Development and validation of a machine learning model for prediction of cephalic dystocia
Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychologic...
Saved in:
Published in | BMC pregnancy and childbirth Vol. 25; no. 1; pp. 862 - 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
18.08.2025
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women.
We collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University's Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models.
Among the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia.
This study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery. |
---|---|
AbstractList | Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women.
We collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University's Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models.
Among the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia.
This study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery. Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women.BACKGROUNDEarly detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women.We collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University's Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models.METHODSWe collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University's Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models.Among the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia.RESULTSAmong the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia.This study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery.CONCLUSIONSThis study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery. Abstract Background Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women. Methods We collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University’s Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models. Results Among the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia. Conclusions This study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery. |
ArticleNumber | 862 |
Author | Wu, Defang Wang, Xueyan Zhai, Jinguo Ran, Xuerong Yao, Zheng Huang, Yumei |
Author_xml | – sequence: 1 givenname: Yumei surname: Huang fullname: Huang, Yumei – sequence: 2 givenname: Xuerong surname: Ran fullname: Ran, Xuerong – sequence: 3 givenname: Xueyan surname: Wang fullname: Wang, Xueyan – sequence: 4 givenname: Defang surname: Wu fullname: Wu, Defang – sequence: 5 givenname: Zheng surname: Yao fullname: Yao, Zheng – sequence: 6 givenname: Jinguo surname: Zhai fullname: Zhai, Jinguo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40826332$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkklvFDEQRi0URBb4AxyQj1wavLS3E0JhixSJC1y4WNV29YyjbruxZ0bKv6fJJFFysmU_v7KqvnNykktGQt5y9oFzqz82LqztOyZUx4wzorMvyBnvDe-EdPLkyf6UnLd2wxg3VrFX5LRnVmgpxRn58wUPOJVlxryjkCM9wJQi7FLJtIwU6AxhmzLSCaHmlDd0LhEnOpZKl4oxhQc04LJd3wYab9uuhASvycsRpoZv7tcL8vvb11-XP7rrn9-vLj9fd6Fnve3QBae5UqbXgkkrrBGRYwzK6Bj1gHzoVWDBGa1h1KMdXLQQWdQuomEhygtydfTGAjd-qWmGeusLJH93UOrGQ92lMKHXxjIZQLkxQq-VA6EQhOY2sBGHOKyuT0fXsh_m9RNrVypMz6TPb3La-k05eC6klkzp1fD-3lDL3z22nZ9TCzhNkLHsm5eiZ45zIeyKvnta7LHKw3RWQByBUEtrFcdHhDP_PwL-GAG_RsDfRcBb-Q-uj6Td |
Cites_doi | 10.1186/s12884-022-04594-2 10.1186/s12884-023-06041-2 10.1136/bmjgh-2021-005671 10.1016/j.ajog.2021.02.035 10.1002/uog.21878 10.1016/j.ajog.2014.01.026 10.1001/jama.2013.281053 10.3389/fpubh.2023.1143019 10.1055/s-2007-994058 10.1111/ajo.12620 10.1016/j.midw.2021.103203 10.1371/journal.pmed.1002220 10.1002/uog.19072 10.3109/01674820009085591 10.1016/S1470-2045(19)30149-4 10.1037/a0016973 10.1001/jamapediatrics.2017.3785 10.1097/JTO.0b013e3181ec173d 10.1097/AOG.0000000000005447 10.7326/0003-4819-147-8-200710160-00010 10.1016/j.janxdis.2016.10.007 10.1016/0002-9378(54)90311-7 10.1016/j.jogn.2016.06.003 10.1002/ijgo.15244 10.1016/j.ejogrb.2022.04.007 10.1002/uog.24981 10.1186/s12884-025-07203-0 10.1016/j.srhc.2023.100855 10.1016/j.fertnstert.2017.10.019 10.1097/AOG.0000000000003074 10.1016/j.midw.2013.03.010 10.1002/sam.11583 10.1016/j.ajog.2019.12.267 10.1002/nur.20400 10.1038/s41598-023-47457-2 10.1002/nur.4770160209 10.1186/s12884-015-0721-y 10.1097/AOG.0b013e3181fdef6e 10.1097/YCO.0b013e3283503680 10.1371/journal.pone.0239045 10.1016/j.fertnstert.2015.09.007 10.1016/j.wombi.2018.05.004 10.1016/j.earlhumdev.2005.06.003 10.62347/PEDV7297 10.1002/14651858.CD006167.pub3 10.1016/j.ajogmf.2020.100100 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1186/s12884-025-07972-8 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2393 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_67803ca59fda4659a25ea2618c0febdb PMC12363056 40826332 10_1186_s12884_025_07972_8 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 6PF 7RV 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BCNDV BENPR BFQNJ BKNYI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK IAO ICW IHR INH INR ITC K9- KQ8 M0R M1P M~E N8Y NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ TR2 TUS UKHRP W2D WOQ WOW XSB ~8M NPM PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c4048-e9c9615574620382872d1edc576dd6be1b45c0c9766af6f8b9d8ad0d69de70cd3 |
IEDL.DBID | DOA |
ISSN | 1471-2393 |
IngestDate | Wed Aug 27 01:31:28 EDT 2025 Sat Aug 23 05:21:36 EDT 2025 Wed Aug 20 00:34:34 EDT 2025 Thu Aug 28 04:25:25 EDT 2025 Thu Aug 21 00:28:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cephalic dystocia Risk assessment Machine learning Prediction model |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4048-e9c9615574620382872d1edc576dd6be1b45c0c9766af6f8b9d8ad0d69de70cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/67803ca59fda4659a25ea2618c0febdb |
PMID | 40826332 |
PQID | 3240911228 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_67803ca59fda4659a25ea2618c0febdb pubmedcentral_primary_oai_pubmedcentral_nih_gov_12363056 proquest_miscellaneous_3240911228 pubmed_primary_40826332 crossref_primary_10_1186_s12884_025_07972_8 |
PublicationCentury | 2000 |
PublicationDate | 20250818 |
PublicationDateYYYYMMDD | 2025-08-18 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250818 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC pregnancy and childbirth |
PublicationTitleAlternate | BMC Pregnancy Childbirth |
PublicationYear | 2025 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | G Dai (7972_CR26) 2024; 14 T Sha (7972_CR57) 2018; 109 R Larad (7972_CR47) 2022; 274 A Dall’Asta (7972_CR46) 2023; 61 AR Oduro (7972_CR43) 2023; 23 RJ Brunton (7972_CR30) 2019; 32 World Medical Association (7972_CR20) 2013; 310 KF Walker (7972_CR6) 2018; 11 I Mylonas (7972_CR25) 2015; 112 KM Rozdarz (7972_CR56) 2017; 57 NK Lowe (7972_CR32) 2000; 21 AP Betran (7972_CR1) 2021; 6 MN Islam (7972_CR17) 2022; 22 LL Gao (7972_CR29) 2011; 34 7972_CR35 7972_CR33 I Marić (7972_CR19) 2020; 2 S Shinohara (7972_CR41) 2020; 15 H Qi (7972_CR7) 2005; 21 T Kiserud (7972_CR45) 2017; 14 WW To (7972_CR49) 1998; 15 7972_CR31 EL Tilden (7972_CR14) 2016; 45 J Zhang (7972_CR9) 2010; 116 NM Jayawant (7972_CR40) 2010; 5 GS Collins (7972_CR22) 2015; 350 C Dunkel Schetter (7972_CR24) 2012; 25 E von Elm (7972_CR21) 2007; 147 YY Song (7972_CR37) 2015; 27 B Liu (7972_CR34) 2025; 25 E Rondung (7972_CR23) 2016; 44 X Zhong (7972_CR39) 2023; 11 A Dall’Asta (7972_CR5) 2021; 225 7972_CR3 7972_CR2 T Ghi (7972_CR12) 2018; 52 AB Caughey (7972_CR4) 2014; 210 NK Lowe (7972_CR28) 1993; 16 KY Ngiam (7972_CR16) 2019; 20 S Jochumsen (7972_CR42) 2023; 36 S Bernitz (7972_CR53) 2014; 30 J Fenwick (7972_CR54) 2015; 15 A Tsur (7972_CR13) 2020; 56 AN Battarbee (7972_CR50) 2021; 38 7972_CR18 E Friedman (7972_CR8) 1954; 68 C Zhang (7972_CR44) 2018; 172 N Enomoto (7972_CR10) 2023; 13 ACOG Committee OpinionNo (7972_CR52) 2019; 133 B Afework (7972_CR11) 2024; 164 7972_CR55 M Dwiarini (7972_CR15) 2022; 105 B Knight (7972_CR48) 2005; 81 M Pavlou (7972_CR36) 2015; 351 7972_CR51 C Strobl (7972_CR38) 2009; 14 L Ling (7972_CR27) 1994; 10 |
References_xml | – volume: 22 start-page: 348 issue: 1 year: 2022 ident: 7972_CR17 publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-022-04594-2 – volume: 23 start-page: 728 issue: 1 year: 2023 ident: 7972_CR43 publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-023-06041-2 – volume: 6 start-page: e005671 issue: 6 year: 2021 ident: 7972_CR1 publication-title: BMJ Glob Health doi: 10.1136/bmjgh-2021-005671 – volume: 225 start-page: e171171 issue: 2 year: 2021 ident: 7972_CR5 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2021.02.035 – volume: 56 start-page: 588 issue: 4 year: 2020 ident: 7972_CR13 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.21878 – volume: 210 start-page: 179 issue: 3 year: 2014 ident: 7972_CR4 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2014.01.026 – volume: 310 start-page: 2191 issue: 20 year: 2013 ident: 7972_CR20 publication-title: JAMA doi: 10.1001/jama.2013.281053 – volume: 11 start-page: 1143019 year: 2023 ident: 7972_CR39 publication-title: Front Public Health doi: 10.3389/fpubh.2023.1143019 – volume: 15 start-page: 545 issue: 9 year: 1998 ident: 7972_CR49 publication-title: Am J Perinatol doi: 10.1055/s-2007-994058 – ident: 7972_CR3 – volume: 57 start-page: 588 issue: 6 year: 2017 ident: 7972_CR56 publication-title: Aust N Z J Obstet Gynaecol doi: 10.1111/ajo.12620 – ident: 7972_CR31 – volume: 105 start-page: 103203 year: 2022 ident: 7972_CR15 publication-title: Midwifery doi: 10.1016/j.midw.2021.103203 – volume: 14 start-page: e1002220 issue: 1 year: 2017 ident: 7972_CR45 publication-title: PLoS Med doi: 10.1371/journal.pmed.1002220 – volume: 52 start-page: 128 issue: 1 year: 2018 ident: 7972_CR12 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.19072 – volume: 11 start-page: CD008070 issue: 11 year: 2018 ident: 7972_CR6 publication-title: Cochrane Database Syst Rev – volume: 21 start-page: 219 issue: 4 year: 2000 ident: 7972_CR32 publication-title: J Psychosom Obstet Gynaecol doi: 10.3109/01674820009085591 – volume: 20 start-page: e262 issue: 5 year: 2019 ident: 7972_CR16 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30149-4 – volume: 14 start-page: 323 issue: 4 year: 2009 ident: 7972_CR38 publication-title: Psychol Methods doi: 10.1037/a0016973 – volume: 172 start-page: 24 issue: 1 year: 2018 ident: 7972_CR44 publication-title: JAMA Pediatr doi: 10.1001/jamapediatrics.2017.3785 – volume: 5 start-page: 1315 issue: 9 year: 2010 ident: 7972_CR40 publication-title: J Thorac Oncol doi: 10.1097/JTO.0b013e3181ec173d – ident: 7972_CR2 doi: 10.1097/AOG.0000000000005447 – volume: 147 start-page: 573 issue: 8 year: 2007 ident: 7972_CR21 publication-title: Ann Intern Med doi: 10.7326/0003-4819-147-8-200710160-00010 – volume: 351 start-page: h3868 year: 2015 ident: 7972_CR36 publication-title: BMJ (Clinical Res Ed – volume: 112 start-page: 489 issue: 29–30 year: 2015 ident: 7972_CR25 publication-title: Deutsches Arzteblatt Int – volume: 44 start-page: 80 year: 2016 ident: 7972_CR23 publication-title: J Anxiety Disord doi: 10.1016/j.janxdis.2016.10.007 – volume: 68 start-page: 1568 issue: 6 year: 1954 ident: 7972_CR8 publication-title: Am J Obstet Gynecol doi: 10.1016/0002-9378(54)90311-7 – volume: 45 start-page: 465 issue: 4 year: 2016 ident: 7972_CR14 publication-title: JOGNN doi: 10.1016/j.jogn.2016.06.003 – volume: 164 start-page: 1028 issue: 3 year: 2024 ident: 7972_CR11 publication-title: Int J Gynecol Obstet doi: 10.1002/ijgo.15244 – volume: 21 start-page: 264 issue: 05 year: 2005 ident: 7972_CR7 publication-title: Chin J Practical Gynecol Obstet – volume: 274 start-page: 34 year: 2022 ident: 7972_CR47 publication-title: Eur J Obstet Gynecol Reprod Biol doi: 10.1016/j.ejogrb.2022.04.007 – volume: 61 start-page: 93 issue: 1 year: 2023 ident: 7972_CR46 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.24981 – volume: 27 start-page: 130 issue: 2 year: 2015 ident: 7972_CR37 publication-title: Shanghai Archives Psychiatry – volume: 25 start-page: 243 issue: 1 year: 2025 ident: 7972_CR34 publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-025-07203-0 – volume: 36 start-page: 100855 year: 2023 ident: 7972_CR42 publication-title: Sex Reproductive Healthcare: Official J Swed Association Midwives doi: 10.1016/j.srhc.2023.100855 – volume: 109 start-page: 330 issue: 2 year: 2018 ident: 7972_CR57 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2017.10.019 – volume: 133 start-page: e164 issue: 2 year: 2019 ident: 7972_CR52 publication-title: Obstet Gynecol doi: 10.1097/AOG.0000000000003074 – volume: 30 start-page: 364 issue: 3 year: 2014 ident: 7972_CR53 publication-title: Midwifery doi: 10.1016/j.midw.2013.03.010 – ident: 7972_CR35 doi: 10.1002/sam.11583 – ident: 7972_CR18 doi: 10.1016/j.ajog.2019.12.267 – volume: 34 start-page: 49 issue: 1 year: 2011 ident: 7972_CR29 publication-title: Res Nurs Health doi: 10.1002/nur.20400 – ident: 7972_CR33 – volume: 13 start-page: 20945 issue: 1 year: 2023 ident: 7972_CR10 publication-title: Sci Rep doi: 10.1038/s41598-023-47457-2 – volume: 10 start-page: 194 issue: 04 year: 1994 ident: 7972_CR27 publication-title: Chin J Practical Gynecol Obstet – volume: 16 start-page: 141 issue: 2 year: 1993 ident: 7972_CR28 publication-title: Res Nurs Health doi: 10.1002/nur.4770160209 – volume: 15 start-page: 284 year: 2015 ident: 7972_CR54 publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-015-0721-y – volume: 116 start-page: 1281 issue: 6 year: 2010 ident: 7972_CR9 publication-title: Obstet Gynecol doi: 10.1097/AOG.0b013e3181fdef6e – volume: 25 start-page: 141 issue: 2 year: 2012 ident: 7972_CR24 publication-title: Curr Opin Psychiatry doi: 10.1097/YCO.0b013e3283503680 – volume: 15 start-page: e0239045 issue: 10 year: 2020 ident: 7972_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0239045 – ident: 7972_CR55 doi: 10.1016/j.fertnstert.2015.09.007 – volume: 32 start-page: e118 issue: 1 year: 2019 ident: 7972_CR30 publication-title: Women Birth: J Australian Coll Midwives doi: 10.1016/j.wombi.2018.05.004 – volume: 350 start-page: g7594 year: 2015 ident: 7972_CR22 publication-title: BMJ (Clinical Res ed) – volume: 81 start-page: 823 issue: 10 year: 2005 ident: 7972_CR48 publication-title: Early Hum Dev doi: 10.1016/j.earlhumdev.2005.06.003 – volume: 14 start-page: 5216 issue: 11 year: 2024 ident: 7972_CR26 publication-title: Am J Cancer Res doi: 10.62347/PEDV7297 – ident: 7972_CR51 doi: 10.1002/14651858.CD006167.pub3 – volume: 2 start-page: 100100 issue: 2 year: 2020 ident: 7972_CR19 publication-title: Am J Obstet Gynecol MFM doi: 10.1016/j.ajogmf.2020.100100 – volume: 38 start-page: e239 issue: 01 year: 2021 ident: 7972_CR50 publication-title: Am J Perinatol |
SSID | ssj0017850 |
Score | 2.403375 |
Snippet | Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the... Abstract Background Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 862 |
SubjectTerms | Cephalic dystocia Machine learning Prediction model Risk assessment |
Title | Development and validation of a machine learning model for prediction of cephalic dystocia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40826332 https://www.proquest.com/docview/3240911228 https://pubmed.ncbi.nlm.nih.gov/PMC12363056 https://doaj.org/article/67803ca59fda4659a25ea2618c0febdb |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA92C9KLaLV1bbuk4E0Gs5lMPo5dUURQRCosXkKSl6kenF1cPfjf-5KZWXal0Esvc5jJzDzeL3kf5OX3CDmEdFoR3LiIQZSFkL4snDBjXO4uoIeVqs5k1ZdX8vxWXEyr6Uqrr1QT1tIDt4o7RmPKyuAqU4MTsjKOV9Fh2K8Dq6MHn6wv-rw-mer2D5SuWH9ERsvjBVphLYrUupUpo9AGrLmhzNb_txDzfaXkius52yZbXcxIf7Wy7pCN2Hwmm5fdrvguuVup_KGuAYqz56HtlURnNXX0MVdMRtq1iPhDc_8bivEqnT-lz_RDQ5zf47uBwisGhQjbHrk9O_19cl50PROKIHAxFtEEk7YalZCclYnNnsMY5ce0AkD6OPaiCixgECJdLWvtDWgHDKSBqFiA8gsZNLMm7qfT3NJXvAbPlReocO8MGFUnLBhgJDgkR70K7bylxrA5pdDStgq3qHCbFW71kEySlpcjE611voFg2w5s-y-wh-Rnj5HFZZD2NlwTZy8Lm3gF0W5zjj_62mK2_FXqqS3Lkg-JXkNzTZb1J83DfabaTtw0Kck6-B_SfyOfeJ6CmLfr72Tw_PQSf2BI8-xH5IOaqhH5ODm9ur4Z5bmM15vJ3Rt61fjo |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+a+machine+learning+model+for+prediction+of+cephalic+dystocia&rft.jtitle=BMC+pregnancy+and+childbirth&rft.au=Huang%2C+Yumei&rft.au=Ran%2C+Xuerong&rft.au=Wang%2C+Xueyan&rft.au=Wu%2C+Defang&rft.date=2025-08-18&rft.pub=BioMed+Central&rft.eissn=1471-2393&rft.volume=25&rft_id=info:doi/10.1186%2Fs12884-025-07972-8&rft_id=info%3Apmid%2F40826332&rft.externalDocID=PMC12363056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2393&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2393&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2393&client=summon |