Designable Assembly of Aluminum Molecular Rings for Sequential Confinement of Iodine Molecules

Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 39; pp. 21426 - 21433
Main Authors Liu, Chen‐Hui, Fang, Wei‐Hui, Sun, Yayong, Yao, Shuyang, Wang, San‐Tai, Lu, Dongfei, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 20.09.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g−1). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution. Heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands act as adsorbents for the sequential confinement of iodine molecules. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution.
AbstractList Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g−1). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution. Heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands act as adsorbents for the sequential confinement of iodine molecules. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution.
Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g −1 ). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution.
Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination‐driven self‐assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g−1). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host–guest binding interactions at crystallographic resolution.
Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination-driven self-assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g-1 ). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host-guest binding interactions at crystallographic resolution.Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination-driven self-assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g-1 ). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host-guest binding interactions at crystallographic resolution.
Author Zhang, Jian
Yao, Shuyang
Lu, Dongfei
Wang, San‐Tai
Liu, Chen‐Hui
Fang, Wei‐Hui
Sun, Yayong
Author_xml – sequence: 1
  givenname: Chen‐Hui
  surname: Liu
  fullname: Liu, Chen‐Hui
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Wei‐Hui
  orcidid: 0000-0003-3358-3057
  surname: Fang
  fullname: Fang, Wei‐Hui
  email: fwh@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Yayong
  surname: Sun
  fullname: Sun, Yayong
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Shuyang
  surname: Yao
  fullname: Yao, Shuyang
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: San‐Tai
  surname: Wang
  fullname: Wang, San‐Tai
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Dongfei
  surname: Lu
  fullname: Lu, Dongfei
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  email: zhj@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkEtLAzEURoMo2Kpb1wNu3EzNazrTZalVCz7Ax9YhydyUlExSkxmk_96U-gBBXN37wTmXyzdE-847QOiU4BHBmF4IZ2BEMSW4pLTcQwNSUJKzsmT7aeeM5WVVkEM0jHGV-KrC4wF6vYRolk5IC9k0Rmil3WReZ1Pbt8b1bXbnLajeipA9GreMmfYhe4K3HlxnhM1m3mnjoE1xqy18k9KXBPEYHWhhI5x8ziP0cjV_nt3ktw_Xi9n0Nlcc8zIHQogCMpEVgOZYSgG0kKwioLRmWsFElqCx1kILiYWkY86qCZeqaWTTFJwdofPd3XXw6bfY1a2JCqwVDnwfa1oUxZiVFa8SevYLXfk-uPRdolJzmGC2pfiOUsHHGEDXynSiM951QRhbE1xvS6-3pdffpSdt9EtbB9OKsPlbmOyEd2Nh8w9dT-8X8x_3A0FimQE
CitedBy_id crossref_primary_10_1002_anie_202116563
crossref_primary_10_1007_s11696_023_03288_z
crossref_primary_10_1016_j_jssc_2022_123739
crossref_primary_10_1039_D2CS00582D
crossref_primary_10_1039_D2QI01108E
crossref_primary_10_1016_j_jssc_2023_124268
crossref_primary_10_1039_D3CC03672C
crossref_primary_10_1039_D4QI00976B
crossref_primary_10_1016_j_jssc_2024_124986
crossref_primary_10_1021_jacs_3c13244
crossref_primary_10_1021_acs_inorgchem_4c04012
crossref_primary_10_1039_D1DT02748D
crossref_primary_10_1039_D3DT02749J
crossref_primary_10_1039_D2CE01582J
crossref_primary_10_1016_j_jhazmat_2023_131835
crossref_primary_10_1002_anie_202411342
crossref_primary_10_1002_ange_202116563
crossref_primary_10_1016_j_jssc_2022_123740
crossref_primary_10_1016_j_micromeso_2023_112572
crossref_primary_10_1002_agt2_506
crossref_primary_10_1016_j_jssc_2023_124176
crossref_primary_10_1002_anie_202113724
crossref_primary_10_1002_macp_202200253
crossref_primary_10_1016_j_jssc_2024_124597
crossref_primary_10_1016_j_jssc_2022_123304
crossref_primary_10_1016_j_jssc_2024_124557
crossref_primary_10_1039_D3CS00873H
crossref_primary_10_1016_j_jssc_2023_124491
crossref_primary_10_1002_ange_202417548
crossref_primary_10_1002_cjoc_202400423
crossref_primary_10_1016_j_micromeso_2023_112963
crossref_primary_10_1002_smll_202311181
crossref_primary_10_1039_D4QI02507E
crossref_primary_10_1021_acs_cgd_2c00039
crossref_primary_10_1021_acs_inorgchem_2c03397
crossref_primary_10_1007_s11426_023_1611_7
crossref_primary_10_1016_j_jssc_2022_123553
crossref_primary_10_1016_j_jssc_2022_123154
crossref_primary_10_1038_s41467_022_34296_4
crossref_primary_10_1039_D2CC06524J
crossref_primary_10_1021_acs_chemmater_4c02320
crossref_primary_10_3389_fchem_2021_793870
crossref_primary_10_1038_s41467_024_46942_0
crossref_primary_10_1039_D4SC05707D
crossref_primary_10_1016_j_cej_2024_156586
crossref_primary_10_1039_D3QI02008H
crossref_primary_10_1002_smll_202302902
crossref_primary_10_1016_j_jssc_2022_123828
crossref_primary_10_1016_j_jssc_2023_124240
crossref_primary_10_1021_acs_inorgchem_4c04832
crossref_primary_10_1039_D4QI00254G
crossref_primary_10_1016_j_micromeso_2023_112954
crossref_primary_10_1007_s12274_024_6606_5
crossref_primary_10_3390_ma17236023
crossref_primary_10_1002_anie_202417548
crossref_primary_10_1016_j_jece_2025_115595
crossref_primary_10_1021_acs_accounts_4c00143
crossref_primary_10_1002_ange_202113724
crossref_primary_10_1007_s40843_022_2349_0
crossref_primary_10_1021_acs_cgd_4c01056
crossref_primary_10_2139_ssrn_4172129
crossref_primary_10_1002_ange_202411342
crossref_primary_10_1039_D1QI01451J
Cites_doi 10.1016/j.trechm.2019.02.010
10.1366/0003702944027372
10.1002/anie.201503362
10.1038/s41467-018-03102-5
10.1016/j.jhazmat.2016.09.015
10.1021/jacs.6b08724
10.1038/s41557-020-0455-y
10.1021/ja211381e
10.1021/cr0204101
10.2320/matertrans.M2012009
10.1039/c2ee22019a
10.1021/ja406081r
10.1021/ja0621086
10.1002/ange.201503362
10.1038/s41467-019-09630-y
10.1021/ja501606h
10.1039/C8RA04775H
10.1016/j.cej.2016.07.073
10.1021/jacs.7b03113
10.1016/j.jnucmat.2015.11.038
10.1021/jacs.0c11778
10.1021/ja205969q
10.1021/acsami.7b02366
10.1039/C8MH01656A
10.1016/j.chempr.2019.03.020
10.1016/j.micromeso.2011.08.016
10.1021/cm401762g
10.1021/jacs.7b09850
10.1016/j.ccr.2020.213473
10.1002/anie.202007270
10.1021/jacs.7b03204
10.1016/j.chempr.2020.11.024
10.1039/C7SC00267J
10.1021/jacs.7b01125
10.1039/c3cc43728k
10.1021/jacs.9b10501
10.1021/jacs.5b09110
10.1002/ange.200901409
10.1021/jacs.7b08748
10.1107/S0907444913000061
10.1039/C5EE02843D
10.1016/j.ccr.2018.06.011
10.1126/science.aaf9135
10.1021/jacs.7b08632
10.1002/ange.202007270
10.1016/j.pnucene.2014.02.013
10.1021/ja042420k
10.1016/j.ccr.2019.213046
10.1038/nature11990
10.1002/anie.200901409
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202107227
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 21433
ExternalDocumentID 10_1002_anie_202107227
ANIE202107227
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 92061104, 21771181, and 21935010
– fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB20000000
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2017345
– fundername: National Basic Research Program of China (973 Program)
  funderid: 2018YFA0208600
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4047-e111ce19b8eef40bbae25b381ecff3fce9b7ef0ffafab0ab2643894bcddbdd543
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 23:18:12 EDT 2025
Fri Jul 25 12:01:40 EDT 2025
Thu Apr 24 22:51:06 EDT 2025
Tue Jul 01 05:29:05 EDT 2025
Wed Jan 22 16:27:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4047-e111ce19b8eef40bbae25b381ecff3fce9b7ef0ffafab0ab2643894bcddbdd543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3358-3057
PQID 2572201038
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2555637848
proquest_journals_2572201038
crossref_citationtrail_10_1002_anie_202107227
crossref_primary_10_1002_anie_202107227
wiley_primary_10_1002_anie_202107227_ANIE202107227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 20, 2021
PublicationDateYYYYMMDD 2021-09-20
PublicationDate_xml – month: 09
  year: 2021
  text: September 20, 2021
  day: 20
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 7
2017; 8
2013; 25
2013; 69
2019; 6
2019; 5
2013; 49
2009 2009; 48 121
2016; 306
2019; 1
2019; 10
2021; 427
2020 2020; 59 132
2019; 400
2020; 12
1994; 48
2021; 143
2019; 141
2017; 9
2014; 136
2011; 133
2012; 53
2017; 139
2018; 9
2018; 8
2018; 374
2012; 134
2012; 157
2015; 137
2005; 127
2015 2015; 54 127
2016; 353
2013; 135
2016; 138
2013; 495
2014; 74
2017; 321
2003; 103
2012; 5
2006; 128
2016; 9
2016; 470
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_28_3
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_18_2
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_27_1
e_1_2_7_48_2
e_1_2_7_29_2
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_55_1
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_1
e_1_2_7_59_2
References_xml – volume: 400
  start-page: 213046
  year: 2019
  end-page: 213060
  publication-title: Coord. Chem. Rev.
– volume: 9
  start-page: 808
  year: 2018
  end-page: 818
  publication-title: Nat. Commun.
– volume: 139
  start-page: 8259
  year: 2017
  end-page: 8266
  publication-title: J. Am. Chem. Soc.
– volume: 306
  start-page: 369
  year: 2016
  end-page: 381
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 760
  year: 2012
  end-page: 765
  publication-title: Mater. Trans.
– volume: 137
  start-page: 13943
  year: 2015
  end-page: 13948
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 1236
  year: 1994
  end-page: 1241
  publication-title: Appl. Spectrosc.
– volume: 139
  start-page: 5201
  year: 2017
  end-page: 5209
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 7172
  year: 2017
  end-page: 7175
  publication-title: J. Am. Chem. Soc.
– volume: 48 121
  start-page: 5163 5265
  year: 2009 2009
  end-page: 5166 5268
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 74
  start-page: 61
  year: 2014
  end-page: 70
  publication-title: Prog. Nucl.
– volume: 6
  start-page: 1571
  year: 2019
  end-page: 1595
  publication-title: Mater. Horiz.
– volume: 8
  start-page: 29248
  year: 2018
  end-page: 29273
  publication-title: RSC Adv.
– volume: 128
  start-page: 10223
  year: 2006
  end-page: 10230
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 12733 12924
  year: 2015 2015
  end-page: 12737 12928
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 750
  year: 2019
  end-page: 752
  publication-title: Chem
– volume: 133
  start-page: 14920
  year: 2011
  end-page: 14923
  publication-title: J. Am. Chem. Soc.
– volume: 353
  start-page: 808
  year: 2016
  end-page: 811
  publication-title: Science
– volume: 127
  start-page: 7891
  year: 2005
  end-page: 7900
  publication-title: J. Am. Chem. Soc.
– volume: 321
  start-page: 210
  year: 2017
  end-page: 217
  publication-title: J. Hazard. Mater.
– volume: 59 132
  start-page: 16735 16878
  year: 2020 2020
  end-page: 16740 16883
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 15320
  year: 2017
  end-page: 15323
  publication-title: J. Am. Chem. Soc.
– volume: 374
  start-page: 236
  year: 2018
  end-page: 253
  publication-title: Coord. Chem. Rev.
– volume: 25
  start-page: 2591
  year: 2013
  end-page: 2596
  publication-title: Chem. Mater.
– volume: 136
  start-page: 5271
  year: 2014
  end-page: 5274
  publication-title: J. Am. Chem. Soc.
– volume: 470
  start-page: 307
  year: 2016
  end-page: 326
  publication-title: J. Nucl. Mater.
– volume: 135
  start-page: 16256
  year: 2013
  end-page: 16259
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 8743
  year: 2012
  end-page: 8757
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 10320
  year: 2013
  end-page: 10322
  publication-title: Chem. Commun.
– volume: 139
  start-page: 14873
  year: 2017
  end-page: 14876
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 2325
  year: 2021
  end-page: 2330
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 1649
  year: 2003
  end-page: 1684
  publication-title: Chem. Rev.
– volume: 8
  start-page: 3171
  year: 2017
  end-page: 3177
  publication-title: Chem. Sci.
– volume: 427
  start-page: 213473
  year: 2021
  end-page: 213495
  publication-title: Coord. Chem. Rev.
– volume: 495
  start-page: 461
  year: 2013
  end-page: 466
  publication-title: Nature
– volume: 139
  start-page: 16289
  year: 2017
  end-page: 16296
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 292
  year: 2019
  end-page: 303
  publication-title: Trends Chem.
– volume: 157
  start-page: 131
  year: 2012
  end-page: 136
  publication-title: Microporous Mesoporous Mater.
– volume: 10
  start-page: 1646
  year: 2019
  end-page: 1655
  publication-title: Nat. Commun.
– volume: 9
  start-page: 25194
  year: 2017
  end-page: 25203
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 4857
  year: 2012
  end-page: 4863
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 18862
  year: 2019
  end-page: 18869
  publication-title: J. Am. Chem. Soc.
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  publication-title: Acta Crystallogr. Sect. D
– volume: 138
  start-page: 13822
  year: 2016
  end-page: 13825
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 699
  year: 2021
  end-page: 714
  publication-title: Chem
– volume: 9
  start-page: 1050
  year: 2016
  end-page: 1062
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 574
  year: 2020
  end-page: 578
  publication-title: Nat. Chem.
– ident: e_1_2_7_8_2
  doi: 10.1016/j.trechm.2019.02.010
– ident: e_1_2_7_59_2
  doi: 10.1366/0003702944027372
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.201503362
– ident: e_1_2_7_48_2
  doi: 10.1038/s41467-018-03102-5
– ident: e_1_2_7_56_1
– ident: e_1_2_7_11_1
– ident: e_1_2_7_20_2
  doi: 10.1016/j.jhazmat.2016.09.015
– ident: e_1_2_7_45_2
  doi: 10.1021/jacs.6b08724
– ident: e_1_2_7_42_2
  doi: 10.1038/s41557-020-0455-y
– ident: e_1_2_7_32_2
  doi: 10.1021/ja211381e
– ident: e_1_2_7_60_2
  doi: 10.1021/cr0204101
– ident: e_1_2_7_21_2
  doi: 10.2320/matertrans.M2012009
– ident: e_1_2_7_2_2
  doi: 10.1039/c2ee22019a
– ident: e_1_2_7_39_1
– ident: e_1_2_7_5_1
– ident: e_1_2_7_33_2
  doi: 10.1021/ja406081r
– ident: e_1_2_7_16_1
– ident: e_1_2_7_54_1
  doi: 10.1021/ja0621086
– ident: e_1_2_7_27_1
– ident: e_1_2_7_28_3
  doi: 10.1002/ange.201503362
– ident: e_1_2_7_35_1
– ident: e_1_2_7_19_1
– ident: e_1_2_7_49_1
– ident: e_1_2_7_9_2
  doi: 10.1038/s41467-019-09630-y
– ident: e_1_2_7_50_2
  doi: 10.1021/ja501606h
– ident: e_1_2_7_10_1
  doi: 10.1039/C8RA04775H
– ident: e_1_2_7_7_2
  doi: 10.1016/j.cej.2016.07.073
– ident: e_1_2_7_47_2
  doi: 10.1021/jacs.7b03113
– ident: e_1_2_7_3_2
  doi: 10.1016/j.jnucmat.2015.11.038
– ident: e_1_2_7_43_1
  doi: 10.1021/jacs.0c11778
– ident: e_1_2_7_15_2
  doi: 10.1021/ja205969q
– ident: e_1_2_7_17_2
  doi: 10.1021/acsami.7b02366
– ident: e_1_2_7_26_2
  doi: 10.1039/C8MH01656A
– ident: e_1_2_7_13_2
  doi: 10.1016/j.chempr.2019.03.020
– ident: e_1_2_7_36_2
  doi: 10.1016/j.micromeso.2011.08.016
– ident: e_1_2_7_34_2
  doi: 10.1021/cm401762g
– ident: e_1_2_7_14_2
  doi: 10.1021/jacs.7b09850
– ident: e_1_2_7_24_2
  doi: 10.1016/j.ccr.2020.213473
– ident: e_1_2_7_55_1
  doi: 10.1002/anie.202007270
– ident: e_1_2_7_29_2
  doi: 10.1021/jacs.7b03204
– ident: e_1_2_7_30_2
  doi: 10.1016/j.chempr.2020.11.024
– ident: e_1_2_7_61_1
  doi: 10.1039/C7SC00267J
– ident: e_1_2_7_46_2
  doi: 10.1021/jacs.7b01125
– ident: e_1_2_7_38_1
  doi: 10.1039/c3cc43728k
– ident: e_1_2_7_1_1
– ident: e_1_2_7_52_2
  doi: 10.1021/jacs.9b10501
– ident: e_1_2_7_22_1
  doi: 10.1021/jacs.5b09110
– ident: e_1_2_7_53_2
  doi: 10.1002/ange.200901409
– ident: e_1_2_7_44_1
– ident: e_1_2_7_58_2
  doi: 10.1021/jacs.7b08748
– ident: e_1_2_7_57_2
  doi: 10.1107/S0907444913000061
– ident: e_1_2_7_18_2
  doi: 10.1039/C5EE02843D
– ident: e_1_2_7_37_2
  doi: 10.1016/j.ccr.2018.06.011
– ident: e_1_2_7_51_2
  doi: 10.1126/science.aaf9135
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.7b08632
– ident: e_1_2_7_55_2
  doi: 10.1002/ange.202007270
– ident: e_1_2_7_6_1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.pnucene.2014.02.013
– ident: e_1_2_7_40_2
  doi: 10.1021/ja042420k
– ident: e_1_2_7_25_2
  doi: 10.1016/j.ccr.2019.213046
– ident: e_1_2_7_41_2
  doi: 10.1038/nature11990
– ident: e_1_2_7_53_1
  doi: 10.1002/anie.200901409
– ident: e_1_2_7_23_1
– ident: e_1_2_7_31_1
SSID ssj0028806
Score 2.5923762
Snippet Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21426
SubjectTerms Adsorbents
Aluminum
Assembly
Binding sites
Confinement
Crystallography
Cyclohexane
Iodine
iodine capture
Iodine radioisotopes
molecular rings
self-assembly
sequential confinement
Title Designable Assembly of Aluminum Molecular Rings for Sequential Confinement of Iodine Molecules
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202107227
https://www.proquest.com/docview/2572201038
https://www.proquest.com/docview/2555637848
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8ML_ritxFFUxMTnwaja9l4JAgBE3hASXhyabs2McIwAg_613u3L8DEmOjblvWyrb3e_dre_Y6QW1bnALKtdoRgyuGBSMq8aAeUqyl4A2Qk5jsPho3emD9MxGQjiz_lhyg23HBmJPYaJ7hUi9qaNBQzsGF9B0sWnzFMJ8eALURFo4I_ioFypulFnudgFfqctdFltW3xba-0hpqbgDXxON0DIvNvTQNNXqurparqz280jv_5mUOyn8FR2kr154jsmPiY7LbzKnAn5Pk-CfHABCuKB8QzNf2gc0tbYNRe4tWMDvL6unSEm-4UQDB9TOKzwXZMKWYUwtfhHiSK9efgK00uZBanZNztPLV7TlaTwdEcSR0M2EZt6k0VGGO5q5Q0TChw-0Zb61ltmso31rVWWqlcqQBvASTiSkeRiiLBvTNSiuexOSdUcAnrb-m6smlg2eQpGTUAPQd-BAZaCFkmTj4moc4Iy7FuxjRMqZZZiL0WFr1WJndF-7eUquPHlpV8iMNsyi5CsF0MQwO8oExuisfQ23iCImMzX2Eb5FPzAw5tWDKev7wpbA37neLu4i9Cl2QPrzFGhbkVUlq-r8wVAKGluk6U_Qs-BgDN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HMaFN2I8g4TEqdClydodJx7agO0AQ-JElaSJhNg6xLYD_Hrsdi0PCSHBsa2ttnk4nxP7M8AhrwkE2c54UnLtiUhmZV6Mh4OrIUUddRTlO3e69daduLyXRTQh5cLk_BDlhhvNjMxe0wSnDemTD9ZQSsFGBw99lpDzcBbmqax35lXdlAxSHIdnnmAUBB7VoS94G31-8lX_67r0ATY_Q9ZszblYAl18bR5q8nQ8Getj8_aNyPFfv7MMi1NEypr5EFqBGZuuQuW0KAS3Bg9nWZQH5VgxOiMe6P4rGzrWRLv2mE4GrFOU2GU3tO_OEAez2yxEG81Hn1FSIX4ebUOSWnuIy6UtlOxoHe4uznunLW9alsEzgngdLJpHY2sNHVnrhK-1slxqXPmtcS5wxjZ0aJ3vnHJK-0oj5EJUJLRJEp0kUgQbMJcOU7sJTAqFLrjyfdWw6DkFWiV1BNBRmKCNllJVwSs6JTZTznIqndGPc7ZlHlOrxWWrVeGolH_O2Tp-lNwp-jieztpRjOaLU3RAEFXhoHyMrU2HKCq1wwnJEKVaGAmU4VmH_vKmuNltn5dXW39R2odKq9e5jq_b3attWKD7FLLC_R2YG79M7C7iorHey0b-O0gKBOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90gvritzg_Iwg-Vbs0WbvH4RzOjyF-gE-WJE1AnJ247UH_eu_atX6ACPrYNkfb5HL5XXL3O4A9XhMIsp3xpOTaE5HMyrwYD5WrIUUdZRTlO1906ye34vRO3n3K4s_5IcoNN5oZmb2mCf6cuMMP0lDKwEb_Dl2WkPNwEqZE3Y9Ir1tXJYEUR-3M84uCwKMy9AVto88Pv8p_XZY-sOZnxJotOe15UMXH5pEmjwejoT4wb994HP_zNwswN8ajrJkr0CJM2HQJZo6KMnDLcN_KYjwow4rRCfGT7r2yvmNNtGoP6eiJXRQFdtkV7bozRMHsOgvQRuPRY5RSiF9Hm5Ak1unjYmkLITtYgdv28c3RiTcuyuAZQawOFo2jsbWGjqx1wtdaWS41rvvWOBc4Yxs6tM53TjmlfaURcCEmEtokiU4SKYJVqKT91K4Bk0KhA658XzUs-k2BVkkd4XMUJmihpVRV8Ioxic2YsZwKZ_TinGuZx9RrcdlrVdgv2z_nXB0_ttwshjgez9lBjMaLU2xAEFVht3yMvU1HKCq1_RG1IUK1MBLYhmfj-cub4ma3c1xerf9FaAemL1vt-LzTPduAWbpN8Src34TK8GVktxAUDfV2pvfvTrEDoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designable+Assembly+of+Aluminum+Molecular+Rings+for+Sequential+Confinement+of+Iodine+Molecules&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Chen-Hui&rft.au=Fang%2C+Wei-Hui&rft.au=Sun%2C+Yayong&rft.au=Yao%2C+Shuyang&rft.date=2021-09-20&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=39&rft.spage=21426&rft_id=info:doi/10.1002%2Fanie.202107227&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon