A joint logistic regression and covariate‐adjusted continuous‐time Markov chain model

The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudin...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 36; no. 28; pp. 4570 - 4582
Main Authors Rubin, Maria Laura, Chan, Wenyaw, Yamal, Jose‐Miguel, Robertson, Claudia Sue
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 10.12.2017
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.7387

Cover

Abstract The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross‐sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross‐sectional response, where the unobserved transition rates of a two‐state continuous‐time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6‐month outcome based on physiological data collected post‐injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long‐term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd.
AbstractList The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd.The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd.
The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd.
The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects.
Author Yamal, Jose‐Miguel
Rubin, Maria Laura
Chan, Wenyaw
Robertson, Claudia Sue
AuthorAffiliation 1 Department of Biostatistics, The University of Texas School Health Science Center at Houston, Houston, Texas 77030
2 Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
AuthorAffiliation_xml – name: 1 Department of Biostatistics, The University of Texas School Health Science Center at Houston, Houston, Texas 77030
– name: 2 Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
Author_xml – sequence: 1
  givenname: Maria Laura
  orcidid: 0000-0002-8503-2612
  surname: Rubin
  fullname: Rubin, Maria Laura
  organization: The University of Texas Health Science Center at Houston
– sequence: 2
  givenname: Wenyaw
  orcidid: 0000-0003-3329-5282
  surname: Chan
  fullname: Chan, Wenyaw
  email: wenyaw.chan@uth.tmc.edu
  organization: The University of Texas Health Science Center at Houston
– sequence: 3
  givenname: Jose‐Miguel
  orcidid: 0000-0003-2505-0090
  surname: Yamal
  fullname: Yamal, Jose‐Miguel
  organization: The University of Texas Health Science Center at Houston
– sequence: 4
  givenname: Claudia Sue
  surname: Robertson
  fullname: Robertson, Claudia Sue
  organization: Baylor College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28695582$$D View this record in MEDLINE/PubMed
BookMark eNp1kctuFDEQRS0URCYBiS9ALbFh04Ptbr82SFHEI1IiFsCCleWxqyceuu1guwdlxyfwjXwJHiYJD8GqpKpTV7fqHqGDEAMg9JjgJcGYPs9-WopOintoQbASLaZMHqAFpkK0XBB2iI5y3mBMCKPiATqkkivGJF2gjyfNJvpQmjGufS7eNgnWCXL2MTQmuMbGrUneFPj-9ZtxmzkX2DVD8WGOc67d4idoLkz6FLeNvTQ-NFN0MD5E9wczZnh0U4_Rh1cv35--ac_fvj47PTlvbY970SqiXMelEsMKuFtR03HHGAhph4E5Sh3gHlvqmOCUAVG9EUIRxg1TsuvYqjtGL_a6V_NqAmchlGRGfZX8ZNK1jsbrPyfBX-p13GrGFce9rALPbgRS_DxDLnry2cI4mgD1Qk0UEYp3gnQVffoXuolzCvW8SnFOCZOCVerJ747urNx-vQLLPWBTzDnBoK0vptSXV4N-1ATrXay6xqp3sf6yeLdwq_kPtN2jX_wI1__l9Luzi5_8DykSs7g
CitedBy_id crossref_primary_10_3390_math11204396
crossref_primary_10_1089_neu_2018_6217
crossref_primary_10_1002_bimj_202100325
crossref_primary_10_1002_sim_9930
crossref_primary_10_1111_jtsa_12615
Cites_doi 10.1002/bimj.201000142
10.1007/0-387-22742-3_8
10.1001/jama.2014.6490
10.1111/j.1541-0420.2007.00822.x
10.1016/j.compbiomed.2014.11.007
10.1097/TA.0b013e31820c768a
10.1002/0471667196.ess3138
10.1111/j.1541-0420.2010.01489.x
10.1214/009053604000001156
10.1136/bmj.39461.643438.25
10.1016/j.jcrc.2015.08.003
10.1002/(SICI)1097-0258(19990530)18:10<1249::AID-SIM125>3.0.CO;2-#
10.1371/journal.pmed.0050165
10.1111/j.1365-2893.2009.01183.x
10.1097/TA.0b013e3181c99853
10.1016/S0167-7152(01)00012-8
10.1016/j.csda.2006.10.008
10.2307/2533118
10.1111/j.0006-341X.2000.00487.x
10.1080/01621459.1995.10476485
10.1097/00063110-199606000-00010
10.1002/9781118548387
10.1089/neu.2014.3752
10.1093/biostatistics/1.4.465
10.5812/ircmj.19489
10.1002/bimj.201000070
10.1080/01621459.2014.940044
10.3171/JNS/2008/109/10/0678
10.1002/sim.6861
10.1111/j.0006-341X.2004.00170.x
10.1198/jasa.2009.ap08423
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.7387
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 4582
ExternalDocumentID PMC5696048
28695582
10_1002_sim_7387
SIM7387
Genre article
Journal Article
GrantInformation_xml – fundername: National Institute of General Medical Sciences, National Institute of Health
  funderid: T32 GM074902
– fundername: National Institute of Neurological Disorders and Stroke, National Institutes of Health
  funderid: P01NS38660
– fundername: NIGMS NIH HHS
  grantid: T32 GM074902
– fundername: NINDS NIH HHS
  grantid: P01 NS038660
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
ID FETCH-LOGICAL-c4047-919d36897fbe6db2a36d55e78cff5d22de040c2d57625e194a779156a598335b3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:33:02 EDT 2025
Fri Jul 11 05:24:18 EDT 2025
Fri Jul 25 19:55:16 EDT 2025
Wed Feb 19 02:41:38 EST 2025
Tue Jul 01 03:28:11 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Wed Jan 22 16:40:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords continuous-time Markov chain
logistic regression
joint model
transition rates
longitudinal data
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2017 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4047-919d36897fbe6db2a36d55e78cff5d22de040c2d57625e194a779156a598335b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8503-2612
0000-0003-3329-5282
0000-0003-2505-0090
PMID 28695582
PQID 1966215875
PQPubID 48361
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696048
proquest_miscellaneous_1917963713
proquest_journals_1966215875
pubmed_primary_28695582
crossref_citationtrail_10_1002_sim_7387
crossref_primary_10_1002_sim_7387
wiley_primary_10_1002_sim_7387_SIM7387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 December 2017
PublicationDateYYYYMMDD 2017-12-10
PublicationDate_xml – month: 12
  year: 2017
  text: 10 December 2017
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 56
2015; 17
1995; 90
2004; 60
2010
2010; 17
2015; 30
2015; 32
2011; 53
2008; 109
1996
2006
2008; 5
2000; 1
2007; 51
2002
2014; 312
2016; 35
1999
2014; 109
2010; 69
1997; 53
2000; 56
1999; 18
2011; 70
2008; 336
2011; 67
2007; 63
2013
2010; 4
1996; 3
2005; 33
2009; 104
2001; 53
e_1_2_8_29_1
Bhat UN (e_1_2_8_23_1) 2002
e_1_2_8_26_1
Mhoon KB (e_1_2_8_28_1) 2010; 4
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
Agresti A (e_1_2_8_25_1) 2013
e_1_2_8_5_1
e_1_2_8_4_1
Hosmer DW (e_1_2_8_24_1) 2013
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
Ross SM (e_1_2_8_21_1) 1996
Pinsky M (e_1_2_8_22_1) 2010
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
18826355 - J Neurosurg. 2008 Oct;109 (4):678-84
26782946 - Stat Med. 2016 Apr 30;35(9):1549-57
10877308 - Biometrics. 2000 Jun;56(2):487-95
9028756 - Eur J Emerg Med. 1996 Jun;3(2):109-27
20038855 - J Trauma. 2010 Jul;69(1):110-8
17501940 - Biometrics. 2007 Dec;63(4):1068-78
19780947 - J Viral Hepat. 2010 May;17 (5):345-51
21770044 - Biom J. 2011 Sep;53(5):735-49
26019901 - Iran Red Crescent Med J. 2015 Mar 31;17(3):e19489
18270239 - BMJ. 2008 Feb 23;336(7641):425-9
18684008 - PLoS Med. 2008 Aug 5;5(8):e165; discussion e165
26324412 - J Crit Care. 2015 Dec;30(6):1258-62
12933568 - Biostatistics. 2000 Dec;1(4):465-80
25464358 - Comput Biol Med. 2015 Jan;56:167-74
25663725 - J Am Stat Assoc. 2014 Dec 1;109(508):1425-1439
20880012 - Biometrics. 2011 Jun;67(2):454-66
25566694 - J Neurotrauma. 2015 Aug 15;32(16):1239-45
18704154 - Comput Stat Data Anal. 2007 Aug 15;51(12):5776-5790
20151036 - J Am Stat Assoc. 2009 Sep 1;104(487):912
23504410 - JP J Biostat. 2010 Oct;4(3):213-226
25058216 - JAMA. 2014 Jul 2;312(1):36-47
21404316 - Biom J. 2011 May;53(3):393-410
15032767 - Biometrics. 2004 Mar;60(1):1-7
9147598 - Biometrics. 1997 Mar;53(1):330-9
21610341 - J Trauma. 2011 Mar;70(3):547-53
10363343 - Stat Med. 1999 May 30;18(10):1249-60
References_xml – volume: 67
  start-page: 454
  issue: 2
  year: 2011
  end-page: 466
  article-title: Bayesian nonparametric regression analysis of data with random effects covariates from longitudinal measurements
  publication-title: Biometrics
– volume: 4
  start-page: 213
  issue: 3
  year: 2010
  end-page: 226
  article-title: A continuous‐time markov chain approach analyzing the stages of change construct from a health promotion intervention
  publication-title: JP journal of biostatistics
– volume: 3
  start-page: 109
  issue: 2
  year: 1996
  end-page: 127
  article-title: Guidelines for the management of severe head injury
  publication-title: European Journal of Emergency Medicine
– volume: 17
  issue: 3
  year: 2015
  article-title: Longitudinal discriminant analysis of hemoglobin level for predicting preeclampsia
  publication-title: Iranian Red Crescent Medical Journal
– volume: 109
  start-page: 678
  issue: 4
  year: 2008
  end-page: 684
  article-title: Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury
  publication-title: Journal of Neurosurgery
– volume: 53
  start-page: 393
  issue: 3
  year: 2011
  end-page: 410
  article-title: Semiparametric estimation for joint modeling of colorectal cancer risk and functional biomarkers measured with errors
  publication-title: Biometrical Journal
– start-page: 216
  year: 2002
  end-page: 218
– volume: 1
  start-page: 465
  issue: 4
  year: 2000
  end-page: 480
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biostatistics (Oxford, England)
– volume: 104
  start-page: 912
  issue: 487
  year: 2009
  end-page: 928
  article-title: Joint modeling of self‐rated health and changes in physical functioning
  publication-title: Journal of the American Statistical Association
– volume: 53
  start-page: 735
  issue: 5
  year: 2011
  end-page: 749
  article-title: Logistic regression when covariates are random effects from a non‐linear mixed model
  publication-title: Biometrical Journal
– volume: 60
  start-page: 1
  issue: 1
  year: 2004
  end-page: 7
  article-title: Conditional estimation for generalized linear models when covariates are subject‐specific parameters in a mixed model for longitudinal measurements
  publication-title: Biometrics
– volume: 32
  start-page: 1239
  issue: 16
  year: 2015
  end-page: 1245
  article-title: Effect of hemoglobin transfusion threshold on cerebral hemodynamics and oxygenation
  publication-title: Journal of Neurotrauma
– year: 1996
– volume: 35
  start-page: 1549
  issue: 9
  year: 2016
  end-page: 1557
  article-title: A hidden Markov model approach to analyze longitudinal ternary outcomes when some observed states are possibly misclassified
  publication-title: Statistics in Medicine
– volume: 18
  start-page: 1249
  issue: 10
  year: 1999
  end-page: 1260
  article-title: A discriminant analysis extension to mixed models
  publication-title: Statistics in Medicine
– volume: 53
  start-page: 330
  issue: 1
  year: 1997
  end-page: 339
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
– start-page: 8
  year: 2013
  end-page: 9
– volume: 336
  start-page: 425
  issue: 7641
  year: 2008
  end-page: 429
  article-title: Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients
  publication-title: BMJ
– start-page: 192
  year: 2013
  end-page: 193
– volume: 63
  start-page: 1068
  issue: 4
  year: 2007
  end-page: 1078
  article-title: Joint models for a primary endpoint and multiple longitudinal covariate processes
  publication-title: Biometrics
– volume: 56
  start-page: 167
  issue: 2015
  year: 2015
  end-page: 174
  article-title: Permutation entropy analysis of vital signs data for outcome prediction of patients with severe traumatic brain injury
  publication-title: Computers in Biology and Medicine
– year: 2010
– volume: 312
  start-page: 36
  issue: 1
  year: 2014
  end-page: 47
  article-title: Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial
  publication-title: JAMA
– volume: 69
  start-page: 110
  issue: 1
  year: 2010
  end-page: 118
  article-title: Automated measurement of “pressure times time dose” of intracranial hypertension best predicts outcome after severe traumatic brain injury
  publication-title: The Journal of Trauma
– volume: 56
  start-page: 487
  issue: 2
  year: 2000
  end-page: 495
  article-title: Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements
  publication-title: Biometrics
– volume: 5
  issue: 8
  year: 2008
  article-title: Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics
  publication-title: PLoS Medicine
– volume: 109
  start-page: 1425
  issue: 508
  year: 2014
  end-page: 1439
  article-title: Variable‐domain functional regression for modeling ICU data
  publication-title: Journal of the American Statistical Association
– volume: 33
  start-page: 774
  issue: 2
  year: 2005
  end-page: 805
  article-title: Generalized functional linear models
  publication-title: Annals of Statistics
– volume: 90
  start-page: 27
  issue: 429
  year: 1995
  end-page: 37
  article-title: Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS
  publication-title: Journal of the American Statistical Association
– volume: 53
  start-page: 347
  issue: 4
  year: 2001
  end-page: 356
  article-title: Functional methods for logistic regression on random‐effect‐coefficients for longitudinal measurements
  publication-title: Statistics & probability letters
– volume: 70
  start-page: 547
  issue: 3
  year: 2011
  end-page: 553
  article-title: Dynamic three‐dimensional scoring of cerebral perfusion pressure and intracranial pressure provides a brain trauma index that predicts outcome in patients with severe traumatic brain injury
  publication-title: The Journal of Trauma
– year: 2006
– volume: 51
  start-page: 5776
  issue: 12
  year: 2007
  end-page: 5790
  article-title: Likelihood and pseudo‐likelihood methods for semiparametric joint models for a primary endpoint and longitudinal data
  publication-title: Computational Statistics & Data Analysis
– volume: 30
  start-page: 1258
  issue: 6
  year: 2015
  end-page: 1262
  article-title: Predictors of intensive care unit length of stay and intracranial pressure in severe traumatic brain injury
  publication-title: Journal of Critical Care
– volume: 17
  start-page: 345
  issue: 5
  year: 2010
  end-page: 351
  article-title: Prediction of nonSVR to therapy with pegylated interferon‐α2a and ribavirin in chronic hepatitis C genotype 1 patients after 4, 8 and 12 weeks of treatment
  publication-title: Journal of Viral Hepatitis
– start-page: 192
  year: 1999
  end-page: 200
– ident: e_1_2_8_12_1
  doi: 10.1002/bimj.201000142
– ident: e_1_2_8_27_1
  doi: 10.1007/0-387-22742-3_8
– ident: e_1_2_8_29_1
  doi: 10.1001/jama.2014.6490
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1541-0420.2007.00822.x
– ident: e_1_2_8_35_1
  doi: 10.1016/j.compbiomed.2014.11.007
– start-page: 192
  volume-title: Categorical Data Analysis
  year: 2013
  ident: e_1_2_8_25_1
– ident: e_1_2_8_36_1
  doi: 10.1097/TA.0b013e31820c768a
– ident: e_1_2_8_15_1
  doi: 10.1002/0471667196.ess3138
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1541-0420.2010.01489.x
– ident: e_1_2_8_14_1
  doi: 10.1214/009053604000001156
– ident: e_1_2_8_33_1
  doi: 10.1136/bmj.39461.643438.25
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jcrc.2015.08.003
– ident: e_1_2_8_18_1
  doi: 10.1002/(SICI)1097-0258(19990530)18:10<1249::AID-SIM125>3.0.CO;2-#
– ident: e_1_2_8_32_1
  doi: 10.1371/journal.pmed.0050165
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1365-2893.2009.01183.x
– ident: e_1_2_8_37_1
  doi: 10.1097/TA.0b013e3181c99853
– ident: e_1_2_8_8_1
  doi: 10.1016/S0167-7152(01)00012-8
– ident: e_1_2_8_10_1
  doi: 10.1016/j.csda.2006.10.008
– ident: e_1_2_8_4_1
  doi: 10.2307/2533118
– ident: e_1_2_8_7_1
  doi: 10.1111/j.0006-341X.2000.00487.x
– ident: e_1_2_8_2_1
  doi: 10.1080/01621459.1995.10476485
– start-page: 216
  volume-title: Elements of Applied Stochastic Processes
  year: 2002
  ident: e_1_2_8_23_1
– volume-title: Stochastic Processes
  year: 1996
  ident: e_1_2_8_21_1
– volume: 4
  start-page: 213
  issue: 3
  year: 2010
  ident: e_1_2_8_28_1
  article-title: A continuous‐time markov chain approach analyzing the stages of change construct from a health promotion intervention
  publication-title: JP journal of biostatistics
– ident: e_1_2_8_30_1
  doi: 10.1097/00063110-199606000-00010
– start-page: 8
  volume-title: Applied Logistic regression
  year: 2013
  ident: e_1_2_8_24_1
  doi: 10.1002/9781118548387
– ident: e_1_2_8_31_1
  doi: 10.1089/neu.2014.3752
– ident: e_1_2_8_5_1
  doi: 10.1093/biostatistics/1.4.465
– ident: e_1_2_8_19_1
  doi: 10.5812/ircmj.19489
– ident: e_1_2_8_16_1
  doi: 10.1002/bimj.201000070
– ident: e_1_2_8_17_1
  doi: 10.1080/01621459.2014.940044
– volume-title: An Introduction to Stochastic Modeling
  year: 2010
  ident: e_1_2_8_22_1
– ident: e_1_2_8_34_1
  doi: 10.3171/JNS/2008/109/10/0678
– ident: e_1_2_8_26_1
  doi: 10.1002/sim.6861
– ident: e_1_2_8_9_1
  doi: 10.1111/j.0006-341X.2004.00170.x
– ident: e_1_2_8_6_1
  doi: 10.1198/jasa.2009.ap08423
– reference: 21770044 - Biom J. 2011 Sep;53(5):735-49
– reference: 18270239 - BMJ. 2008 Feb 23;336(7641):425-9
– reference: 10877308 - Biometrics. 2000 Jun;56(2):487-95
– reference: 10363343 - Stat Med. 1999 May 30;18(10):1249-60
– reference: 25663725 - J Am Stat Assoc. 2014 Dec 1;109(508):1425-1439
– reference: 15032767 - Biometrics. 2004 Mar;60(1):1-7
– reference: 26324412 - J Crit Care. 2015 Dec;30(6):1258-62
– reference: 21404316 - Biom J. 2011 May;53(3):393-410
– reference: 20151036 - J Am Stat Assoc. 2009 Sep 1;104(487):912
– reference: 25058216 - JAMA. 2014 Jul 2;312(1):36-47
– reference: 18826355 - J Neurosurg. 2008 Oct;109 (4):678-84
– reference: 23504410 - JP J Biostat. 2010 Oct;4(3):213-226
– reference: 19780947 - J Viral Hepat. 2010 May;17 (5):345-51
– reference: 18704154 - Comput Stat Data Anal. 2007 Aug 15;51(12):5776-5790
– reference: 9028756 - Eur J Emerg Med. 1996 Jun;3(2):109-27
– reference: 9147598 - Biometrics. 1997 Mar;53(1):330-9
– reference: 12933568 - Biostatistics. 2000 Dec;1(4):465-80
– reference: 21610341 - J Trauma. 2011 Mar;70(3):547-53
– reference: 26782946 - Stat Med. 2016 Apr 30;35(9):1549-57
– reference: 17501940 - Biometrics. 2007 Dec;63(4):1068-78
– reference: 20880012 - Biometrics. 2011 Jun;67(2):454-66
– reference: 20038855 - J Trauma. 2010 Jul;69(1):110-8
– reference: 25566694 - J Neurotrauma. 2015 Aug 15;32(16):1239-45
– reference: 26019901 - Iran Red Crescent Med J. 2015 Mar 31;17(3):e19489
– reference: 18684008 - PLoS Med. 2008 Aug 5;5(8):e165; discussion e165
– reference: 25464358 - Comput Biol Med. 2015 Jan;56:167-74
SSID ssj0011527
Score 2.2634125
Snippet The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to...
The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4570
SubjectTerms Brain Injuries, Traumatic - therapy
Computer Simulation
continuous‐time Markov chain
Cross-Sectional Studies
Humans
joint model
Likelihood Functions
Logistic Models
logistic regression
longitudinal data
Longitudinal Studies
Markov analysis
Markov Chains
Medical statistics
Physiology
Prognosis
Randomized Controlled Trials as Topic
transition rates
Treatment Outcome
Title A joint logistic regression and covariate‐adjusted continuous‐time Markov chain model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7387
https://www.ncbi.nlm.nih.gov/pubmed/28695582
https://www.proquest.com/docview/1966215875
https://www.proquest.com/docview/1917963713
https://pubmed.ncbi.nlm.nih.gov/PMC5696048
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hHlAlxM_yFyjISAhO2W6c2ImPFVAVpOUAVCriEDm2Q1PAQd1ND5x4BJ6RJ2EmTgJLQUKcIiWTxHFm7G_smW8AHvJ6kdjEqti6uo6zokrjCl3rGGcyWUtZC64pUXj5Uh4cZi-OxNEQVUm5MIEfYlpwI8vox2sycF2tdn-Shq6aT_M8LSiRPEkl0eY_fTUxRyVjtVbaoZR5Ikbe2QXfHW_cnInOwcvzUZK_otd--tm_Au_Ghoeokw_zbl3NzZffOB3_78uuwuUBlbK9oEbX4ILzM7i4HPbdZ3AprO6xkLQ0g23CqIHi-Tq83WMnbePXLGQTodipex_Caz3T3jLTnqFHjqD2-9dv2p50tMLKKEa-8V3brfAsVbhnlDbUnjFzrBvP-go9N-Bw_9mbJwfxULEhNhlRPqhE2VQWKq8rR4WqdCqtEC4vTF0Ly7l1OGYYbtHJ4cIlKtN5rtCD1EJR8leV3oQt33p3G5jJM6MQbKYiVZk0qGsisyZfmBpvraSL4PH490oz0JlTVY2PZSBi5iV2Y0ndGMGDSfJzoPD4g8zOqADlYMSrEgcniYgIPTp8xHQZzY_2VLR32EMlubs4hqGrH8GtoC_TS3ghlRAFjyDf0KRJgKi9N6_45rin-BaSSHOKCB71ivLXdpevny_peOdfBe_CNidgknCcgHdga33auXsIq9bV_d6AfgCNySL0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIkElxM8CJVDASAhO2W6c2E7EqQKqLXR7gFYqElKU2A5NCwnqbnrgxCPwjDwJM3ESWAoS4hQpHieOM2N_Y3u-AXjMi0lgApP4xhaFH8V56OfoWvs4k8lCykLwjAKFZ3tyehC9OhSHK_Csj4Vx_BDDghtZRjtek4HTgvTmT9bQeflprMJYXYCLEeIM8rxevBm4o4I-XyvtUUoViJ55dsI3-5rLc9E5gHn-nOSv-LWdgLavwfu-6e7cycm4WeRj_eU3Vsf__LbrcLUDpmzLadINWLHVCC7Nuq33EVxxC3zMxS2NYI1gqmN5vgnvtthxXVYL5gKKUOzUfnAnbCuWVYbp-gydcsS1379-y8xxQ4usjI7Jl1VTN3O8S0nuGUUO1WdMH2VlxdokPbfgYPvl_vOp3yVt8HVErA9JkJhQxokqcku5qrJQGiGsinVRCMO5sThsaG7Qz-HCBkmUKZWgE5mJhOK_8vA2rFZ1Ze8A0yrSCeLNUIRJJDWqm4iMVhNdYNVcWg-e9r8v1R2jOSXW-Jg6LmaeYjem1I0ePBokPzsWjz_IbPQakHZ2PE9xfJIIitCpw0cMxWiBtK2SVRZ7KCWPF4cx9PY9WHcKM7yExzIRIuYeqCVVGgSI3Xu5pCqPWpZvIYk3J_bgSaspf213-nZnRte7_yr4EC5P92e76e7O3ut7sMYJpwQc5-MNWF2cNvY-oqxF_qC1ph-dBCcT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkapKiMfyChQwEoJTthsnduJjBaxaYCsEVCriECV-0BTIVt1ND5z4CfxGfgkzcRJYChLiFCmZJI4zY39jz3wD8JC7SWQio0JjnQuTrIzDEl3rEGcy6aR0gheUKDzbkzv7yfMDcdBFVVIujOeHGBbcyDLa8ZoM_Ni4rZ-koYvq8ziNs_Q8XEgkAgkCRK8H6qioL9dKW5QyjURPPDvhW_2dq1PRGXx5NkzyV_jazj_Ty_C-b7kPO_k4bpblWH_5jdTx_z7tClzqYCnb9np0Fc7ZegTrs27jfQQX_fIe81lLI9ggkOo5nq_Bu212NK_qJfPpRCh2Yj_4-NqaFbVhen6KLjmi2u9fvxXmqKElVkZB8lXdzJsFnqUS94zyhuanTB8WVc3aEj3XYX_67O2TnbAr2RDqhDgfVKRMLDOVutJSpaoilkYIm2baOWE4NxYHDc0Nejlc2EglRZoqdCELoSj7q4xvwFo9r-0tYDpNtEK0GYtYJVKjsonE6HSiHd5aShvA4_7v5brjM6eyGp9yz8TMc-zGnLoxgAeD5LHn8PiDzGavAHlnxYscRyeJkAhdOnzEcBntjzZVitpiD-Xk7-Ighr5-ADe9vgwv4ZlUQmQ8gHRFkwYB4vZevVJXhy3Ht5DEmpMF8KhVlL-2O3-zO6Pj7X8VvA_rr55O85e7ey_uwAYnkBJxnIw3YW150ti7CLGW5b3Wln4AG1Qlwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+joint+logistic+regression+and+covariate%E2%80%90adjusted+continuous%E2%80%90time+Markov+chain+model&rft.jtitle=Statistics+in+medicine&rft.au=Rubin%2C+Maria+Laura&rft.au=Chan%2C+Wenyaw&rft.au=Yamal%2C+Jose%E2%80%90Miguel&rft.au=Robertson%2C+Claudia+Sue&rft.date=2017-12-10&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=36&rft.issue=28&rft.spage=4570&rft.epage=4582&rft_id=info:doi/10.1002%2Fsim.7387&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_7387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon