Designable Assembly of Aluminum Molecular Rings for Sequential Confinement of Iodine Molecules
Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 39; pp. 21426 - 21433 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
20.09.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g−1). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution.
Heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands act as adsorbents for the sequential confinement of iodine molecules. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution. |
---|---|
AbstractList | Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g−1). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution.
Heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands act as adsorbents for the sequential confinement of iodine molecules. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution. Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g −1 ). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution. Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g−1). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution. Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination-driven self-assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g-1 ). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host-guest binding interactions at crystallographic resolution.Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination-driven self-assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g-1 ). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host-guest binding interactions at crystallographic resolution. |
Author | Zhang, Jian Yao, Shuyang Lu, Dongfei Wang, San‐Tai Liu, Chen‐Hui Fang, Wei‐Hui Sun, Yayong |
Author_xml | – sequence: 1 givenname: Chen‐Hui surname: Liu fullname: Liu, Chen‐Hui organization: Chinese Academy of Sciences – sequence: 2 givenname: Wei‐Hui orcidid: 0000-0003-3358-3057 surname: Fang fullname: Fang, Wei‐Hui email: fwh@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 3 givenname: Yayong surname: Sun fullname: Sun, Yayong organization: Chinese Academy of Sciences – sequence: 4 givenname: Shuyang surname: Yao fullname: Yao, Shuyang organization: Chinese Academy of Sciences – sequence: 5 givenname: San‐Tai surname: Wang fullname: Wang, San‐Tai organization: Chinese Academy of Sciences – sequence: 6 givenname: Dongfei surname: Lu fullname: Lu, Dongfei organization: Chinese Academy of Sciences – sequence: 7 givenname: Jian surname: Zhang fullname: Zhang, Jian email: zhj@fjirsm.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkEtLAzEURoMo2Kpb1wNu3EzNazrTZalVCz7Ax9YhydyUlExSkxmk_96U-gBBXN37wTmXyzdE-847QOiU4BHBmF4IZ2BEMSW4pLTcQwNSUJKzsmT7aeeM5WVVkEM0jHGV-KrC4wF6vYRolk5IC9k0Rmil3WReZ1Pbt8b1bXbnLajeipA9GreMmfYhe4K3HlxnhM1m3mnjoE1xqy18k9KXBPEYHWhhI5x8ziP0cjV_nt3ktw_Xi9n0Nlcc8zIHQogCMpEVgOZYSgG0kKwioLRmWsFElqCx1kILiYWkY86qCZeqaWTTFJwdofPd3XXw6bfY1a2JCqwVDnwfa1oUxZiVFa8SevYLXfk-uPRdolJzmGC2pfiOUsHHGEDXynSiM951QRhbE1xvS6-3pdffpSdt9EtbB9OKsPlbmOyEd2Nh8w9dT-8X8x_3A0FimQE |
CitedBy_id | crossref_primary_10_1002_anie_202116563 crossref_primary_10_1007_s11696_023_03288_z crossref_primary_10_1016_j_jssc_2022_123739 crossref_primary_10_1039_D2CS00582D crossref_primary_10_1039_D2QI01108E crossref_primary_10_1016_j_jssc_2023_124268 crossref_primary_10_1039_D3CC03672C crossref_primary_10_1039_D4QI00976B crossref_primary_10_1016_j_jssc_2024_124986 crossref_primary_10_1021_jacs_3c13244 crossref_primary_10_1021_acs_inorgchem_4c04012 crossref_primary_10_1039_D1DT02748D crossref_primary_10_1039_D3DT02749J crossref_primary_10_1039_D2CE01582J crossref_primary_10_1016_j_jhazmat_2023_131835 crossref_primary_10_1002_anie_202411342 crossref_primary_10_1002_ange_202116563 crossref_primary_10_1016_j_jssc_2022_123740 crossref_primary_10_1016_j_micromeso_2023_112572 crossref_primary_10_1002_agt2_506 crossref_primary_10_1016_j_jssc_2023_124176 crossref_primary_10_1002_anie_202113724 crossref_primary_10_1002_macp_202200253 crossref_primary_10_1016_j_jssc_2024_124597 crossref_primary_10_1016_j_jssc_2022_123304 crossref_primary_10_1016_j_jssc_2024_124557 crossref_primary_10_1039_D3CS00873H crossref_primary_10_1016_j_jssc_2023_124491 crossref_primary_10_1002_ange_202417548 crossref_primary_10_1002_cjoc_202400423 crossref_primary_10_1016_j_micromeso_2023_112963 crossref_primary_10_1002_smll_202311181 crossref_primary_10_1039_D4QI02507E crossref_primary_10_1021_acs_cgd_2c00039 crossref_primary_10_1021_acs_inorgchem_2c03397 crossref_primary_10_1007_s11426_023_1611_7 crossref_primary_10_1016_j_jssc_2022_123553 crossref_primary_10_1016_j_jssc_2022_123154 crossref_primary_10_1038_s41467_022_34296_4 crossref_primary_10_1039_D2CC06524J crossref_primary_10_1021_acs_chemmater_4c02320 crossref_primary_10_3389_fchem_2021_793870 crossref_primary_10_1038_s41467_024_46942_0 crossref_primary_10_1039_D4SC05707D crossref_primary_10_1016_j_cej_2024_156586 crossref_primary_10_1039_D3QI02008H crossref_primary_10_1002_smll_202302902 crossref_primary_10_1016_j_jssc_2022_123828 crossref_primary_10_1016_j_jssc_2023_124240 crossref_primary_10_1021_acs_inorgchem_4c04832 crossref_primary_10_1039_D4QI00254G crossref_primary_10_1016_j_micromeso_2023_112954 crossref_primary_10_1007_s12274_024_6606_5 crossref_primary_10_3390_ma17236023 crossref_primary_10_1002_anie_202417548 crossref_primary_10_1016_j_jece_2025_115595 crossref_primary_10_1021_acs_accounts_4c00143 crossref_primary_10_1002_ange_202113724 crossref_primary_10_1007_s40843_022_2349_0 crossref_primary_10_1021_acs_cgd_4c01056 crossref_primary_10_2139_ssrn_4172129 crossref_primary_10_1002_ange_202411342 crossref_primary_10_1039_D1QI01451J |
Cites_doi | 10.1016/j.trechm.2019.02.010 10.1366/0003702944027372 10.1002/anie.201503362 10.1038/s41467-018-03102-5 10.1016/j.jhazmat.2016.09.015 10.1021/jacs.6b08724 10.1038/s41557-020-0455-y 10.1021/ja211381e 10.1021/cr0204101 10.2320/matertrans.M2012009 10.1039/c2ee22019a 10.1021/ja406081r 10.1021/ja0621086 10.1002/ange.201503362 10.1038/s41467-019-09630-y 10.1021/ja501606h 10.1039/C8RA04775H 10.1016/j.cej.2016.07.073 10.1021/jacs.7b03113 10.1016/j.jnucmat.2015.11.038 10.1021/jacs.0c11778 10.1021/ja205969q 10.1021/acsami.7b02366 10.1039/C8MH01656A 10.1016/j.chempr.2019.03.020 10.1016/j.micromeso.2011.08.016 10.1021/cm401762g 10.1021/jacs.7b09850 10.1016/j.ccr.2020.213473 10.1002/anie.202007270 10.1021/jacs.7b03204 10.1016/j.chempr.2020.11.024 10.1039/C7SC00267J 10.1021/jacs.7b01125 10.1039/c3cc43728k 10.1021/jacs.9b10501 10.1021/jacs.5b09110 10.1002/ange.200901409 10.1021/jacs.7b08748 10.1107/S0907444913000061 10.1039/C5EE02843D 10.1016/j.ccr.2018.06.011 10.1126/science.aaf9135 10.1021/jacs.7b08632 10.1002/ange.202007270 10.1016/j.pnucene.2014.02.013 10.1021/ja042420k 10.1016/j.ccr.2019.213046 10.1038/nature11990 10.1002/anie.200901409 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202107227 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 21433 |
ExternalDocumentID | 10_1002_anie_202107227 ANIE202107227 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 92061104, 21771181, and 21935010 – fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB20000000 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences funderid: 2017345 – fundername: National Basic Research Program of China (973 Program) funderid: 2018YFA0208600 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4047-e111ce19b8eef40bbae25b381ecff3fce9b7ef0ffafab0ab2643894bcddbdd543 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 23:18:12 EDT 2025 Fri Jul 25 12:01:40 EDT 2025 Thu Apr 24 22:51:06 EDT 2025 Tue Jul 01 05:29:05 EDT 2025 Wed Jan 22 16:27:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4047-e111ce19b8eef40bbae25b381ecff3fce9b7ef0ffafab0ab2643894bcddbdd543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3358-3057 |
PQID | 2572201038 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2555637848 proquest_journals_2572201038 crossref_citationtrail_10_1002_anie_202107227 crossref_primary_10_1002_anie_202107227 wiley_primary_10_1002_anie_202107227_ANIE202107227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 20, 2021 |
PublicationDateYYYYMMDD | 2021-09-20 |
PublicationDate_xml | – month: 09 year: 2021 text: September 20, 2021 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 7 2017; 8 2013; 25 2013; 69 2019; 6 2019; 5 2013; 49 2009 2009; 48 121 2016; 306 2019; 1 2019; 10 2021; 427 2020 2020; 59 132 2019; 400 2020; 12 1994; 48 2021; 143 2019; 141 2017; 9 2014; 136 2011; 133 2012; 53 2017; 139 2018; 9 2018; 8 2018; 374 2012; 134 2012; 157 2015; 137 2005; 127 2015 2015; 54 127 2016; 353 2013; 135 2016; 138 2013; 495 2014; 74 2017; 321 2003; 103 2012; 5 2006; 128 2016; 9 2016; 470 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_18_2 e_1_2_7_16_1 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_27_1 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_55_1 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_1 e_1_2_7_59_2 |
References_xml | – volume: 400 start-page: 213046 year: 2019 end-page: 213060 publication-title: Coord. Chem. Rev. – volume: 9 start-page: 808 year: 2018 end-page: 818 publication-title: Nat. Commun. – volume: 139 start-page: 8259 year: 2017 end-page: 8266 publication-title: J. Am. Chem. Soc. – volume: 306 start-page: 369 year: 2016 end-page: 381 publication-title: Chem. Eng. J. – volume: 53 start-page: 760 year: 2012 end-page: 765 publication-title: Mater. Trans. – volume: 137 start-page: 13943 year: 2015 end-page: 13948 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 1236 year: 1994 end-page: 1241 publication-title: Appl. Spectrosc. – volume: 139 start-page: 5201 year: 2017 end-page: 5209 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7172 year: 2017 end-page: 7175 publication-title: J. Am. Chem. Soc. – volume: 48 121 start-page: 5163 5265 year: 2009 2009 end-page: 5166 5268 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 74 start-page: 61 year: 2014 end-page: 70 publication-title: Prog. Nucl. – volume: 6 start-page: 1571 year: 2019 end-page: 1595 publication-title: Mater. Horiz. – volume: 8 start-page: 29248 year: 2018 end-page: 29273 publication-title: RSC Adv. – volume: 128 start-page: 10223 year: 2006 end-page: 10230 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 12733 12924 year: 2015 2015 end-page: 12737 12928 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 750 year: 2019 end-page: 752 publication-title: Chem – volume: 133 start-page: 14920 year: 2011 end-page: 14923 publication-title: J. Am. Chem. Soc. – volume: 353 start-page: 808 year: 2016 end-page: 811 publication-title: Science – volume: 127 start-page: 7891 year: 2005 end-page: 7900 publication-title: J. Am. Chem. Soc. – volume: 321 start-page: 210 year: 2017 end-page: 217 publication-title: J. Hazard. Mater. – volume: 59 132 start-page: 16735 16878 year: 2020 2020 end-page: 16740 16883 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 15320 year: 2017 end-page: 15323 publication-title: J. Am. Chem. Soc. – volume: 374 start-page: 236 year: 2018 end-page: 253 publication-title: Coord. Chem. Rev. – volume: 25 start-page: 2591 year: 2013 end-page: 2596 publication-title: Chem. Mater. – volume: 136 start-page: 5271 year: 2014 end-page: 5274 publication-title: J. Am. Chem. Soc. – volume: 470 start-page: 307 year: 2016 end-page: 326 publication-title: J. Nucl. Mater. – volume: 135 start-page: 16256 year: 2013 end-page: 16259 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 8743 year: 2012 end-page: 8757 publication-title: Energy Environ. Sci. – volume: 49 start-page: 10320 year: 2013 end-page: 10322 publication-title: Chem. Commun. – volume: 139 start-page: 14873 year: 2017 end-page: 14876 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 2325 year: 2021 end-page: 2330 publication-title: J. Am. Chem. Soc. – volume: 103 start-page: 1649 year: 2003 end-page: 1684 publication-title: Chem. Rev. – volume: 8 start-page: 3171 year: 2017 end-page: 3177 publication-title: Chem. Sci. – volume: 427 start-page: 213473 year: 2021 end-page: 213495 publication-title: Coord. Chem. Rev. – volume: 495 start-page: 461 year: 2013 end-page: 466 publication-title: Nature – volume: 139 start-page: 16289 year: 2017 end-page: 16296 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 292 year: 2019 end-page: 303 publication-title: Trends Chem. – volume: 157 start-page: 131 year: 2012 end-page: 136 publication-title: Microporous Mesoporous Mater. – volume: 10 start-page: 1646 year: 2019 end-page: 1655 publication-title: Nat. Commun. – volume: 9 start-page: 25194 year: 2017 end-page: 25203 publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 4857 year: 2012 end-page: 4863 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 18862 year: 2019 end-page: 18869 publication-title: J. Am. Chem. Soc. – volume: 69 start-page: 1204 year: 2013 end-page: 1214 publication-title: Acta Crystallogr. Sect. D – volume: 138 start-page: 13822 year: 2016 end-page: 13825 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 699 year: 2021 end-page: 714 publication-title: Chem – volume: 9 start-page: 1050 year: 2016 end-page: 1062 publication-title: Energy Environ. Sci. – volume: 12 start-page: 574 year: 2020 end-page: 578 publication-title: Nat. Chem. – ident: e_1_2_7_8_2 doi: 10.1016/j.trechm.2019.02.010 – ident: e_1_2_7_59_2 doi: 10.1366/0003702944027372 – ident: e_1_2_7_28_2 doi: 10.1002/anie.201503362 – ident: e_1_2_7_48_2 doi: 10.1038/s41467-018-03102-5 – ident: e_1_2_7_56_1 – ident: e_1_2_7_11_1 – ident: e_1_2_7_20_2 doi: 10.1016/j.jhazmat.2016.09.015 – ident: e_1_2_7_45_2 doi: 10.1021/jacs.6b08724 – ident: e_1_2_7_42_2 doi: 10.1038/s41557-020-0455-y – ident: e_1_2_7_32_2 doi: 10.1021/ja211381e – ident: e_1_2_7_60_2 doi: 10.1021/cr0204101 – ident: e_1_2_7_21_2 doi: 10.2320/matertrans.M2012009 – ident: e_1_2_7_2_2 doi: 10.1039/c2ee22019a – ident: e_1_2_7_39_1 – ident: e_1_2_7_5_1 – ident: e_1_2_7_33_2 doi: 10.1021/ja406081r – ident: e_1_2_7_16_1 – ident: e_1_2_7_54_1 doi: 10.1021/ja0621086 – ident: e_1_2_7_27_1 – ident: e_1_2_7_28_3 doi: 10.1002/ange.201503362 – ident: e_1_2_7_35_1 – ident: e_1_2_7_19_1 – ident: e_1_2_7_49_1 – ident: e_1_2_7_9_2 doi: 10.1038/s41467-019-09630-y – ident: e_1_2_7_50_2 doi: 10.1021/ja501606h – ident: e_1_2_7_10_1 doi: 10.1039/C8RA04775H – ident: e_1_2_7_7_2 doi: 10.1016/j.cej.2016.07.073 – ident: e_1_2_7_47_2 doi: 10.1021/jacs.7b03113 – ident: e_1_2_7_3_2 doi: 10.1016/j.jnucmat.2015.11.038 – ident: e_1_2_7_43_1 doi: 10.1021/jacs.0c11778 – ident: e_1_2_7_15_2 doi: 10.1021/ja205969q – ident: e_1_2_7_17_2 doi: 10.1021/acsami.7b02366 – ident: e_1_2_7_26_2 doi: 10.1039/C8MH01656A – ident: e_1_2_7_13_2 doi: 10.1016/j.chempr.2019.03.020 – ident: e_1_2_7_36_2 doi: 10.1016/j.micromeso.2011.08.016 – ident: e_1_2_7_34_2 doi: 10.1021/cm401762g – ident: e_1_2_7_14_2 doi: 10.1021/jacs.7b09850 – ident: e_1_2_7_24_2 doi: 10.1016/j.ccr.2020.213473 – ident: e_1_2_7_55_1 doi: 10.1002/anie.202007270 – ident: e_1_2_7_29_2 doi: 10.1021/jacs.7b03204 – ident: e_1_2_7_30_2 doi: 10.1016/j.chempr.2020.11.024 – ident: e_1_2_7_61_1 doi: 10.1039/C7SC00267J – ident: e_1_2_7_46_2 doi: 10.1021/jacs.7b01125 – ident: e_1_2_7_38_1 doi: 10.1039/c3cc43728k – ident: e_1_2_7_1_1 – ident: e_1_2_7_52_2 doi: 10.1021/jacs.9b10501 – ident: e_1_2_7_22_1 doi: 10.1021/jacs.5b09110 – ident: e_1_2_7_53_2 doi: 10.1002/ange.200901409 – ident: e_1_2_7_44_1 – ident: e_1_2_7_58_2 doi: 10.1021/jacs.7b08748 – ident: e_1_2_7_57_2 doi: 10.1107/S0907444913000061 – ident: e_1_2_7_18_2 doi: 10.1039/C5EE02843D – ident: e_1_2_7_37_2 doi: 10.1016/j.ccr.2018.06.011 – ident: e_1_2_7_51_2 doi: 10.1126/science.aaf9135 – ident: e_1_2_7_12_2 doi: 10.1021/jacs.7b08632 – ident: e_1_2_7_55_2 doi: 10.1002/ange.202007270 – ident: e_1_2_7_6_1 – ident: e_1_2_7_4_1 doi: 10.1016/j.pnucene.2014.02.013 – ident: e_1_2_7_40_2 doi: 10.1021/ja042420k – ident: e_1_2_7_25_2 doi: 10.1016/j.ccr.2019.213046 – ident: e_1_2_7_41_2 doi: 10.1038/nature11990 – ident: e_1_2_7_53_1 doi: 10.1002/anie.200901409 – ident: e_1_2_7_23_1 – ident: e_1_2_7_31_1 |
SSID | ssj0028806 |
Score | 2.5923762 |
Snippet | Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21426 |
SubjectTerms | Adsorbents Aluminum Assembly Binding sites Confinement Crystallography Cyclohexane Iodine iodine capture Iodine radioisotopes molecular rings self-assembly sequential confinement |
Title | Designable Assembly of Aluminum Molecular Rings for Sequential Confinement of Iodine Molecules |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202107227 https://www.proquest.com/docview/2572201038 https://www.proquest.com/docview/2555637848 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8ML_ritxFFUxMTnwaja9l4JAgBE3hASXhyabs2McIwAg_613u3L8DEmOjblvWyrb3e_dre_Y6QW1bnALKtdoRgyuGBSMq8aAeUqyl4A2Qk5jsPho3emD9MxGQjiz_lhyg23HBmJPYaJ7hUi9qaNBQzsGF9B0sWnzFMJ8eALURFo4I_ioFypulFnudgFfqctdFltW3xba-0hpqbgDXxON0DIvNvTQNNXqurparqz280jv_5mUOyn8FR2kr154jsmPiY7LbzKnAn5Pk-CfHABCuKB8QzNf2gc0tbYNRe4tWMDvL6unSEm-4UQDB9TOKzwXZMKWYUwtfhHiSK9efgK00uZBanZNztPLV7TlaTwdEcSR0M2EZt6k0VGGO5q5Q0TChw-0Zb61ltmso31rVWWqlcqQBvASTiSkeRiiLBvTNSiuexOSdUcAnrb-m6smlg2eQpGTUAPQd-BAZaCFkmTj4moc4Iy7FuxjRMqZZZiL0WFr1WJndF-7eUquPHlpV8iMNsyi5CsF0MQwO8oExuisfQ23iCImMzX2Eb5FPzAw5tWDKev7wpbA37neLu4i9Cl2QPrzFGhbkVUlq-r8wVAKGluk6U_Qs-BgDN |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HMaFN2I8g4TEqdClydodJx7agO0AQ-JElaSJhNg6xLYD_Hrsdi0PCSHBsa2ttnk4nxP7M8AhrwkE2c54UnLtiUhmZV6Mh4OrIUUddRTlO3e69daduLyXRTQh5cLk_BDlhhvNjMxe0wSnDemTD9ZQSsFGBw99lpDzcBbmqax35lXdlAxSHIdnnmAUBB7VoS94G31-8lX_67r0ATY_Q9ZszblYAl18bR5q8nQ8Getj8_aNyPFfv7MMi1NEypr5EFqBGZuuQuW0KAS3Bg9nWZQH5VgxOiMe6P4rGzrWRLv2mE4GrFOU2GU3tO_OEAez2yxEG81Hn1FSIX4ebUOSWnuIy6UtlOxoHe4uznunLW9alsEzgngdLJpHY2sNHVnrhK-1slxqXPmtcS5wxjZ0aJ3vnHJK-0oj5EJUJLRJEp0kUgQbMJcOU7sJTAqFLrjyfdWw6DkFWiV1BNBRmKCNllJVwSs6JTZTznIqndGPc7ZlHlOrxWWrVeGolH_O2Tp-lNwp-jieztpRjOaLU3RAEFXhoHyMrU2HKCq1wwnJEKVaGAmU4VmH_vKmuNltn5dXW39R2odKq9e5jq_b3attWKD7FLLC_R2YG79M7C7iorHey0b-O0gKBOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90gvritzg_Iwg-Vbs0WbvH4RzOjyF-gE-WJE1AnJ247UH_eu_atX6ACPrYNkfb5HL5XXL3O4A9XhMIsp3xpOTaE5HMyrwYD5WrIUUdZRTlO1906ye34vRO3n3K4s_5IcoNN5oZmb2mCf6cuMMP0lDKwEb_Dl2WkPNwEqZE3Y9Ir1tXJYEUR-3M84uCwKMy9AVto88Pv8p_XZY-sOZnxJotOe15UMXH5pEmjwejoT4wb994HP_zNwswN8ajrJkr0CJM2HQJZo6KMnDLcN_KYjwow4rRCfGT7r2yvmNNtGoP6eiJXRQFdtkV7bozRMHsOgvQRuPRY5RSiF9Hm5Ak1unjYmkLITtYgdv28c3RiTcuyuAZQawOFo2jsbWGjqx1wtdaWS41rvvWOBc4Yxs6tM53TjmlfaURcCEmEtokiU4SKYJVqKT91K4Bk0KhA658XzUs-k2BVkkd4XMUJmihpVRV8Ioxic2YsZwKZ_TinGuZx9RrcdlrVdgv2z_nXB0_ttwshjgez9lBjMaLU2xAEFVht3yMvU1HKCq1_RG1IUK1MBLYhmfj-cub4ma3c1xerf9FaAemL1vt-LzTPduAWbpN8Src34TK8GVktxAUDfV2pvfvTrEDoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designable+Assembly+of+Aluminum+Molecular+Rings+for+Sequential+Confinement+of+Iodine+Molecules&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Chen-Hui&rft.au=Fang%2C+Wei-Hui&rft.au=Sun%2C+Yayong&rft.au=Yao%2C+Shuyang&rft.date=2021-09-20&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=39&rft.spage=21426&rft_id=info:doi/10.1002%2Fanie.202107227&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |