Community and functional shifts in ammonia oxidizers across terrestrial and marine (soil/sediment) boundaries in two coastal Bay ecosystems
Summary Terrestrial–marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia‐oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA...
Saved in:
Published in | Environmental microbiology Vol. 20; no. 8; pp. 2834 - 2853 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Terrestrial–marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia‐oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil‐sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE‐sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil‐interface‐sediment gradient with salinity and pH identified as major environmental drivers. |
---|---|
AbstractList | Terrestrial–marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia‐oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil‐sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE‐sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil‐interface‐sediment gradient with salinity and pH identified as major environmental drivers. Summary Terrestrial–marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia‐oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil‐sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE‐sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil‐interface‐sediment gradient with salinity and pH identified as major environmental drivers. Terrestrial–marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia‐oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil‐sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE‐sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil‐interface‐sediment gradient with salinity and pH identified as major environmental drivers. Terrestrial-marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil-sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE-sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil-interface-sediment gradient with salinity and pH identified as major environmental drivers.Terrestrial-marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil-sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE-sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil-interface-sediment gradient with salinity and pH identified as major environmental drivers. |
Author | Duff, Aoife M. Smith, Cindy J. Zhang, Li‐Mei |
Author_xml | – sequence: 1 givenname: Li‐Mei surname: Zhang fullname: Zhang, Li‐Mei organization: Research Center for Eco‐Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Rd – sequence: 2 givenname: Aoife M. surname: Duff fullname: Duff, Aoife M. organization: NUI Galway, University Road – sequence: 3 givenname: Cindy J. orcidid: 0000-0003-4905-0730 surname: Smith fullname: Smith, Cindy J. email: Cindy.Smith@glasgow.ac.uk organization: NUI Galway, University Road |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29687546$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS3Uij5gzQ5ZYlMW07GvncRZwqiFSkVsYB05zo1wldjFdlTSv9A_XWemzKKb8cav7xzL55yRI-cdEvKBs0uex5rLElZQQ95KEOoNOd2fHO3XHE7IWYx3jPFKVOwtOYG6VFUhy1PytPHjODmbZqpdR_vJmWS90wONf2yfIrWO6nH0zmrq_9nOPmKIVJvgY6QJQ8CYgs34oh51sA7pRfR2WEfs7Igufaatn1yXr3Drlh48NV7HlEVf9UzR-DjHhGN8R457PUR8_zKfk9_XV78231e3P7_dbL7croxkUq2URi4AuqLqtZaik1jxFoTUrCpMIXpVISsrBS2AlgVILKAUpm-VqtuOdb04Jxc73_vg_075A81oo8Fh0A79FBvghShBVUIdRpngDMpa8Yx-eoXe-SnkJBfDDAEwVWfq4ws1tSN2zX2wObW5-d9IBtY7YBtxwH6PcNYsnTdLq83ScLPtPCuKVwpjk15aTEHb4bDuwQ44H3qmufpxs9M9A_-SvpQ |
CitedBy_id | crossref_primary_10_1016_j_ecss_2021_107666 crossref_primary_10_1128_msphere_00324_22 crossref_primary_10_1016_j_scitotenv_2024_174312 crossref_primary_10_1007_s11368_022_03219_7 crossref_primary_10_1016_j_apsoil_2022_104456 crossref_primary_10_1007_s11356_020_07952_9 crossref_primary_10_1016_j_soilbio_2022_108832 crossref_primary_10_1016_j_apsoil_2023_104978 crossref_primary_10_1016_j_apsoil_2021_104348 crossref_primary_10_1007_s00300_024_03307_z crossref_primary_10_3390_jof8020172 crossref_primary_10_1186_s13568_021_01321_6 crossref_primary_10_1016_j_scitotenv_2022_161167 crossref_primary_10_1007_s00253_024_13170_x crossref_primary_10_1007_s10452_022_09943_z crossref_primary_10_1016_j_scitotenv_2021_151402 crossref_primary_10_1111_1462_2920_15017 crossref_primary_10_1111_ejss_12911 crossref_primary_10_1111_ejss_13240 crossref_primary_10_1016_j_jhazmat_2019_121838 crossref_primary_10_3390_su152416551 crossref_primary_10_3389_fmicb_2024_1411753 crossref_primary_10_1007_s00248_023_02180_3 crossref_primary_10_1016_j_soilbio_2020_108123 crossref_primary_10_1007_s00338_022_02261_8 crossref_primary_10_1016_j_marpolbul_2024_116046 crossref_primary_10_1007_s00248_019_01359_x crossref_primary_10_3389_fmicb_2018_03122 crossref_primary_10_1016_j_scitotenv_2021_148470 crossref_primary_10_1128_msystems_01026_22 |
Cites_doi | 10.1111/j.1462-2920.2005.00906.x 10.1007/s10021-003-0161-9 10.1111/j.1462-2920.2005.00947.x 10.1093/bioinformatics/btq461 10.1128/AEM.05787-11 10.1046/j.1472-4669.2003.00010.x 10.1128/AEM.01318-10 10.1371/journal.pone.0051542 10.1111/j.1462-2920.2008.01764.x 10.1016/j.soilbio.2017.05.001 10.1038/ismej.2012.64 10.1371/journal.pone.0047330 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 10.1111/j.1462-2920.2008.01775.x 10.1007/0-387-30745-1_36 10.3389/fmicb.2012.00296 10.1146/annurev.micro.55.1.485 10.1073/pnas.0600756103 10.1111/j.1462-2920.2005.00963.x 10.1128/AEM.01970-13 10.1371/journal.pone.0016626 10.1111/1758-2229.12264 10.1111/j.1462-2920.2008.01578.x 10.1128/AEM.66.12.5488-5491.2000 10.1111/j.1462-2920.2007.01563.x 10.1007/s11368-013-0726-y 10.1016/B978-0-12-381294-0.00003-1 10.1038/ismej.2010.171 10.1016/S0167-7012(02)00026-X 10.1038/ismej.2011.168 10.1111/j.1462-2920.2005.00808.x 10.1111/j.1574-6941.2001.tb00868.x 10.1111/j.1462-2920.2007.01547.x 10.1016/j.tim.2006.03.004 10.1038/nature06592 10.1073/pnas.1107196108 10.1038/ismej.2007.8 10.1038/ismej.2014.11 10.3389/fmicb.2016.00137 10.1038/ngeo613 10.1111/j.1462-2920.2009.01891.x 10.1038/nmeth.f.303 10.1080/01490450902744004 10.1038/ismej.2012.45 10.1016/S0065-2911(08)60112-5 10.1111/j.1574-6976.2009.00179.x 10.1073/pnas.0608549103 10.3389/fmicb.2015.01367 10.1128/AEM.03035-13 10.1038/nature03911 10.1016/j.csr.2012.01.004 10.1073/pnas.0611081104 10.1128/AEM.69.10.6152-6164.2003 10.1128/AEM.02654-14 10.4319/lo.2014.59.4.1321 10.1038/nature08465 10.1111/j.1462-2920.2007.01358.x 10.1038/ismej.2013.75 10.3389/fmicb.2015.00938 10.1128/AEM.71.2.697-705.2005 10.1128/AEM.00136-11 10.1073/pnas.1109000108 10.1128/AEM.64.6.2266-2268.1998 10.1111/j.1462-2920.2005.00723.x 10.1111/j.1462-2920.2005.00698.x 10.1128/AEM.66.11.4605-4614.2000 10.1111/1462-2920.12141 10.1016/j.tim.2012.08.001 10.1093/molbev/mst197 10.1007/BF00943769 10.1073/pnas.1004947107 10.1128/AEM.62.11.4147-4154.1996 10.1111/j.1574-6941.2009.00775.x 10.1038/ismej.2013.35 10.5194/bg-9-4309-2012 10.3389/fmicb.2014.00743 10.1128/aem.61.4.1480-1487.1995 |
ContentType | Journal Article |
Copyright | 2018 Society for Applied Microbiology and John Wiley & Sons Ltd 2018 Society for Applied Microbiology and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2018 Society for Applied Microbiology and John Wiley & Sons Ltd – notice: 2018 Society for Applied Microbiology and John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
DOI | 10.1111/1462-2920.14238 |
DatabaseName | CrossRef PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 2853 |
ExternalDocumentID | 29687546 10_1111_1462_2920_14238 EMI14238 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Marie‐Curie Action COFUND funderid: 11/SIRG/B2159 – fundername: Science Foundation Ireland – fundername: Marie-Curie Action COFUND grantid: 11/SIRG/B2159 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4048-8ae1322d57faa43d4e71b234a075c53f87e06782b22a4524e5263cfb889bd0df3 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 1462-2920 |
IngestDate | Fri Jul 11 18:29:46 EDT 2025 Fri Jul 11 01:08:50 EDT 2025 Fri Jul 25 09:39:25 EDT 2025 Thu Apr 03 07:02:00 EDT 2025 Tue Jul 01 04:00:41 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 Wed Jan 22 17:01:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2018 Society for Applied Microbiology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4048-8ae1322d57faa43d4e71b234a075c53f87e06782b22a4524e5263cfb889bd0df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4905-0730 |
PMID | 29687546 |
PQID | 2110222089 |
PQPubID | 1066360 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2153628738 proquest_miscellaneous_2031026981 proquest_journals_2110222089 pubmed_primary_29687546 crossref_primary_10_1111_1462_2920_14238 crossref_citationtrail_10_1111_1462_2920_14238 wiley_primary_10_1111_1462_2920_14238_EMI14238 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 104 2017; 7 2010; 107 2002; 50 2013; 7 2017; 112 2009; 11 1989; 30 1995; 61 2014; 5 2013; 15 2010; 26 2015; 81 2013; 13 2003; 6 1982; 133 2007; 9 2014; 59 1996; 62 2005; 71 2003; 1 2001; 55 2007; 1 2014; 8 2011; 486 2010; 7 2012; 20 2015; 6 2015; 5 2006; 16 2000; 66 2006; 14 2005; 437 2006; 8 2011; 77 2006 2008; 10 2012; 35 2011; 6 2011; 5 1998; 64 2015; 7 2009; 26 2009; 33 2016; 7 2011; 108 2012; 3 2014; 80 2009; 70 2013; 79 2013; 30 2003; 69 2005; 7 2001; 37 2009; 461 2012; 6 2012; 7 2009; 2 2008; 451 2006; 103 2012; 9 e_1_2_8_28_1 Lipsewers Y.A. (e_1_2_8_46_1) 2014; 5 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 Duff A.M. (e_1_2_8_15_1) 2017; 7 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 8 start-page: 804 year: 2006 end-page: 815 article-title: Evaluation of quantitative polymerase chain reaction‐based approaches for determining gene copy and gene transcript numbers in environmental samples publication-title: Environ Microbiol – volume: 3 start-page: 296 year: 2012 article-title: A review of ammonia‐oxidizing bacteria and archaea in Chinese soils publication-title: Front Microbiol – volume: 108 start-page: 15892 year: 2011 end-page: 15897 article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil publication-title: Proc Natl Acad Sci USA – volume: 70 start-page: 208 year: 2009 end-page: 217 article-title: Altitude ammonia‐oxidizing bacteria and archaea in soils of Mount Everest publication-title: FEMS Microbiol Eco – volume: 26 start-page: 2460 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 103 start-page: 12317 year: 2006 end-page: 12322 article-title: Archaeal nitrification in the ocean publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 1357 year: 2008 end-page: 1364 article-title: Growth, activity and temperature responses of ammonia‐oxidizing archaea and bacteria in soil microcosms publication-title: Environ Microbiol – volume: 50 start-page: 189 year: 2002 end-page: 203 article-title: Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia‐oxidizing bacteria publication-title: J Microbiol Methods – volume: 64 start-page: 2266 year: 1998 end-page: 2268 article-title: Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide publication-title: Appl Environ Microb – volume: 10 start-page: 3002 year: 2008 end-page: 3016 article-title: Relative abundance and diversity of ammonia‐oxidizing archaea and bacteria in the San Francisco Bay estuary publication-title: Environ Microbiol – volume: 14 start-page: 207 year: 2006 end-page: 212 article-title: Ammonia‐oxidising Crenarchaeota: important players in the nitrogen cycle? publication-title: Trends Microbiol – volume: 13 start-page: 1439 year: 2013 end-page: 1449 article-title: pH‐dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high‐throughput pyrosequencing publication-title: J Soil Sediment – volume: 104 start-page: 7104 year: 2007 end-page: 7109 article-title: Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: 4309 year: 2012 end-page: 4321 article-title: Anammox, denitrification and fixed‐nitrogen removal in sediments from the Lower St. Lawrence Estuary publication-title: Biogeosciences – volume: 69 start-page: 6152 year: 2003 end-page: 6164 article-title: Patterns of community change among ammonia oxidizers in meadow soils upon long‐term incubation at different temperatures publication-title: Appl Environ Microb – volume: 7 start-page: 404 year: 2015 end-page: 413 article-title: Ammonia‐oxidizing bacteria of the Nitrosospira cluster 1 dominate over ammonia‐oxidizing Archaea in oligotrophic surface sediments near the South Atlantic Gyre publication-title: Env Microbiol Rep – volume: 37 start-page: 211 year: 2001 end-page: 221 article-title: Continuous culture enrichments of ammonia‐oxidizing bacteria at low ammonium concentrations publication-title: FEMS Microbiol Eco – volume: 66 start-page: 5488 year: 2000 end-page: 5491 article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA‐ and rRNA‐based microbial community composition publication-title: Appl Environ Microbiol – volume: 26 start-page: 199 year: 2009 end-page: 211 article-title: Diversity and abundance of ammonia‐oxidizing archaea and bacteria in Qinghai lake, northwestern China publication-title: Geomicrobiol J – volume: 1 start-page: 129 year: 2003 end-page: 140 article-title: Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments publication-title: Geobiology – volume: 437 start-page: 543 year: 2005 end-page: 546 article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon publication-title: Nature – volume: 10 start-page: 1068 year: 2008 end-page: 1079 article-title: Shifts in the relative abundance of ammonia‐oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary publication-title: Environ Microbiol – volume: 81 start-page: 159 year: 2015 end-page: 165 article-title: amoA gene abundances and nitrification potential rates suggest that benthic ammonia‐oxidizing bacteria and not archaea dominate N cycling in the Colne Estuary, United Kingdom publication-title: Appl Environ Microb – volume: 79 start-page: 7381 year: 2013 end-page: 7389 article-title: Stark contrast in denitrification and anammox across the deep Norwegian trench in the Skagerrak publication-title: Appl Environ Microb – volume: 10 start-page: 1601 year: 2008 end-page: 1611 article-title: Abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea communities of an alkaline sandy loam publication-title: Environ Microbiol – volume: 8 start-page: 684 year: 2006 end-page: 696 article-title: Changes in the community structure and activity of betaproteobacterial ammonia‐oxidizing sediment bacteria along a freshwater‐marine gradient publication-title: Environ Microbiol – volume: 133 start-page: 50 year: 1982 end-page: 54 article-title: Effect of organic matter on growth and cell yield of ammonia‐oxidizing bacteria publication-title: Arch Microbiol – volume: 77 start-page: 4618 year: 2011 end-page: 4625 article-title: Links between ammonia oxidizer community structure, abundance, and ntrification potential inacidic soils publication-title: Appl Environ Microb – volume: 62 start-page: 4147 year: 1996 end-page: 4154 article-title: Molecular diversity of soil and marine 16S rRNA gene sequences related to beta‐subgroup ammonia‐oxidizing bacteria publication-title: Appl Environ Microbiol – volume: 33 start-page: 855 year: 2009 end-page: 869 article-title: Environmental factors shaping the ecological niches of ammonia‐oxidizing archaea publication-title: FEMS Microbiol Rev – volume: 11 start-page: 1658 year: 2009 end-page: 1671 article-title: Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil publication-title: Environ Microbiol – volume: 8 start-page: 1704 year: 2014 end-page: 1714 article-title: Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters publication-title: ISME J – volume: 7 start-page: 2023 year: 2013 end-page: 2033 article-title: Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea publication-title: ISME J – volume: 6 start-page: 1978 year: 2012 end-page: 1984 article-title: Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea publication-title: ISME J – volume: 10 start-page: 2931 year: 2008 end-page: 2941 article-title: Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment publication-title: Environ Microbiol – volume: 7 start-page: 1985 year: 2005 end-page: 1995 article-title: Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling publication-title: Environ Microbiol – volume: 5 start-page: 908 year: 2011 end-page: 917 article-title: Examining the global distribution of dominant archaeal populations in soil publication-title: ISME J – volume: 61 start-page: 1480 year: 1995 end-page: 1487 article-title: Inhibition, inactivation, and recovery of ammonia‐oxidizing activity in cometabolism of trichloroethylene by Nitrosomonaseuropaea publication-title: Appl Environ Microb – volume: 107 start-page: 17240 year: 2010 end-page: 17245 article-title: Autotrophic ammonia oxidation by soil thaumarchaea publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: 2364 year: 2007 end-page: 2374 article-title: Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices publication-title: Environ Microbiol – volume: 461 start-page: 976 year: 2009 end-page: 979 article-title: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria publication-title: Nature – volume: 20 start-page: 523 year: 2012 end-page: 531 article-title: Archaeal and bacterial ammonia‐oxidisers in soil: the quest for niche specialisation and differentiation publication-title: Trends Microbiol – volume: 103 start-page: 18296 year: 2006 end-page: 18301 article-title: Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum publication-title: Proc Natl Acad Sci USA – volume: 30 start-page: 125 year: 1989 end-page: 181 article-title: Autotrophic nitrification in bacteria publication-title: Adv Microb Physiol – volume: 451 start-page: 293 year: 2008 end-page: 296 article-title: An Earth‐system perspective of the global nitrogen cycle publication-title: Nature – volume: 1 start-page: 19 year: 2007 end-page: 27 article-title: New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation publication-title: ISME J – volume: 6 start-page: e16626 year: 2011 article-title: Genome of a low‐salinity ammonia‐oxidizing archaeon determined by single‐cell and metagenomic analysis publication-title: PLoS One – volume: 7 start-page: 553 year: 2005 end-page: 565 article-title: Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture publication-title: Environ Microbiol – volume: 80 start-page: 408 year: 2014 end-page: 419 article-title: Community dynamics and activity of ammonia‐oxidizing prokaryotes in intertidal sediments of the Yangtze Estuary publication-title: Appl Environ Microb – volume: 7 start-page: 1289 year: 2005 end-page: 1297 article-title: Loss of diversity of ammonia‐oxidizing bacteria correlates with increasing salinity in an estuary system publication-title: Environ Microbiol – volume: 15 start-page: 2545 year: 2013 end-page: 2556 article-title: Multi‐factorial drivers of ammonia oxidizer communities: evidence from a national soil survey publication-title: Environ Microbiol – volume: 6 start-page: 1032 year: 2012 end-page: 1045 article-title: Ammonia‐oxidizing archaea have more important role than ammonia‐oxidizing bacteria in ammonia oxidation of strongly acidic soils publication-title: ISME J – volume: 2 start-page: 621 year: 2009 end-page: 624 article-title: Nitrification driven by bacteria and not archaea in nitrogen‐rich grassland soils publication-title: Nat Geosci – volume: 5 start-page: 472 year: 2014 article-title: Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea) publication-title: Front Microbiol – volume: 108 start-page: 21206 year: 2011 end-page: 21211 article-title: Niche specialization of terrestrial archaeal ammonia oxidizers publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 2064 year: 2006 end-page: 2090 article-title: Denitrification across landscapes and waterscapes: a synthesis publication-title: Ecol Appl – volume: 66 start-page: 4605 year: 2000 end-page: 4614 article-title: Quantitative Analysis of Small‐Subunit rRNA Genes in Mixed Microbial Populations via 5'‐Nuclease Assays publication-title: Appl Environ Microbiol – volume: 6 start-page: 1367 year: 2015 article-title: Nitrification and nitrifying bacteria in a coastal microbial mat publication-title: Front Microbiol – volume: 6 start-page: 301 year: 2003 end-page: 312 article-title: Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems publication-title: Ecosystems – volume: 77 start-page: 8635 year: 2011 end-page: 8647 article-title: Enrichment and characterization of an autotrophic ammonia‐oxidizing archaeon of Mesophilic Crenarchaeal Group I.1a from an agriculturalsoil publication-title: Appl Environ Microb – volume: 7 start-page: e51542 year: 2012 article-title: High‐throughput analysis of ammonia oxidiser community composition via a novel, amoA‐based functional gene array publication-title: PLoS One – volume: 59 start-page: 1321 year: 2014 end-page: 1335 article-title: Ammonia availability shapes the seasonal distribution and activity of archaeal and bacterial ammonia oxidizers in the Puget Sound Estuary publication-title: Limnol Oceanogr – volume: 7 start-page: 1620 year: 2013 end-page: 1631 article-title: Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia‐oxidizing archaea publication-title: ISME J – volume: 6 start-page: 2269 year: 2012 end-page: 2279 article-title: Genome‐enabled transcriptomics reveals archaeal populations that drive nitrification in a deep‐sea hydrothermal plume publication-title: ISME J – volume: 5 start-page: 743 year: 2015 article-title: Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta publication-title: Front Microbiol – volume: 35 start-page: 86 year: 2012 end-page: 94 article-title: Transformation and fate of nitrate near the sediment‐water interface of Copano Bay publication-title: Cont Shelf Res – volume: 7 start-page: 337 year: 2005 end-page: 347 article-title: Primary succession of soil Crenarchaeota across a receding glacier foreland publication-title: Environ Microbiol – volume: 112 start-page: 77 year: 2017 end-page: 89 article-title: Time‐dependent shifts in populations and activity of bacterial and archaeal ammonia oxidizers in response to liming in acidic soils publication-title: Soil Biol Biochem – volume: 77 start-page: 269 year: 2011 end-page: 280 article-title: Spatial variability in nitrification rates and ammonia‐oxidizing microbial communities in the agriculturally impacted Elkhorn Slough Estuary, California publication-title: Appl Environ Microb – volume: 486 start-page: 55 year: 2011 end-page: 88 – volume: 7 start-page: 335 year: 2010 end-page: 336 article-title: QIIME allows analysis of high‐throughput community sequencing data publication-title: Nat Methods – volume: 30 start-page: 2725 year: 2013 end-page: 2729 article-title: MEGA6: Molecular evolutionary genetics analysis version 6.0 publication-title: Mol Biol Evol – volume: 71 start-page: 697 year: 2005 end-page: 705 article-title: Relationship of temporal and spatial variabilities of ammonia‐oxidizing bacteria to nitrification rates in Monterey Bay, California publication-title: Appl Environ Microb – volume: 7 start-page: 13200. year: 2017 article-title: Small‐scale variation of ammonia oxidisers within intertidal sediments dominated by ammonia‐oxidising bacteria sp. amoA genes and transcripts publication-title: Front Microbiol – volume: 7 start-page: 137 year: 2016 article-title: Diversity, abundance, and niche differentiation of ammonia‐oxidizing prokaryotes in mud deposits of the eastern China marginal seas publication-title: Front Microbiol – volume: 55 start-page: 485 year: 2001 end-page: 529 article-title: Ammonia‐oxidizing bacteria: a model for molecular microbial ecology publication-title: Annu Rev Microbiol – volume: 6 start-page: 938 year: 2015 article-title: The large‐scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors publication-title: Front Microbiol – volume: 7 start-page: e47330 year: 2012 article-title: Habitat‐associated phylogenetic community patterns of microbial ammonia oxidizers publication-title: PLoS One – start-page: 778 year: 2006 end-page: 811 – ident: e_1_2_8_68_1 doi: 10.1111/j.1462-2920.2005.00906.x – ident: e_1_2_8_49_1 doi: 10.1007/s10021-003-0161-9 – volume: 7 start-page: 13200. year: 2017 ident: e_1_2_8_15_1 article-title: Small‐scale variation of ammonia oxidisers within intertidal sediments dominated by ammonia‐oxidising bacteria Nitrosomonas sp. amoA genes and transcripts publication-title: Front Microbiol – ident: e_1_2_8_22_1 doi: 10.1111/j.1462-2920.2005.00947.x – ident: e_1_2_8_16_1 doi: 10.1093/bioinformatics/btq461 – ident: e_1_2_8_36_1 doi: 10.1128/AEM.05787-11 – ident: e_1_2_8_20_1 doi: 10.1046/j.1472-4669.2003.00010.x – ident: e_1_2_8_71_1 doi: 10.1128/AEM.01318-10 – ident: e_1_2_8_2_1 doi: 10.1371/journal.pone.0051542 – ident: e_1_2_8_50_1 doi: 10.1111/j.1462-2920.2008.01764.x – ident: e_1_2_8_80_1 doi: 10.1016/j.soilbio.2017.05.001 – ident: e_1_2_8_5_1 doi: 10.1038/ismej.2012.64 – ident: e_1_2_8_19_1 doi: 10.1371/journal.pone.0047330 – ident: e_1_2_8_59_1 doi: 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 – ident: e_1_2_8_56_1 doi: 10.1111/j.1462-2920.2008.01775.x – ident: e_1_2_8_39_1 doi: 10.1007/0-387-30745-1_36 – ident: e_1_2_8_61_1 doi: 10.3389/fmicb.2012.00296 – ident: e_1_2_8_40_1 doi: 10.1146/annurev.micro.55.1.485 – ident: e_1_2_8_72_1 doi: 10.1073/pnas.0600756103 – ident: e_1_2_8_62_1 doi: 10.1111/j.1462-2920.2005.00963.x – ident: e_1_2_8_69_1 doi: 10.1128/AEM.01970-13 – ident: e_1_2_8_8_1 doi: 10.1371/journal.pone.0016626 – ident: e_1_2_8_42_1 doi: 10.1111/1758-2229.12264 – ident: e_1_2_8_60_1 doi: 10.1111/j.1462-2920.2008.01578.x – ident: e_1_2_8_24_1 doi: 10.1128/AEM.66.12.5488-5491.2000 – ident: e_1_2_8_67_1 doi: 10.1111/j.1462-2920.2007.01563.x – ident: e_1_2_8_31_1 doi: 10.1007/s11368-013-0726-y – ident: e_1_2_8_10_1 doi: 10.1016/B978-0-12-381294-0.00003-1 – ident: e_1_2_8_6_1 doi: 10.1038/ismej.2010.171 – ident: e_1_2_8_53_1 doi: 10.1016/S0167-7012(02)00026-X – ident: e_1_2_8_78_1 doi: 10.1038/ismej.2011.168 – ident: e_1_2_8_7_1 doi: 10.1111/j.1462-2920.2005.00808.x – ident: e_1_2_8_9_1 doi: 10.1111/j.1574-6941.2001.tb00868.x – ident: e_1_2_8_58_1 doi: 10.1111/j.1462-2920.2007.01547.x – ident: e_1_2_8_51_1 doi: 10.1016/j.tim.2006.03.004 – ident: e_1_2_8_25_1 doi: 10.1038/nature06592 – ident: e_1_2_8_44_1 doi: 10.1073/pnas.1107196108 – ident: e_1_2_8_21_1 doi: 10.1038/ismej.2007.8 – ident: e_1_2_8_63_1 doi: 10.1038/ismej.2014.11 – ident: e_1_2_8_75_1 doi: 10.3389/fmicb.2016.00137 – ident: e_1_2_8_14_1 doi: 10.1038/ngeo613 – ident: e_1_2_8_34_1 doi: 10.1111/j.1462-2920.2009.01891.x – ident: e_1_2_8_11_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_8_35_1 doi: 10.1080/01490450902744004 – volume: 5 start-page: 472 year: 2014 ident: e_1_2_8_46_1 article-title: Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea) publication-title: Front Microbiol – ident: e_1_2_8_47_1 doi: 10.1038/ismej.2012.45 – ident: e_1_2_8_55_1 doi: 10.1016/S0065-2911(08)60112-5 – ident: e_1_2_8_17_1 doi: 10.1111/j.1574-6976.2009.00179.x – ident: e_1_2_8_27_1 doi: 10.1073/pnas.0608549103 – ident: e_1_2_8_18_1 doi: 10.3389/fmicb.2015.01367 – ident: e_1_2_8_79_1 doi: 10.1128/AEM.03035-13 – ident: e_1_2_8_38_1 doi: 10.1038/nature03911 – ident: e_1_2_8_30_1 doi: 10.1016/j.csr.2012.01.004 – ident: e_1_2_8_43_1 doi: 10.1073/pnas.0611081104 – ident: e_1_2_8_4_1 doi: 10.1128/AEM.69.10.6152-6164.2003 – ident: e_1_2_8_45_1 doi: 10.1128/AEM.02654-14 – ident: e_1_2_8_70_1 doi: 10.4319/lo.2014.59.4.1321 – ident: e_1_2_8_48_1 doi: 10.1038/nature08465 – ident: e_1_2_8_28_1 doi: 10.1111/j.1462-2920.2007.01358.x – ident: e_1_2_8_29_1 doi: 10.1038/ismej.2013.75 – ident: e_1_2_8_32_1 doi: 10.3389/fmicb.2015.00938 – ident: e_1_2_8_54_1 doi: 10.1128/AEM.71.2.697-705.2005 – ident: e_1_2_8_73_1 doi: 10.1128/AEM.00136-11 – ident: e_1_2_8_26_1 doi: 10.1073/pnas.1109000108 – ident: e_1_2_8_23_1 doi: 10.1128/AEM.64.6.2266-2268.1998 – ident: e_1_2_8_37_1 doi: 10.1111/j.1462-2920.2005.00723.x – ident: e_1_2_8_52_1 doi: 10.1111/j.1462-2920.2005.00698.x – ident: e_1_2_8_65_1 doi: 10.1128/AEM.66.11.4605-4614.2000 – ident: e_1_2_8_74_1 doi: 10.1111/1462-2920.12141 – ident: e_1_2_8_57_1 doi: 10.1016/j.tim.2012.08.001 – ident: e_1_2_8_66_1 doi: 10.1093/molbev/mst197 – ident: e_1_2_8_41_1 doi: 10.1007/BF00943769 – ident: e_1_2_8_77_1 doi: 10.1073/pnas.1004947107 – ident: e_1_2_8_64_1 doi: 10.1128/AEM.62.11.4147-4154.1996 – ident: e_1_2_8_76_1 doi: 10.1111/j.1574-6941.2009.00775.x – ident: e_1_2_8_3_1 doi: 10.1038/ismej.2013.35 – ident: e_1_2_8_12_1 doi: 10.5194/bg-9-4309-2012 – ident: e_1_2_8_13_1 doi: 10.3389/fmicb.2014.00743 – ident: e_1_2_8_33_1 doi: 10.1128/aem.61.4.1480-1487.1995 |
SSID | ssj0017370 |
Score | 2.4234645 |
Snippet | Summary
Terrestrial–marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation... Terrestrial–marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of... Terrestrial-marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2834 |
SubjectTerms | Ammonia AmoA gene Aquatic soils Archaea Bacteria Biogeochemistry Boundaries Coastal environments Communities Community composition Community structure Composition denaturing gradient gel electrophoresis Deoxyribonucleic acid DNA ecological differentiation Ecosystems Field tests Gene sequencing genes Marine ecosystems Niches Nitrification nitrogen oxidants Oxidation Oxidizing agents pH effects quantitative polymerase chain reaction salinity Sediment Sediments Soil Soil structure Soils Transcription transcription (genetics) |
Title | Community and functional shifts in ammonia oxidizers across terrestrial and marine (soil/sediment) boundaries in two coastal Bay ecosystems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.14238 https://www.ncbi.nlm.nih.gov/pubmed/29687546 https://www.proquest.com/docview/2110222089 https://www.proquest.com/docview/2031026981 https://www.proquest.com/docview/2153628738 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQJaReoLR8bFsqV-JQDlk2jp04R0BUVaVyQFTiFo0TW0RsE0Syard_oX-aGTuJaBFUiFukjBPbmfG8ccZvGHuVLXIiaY8ja1wSSQc6gjKWkdZWpMJYpTzb_tnH9ORcnn5RYzYhnYUJ_BDThhtZhl-vycDBdL8YOZq4iKjWEho7-h1chSlji2DRp4lAKs4SXy5ukI3FQO5DuTx32t_2S7-BzdvY1Tuf48fMjN0OOSff5qvezMvrO4yO_zWuLfZogKb8bdClJ-yBbbbZw1Cscr3DboazJP2aQ1NxcohhH5F3X2vXd7xuOJBW18Dbq7qqrxFZcvDD5fj1qAgIabtvfQF06pAfdW29fNOhA6VNytfc-CJPFL3T0_rLlpctIH5d8new5hgpB-Lp7ik7P_7w-f1JNJRyiEqJa0SkwVLYW6nMAcikkjaLjUgkIGIpVeJ0ZsltCiMESCWkVSJNSme0zk21qFzyjG00bWNfMJ6ArpzMbZU7FFWZUam0BmFYXAoFJpux-fghi3LgOadyG8tijHdohgua4cLP8IwdTQ2-B4qPP4vuj5pRDLbeFRRCI8pa6HzGDqfbaKX06wUa265QhhhYRZrr-C8y6HxSDGDpNc-D1k39EXmKgaVMcXBed-7raIFG7C92_7XBHttETKhDjuM-2-h_rOxLxF29OfCm9RPTNyDO |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKKwSX8lm6UMBIHMohy8axE-cIiGqBtgfUSr1FtmOLqEuCmqza7V_on2bGzkZtEUUVt0g7TmxnXuaN135DyNtskqNIexxZ7ZKIOyUjZWIeSWlZyrQVwqvt7-2n00P-9UgcXToLE_QhhgU3RIb_XiPAcUH6EsoB4yzCYkuAdgg8d8ga1vX2adX3QUIqzhJfMK43jlkv74O7ea7d4Gpk-oNuXmWvPvzsPCBm2fGw6-R4PO_02Jxf03T8v5E9JOs9O6Ufgjs9Iiu2fkzuhnqViyfkoj9O0i2oqkuKMTEsJdL2R-W6llY1VejYlaLNWVVW50AuqfLjpfACsQ4IOrxv_VPhwUO63TbV7H0LMRTXKd9R7es8YQKPd-tOG2oaBRR2Rj-qBYVkOWhPt0_J4c7ng0_TqK_mEBkOn4lIKouZbykypxRPSm6zWLOEKyAtRiROZhYjJ9OMKS4Yt4KliXFaylyXk9IlG2S1bmq7SWiiZOl4bsvcganItEi51cDEYsOE0tmIjJdvsjC91DlW3JgVy5QHZ7jAGS78DI_I9tDgV1D5-Lvp1tI1ih7ubYFZNBCticxH5M3wMwAV_31RtW3mYIMirCzNZXyDDcSfFHJYfMyz4HZDf1ieQm7JUxicd55_dbQAHPuL57dt8Jrcmx7s7Ra7X_a_vSD3gSLKsOVxi6x2J3P7EmhYp195nP0G3NQk6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSF92OhgJE4lEO2G8d2nCNQVuVVIUQlbpEd2yJiSSqSFWz_An-aGTuJaBEgxC3SjhPbmS_zjdf-hpBH-aJAkfY0ccZnCfdaJbpKeaKUY5IZJ0RQ239zIPcP-csPYtxNiGdhoj7EtOCGyAjfawT4kfU_gRwgzhKstQRgh7hzlpzjcqHQsffeTQpSaZ6FenGDccoGdR_czHPqBicD0y9s8yR5DdFneZmYsd9x08mn-bo38-r4lKTjfw3sCrk0cFP6JDrTVXLGNdfI-VitcnOdfB8Ok_QbqhtLMSLGhUTafax939G6oRrduta0_Vbb-hioJdVhuBReH1YBQXcPrT9rPHZId7q2Xu12EEFxlfIxNaHKE6bveLf-a0urVgOBXdGnekMhVY7K090Ncrh8_v7ZfjLUckgqDh-JRGmHea8VudeaZ5a7PDUs4xooSyUyr3KHcZMZxjQXjDvBZFZ5o1Rh7ML67CbZatrG3SY008p6XjhbeDAVuRGSOwM8LK2Y0Cafkfn4IstqEDrHehurckx4cIZLnOEyzPCM7EwNjqLGx-9Nt0fPKAewdyXm0ECzwPlm5OH0M8AU_3vRjWvXYIMSrEwWKv2DDUQfCRksPuZW9LqpP6yQkFlyCYMLvvO3jpaA4nBx518bPCAX3u4ty9cvDl7dJReBH6q433GbbPVf1u4ecLDe3A8o-wFg3yOh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+and+functional+shifts+in+ammonia+oxidizers+across+terrestrial+and+marine+%28soil%2Fsediment%29+boundaries+in+two+coastal+Bay+ecosystems&rft.jtitle=Environmental+microbiology&rft.au=Zhang%2C+Li-Mei&rft.au=Duff%2C+Aoife+M&rft.au=Smith%2C+Cindy+J&rft.date=2018-08-01&rft.eissn=1462-2920&rft.volume=20&rft.issue=8&rft.spage=2834&rft_id=info:doi/10.1111%2F1462-2920.14238&rft_id=info%3Apmid%2F29687546&rft.externalDocID=29687546 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |