Development and validation of a machine learning model for prediction of cephalic dystocia

Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychologic...

Full description

Saved in:
Bibliographic Details
Published inBMC pregnancy and childbirth Vol. 25; no. 1; pp. 862 - 12
Main Authors Huang, Yumei, Ran, Xuerong, Wang, Xueyan, Wu, Defang, Yao, Zheng, Zhai, Jinguo
Format Journal Article
LanguageEnglish
Published England BioMed Central 18.08.2025
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women. We collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University's Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models. Among the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia. This study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery.
AbstractList Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women. We collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University's Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models. Among the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia. This study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery.
Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women.BACKGROUNDEarly detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women.We collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University's Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models.METHODSWe collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University's Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models.Among the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia.RESULTSAmong the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia.This study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery.CONCLUSIONSThis study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery.
Abstract Background Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the generation of predictive models using various types of clinical data. Our model aims to integrate objective ultrasound data with psychological and sociological characteristics and obstetric treatment data to predict the individual probability of cephalic dystocia in pregnant women. Methods We collected data from 302 pregnant women who underwent examinations and deliveries at Southern Medical University’s Nanfang Hospital from January 2022 to December 2023. We utilized basic patient characteristics, foetal ultrasound parameters, maternal anthropometric data, maternal psychological measurements, and obstetric medical records to train and test the machine learning models. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select predictive factors, followed by the development of logistic regression, decision tree, and random forest machine learning models. The precision, accuracy, recall, F1-score, and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the performance of the models. Results Among the three machine learning models, the LASSO-based logistic regression model demonstrated the best predictive performance, with an AUC value of 0.914. We found that maternal ischial spine diameter, fetal head circumference-to-maternal height ratio, artificial rupture of membranes, childbirth self-efficacy, and other 11 variables were predictive factors for cephalic dystocia. Conclusions This study applied a LASSO-based logistic regression prediction model for cephalic dystocia. The model demonstrated good predictive performance and can assist in selecting the appropriate mode of delivery.
ArticleNumber 862
Author Wu, Defang
Wang, Xueyan
Zhai, Jinguo
Ran, Xuerong
Yao, Zheng
Huang, Yumei
Author_xml – sequence: 1
  givenname: Yumei
  surname: Huang
  fullname: Huang, Yumei
– sequence: 2
  givenname: Xuerong
  surname: Ran
  fullname: Ran, Xuerong
– sequence: 3
  givenname: Xueyan
  surname: Wang
  fullname: Wang, Xueyan
– sequence: 4
  givenname: Defang
  surname: Wu
  fullname: Wu, Defang
– sequence: 5
  givenname: Zheng
  surname: Yao
  fullname: Yao, Zheng
– sequence: 6
  givenname: Jinguo
  surname: Zhai
  fullname: Zhai, Jinguo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40826332$$D View this record in MEDLINE/PubMed
BookMark eNpVkklvFDEQRi0URBb4AxyQj1wavLS3E0JhixSJC1y4WNV29YyjbruxZ0bKv6fJJFFysmU_v7KqvnNykktGQt5y9oFzqz82LqztOyZUx4wzorMvyBnvDe-EdPLkyf6UnLd2wxg3VrFX5LRnVmgpxRn58wUPOJVlxryjkCM9wJQi7FLJtIwU6AxhmzLSCaHmlDd0LhEnOpZKl4oxhQc04LJd3wYab9uuhASvycsRpoZv7tcL8vvb11-XP7rrn9-vLj9fd6Fnve3QBae5UqbXgkkrrBGRYwzK6Bj1gHzoVWDBGa1h1KMdXLQQWdQuomEhygtydfTGAjd-qWmGeusLJH93UOrGQ92lMKHXxjIZQLkxQq-VA6EQhOY2sBGHOKyuT0fXsh_m9RNrVypMz6TPb3La-k05eC6klkzp1fD-3lDL3z22nZ9TCzhNkLHsm5eiZ45zIeyKvnta7LHKw3RWQByBUEtrFcdHhDP_PwL-GAG_RsDfRcBb-Q-uj6Td
Cites_doi 10.1186/s12884-022-04594-2
10.1186/s12884-023-06041-2
10.1136/bmjgh-2021-005671
10.1016/j.ajog.2021.02.035
10.1002/uog.21878
10.1016/j.ajog.2014.01.026
10.1001/jama.2013.281053
10.3389/fpubh.2023.1143019
10.1055/s-2007-994058
10.1111/ajo.12620
10.1016/j.midw.2021.103203
10.1371/journal.pmed.1002220
10.1002/uog.19072
10.3109/01674820009085591
10.1016/S1470-2045(19)30149-4
10.1037/a0016973
10.1001/jamapediatrics.2017.3785
10.1097/JTO.0b013e3181ec173d
10.1097/AOG.0000000000005447
10.7326/0003-4819-147-8-200710160-00010
10.1016/j.janxdis.2016.10.007
10.1016/0002-9378(54)90311-7
10.1016/j.jogn.2016.06.003
10.1002/ijgo.15244
10.1016/j.ejogrb.2022.04.007
10.1002/uog.24981
10.1186/s12884-025-07203-0
10.1016/j.srhc.2023.100855
10.1016/j.fertnstert.2017.10.019
10.1097/AOG.0000000000003074
10.1016/j.midw.2013.03.010
10.1002/sam.11583
10.1016/j.ajog.2019.12.267
10.1002/nur.20400
10.1038/s41598-023-47457-2
10.1002/nur.4770160209
10.1186/s12884-015-0721-y
10.1097/AOG.0b013e3181fdef6e
10.1097/YCO.0b013e3283503680
10.1371/journal.pone.0239045
10.1016/j.fertnstert.2015.09.007
10.1016/j.wombi.2018.05.004
10.1016/j.earlhumdev.2005.06.003
10.62347/PEDV7297
10.1002/14651858.CD006167.pub3
10.1016/j.ajogmf.2020.100100
ContentType Journal Article
Copyright 2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1186/s12884-025-07972-8
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2393
EndPage 12
ExternalDocumentID oai_doaj_org_article_67803ca59fda4659a25ea2618c0febdb
PMC12363056
40826332
10_1186_s12884_025_07972_8
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7RV
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BKNYI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
IAO
ICW
IHR
INH
INR
ITC
K9-
KQ8
M0R
M1P
M~E
N8Y
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
~8M
NPM
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c4048-e9c9615574620382872d1edc576dd6be1b45c0c9766af6f8b9d8ad0d69de70cd3
IEDL.DBID DOA
ISSN 1471-2393
IngestDate Wed Aug 27 01:31:28 EDT 2025
Sat Aug 23 05:21:36 EDT 2025
Wed Aug 20 00:34:34 EDT 2025
Thu Aug 28 04:25:25 EDT 2025
Thu Aug 21 00:28:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cephalic dystocia
Risk assessment
Machine learning
Prediction model
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4048-e9c9615574620382872d1edc576dd6be1b45c0c9766af6f8b9d8ad0d69de70cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/67803ca59fda4659a25ea2618c0febdb
PMID 40826332
PQID 3240911228
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_67803ca59fda4659a25ea2618c0febdb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12363056
proquest_miscellaneous_3240911228
pubmed_primary_40826332
crossref_primary_10_1186_s12884_025_07972_8
PublicationCentury 2000
PublicationDate 20250818
PublicationDateYYYYMMDD 2025-08-18
PublicationDate_xml – month: 8
  year: 2025
  text: 20250818
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC pregnancy and childbirth
PublicationTitleAlternate BMC Pregnancy Childbirth
PublicationYear 2025
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References G Dai (7972_CR26) 2024; 14
T Sha (7972_CR57) 2018; 109
R Larad (7972_CR47) 2022; 274
A Dall’Asta (7972_CR46) 2023; 61
AR Oduro (7972_CR43) 2023; 23
RJ Brunton (7972_CR30) 2019; 32
World Medical Association (7972_CR20) 2013; 310
KF Walker (7972_CR6) 2018; 11
I Mylonas (7972_CR25) 2015; 112
KM Rozdarz (7972_CR56) 2017; 57
NK Lowe (7972_CR32) 2000; 21
AP Betran (7972_CR1) 2021; 6
MN Islam (7972_CR17) 2022; 22
LL Gao (7972_CR29) 2011; 34
7972_CR35
7972_CR33
I Marić (7972_CR19) 2020; 2
S Shinohara (7972_CR41) 2020; 15
H Qi (7972_CR7) 2005; 21
T Kiserud (7972_CR45) 2017; 14
WW To (7972_CR49) 1998; 15
7972_CR31
EL Tilden (7972_CR14) 2016; 45
J Zhang (7972_CR9) 2010; 116
NM Jayawant (7972_CR40) 2010; 5
GS Collins (7972_CR22) 2015; 350
C Dunkel Schetter (7972_CR24) 2012; 25
E von Elm (7972_CR21) 2007; 147
YY Song (7972_CR37) 2015; 27
B Liu (7972_CR34) 2025; 25
E Rondung (7972_CR23) 2016; 44
X Zhong (7972_CR39) 2023; 11
A Dall’Asta (7972_CR5) 2021; 225
7972_CR3
7972_CR2
T Ghi (7972_CR12) 2018; 52
AB Caughey (7972_CR4) 2014; 210
NK Lowe (7972_CR28) 1993; 16
KY Ngiam (7972_CR16) 2019; 20
S Jochumsen (7972_CR42) 2023; 36
S Bernitz (7972_CR53) 2014; 30
J Fenwick (7972_CR54) 2015; 15
A Tsur (7972_CR13) 2020; 56
AN Battarbee (7972_CR50) 2021; 38
7972_CR18
E Friedman (7972_CR8) 1954; 68
C Zhang (7972_CR44) 2018; 172
N Enomoto (7972_CR10) 2023; 13
ACOG Committee OpinionNo (7972_CR52) 2019; 133
B Afework (7972_CR11) 2024; 164
7972_CR55
M Dwiarini (7972_CR15) 2022; 105
B Knight (7972_CR48) 2005; 81
M Pavlou (7972_CR36) 2015; 351
7972_CR51
C Strobl (7972_CR38) 2009; 14
L Ling (7972_CR27) 1994; 10
References_xml – volume: 22
  start-page: 348
  issue: 1
  year: 2022
  ident: 7972_CR17
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-022-04594-2
– volume: 23
  start-page: 728
  issue: 1
  year: 2023
  ident: 7972_CR43
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-023-06041-2
– volume: 6
  start-page: e005671
  issue: 6
  year: 2021
  ident: 7972_CR1
  publication-title: BMJ Glob Health
  doi: 10.1136/bmjgh-2021-005671
– volume: 225
  start-page: e171171
  issue: 2
  year: 2021
  ident: 7972_CR5
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2021.02.035
– volume: 56
  start-page: 588
  issue: 4
  year: 2020
  ident: 7972_CR13
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.21878
– volume: 210
  start-page: 179
  issue: 3
  year: 2014
  ident: 7972_CR4
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2014.01.026
– volume: 310
  start-page: 2191
  issue: 20
  year: 2013
  ident: 7972_CR20
  publication-title: JAMA
  doi: 10.1001/jama.2013.281053
– volume: 11
  start-page: 1143019
  year: 2023
  ident: 7972_CR39
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2023.1143019
– volume: 15
  start-page: 545
  issue: 9
  year: 1998
  ident: 7972_CR49
  publication-title: Am J Perinatol
  doi: 10.1055/s-2007-994058
– ident: 7972_CR3
– volume: 57
  start-page: 588
  issue: 6
  year: 2017
  ident: 7972_CR56
  publication-title: Aust N Z J Obstet Gynaecol
  doi: 10.1111/ajo.12620
– ident: 7972_CR31
– volume: 105
  start-page: 103203
  year: 2022
  ident: 7972_CR15
  publication-title: Midwifery
  doi: 10.1016/j.midw.2021.103203
– volume: 14
  start-page: e1002220
  issue: 1
  year: 2017
  ident: 7972_CR45
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002220
– volume: 52
  start-page: 128
  issue: 1
  year: 2018
  ident: 7972_CR12
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.19072
– volume: 11
  start-page: CD008070
  issue: 11
  year: 2018
  ident: 7972_CR6
  publication-title: Cochrane Database Syst Rev
– volume: 21
  start-page: 219
  issue: 4
  year: 2000
  ident: 7972_CR32
  publication-title: J Psychosom Obstet Gynaecol
  doi: 10.3109/01674820009085591
– volume: 20
  start-page: e262
  issue: 5
  year: 2019
  ident: 7972_CR16
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30149-4
– volume: 14
  start-page: 323
  issue: 4
  year: 2009
  ident: 7972_CR38
  publication-title: Psychol Methods
  doi: 10.1037/a0016973
– volume: 172
  start-page: 24
  issue: 1
  year: 2018
  ident: 7972_CR44
  publication-title: JAMA Pediatr
  doi: 10.1001/jamapediatrics.2017.3785
– volume: 5
  start-page: 1315
  issue: 9
  year: 2010
  ident: 7972_CR40
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0b013e3181ec173d
– ident: 7972_CR2
  doi: 10.1097/AOG.0000000000005447
– volume: 147
  start-page: 573
  issue: 8
  year: 2007
  ident: 7972_CR21
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-147-8-200710160-00010
– volume: 351
  start-page: h3868
  year: 2015
  ident: 7972_CR36
  publication-title: BMJ (Clinical Res Ed
– volume: 112
  start-page: 489
  issue: 29–30
  year: 2015
  ident: 7972_CR25
  publication-title: Deutsches Arzteblatt Int
– volume: 44
  start-page: 80
  year: 2016
  ident: 7972_CR23
  publication-title: J Anxiety Disord
  doi: 10.1016/j.janxdis.2016.10.007
– volume: 68
  start-page: 1568
  issue: 6
  year: 1954
  ident: 7972_CR8
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/0002-9378(54)90311-7
– volume: 45
  start-page: 465
  issue: 4
  year: 2016
  ident: 7972_CR14
  publication-title: JOGNN
  doi: 10.1016/j.jogn.2016.06.003
– volume: 164
  start-page: 1028
  issue: 3
  year: 2024
  ident: 7972_CR11
  publication-title: Int J Gynecol Obstet
  doi: 10.1002/ijgo.15244
– volume: 21
  start-page: 264
  issue: 05
  year: 2005
  ident: 7972_CR7
  publication-title: Chin J Practical Gynecol Obstet
– volume: 274
  start-page: 34
  year: 2022
  ident: 7972_CR47
  publication-title: Eur J Obstet Gynecol Reprod Biol
  doi: 10.1016/j.ejogrb.2022.04.007
– volume: 61
  start-page: 93
  issue: 1
  year: 2023
  ident: 7972_CR46
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.24981
– volume: 27
  start-page: 130
  issue: 2
  year: 2015
  ident: 7972_CR37
  publication-title: Shanghai Archives Psychiatry
– volume: 25
  start-page: 243
  issue: 1
  year: 2025
  ident: 7972_CR34
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-025-07203-0
– volume: 36
  start-page: 100855
  year: 2023
  ident: 7972_CR42
  publication-title: Sex Reproductive Healthcare: Official J Swed Association Midwives
  doi: 10.1016/j.srhc.2023.100855
– volume: 109
  start-page: 330
  issue: 2
  year: 2018
  ident: 7972_CR57
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2017.10.019
– volume: 133
  start-page: e164
  issue: 2
  year: 2019
  ident: 7972_CR52
  publication-title: Obstet Gynecol
  doi: 10.1097/AOG.0000000000003074
– volume: 30
  start-page: 364
  issue: 3
  year: 2014
  ident: 7972_CR53
  publication-title: Midwifery
  doi: 10.1016/j.midw.2013.03.010
– ident: 7972_CR35
  doi: 10.1002/sam.11583
– ident: 7972_CR18
  doi: 10.1016/j.ajog.2019.12.267
– volume: 34
  start-page: 49
  issue: 1
  year: 2011
  ident: 7972_CR29
  publication-title: Res Nurs Health
  doi: 10.1002/nur.20400
– ident: 7972_CR33
– volume: 13
  start-page: 20945
  issue: 1
  year: 2023
  ident: 7972_CR10
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-47457-2
– volume: 10
  start-page: 194
  issue: 04
  year: 1994
  ident: 7972_CR27
  publication-title: Chin J Practical Gynecol Obstet
– volume: 16
  start-page: 141
  issue: 2
  year: 1993
  ident: 7972_CR28
  publication-title: Res Nurs Health
  doi: 10.1002/nur.4770160209
– volume: 15
  start-page: 284
  year: 2015
  ident: 7972_CR54
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-015-0721-y
– volume: 116
  start-page: 1281
  issue: 6
  year: 2010
  ident: 7972_CR9
  publication-title: Obstet Gynecol
  doi: 10.1097/AOG.0b013e3181fdef6e
– volume: 25
  start-page: 141
  issue: 2
  year: 2012
  ident: 7972_CR24
  publication-title: Curr Opin Psychiatry
  doi: 10.1097/YCO.0b013e3283503680
– volume: 15
  start-page: e0239045
  issue: 10
  year: 2020
  ident: 7972_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0239045
– ident: 7972_CR55
  doi: 10.1016/j.fertnstert.2015.09.007
– volume: 32
  start-page: e118
  issue: 1
  year: 2019
  ident: 7972_CR30
  publication-title: Women Birth: J Australian Coll Midwives
  doi: 10.1016/j.wombi.2018.05.004
– volume: 350
  start-page: g7594
  year: 2015
  ident: 7972_CR22
  publication-title: BMJ (Clinical Res ed)
– volume: 81
  start-page: 823
  issue: 10
  year: 2005
  ident: 7972_CR48
  publication-title: Early Hum Dev
  doi: 10.1016/j.earlhumdev.2005.06.003
– volume: 14
  start-page: 5216
  issue: 11
  year: 2024
  ident: 7972_CR26
  publication-title: Am J Cancer Res
  doi: 10.62347/PEDV7297
– ident: 7972_CR51
  doi: 10.1002/14651858.CD006167.pub3
– volume: 2
  start-page: 100100
  issue: 2
  year: 2020
  ident: 7972_CR19
  publication-title: Am J Obstet Gynecol MFM
  doi: 10.1016/j.ajogmf.2020.100100
– volume: 38
  start-page: e239
  issue: 01
  year: 2021
  ident: 7972_CR50
  publication-title: Am J Perinatol
SSID ssj0017850
Score 2.403375
Snippet Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique advantages, enabling the...
Abstract Background Early detection of cephalic dystocia is challenging, and current clinical assessment tools are limited. Machine learning offers unique...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 862
SubjectTerms Cephalic dystocia
Machine learning
Prediction model
Risk assessment
Title Development and validation of a machine learning model for prediction of cephalic dystocia
URI https://www.ncbi.nlm.nih.gov/pubmed/40826332
https://www.proquest.com/docview/3240911228
https://pubmed.ncbi.nlm.nih.gov/PMC12363056
https://doaj.org/article/67803ca59fda4659a25ea2618c0febdb
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA92C9KLaLV1bbuk4E0Gs5lMPo5dUURQRCosXkKSl6kenF1cPfjf-5KZWXal0Esvc5jJzDzeL3kf5OX3CDmEdFoR3LiIQZSFkL4snDBjXO4uoIeVqs5k1ZdX8vxWXEyr6Uqrr1QT1tIDt4o7RmPKyuAqU4MTsjKOV9Fh2K8Dq6MHn6wv-rw-mer2D5SuWH9ERsvjBVphLYrUupUpo9AGrLmhzNb_txDzfaXkius52yZbXcxIf7Wy7pCN2Hwmm5fdrvguuVup_KGuAYqz56HtlURnNXX0MVdMRtq1iPhDc_8bivEqnT-lz_RDQ5zf47uBwisGhQjbHrk9O_19cl50PROKIHAxFtEEk7YalZCclYnNnsMY5ce0AkD6OPaiCixgECJdLWvtDWgHDKSBqFiA8gsZNLMm7qfT3NJXvAbPlReocO8MGFUnLBhgJDgkR70K7bylxrA5pdDStgq3qHCbFW71kEySlpcjE611voFg2w5s-y-wh-Rnj5HFZZD2NlwTZy8Lm3gF0W5zjj_62mK2_FXqqS3Lkg-JXkNzTZb1J83DfabaTtw0Kck6-B_SfyOfeJ6CmLfr72Tw_PQSf2BI8-xH5IOaqhH5ODm9ur4Z5bmM15vJ3Rt61fjo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+a+machine+learning+model+for+prediction+of+cephalic+dystocia&rft.jtitle=BMC+pregnancy+and+childbirth&rft.au=Huang%2C+Yumei&rft.au=Ran%2C+Xuerong&rft.au=Wang%2C+Xueyan&rft.au=Wu%2C+Defang&rft.date=2025-08-18&rft.pub=BioMed+Central&rft.eissn=1471-2393&rft.volume=25&rft_id=info:doi/10.1186%2Fs12884-025-07972-8&rft_id=info%3Apmid%2F40826332&rft.externalDocID=PMC12363056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2393&client=summon