.1016/S0092-8674(00)80709-6 10.1016/j.cmet.2009.07.005 10.1097/00006676-200010000-00003 10.1152/ajpgi.2000.279.2.G295 10.1053/j.gastro.2007.04.068 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS 2011 by the American Diabetes Association. 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: 2011 by the American Diabetes Association. 2011 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.2337/db11-0852 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 3153 |
ExternalDocumentID | 10_2337_db11_0852 21984583 25273946 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: MOP-82701 |
GroupedDBID | --- .55 .GJ .XZ 08P 08R 0R~ 18M 1CY 29F 2WC 354 3V. 4.4 53G 5GY 5RE 5RS 5VS 6PF 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAKAS AAQQT AAUGY AAWTL AAYEP AAYJJ AAYOK ABOCM ABPTK ABUWG ACGFO ACGOD ACPRK ADBBV ADZCM AEGXH AENEX AERZD AFFNX AFHIN AFKRA AHMBA AI. AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BTFSW BVXVI C1A CCPQU CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EMOBN EX3 F5P FRP FYUFA GICCO GNUQQ GUQSH GX1 H13 HCIFZ HZ~ H~9 IAG IAO IEA IHR INH INR IOF IPO IQODW ITC J5H K-O K2M K9- KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5~ M7P MVM N4W NAPCQ O5R O5S O9- OB3 OHH OK1 OVD P2P PCD PEA PQQKQ PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI TEORI TR2 UKHRP VH1 VVN W8F WH7 WOQ WOW X7M XOL YFH YHG YOC YQJ ZA5 ZGI ZXP ZY1 ~KM AIZAD ALIPV CGR CUY CVF ECM EIF HMCUK NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c404t-16f77bec8f699f883adab52778119dfaf4c258d19561cf1d870418cd429f4f8c3 |
IEDL.DBID | RPM |
ISSN | 0012-1797 |
IngestDate | Tue Sep 17 21:26:16 EDT 2024 Sat Aug 17 03:18:44 EDT 2024 Fri Aug 23 03:32:22 EDT 2024 Sat Sep 28 07:59:28 EDT 2024 Sun Oct 22 16:06:22 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Endocrinopathy Signal transduction Cholecystokinin Glucose Neuropeptide Diabetes mellitus |
Language | English |
License | CC BY 4.0 Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-16f77bec8f699f883adab52778119dfaf4c258d19561cf1d870418cd429f4f8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219935/ |
PMID | 21984583 |
PQID | 905962521 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3219935 proquest_miscellaneous_905962521 crossref_primary_10_2337_db11_0852 pubmed_primary_21984583 pascalfrancis_primary_25273946 |
PublicationCentury | 2000 |
PublicationDate | 2011-12-01 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2011 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | 11039466 - Pancreas. 2000 Oct;21(3):231-9 19656488 - Cell Metab. 2009 Aug;10(2):99-109 19726875 - J Clin Invest. 2009 Sep;119(9):2577-89 17681145 - Cell Metab. 2007 Aug;6(2):99-104 17681171 - Gastroenterology. 2007 Aug;133(2):496-506 11181949 - Annu Rev Physiol. 2001;63:77-97 12431789 - Biochim Biophys Acta. 2002 Dec 16;1593(1):99-113 14715515 - Am J Physiol Gastrointest Liver Physiol. 2004 Feb;286(2):G183-8 21704002 - Gastroenterology. 2011 Nov;141(5):1720-7 18401341 - Nature. 2008 Apr 24;452(7190):1012-6 10199397 - Cell. 1999 Apr 2;97(1):9-12 20376051 - Nat Med. 2010 Apr;16(4):392-5 18511848 - Diabetes. 2008 Aug;57(8):2061-5 15117677 - Am J Physiol Gastrointest Liver Physiol. 2004 Sep;287(3):G582-91 10996858 - J Cell Biochem. 2000 Sep 14;79(4):686-94 17135234 - J Biol Chem. 2007 Jan 26;282(4):2707-16 9541008 - FEBS Lett. 1998 Mar 20;425(1):66-70 10915637 - Am J Physiol Gastrointest Liver Physiol. 2000 Aug;279(2):G295-303 Takahashi (2022031208474918700_B9) 2000; 21 Lam (2022031208474918700_B16) 2010; 16 Cheung (2022031208474918700_B2) 2009; 10 Ross (2022031208474918700_B3) 2008; 57 Caspi (2022031208474918700_B5) 2007; 6 2022031208474918700_B6 Chang (2022031208474918700_B8) 2000; 279 Satoh (2022031208474918700_B12) 2004; 287 Tapia (2022031208474918700_B11) 2002; 1593 Taylor (2022031208474918700_B14) 1999; 97 Némoz-Gaillard (2022031208474918700_B18) 1998; 425 Balogh (2022031208474918700_B7) 2000; 79 Wang (2022031208474918700_B1) 2008; 452 Moran (2022031208474918700_B13) 2004; 286 Benoit (2022031208474918700_B4) 2009; 119 Williams (2022031208474918700_B10) 2001; 63 Gastaldelli (2022031208474918700_B15) 2007; 133 Uchida (2022031208474918700_B17) 2007; 282 |
References_xml | – volume: 286 start-page: G183 year: 2004 ident: 2022031208474918700_B13 article-title: Gastrointestinal satiety signals II. Cholecystokinin publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00434.2003 contributor: fullname: Moran – volume: 452 start-page: 1012 year: 2008 ident: 2022031208474918700_B1 article-title: Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production publication-title: Nature doi: 10.1038/nature06852 contributor: fullname: Wang – volume: 6 start-page: 99 year: 2007 ident: 2022031208474918700_B5 article-title: A balance of lipid-sensing mechanisms in the brain and liver publication-title: Cell Metab doi: 10.1016/j.cmet.2007.07.005 contributor: fullname: Caspi – volume: 119 start-page: 2577 year: 2009 ident: 2022031208474918700_B4 article-title: Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents publication-title: J Clin Invest doi: 10.1172/JCI36714 contributor: fullname: Benoit – ident: 2022031208474918700_B6 – volume: 1593 start-page: 99 year: 2002 ident: 2022031208474918700_B11 article-title: Cholecystokinin-stimulated tyrosine phosphorylation of PKC-delta in pancreatic acinar cells is regulated bidirectionally by PKC activation publication-title: Biochim Biophys Acta doi: 10.1016/S0167-4889(02)00346-4 contributor: fullname: Tapia – volume: 79 start-page: 686 year: 2000 ident: 2022031208474918700_B7 article-title: 1,25(OH)2-vitamin D3 affects the subcellular distribution of protein kinase C isoenzymes in rat duodenum: influence of aging publication-title: J Cell Biochem doi: 10.1002/1097-4644(20001215)79:4<686::AID-JCB160>3.0.CO;2-P contributor: fullname: Balogh – volume: 63 start-page: 77 year: 2001 ident: 2022031208474918700_B10 article-title: Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.63.1.77 contributor: fullname: Williams – volume: 57 start-page: 2061 year: 2008 ident: 2022031208474918700_B3 article-title: Hypothalamic protein kinase C regulates glucose production publication-title: Diabetes doi: 10.2337/db08-0206 contributor: fullname: Ross – volume: 16 start-page: 392 year: 2010 ident: 2022031208474918700_B16 article-title: Neuronal regulation of homeostasis by nutrient sensing publication-title: Nat Med doi: 10.1038/nm0410-392 contributor: fullname: Lam – volume: 282 start-page: 2707 year: 2007 ident: 2022031208474918700_B17 article-title: Protein kinase Cdelta plays a non-redundant role in insulin secretion in pancreatic β cells publication-title: J Biol Chem doi: 10.1074/jbc.M610482200 contributor: fullname: Uchida – volume: 287 start-page: G582 year: 2004 ident: 2022031208474918700_B12 article-title: PKC-delta and -epsilon regulate NF-kappaB activation induced by cholecystokinin and TNF-alpha in pancreatic acinar cells publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00087.2004 contributor: fullname: Satoh – volume: 425 start-page: 66 year: 1998 ident: 2022031208474918700_B18 article-title: Expression of SNARE proteins in enteroendocrine cell lines and functional role of tetanus toxin-sensitive proteins in cholecystokinin release publication-title: FEBS Lett doi: 10.1016/S0014-5793(98)00209-9 contributor: fullname: Némoz-Gaillard – volume: 97 start-page: 9 year: 1999 ident: 2022031208474918700_B14 article-title: Deconstructing type 2 diabetes publication-title: Cell doi: 10.1016/S0092-8674(00)80709-6 contributor: fullname: Taylor – volume: 10 start-page: 99 year: 2009 ident: 2022031208474918700_B2 article-title: Intestinal cholecystokinin controls glucose production through a neuronal network publication-title: Cell Metab doi: 10.1016/j.cmet.2009.07.005 contributor: fullname: Cheung – volume: 21 start-page: 231 year: 2000 ident: 2022031208474918700_B9 article-title: Involvement of calmodulin and protein kinase C in cholecystokinin release by bombesin from STC-1 cells publication-title: Pancreas doi: 10.1097/00006676-200010000-00003 contributor: fullname: Takahashi – volume: 279 start-page: G295 year: 2000 ident: 2022031208474918700_B8 article-title: Cellular mechanism of sodium oleate-stimulated secretion of cholecystokinin and secretin publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.2000.279.2.G295 contributor: fullname: Chang – volume: 133 start-page: 496 year: 2007 ident: 2022031208474918700_B15 article-title: Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.04.068 contributor: fullname: Gastaldelli |
SSID | ssj0006060 |
Score | 2.2333102 |
Snippet | Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A... OBJECTIVE Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin... OBJECTIVEMetabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 3148 |
SubjectTerms | Animals Biological and medical sciences Cholecystokinin - metabolism Diabetes. Impaired glucose tolerance Duodenum - enzymology Duodenum - metabolism Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Fluorescent Antibody Technique Glucose - metabolism Male Medical sciences Metabolism Protein Kinase C-delta - metabolism Rats Rats, Sprague-Dawley Receptor, Cholecystokinin A - metabolism Signal Transduction - physiology |
Title | Duodenal PKC-δ and Cholecystokinin Signaling Axis Regulates Glucose Production |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21984583 https://search.proquest.com/docview/905962521 https://pubmed.ncbi.nlm.nih.gov/PMC3219935 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3batwwEB1ygVIopenVvSyi9NXZWJYs6TFxcyFl0yVtYN-MLFnJ0sa7dHeh_a9-R78pI8lOuyFPffGLJDBnxtIZa-YMwAejdY5M3qRFzWzKpOKpFiZLa77nGhwTTeaLk0dnxckFO53wyQbwvhYmJO2berrbfr_ebadXIbdyfm2GfZ7YcDwqc-rTzvhwEzbRQfsQvdt-kZHHupOMeu1NEeWEaJ6Loa3D_0BOgwSwkv7OcO08ejTXC4TGxZ4W95HOu7mT_xxGR0_gccciyX582x3YaNqn8GDU3ZM_g88fVzPcUHDK-FOZ_vlNdGtJGVrh_kK29813hSBfppeehbeXZP_ndEHOY1f6ZkGOYxo7GUc1WLTcc7g4OvxanqRd64TUsD22TLPCCYHmka5QykmZa6trToWvK1XWaccM5dL6YsHMuMziV8sy38eIKsecNPkL2GpnbfMKiNWGmkJybRvLHBVaS4lRlcJYyBnuTALvewCreVTIqDCy8IBXHvDKA57AYA3a25nUC8ApViRAeqwrdHB_a6HbZrZaVCo0CEKWkcDLCP3fxZ0NExBrRrmd4LWz10fQpYKGdudCr_975Rt4GH4vh8yWt7C1_LFq3iE_WdYD9MqJwKcsswFsHxyejc8HwUdvAGTG6uc |
link.rule.ids | 230,315,730,783,787,888,27936,27937,31732,33279,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTQIkhDZ-BtiwEK9ZG8eO7cepsBW2bhVs0t4ix45HtS2taCvB_8Xfwd_E2U7GOvHEsx0p-u5sf2fffQfw3midI5M3aVExmzKpeKqFydKK912NY6LOfHHy6LgYnrHP5_x8DXhXCxOS9k012W2urnebybeQWzm7Nr0uT6w3Hg1y6tPOeO8ebOB67bMuSG83YOTksfIko159U0RBIZrnomercCPIaRABVtK_Gq6cSI9meo7guNjV4l-082725K3jaH8THrc8kuzF_92Ctbp5AvdH7Uv5Uzj5sJziloJTxoeD9PcvohtLBqEZ7k_ke5e-LwT5OrnwPLy5IHs_JnPyJfalr-fkICayk3HUg0XbPYOz_Y-ng2HaNk9IDeuzRZoVTgg0kHSFUk7KXFtdcSp8ZamyTjtmKJfWlwtmxmUW1y3LfCcjqhxz0uTPYb2ZNvVLIFYbagrJta0tc1RoLSXGVQqjIWe4Mwm86wAsZ1Ejo8TYwgNeesBLD3gCOyvQ3sykXgJOsSIB0mFdoov7dwvd1NPlvFShRRDyjAReROj_ftzaMAGxYpSbCV49e3UEnSqoaLdO9Oq_v3wLD4ano6Py6NPx4Wt4GC6bQ57LG1hffF_W28hWFtVO8M0_iTnq7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTZqQENr4MQLbsBCvWRrHju3HqVvZGB0VMGlvkWPHo2JLq7WV4P_i7-Bv4mynY0U88WxHir4729_Zd98BvDVaF8jkTVrWzKZMKp5qYfK05j3X4Jhocl-cPDwvTy7Y-0t-ea_VV0jaN_X4oL2-OWjHX0Nu5fTGZMs8sWw07BfUp53xbGpd9gA2cM32ymWg3m3CyMtj9UlOvQKniKJCtChEZutwK8hpEAJW0r8crpxKj6Z6hgC52NniX9Tz7wzKe0fSYAsed1ySHMZ_3oa1pn0Cm8PutfwpfDxaTHBbwSmjs3766yfRrSX90BD3B3K-b743BPk8vvJcvL0ih9_HM_Ip9qZvZuRdTGYno6gJi_Z7BheD4y_9k7RroJAa1mPzNC-dEGgk6UqlnJSFtrrmVPjqUmWddsxQLq0vGcyNyy2uXZb7bkZUOeakKZ7DejtpmxdArDbUlJJr21jmqNBaSoytFEZEznBnEnizBLCaRp2MCuMLD3jlAa884Ansr0B7N5N6GTjFygTIEusK3dy_Xei2mSxmlQptgpBrJLATof_zcWfDBMSKUe4meAXt1RF0rKCk3TnSy__-8jVsjo4G1YfT87NX8DDcN4dUl11Yn98umj0kLPN6P7jmb-qz7AI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Duodenal+PKC-%CE%B4+and+Cholecystokinin+Signaling+Axis+Regulates+Glucose+Production&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Breen%2C+Danna+M.&rft.au=Yue%2C+Jessica+T.Y.&rft.au=Rasmussen%2C+Brittany+A.&rft.au=Kokorovic%2C+Andrea&rft.date=2011-12-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=60&rft.issue=12&rft.spage=3148&rft.epage=3153&rft_id=info:doi/10.2337%2Fdb11-0852&rft_id=info%3Apmid%2F21984583&rft.externalDBID=PMC3219935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |