A joint logistic regression and covariate‐adjusted continuous‐time Markov chain model
The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudin...
Saved in:
Published in | Statistics in medicine Vol. 36; no. 28; pp. 4570 - 4582 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
10.12.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.7387 |
Cover
Abstract | The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross‐sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross‐sectional response, where the unobserved transition rates of a two‐state continuous‐time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6‐month outcome based on physiological data collected post‐injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long‐term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd.The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd. The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd. The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects. |
Author | Yamal, Jose‐Miguel Rubin, Maria Laura Chan, Wenyaw Robertson, Claudia Sue |
AuthorAffiliation | 1 Department of Biostatistics, The University of Texas School Health Science Center at Houston, Houston, Texas 77030 2 Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030 |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics, The University of Texas School Health Science Center at Houston, Houston, Texas 77030 – name: 2 Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030 |
Author_xml | – sequence: 1 givenname: Maria Laura orcidid: 0000-0002-8503-2612 surname: Rubin fullname: Rubin, Maria Laura organization: The University of Texas Health Science Center at Houston – sequence: 2 givenname: Wenyaw orcidid: 0000-0003-3329-5282 surname: Chan fullname: Chan, Wenyaw email: wenyaw.chan@uth.tmc.edu organization: The University of Texas Health Science Center at Houston – sequence: 3 givenname: Jose‐Miguel orcidid: 0000-0003-2505-0090 surname: Yamal fullname: Yamal, Jose‐Miguel organization: The University of Texas Health Science Center at Houston – sequence: 4 givenname: Claudia Sue surname: Robertson fullname: Robertson, Claudia Sue organization: Baylor College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28695582$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctuFDEQRS0URCYBiS9ALbFh04Ptbr82SFHEI1IiFsCCleWxqyceuu1guwdlxyfwjXwJHiYJD8GqpKpTV7fqHqGDEAMg9JjgJcGYPs9-WopOintoQbASLaZMHqAFpkK0XBB2iI5y3mBMCKPiATqkkivGJF2gjyfNJvpQmjGufS7eNgnWCXL2MTQmuMbGrUneFPj-9ZtxmzkX2DVD8WGOc67d4idoLkz6FLeNvTQ-NFN0MD5E9wczZnh0U4_Rh1cv35--ac_fvj47PTlvbY970SqiXMelEsMKuFtR03HHGAhph4E5Sh3gHlvqmOCUAVG9EUIRxg1TsuvYqjtGL_a6V_NqAmchlGRGfZX8ZNK1jsbrPyfBX-p13GrGFce9rALPbgRS_DxDLnry2cI4mgD1Qk0UEYp3gnQVffoXuolzCvW8SnFOCZOCVerJ747urNx-vQLLPWBTzDnBoK0vptSXV4N-1ATrXay6xqp3sf6yeLdwq_kPtN2jX_wI1__l9Luzi5_8DykSs7g |
CitedBy_id | crossref_primary_10_3390_math11204396 crossref_primary_10_1089_neu_2018_6217 crossref_primary_10_1002_bimj_202100325 crossref_primary_10_1002_sim_9930 crossref_primary_10_1111_jtsa_12615 |
Cites_doi | 10.1002/bimj.201000142 10.1007/0-387-22742-3_8 10.1001/jama.2014.6490 10.1111/j.1541-0420.2007.00822.x 10.1016/j.compbiomed.2014.11.007 10.1097/TA.0b013e31820c768a 10.1002/0471667196.ess3138 10.1111/j.1541-0420.2010.01489.x 10.1214/009053604000001156 10.1136/bmj.39461.643438.25 10.1016/j.jcrc.2015.08.003 10.1002/(SICI)1097-0258(19990530)18:10<1249::AID-SIM125>3.0.CO;2-# 10.1371/journal.pmed.0050165 10.1111/j.1365-2893.2009.01183.x 10.1097/TA.0b013e3181c99853 10.1016/S0167-7152(01)00012-8 10.1016/j.csda.2006.10.008 10.2307/2533118 10.1111/j.0006-341X.2000.00487.x 10.1080/01621459.1995.10476485 10.1097/00063110-199606000-00010 10.1002/9781118548387 10.1089/neu.2014.3752 10.1093/biostatistics/1.4.465 10.5812/ircmj.19489 10.1002/bimj.201000070 10.1080/01621459.2014.940044 10.3171/JNS/2008/109/10/0678 10.1002/sim.6861 10.1111/j.0006-341X.2004.00170.x 10.1198/jasa.2009.ap08423 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.7387 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 4582 |
ExternalDocumentID | PMC5696048 28695582 10_1002_sim_7387 SIM7387 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences, National Institute of Health funderid: T32 GM074902 – fundername: National Institute of Neurological Disorders and Stroke, National Institutes of Health funderid: P01NS38660 – fundername: NIGMS NIH HHS grantid: T32 GM074902 – fundername: NINDS NIH HHS grantid: P01 NS038660 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4047-919d36897fbe6db2a36d55e78cff5d22de040c2d57625e194a779156a598335b3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:33:02 EDT 2025 Fri Jul 11 05:24:18 EDT 2025 Fri Jul 25 19:55:16 EDT 2025 Wed Feb 19 02:41:38 EST 2025 Tue Jul 01 03:28:11 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Wed Jan 22 16:40:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | continuous-time Markov chain logistic regression joint model transition rates longitudinal data |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2017 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4047-919d36897fbe6db2a36d55e78cff5d22de040c2d57625e194a779156a598335b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8503-2612 0000-0003-3329-5282 0000-0003-2505-0090 |
PMID | 28695582 |
PQID | 1966215875 |
PQPubID | 48361 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696048 proquest_miscellaneous_1917963713 proquest_journals_1966215875 pubmed_primary_28695582 crossref_citationtrail_10_1002_sim_7387 crossref_primary_10_1002_sim_7387 wiley_primary_10_1002_sim_7387_SIM7387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 December 2017 |
PublicationDateYYYYMMDD | 2017-12-10 |
PublicationDate_xml | – month: 12 year: 2017 text: 10 December 2017 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 56 2015; 17 1995; 90 2004; 60 2010 2010; 17 2015; 30 2015; 32 2011; 53 2008; 109 1996 2006 2008; 5 2000; 1 2007; 51 2002 2014; 312 2016; 35 1999 2014; 109 2010; 69 1997; 53 2000; 56 1999; 18 2011; 70 2008; 336 2011; 67 2007; 63 2013 2010; 4 1996; 3 2005; 33 2009; 104 2001; 53 e_1_2_8_29_1 Bhat UN (e_1_2_8_23_1) 2002 e_1_2_8_26_1 Mhoon KB (e_1_2_8_28_1) 2010; 4 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 Agresti A (e_1_2_8_25_1) 2013 e_1_2_8_5_1 e_1_2_8_4_1 Hosmer DW (e_1_2_8_24_1) 2013 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 Ross SM (e_1_2_8_21_1) 1996 Pinsky M (e_1_2_8_22_1) 2010 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 18826355 - J Neurosurg. 2008 Oct;109 (4):678-84 26782946 - Stat Med. 2016 Apr 30;35(9):1549-57 10877308 - Biometrics. 2000 Jun;56(2):487-95 9028756 - Eur J Emerg Med. 1996 Jun;3(2):109-27 20038855 - J Trauma. 2010 Jul;69(1):110-8 17501940 - Biometrics. 2007 Dec;63(4):1068-78 19780947 - J Viral Hepat. 2010 May;17 (5):345-51 21770044 - Biom J. 2011 Sep;53(5):735-49 26019901 - Iran Red Crescent Med J. 2015 Mar 31;17(3):e19489 18270239 - BMJ. 2008 Feb 23;336(7641):425-9 18684008 - PLoS Med. 2008 Aug 5;5(8):e165; discussion e165 26324412 - J Crit Care. 2015 Dec;30(6):1258-62 12933568 - Biostatistics. 2000 Dec;1(4):465-80 25464358 - Comput Biol Med. 2015 Jan;56:167-74 25663725 - J Am Stat Assoc. 2014 Dec 1;109(508):1425-1439 20880012 - Biometrics. 2011 Jun;67(2):454-66 25566694 - J Neurotrauma. 2015 Aug 15;32(16):1239-45 18704154 - Comput Stat Data Anal. 2007 Aug 15;51(12):5776-5790 20151036 - J Am Stat Assoc. 2009 Sep 1;104(487):912 23504410 - JP J Biostat. 2010 Oct;4(3):213-226 25058216 - JAMA. 2014 Jul 2;312(1):36-47 21404316 - Biom J. 2011 May;53(3):393-410 15032767 - Biometrics. 2004 Mar;60(1):1-7 9147598 - Biometrics. 1997 Mar;53(1):330-9 21610341 - J Trauma. 2011 Mar;70(3):547-53 10363343 - Stat Med. 1999 May 30;18(10):1249-60 |
References_xml | – volume: 67 start-page: 454 issue: 2 year: 2011 end-page: 466 article-title: Bayesian nonparametric regression analysis of data with random effects covariates from longitudinal measurements publication-title: Biometrics – volume: 4 start-page: 213 issue: 3 year: 2010 end-page: 226 article-title: A continuous‐time markov chain approach analyzing the stages of change construct from a health promotion intervention publication-title: JP journal of biostatistics – volume: 3 start-page: 109 issue: 2 year: 1996 end-page: 127 article-title: Guidelines for the management of severe head injury publication-title: European Journal of Emergency Medicine – volume: 17 issue: 3 year: 2015 article-title: Longitudinal discriminant analysis of hemoglobin level for predicting preeclampsia publication-title: Iranian Red Crescent Medical Journal – volume: 109 start-page: 678 issue: 4 year: 2008 end-page: 684 article-title: Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury publication-title: Journal of Neurosurgery – volume: 53 start-page: 393 issue: 3 year: 2011 end-page: 410 article-title: Semiparametric estimation for joint modeling of colorectal cancer risk and functional biomarkers measured with errors publication-title: Biometrical Journal – start-page: 216 year: 2002 end-page: 218 – volume: 1 start-page: 465 issue: 4 year: 2000 end-page: 480 article-title: Joint modelling of longitudinal measurements and event time data publication-title: Biostatistics (Oxford, England) – volume: 104 start-page: 912 issue: 487 year: 2009 end-page: 928 article-title: Joint modeling of self‐rated health and changes in physical functioning publication-title: Journal of the American Statistical Association – volume: 53 start-page: 735 issue: 5 year: 2011 end-page: 749 article-title: Logistic regression when covariates are random effects from a non‐linear mixed model publication-title: Biometrical Journal – volume: 60 start-page: 1 issue: 1 year: 2004 end-page: 7 article-title: Conditional estimation for generalized linear models when covariates are subject‐specific parameters in a mixed model for longitudinal measurements publication-title: Biometrics – volume: 32 start-page: 1239 issue: 16 year: 2015 end-page: 1245 article-title: Effect of hemoglobin transfusion threshold on cerebral hemodynamics and oxygenation publication-title: Journal of Neurotrauma – year: 1996 – volume: 35 start-page: 1549 issue: 9 year: 2016 end-page: 1557 article-title: A hidden Markov model approach to analyze longitudinal ternary outcomes when some observed states are possibly misclassified publication-title: Statistics in Medicine – volume: 18 start-page: 1249 issue: 10 year: 1999 end-page: 1260 article-title: A discriminant analysis extension to mixed models publication-title: Statistics in Medicine – volume: 53 start-page: 330 issue: 1 year: 1997 end-page: 339 article-title: A joint model for survival and longitudinal data measured with error publication-title: Biometrics – start-page: 8 year: 2013 end-page: 9 – volume: 336 start-page: 425 issue: 7641 year: 2008 end-page: 429 article-title: Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients publication-title: BMJ – start-page: 192 year: 2013 end-page: 193 – volume: 63 start-page: 1068 issue: 4 year: 2007 end-page: 1078 article-title: Joint models for a primary endpoint and multiple longitudinal covariate processes publication-title: Biometrics – volume: 56 start-page: 167 issue: 2015 year: 2015 end-page: 174 article-title: Permutation entropy analysis of vital signs data for outcome prediction of patients with severe traumatic brain injury publication-title: Computers in Biology and Medicine – year: 2010 – volume: 312 start-page: 36 issue: 1 year: 2014 end-page: 47 article-title: Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial publication-title: JAMA – volume: 69 start-page: 110 issue: 1 year: 2010 end-page: 118 article-title: Automated measurement of “pressure times time dose” of intracranial hypertension best predicts outcome after severe traumatic brain injury publication-title: The Journal of Trauma – volume: 56 start-page: 487 issue: 2 year: 2000 end-page: 495 article-title: Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements publication-title: Biometrics – volume: 5 issue: 8 year: 2008 article-title: Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics publication-title: PLoS Medicine – volume: 109 start-page: 1425 issue: 508 year: 2014 end-page: 1439 article-title: Variable‐domain functional regression for modeling ICU data publication-title: Journal of the American Statistical Association – volume: 33 start-page: 774 issue: 2 year: 2005 end-page: 805 article-title: Generalized functional linear models publication-title: Annals of Statistics – volume: 90 start-page: 27 issue: 429 year: 1995 end-page: 37 article-title: Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS publication-title: Journal of the American Statistical Association – volume: 53 start-page: 347 issue: 4 year: 2001 end-page: 356 article-title: Functional methods for logistic regression on random‐effect‐coefficients for longitudinal measurements publication-title: Statistics & probability letters – volume: 70 start-page: 547 issue: 3 year: 2011 end-page: 553 article-title: Dynamic three‐dimensional scoring of cerebral perfusion pressure and intracranial pressure provides a brain trauma index that predicts outcome in patients with severe traumatic brain injury publication-title: The Journal of Trauma – year: 2006 – volume: 51 start-page: 5776 issue: 12 year: 2007 end-page: 5790 article-title: Likelihood and pseudo‐likelihood methods for semiparametric joint models for a primary endpoint and longitudinal data publication-title: Computational Statistics & Data Analysis – volume: 30 start-page: 1258 issue: 6 year: 2015 end-page: 1262 article-title: Predictors of intensive care unit length of stay and intracranial pressure in severe traumatic brain injury publication-title: Journal of Critical Care – volume: 17 start-page: 345 issue: 5 year: 2010 end-page: 351 article-title: Prediction of nonSVR to therapy with pegylated interferon‐α2a and ribavirin in chronic hepatitis C genotype 1 patients after 4, 8 and 12 weeks of treatment publication-title: Journal of Viral Hepatitis – start-page: 192 year: 1999 end-page: 200 – ident: e_1_2_8_12_1 doi: 10.1002/bimj.201000142 – ident: e_1_2_8_27_1 doi: 10.1007/0-387-22742-3_8 – ident: e_1_2_8_29_1 doi: 10.1001/jama.2014.6490 – ident: e_1_2_8_11_1 doi: 10.1111/j.1541-0420.2007.00822.x – ident: e_1_2_8_35_1 doi: 10.1016/j.compbiomed.2014.11.007 – start-page: 192 volume-title: Categorical Data Analysis year: 2013 ident: e_1_2_8_25_1 – ident: e_1_2_8_36_1 doi: 10.1097/TA.0b013e31820c768a – ident: e_1_2_8_15_1 doi: 10.1002/0471667196.ess3138 – ident: e_1_2_8_13_1 doi: 10.1111/j.1541-0420.2010.01489.x – ident: e_1_2_8_14_1 doi: 10.1214/009053604000001156 – ident: e_1_2_8_33_1 doi: 10.1136/bmj.39461.643438.25 – ident: e_1_2_8_3_1 doi: 10.1016/j.jcrc.2015.08.003 – ident: e_1_2_8_18_1 doi: 10.1002/(SICI)1097-0258(19990530)18:10<1249::AID-SIM125>3.0.CO;2-# – ident: e_1_2_8_32_1 doi: 10.1371/journal.pmed.0050165 – ident: e_1_2_8_20_1 doi: 10.1111/j.1365-2893.2009.01183.x – ident: e_1_2_8_37_1 doi: 10.1097/TA.0b013e3181c99853 – ident: e_1_2_8_8_1 doi: 10.1016/S0167-7152(01)00012-8 – ident: e_1_2_8_10_1 doi: 10.1016/j.csda.2006.10.008 – ident: e_1_2_8_4_1 doi: 10.2307/2533118 – ident: e_1_2_8_7_1 doi: 10.1111/j.0006-341X.2000.00487.x – ident: e_1_2_8_2_1 doi: 10.1080/01621459.1995.10476485 – start-page: 216 volume-title: Elements of Applied Stochastic Processes year: 2002 ident: e_1_2_8_23_1 – volume-title: Stochastic Processes year: 1996 ident: e_1_2_8_21_1 – volume: 4 start-page: 213 issue: 3 year: 2010 ident: e_1_2_8_28_1 article-title: A continuous‐time markov chain approach analyzing the stages of change construct from a health promotion intervention publication-title: JP journal of biostatistics – ident: e_1_2_8_30_1 doi: 10.1097/00063110-199606000-00010 – start-page: 8 volume-title: Applied Logistic regression year: 2013 ident: e_1_2_8_24_1 doi: 10.1002/9781118548387 – ident: e_1_2_8_31_1 doi: 10.1089/neu.2014.3752 – ident: e_1_2_8_5_1 doi: 10.1093/biostatistics/1.4.465 – ident: e_1_2_8_19_1 doi: 10.5812/ircmj.19489 – ident: e_1_2_8_16_1 doi: 10.1002/bimj.201000070 – ident: e_1_2_8_17_1 doi: 10.1080/01621459.2014.940044 – volume-title: An Introduction to Stochastic Modeling year: 2010 ident: e_1_2_8_22_1 – ident: e_1_2_8_34_1 doi: 10.3171/JNS/2008/109/10/0678 – ident: e_1_2_8_26_1 doi: 10.1002/sim.6861 – ident: e_1_2_8_9_1 doi: 10.1111/j.0006-341X.2004.00170.x – ident: e_1_2_8_6_1 doi: 10.1198/jasa.2009.ap08423 – reference: 21770044 - Biom J. 2011 Sep;53(5):735-49 – reference: 18270239 - BMJ. 2008 Feb 23;336(7641):425-9 – reference: 10877308 - Biometrics. 2000 Jun;56(2):487-95 – reference: 10363343 - Stat Med. 1999 May 30;18(10):1249-60 – reference: 25663725 - J Am Stat Assoc. 2014 Dec 1;109(508):1425-1439 – reference: 15032767 - Biometrics. 2004 Mar;60(1):1-7 – reference: 26324412 - J Crit Care. 2015 Dec;30(6):1258-62 – reference: 21404316 - Biom J. 2011 May;53(3):393-410 – reference: 20151036 - J Am Stat Assoc. 2009 Sep 1;104(487):912 – reference: 25058216 - JAMA. 2014 Jul 2;312(1):36-47 – reference: 18826355 - J Neurosurg. 2008 Oct;109 (4):678-84 – reference: 23504410 - JP J Biostat. 2010 Oct;4(3):213-226 – reference: 19780947 - J Viral Hepat. 2010 May;17 (5):345-51 – reference: 18704154 - Comput Stat Data Anal. 2007 Aug 15;51(12):5776-5790 – reference: 9028756 - Eur J Emerg Med. 1996 Jun;3(2):109-27 – reference: 9147598 - Biometrics. 1997 Mar;53(1):330-9 – reference: 12933568 - Biostatistics. 2000 Dec;1(4):465-80 – reference: 21610341 - J Trauma. 2011 Mar;70(3):547-53 – reference: 26782946 - Stat Med. 2016 Apr 30;35(9):1549-57 – reference: 17501940 - Biometrics. 2007 Dec;63(4):1068-78 – reference: 20880012 - Biometrics. 2011 Jun;67(2):454-66 – reference: 20038855 - J Trauma. 2010 Jul;69(1):110-8 – reference: 25566694 - J Neurotrauma. 2015 Aug 15;32(16):1239-45 – reference: 26019901 - Iran Red Crescent Med J. 2015 Mar 31;17(3):e19489 – reference: 18684008 - PLoS Med. 2008 Aug 5;5(8):e165; discussion e165 – reference: 25464358 - Comput Biol Med. 2015 Jan;56:167-74 |
SSID | ssj0011527 |
Score | 2.2634125 |
Snippet | The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to... The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4570 |
SubjectTerms | Brain Injuries, Traumatic - therapy Computer Simulation continuous‐time Markov chain Cross-Sectional Studies Humans joint model Likelihood Functions Logistic Models logistic regression longitudinal data Longitudinal Studies Markov analysis Markov Chains Medical statistics Physiology Prognosis Randomized Controlled Trials as Topic transition rates Treatment Outcome |
Title | A joint logistic regression and covariate‐adjusted continuous‐time Markov chain model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7387 https://www.ncbi.nlm.nih.gov/pubmed/28695582 https://www.proquest.com/docview/1966215875 https://www.proquest.com/docview/1917963713 https://pubmed.ncbi.nlm.nih.gov/PMC5696048 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hHlAlxM_yFyjISAhO2W6c2ImPFVAVpOUAVCriEDm2Q1PAQd1ND5x4BJ6RJ2EmTgJLQUKcIiWTxHFm7G_smW8AHvJ6kdjEqti6uo6zokrjCl3rGGcyWUtZC64pUXj5Uh4cZi-OxNEQVUm5MIEfYlpwI8vox2sycF2tdn-Shq6aT_M8LSiRPEkl0eY_fTUxRyVjtVbaoZR5Ikbe2QXfHW_cnInOwcvzUZK_otd--tm_Au_Ghoeokw_zbl3NzZffOB3_78uuwuUBlbK9oEbX4ILzM7i4HPbdZ3AprO6xkLQ0g23CqIHi-Tq83WMnbePXLGQTodipex_Caz3T3jLTnqFHjqD2-9dv2p50tMLKKEa-8V3brfAsVbhnlDbUnjFzrBvP-go9N-Bw_9mbJwfxULEhNhlRPqhE2VQWKq8rR4WqdCqtEC4vTF0Ly7l1OGYYbtHJ4cIlKtN5rtCD1EJR8leV3oQt33p3G5jJM6MQbKYiVZk0qGsisyZfmBpvraSL4PH490oz0JlTVY2PZSBi5iV2Y0ndGMGDSfJzoPD4g8zOqADlYMSrEgcniYgIPTp8xHQZzY_2VLR32EMlubs4hqGrH8GtoC_TS3ghlRAFjyDf0KRJgKi9N6_45rin-BaSSHOKCB71ivLXdpevny_peOdfBe_CNidgknCcgHdga33auXsIq9bV_d6AfgCNySL0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIkElxM8CJVDASAhO2W6c2E7EqQKqLXR7gFYqElKU2A5NCwnqbnrgxCPwjDwJM3ESWAoS4hQpHieOM2N_Y3u-AXjMi0lgApP4xhaFH8V56OfoWvs4k8lCykLwjAKFZ3tyehC9OhSHK_Csj4Vx_BDDghtZRjtek4HTgvTmT9bQeflprMJYXYCLEeIM8rxevBm4o4I-XyvtUUoViJ55dsI3-5rLc9E5gHn-nOSv-LWdgLavwfu-6e7cycm4WeRj_eU3Vsf__LbrcLUDpmzLadINWLHVCC7Nuq33EVxxC3zMxS2NYI1gqmN5vgnvtthxXVYL5gKKUOzUfnAnbCuWVYbp-gydcsS1379-y8xxQ4usjI7Jl1VTN3O8S0nuGUUO1WdMH2VlxdokPbfgYPvl_vOp3yVt8HVErA9JkJhQxokqcku5qrJQGiGsinVRCMO5sThsaG7Qz-HCBkmUKZWgE5mJhOK_8vA2rFZ1Ze8A0yrSCeLNUIRJJDWqm4iMVhNdYNVcWg-e9r8v1R2jOSXW-Jg6LmaeYjem1I0ePBokPzsWjz_IbPQakHZ2PE9xfJIIitCpw0cMxWiBtK2SVRZ7KCWPF4cx9PY9WHcKM7yExzIRIuYeqCVVGgSI3Xu5pCqPWpZvIYk3J_bgSaspf213-nZnRte7_yr4EC5P92e76e7O3ut7sMYJpwQc5-MNWF2cNvY-oqxF_qC1ph-dBCcT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkapKiMfyChQwEoJTthsnduJjBaxaYCsEVCriECV-0BTIVt1ND5z4CfxGfgkzcRJYChLiFCmZJI4zY39jz3wD8JC7SWQio0JjnQuTrIzDEl3rEGcy6aR0gheUKDzbkzv7yfMDcdBFVVIujOeHGBbcyDLa8ZoM_Ni4rZ-koYvq8ziNs_Q8XEgkAgkCRK8H6qioL9dKW5QyjURPPDvhW_2dq1PRGXx5NkzyV_jazj_Ty_C-b7kPO_k4bpblWH_5jdTx_z7tClzqYCnb9np0Fc7ZegTrs27jfQQX_fIe81lLI9ggkOo5nq_Bu212NK_qJfPpRCh2Yj_4-NqaFbVhen6KLjmi2u9fvxXmqKElVkZB8lXdzJsFnqUS94zyhuanTB8WVc3aEj3XYX_67O2TnbAr2RDqhDgfVKRMLDOVutJSpaoilkYIm2baOWE4NxYHDc0Nejlc2EglRZoqdCELoSj7q4xvwFo9r-0tYDpNtEK0GYtYJVKjsonE6HSiHd5aShvA4_7v5brjM6eyGp9yz8TMc-zGnLoxgAeD5LHn8PiDzGavAHlnxYscRyeJkAhdOnzEcBntjzZVitpiD-Xk7-Ighr5-ADe9vgwv4ZlUQmQ8gHRFkwYB4vZevVJXhy3Ht5DEmpMF8KhVlL-2O3-zO6Pj7X8VvA_rr55O85e7ey_uwAYnkBJxnIw3YW150ti7CLGW5b3Wln4AG1Qlwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+joint+logistic+regression+and+covariate%E2%80%90adjusted+continuous%E2%80%90time+Markov+chain+model&rft.jtitle=Statistics+in+medicine&rft.au=Rubin%2C+Maria+Laura&rft.au=Chan%2C+Wenyaw&rft.au=Yamal%2C+Jose%E2%80%90Miguel&rft.au=Robertson%2C+Claudia+Sue&rft.date=2017-12-10&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=36&rft.issue=28&rft.spage=4570&rft.epage=4582&rft_id=info:doi/10.1002%2Fsim.7387&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_7387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |