Microbial ecology of sulfur cycling near the sulfate–methane transition of deep‐sea cold seep sediments
Summary Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate–methane transition zone (SMTZ) of deep‐sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a sha...
Saved in:
Published in | Environmental microbiology Vol. 23; no. 11; pp. 6844 - 6858 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate–methane transition zone (SMTZ) of deep‐sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur‐oxidizing bacteria (SOB) and sulfur‐reducing bacteria (SRB) strains were identified from three SMTZ‐bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near‐surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood–Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep‐sea environments. |
---|---|
AbstractList | Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate-methane transition zone (SMTZ) of deep-sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur-oxidizing bacteria (SOB) and sulfur-reducing bacteria (SRB) strains were identified from three SMTZ-bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near-surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood-Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep-sea environments.Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate-methane transition zone (SMTZ) of deep-sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur-oxidizing bacteria (SOB) and sulfur-reducing bacteria (SRB) strains were identified from three SMTZ-bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near-surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood-Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep-sea environments. Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate–methane transition zone (SMTZ) of deep‐sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur‐oxidizing bacteria (SOB) and sulfur‐reducing bacteria (SRB) strains were identified from three SMTZ‐bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near‐surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood–Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep‐sea environments. Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate–methane transition zone (SMTZ) of deep‐sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur‐oxidizing bacteria (SOB) and sulfur‐reducing bacteria (SRB) strains were identified from three SMTZ‐bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near‐surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO₂ fixation by Wood–Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep‐sea environments. Summary Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate–methane transition zone (SMTZ) of deep‐sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur‐oxidizing bacteria (SOB) and sulfur‐reducing bacteria (SRB) strains were identified from three SMTZ‐bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near‐surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood–Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep‐sea environments. Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate-methane transition zone (SMTZ) of deep-sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur-oxidizing bacteria (SOB) and sulfur-reducing bacteria (SRB) strains were identified from three SMTZ-bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near-surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO fixation by Wood-Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep-sea environments. Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate–methane transition zone (SMTZ) of deep‐sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur‐oxidizing bacteria (SOB) and sulfur‐reducing bacteria (SRB) strains were identified from three SMTZ‐bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near‐surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO 2 fixation by Wood–Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep‐sea environments. |
Author | Feng, Dong Zheng, Peng‐Fei Lu, Rui Li, Wen‐Li Zhou, Ying‐Li Dong, Xiyang Wang, Yong |
Author_xml | – sequence: 1 givenname: Wen‐Li surname: Li fullname: Li, Wen‐Li organization: Chinese Academy of Sciences – sequence: 2 givenname: Xiyang orcidid: 0000-0002-9224-5923 surname: Dong fullname: Dong, Xiyang organization: Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) – sequence: 3 givenname: Rui surname: Lu fullname: Lu, Rui organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Ying‐Li surname: Zhou fullname: Zhou, Ying‐Li organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Peng‐Fei surname: Zheng fullname: Zheng, Peng‐Fei organization: Chinese Academy of Sciences – sequence: 6 givenname: Dong surname: Feng fullname: Feng, Dong organization: Shanghai Ocean University – sequence: 7 givenname: Yong orcidid: 0000-0003-3595-3867 surname: Wang fullname: Wang, Yong email: wangy@idsse.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34622529$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUT1vHCEQRZYjf9fpIqQ0aS4Gll2WMrIcx5KtNEmNOBhsHBYusKvoOv-ESP6H_iVhfc4Vbo4CZob3huG9Y7QfUwSE3lPymdZ1TnnHFkyymrZCdnvoaFvZ38aUHaLjUh4IoaIR5AAdNvWCtUweoV-33uS09DpgMCmkuzVODpcpuCljszbBxzscQWc83sNLXY_w_Pg0wHivI-Ax61j86FOceRZg9fz4t4DGtZnFpeZ1s36AOJZT9M7pUODs9TxBP79e_rj4trj5fnV98eVmYTjh3UJrwZ01ZAlWEltn7jtKObRNL0ETqlvSCKqtdazXokZLa5x0ThDb04YR15ygT5u-q5x-T1BGNfhiIIQ6cJqKYl3TcS6JpLuhbU86KWQzQz--gT6kKcf6kdqQMN4JzkhFfXhFTcsBrFplP-i8Vv8Vr4DzDaDKXkoGt4VQomZP1eyamh1UL55WRvuGYfyoZ8mr-D7s5v3xAda7nlGXt9cb3j8NprTs |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_168890 crossref_primary_10_1111_1462_2920_16448 crossref_primary_10_1093_femsec_fiae007 crossref_primary_10_1128_spectrum_03490_23 crossref_primary_10_1016_j_eti_2024_103938 crossref_primary_10_1007_s12257_023_0087_3 crossref_primary_10_1016_j_scitotenv_2024_171180 crossref_primary_10_3390_biology14010086 crossref_primary_10_1016_j_scitotenv_2023_163666 crossref_primary_10_3390_microorganisms12030517 crossref_primary_10_1093_gpbjnl_qzad006 crossref_primary_10_1038_s41467_022_32503_w crossref_primary_10_1186_s40168_024_01912_y crossref_primary_10_1016_j_dsr_2022_103955 crossref_primary_10_1111_1462_2920_15976 crossref_primary_10_1080_17451000_2024_2392740 crossref_primary_10_1130_G51077_1 crossref_primary_10_3389_fmicb_2022_861795 crossref_primary_10_1016_j_jece_2025_115433 crossref_primary_10_1016_j_jhazmat_2024_135060 crossref_primary_10_1128_spectrum_01149_23 crossref_primary_10_2139_ssrn_4177841 crossref_primary_10_1093_ismeco_ycaf002 crossref_primary_10_1016_j_jwpe_2024_105391 crossref_primary_10_1128_mbio_00992_24 crossref_primary_10_1186_s12864_023_09760_0 crossref_primary_10_1016_j_jhazmat_2024_135760 crossref_primary_10_7717_peerj_16257 crossref_primary_10_1016_j_biortech_2022_127901 crossref_primary_10_3389_fmars_2022_957762 crossref_primary_10_1016_j_jenvman_2023_119240 crossref_primary_10_1016_j_jwpe_2025_107355 crossref_primary_10_1186_s12915_025_02112_2 crossref_primary_10_1126_sciadv_adl2281 crossref_primary_10_1128_msphere_00549_24 crossref_primary_10_3389_fmicb_2023_1241810 crossref_primary_10_3389_fmicb_2021_802888 crossref_primary_10_1016_j_scitotenv_2023_165410 crossref_primary_10_1038_s41467_023_36877_3 crossref_primary_10_3389_fmicb_2022_1060206 crossref_primary_10_1007_s11368_025_03992_1 crossref_primary_10_1038_s41597_023_02521_4 |
Cites_doi | 10.1038/nmeth.4197 10.1093/bioinformatics/btv033 10.1093/bioinformatics/btp161 10.1093/nar/gkx295 10.1039/C3CS60249D 10.1371/journal.pone.0052249 10.1093/molbev/msu300 10.1128/AEM.00523-19 10.1016/S0022-2836(05)80360-2 10.1029/2018GC007496 10.1093/bioinformatics/btq041 10.1093/bioinformatics/btz859 10.3389/fmicb.2021.698286 10.1038/ismej.2012.159 10.1038/s41598-020-62840-z 10.1093/bioinformatics/bts611 10.1093/bioinformatics/bty560 10.1038/s41467-020-19648-2 10.1111/j.1462-2920.2012.02885.x 10.1038/s41396-019-0508-7 10.1146/annurev.micro.61.080706.093130 10.1038/35036572 10.1038/s41467-019-09747-0 10.1002/0471250953.bi1007s36 10.1107/S2053230X18015844 10.1016/j.dsr2.2015.02.003 10.1007/s002039900118 10.1016/j.jseaes.2018.09.021 10.1007/s12257-015-0009-0 10.3389/fmicb.2020.02064 10.1038/ngeo1926 10.1111/j.1472-4669.2011.00281.x 10.7717/peerj.7359 10.1016/S0021-9258(19)67945-7 10.1038/s41396-020-0655-x 10.1038/s41587-020-0501-8 10.1016/j.biotechadv.2015.02.007 10.7717/peerj.2584 10.1089/cmb.2013.0084 10.1093/bioinformatics/btv638 10.1038/s41396-021-00932-y 10.1101/gr.186072.114 10.1111/j.1462-2920.2010.02275.x 10.1038/nmeth.3103 10.1007/s42995-020-00057-9 10.1128/JB.181.20.6516-6523.1999 10.3389/fcimb.2017.00321 10.1038/srep40371 10.1073/pnas.1421865112 10.1111/j.1462-2920.2012.02832.x 10.1111/j.1574-6941.2001.tb00798.x 10.1016/j.ymeth.2016.02.020 10.1126/science.aad7154 10.5194/bg-13-4065-2016 10.1371/journal.pone.0030619 10.4056/sigs.2996379 10.1073/pnas.1613308113 10.1038/s41598-019-46209-5 10.1186/s12864-016-3236-7 10.1038/ismej.2011.139 10.1093/molbev/msx148 10.3389/fmicb.2011.00103 10.1038/ismej.2010.134 10.1007/s00792-018-1012-0 10.1093/bioinformatics/btz848 10.1128/mBio.02099-18 10.1038/s41467-020-17860-8 10.1039/C5AY02550H 10.3389/fmicb.2013.00185 10.1073/pnas.231589498 10.3389/fmicb.2020.01932 10.1016/j.mib.2005.04.005 10.1016/j.marpolbul.2021.112126 10.4056/sigs.1243258 10.1186/s40168-018-0541-1 10.1093/bioinformatics/bts429 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2 10.1186/s40168-020-00851-8 10.3389/fmicb.2020.01409 10.1099/ijs.0.64823-0 10.1038/s41561-018-0198-1 10.1038/ismej.2014.208 |
ContentType | Journal Article |
Copyright | 2021 Society for Applied Microbiology and John Wiley & Sons Ltd. 2021 Society for Applied Microbiology and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2021 Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2021 Society for Applied Microbiology and John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
DOI | 10.1111/1462-2920.15796 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 6858 |
ExternalDocumentID | 34622529 10_1111_1462_2920_15796 EMI15796 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | South China Sea |
GeographicLocations_xml | – name: South China Sea |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2018YFC0310005; 2016YFC0302504 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4046-aa74fdc0bed90d01786114e5389ea01a50371addf28a771abdcf9ff70d81320f3 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 1462-2920 |
IngestDate | Fri Jul 11 18:39:06 EDT 2025 Fri Jul 11 06:37:30 EDT 2025 Fri Jul 25 12:15:50 EDT 2025 Wed Feb 19 02:25:39 EST 2025 Thu Apr 24 23:03:38 EDT 2025 Tue Jul 01 04:00:48 EDT 2025 Wed Jan 22 16:26:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2021 Society for Applied Microbiology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4046-aa74fdc0bed90d01786114e5389ea01a50371addf28a771abdcf9ff70d81320f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9224-5923 0000-0003-3595-3867 |
PMID | 34622529 |
PQID | 2602467420 |
PQPubID | 1066360 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2636449091 proquest_miscellaneous_2580697931 proquest_journals_2602467420 pubmed_primary_34622529 crossref_primary_10_1111_1462_2920_15796 crossref_citationtrail_10_1111_1462_2920_15796 wiley_primary_10_1111_1462_2920_15796_EMI15796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Oxford |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 7 2017; 8 2013; 4 1960; 235 2019; 10 2018; 168 2015; 31 2013; 20 2015; 33 2017; 45 2015; 32 2016; 102 2016; 32 2000; 173 2020; 14 2020; 11 2021; 165 2020; 10 2013; 7 2012; 14 2013; 6 2000; 407 2020; 8 2013; 18 2018; 6 2018; 9 1990; 215 2013; 15 2010; 26 2020b; 2 2017; 34 1999; 181 2016; 113 2018; 74 2012; 28 2018; 34 2010; 3 1996; 24 2016; 351 2014; 11 2001; 98 2019; 7 2009; 25 2019; 9 2009; 63 2011; 2 2011 2015; 122 2019; 36 2020; 38 2020; 36 2016; 17 2015; 9 2018; 22 2011; 5 2007; 57 2016; 13 2014; 43 2011; 9 2016; 4 2018; 19 2020a; 11 2021; 15 2015; 25 2019; 85 2017; 14 2021 2015; 20 2005; 8 2015; 112 2012; 6 2018; 11 2012; 7 2001; 35 2016; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 Skennerton C.T. (e_1_2_8_73_1) 2017; 8 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 Li X. (e_1_2_8_52_1) 2013; 18 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 112 start-page: 4015 year: 2015 end-page: 4020 article-title: Global dispersion and local diversification of the methane seep microbiome publication-title: Proc Natl Acad Sci U S A – volume: 34 start-page: i884 year: 2018 end-page: i890 article-title: fastp: an ultra‐fast all‐in‐one FASTQ preprocessor publication-title: Bioinformatics – volume: 165 start-page: 112126 year: 2021 article-title: Influence of environmental factors on benthic nitrogen fixation and role of sulfur reducing diazotrophs in a eutrophic tropical estuary publication-title: Mar Pollut Bull – volume: 122 start-page: 74 year: 2015 end-page: 83 article-title: Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity publication-title: Deep Sea Res II – volume: 38 start-page: 1079 year: 2020 end-page: 1086 article-title: A complete domain‐to‐species taxonomy for bacteria and archaea publication-title: Nat Biotechnol – volume: 45 start-page: W180 year: 2017 end-page: W188 article-title: MicrobiomeAnalyst: a web‐based tool for comprehensive statistical, visual and meta‐analysis of microbiome data publication-title: Nucleic Acids Res – volume: 11 start-page: 2064 year: 2020 article-title: Desulfatiglans anilini initiates degradation of aniline with the production of phenylphosphoamidate and 4‐aminobenzoate as intermediates through synthases and carboxylases from different gene clusters publication-title: Front Microbiol – volume: 19 start-page: 2049 year: 2018 end-page: 2061 article-title: In situ raman quantitative detection of the cold seep vents and fluids in the chemosynthetic communities in the South China Sea publication-title: Geochem Geophys Geosys – volume: 6 start-page: 610 year: 2012 end-page: 618 article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea publication-title: ISME J – year: 2021 – volume: 24 start-page: 655 year: 1996 end-page: 658 article-title: Marine pore‐water sulfate profiles indicate in situ methane flux from underlying gas hydrate publication-title: Geology – volume: 9 start-page: e02099 year: 2018 end-page: e02018 article-title: Identifying and predicting novelty in microbiome studies publication-title: mBio – volume: 28 start-page: 2223 year: 2012 end-page: 2230 article-title: Gene and translation initiation site prediction in metagenomic sequences publication-title: Bioinformatics – volume: 36 start-page: 2251 year: 2020 end-page: 2252 article-title: KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold publication-title: Bioinformatics – volume: 17 start-page: 918 year: 2016 article-title: Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate‐reducing bacterium Desulfococcus multivorans DSM 2059 publication-title: BMC Genomics – volume: 14 start-page: 2689 year: 2012 end-page: 2710 article-title: Distribution and in situ abundance of sulfate‐reducing bacteria in diverse marine hydrocarbon seep sediments publication-title: Environ Microbiol – volume: 13 start-page: 4065 year: 2016 end-page: 4080 article-title: Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone publication-title: Biogeosciences – volume: 28 start-page: 3211 year: 2012 end-page: 3217 article-title: SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data publication-title: Bioinformatics – volume: 7 year: 2019 article-title: MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies publication-title: PeerJ – volume: 7 start-page: 321 year: 2017 article-title: Diversity of cervical microbiota in asymptomatic Chlamydia trachomatis genital infection: a pilot study publication-title: Front Cell Infect Microbiol – volume: 102 start-page: 3 year: 2016 end-page: 11 article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices publication-title: Methods – volume: 36 start-page: 1925 issue: 6 year: 2019 end-page: 1927 article-title: GTDB‐Tk: a toolkit to classify genomes with the Genome Taxonomy Database publication-title: Bioinformatics – volume: 4 start-page: 185 year: 2013 article-title: Phylogenetic diversity and functional gene patterns of sulfur‐oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids publication-title: Front Microbiol – volume: 20 start-page: 714 year: 2013 end-page: 737 article-title: Assembling single‐cell genomes and mini‐metagenomes from chimeric MDA products publication-title: J Comput Biol – volume: 15 start-page: 2366 year: 2021 end-page: 2378 article-title: Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity publication-title: ISME J – volume: 7 year: 2017 article-title: Parallel‐META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities publication-title: Sci Rep – volume: 4 year: 2016 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ – volume: 351 start-page: 703 year: 2016 end-page: 707 article-title: Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction publication-title: Science – volume: 22 start-page: 499 year: 2018 end-page: 510 article-title: The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea publication-title: Extremophiles – volume: 32 start-page: 605 year: 2016 end-page: 607 article-title: MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets publication-title: Bioinformatics – volume: 8 start-page: e00530 year: 2017 end-page: e00517 article-title: Methane‐fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea publication-title: mBio – volume: 11 start-page: 782 year: 2018 end-page: 789 article-title: Rapid transition from continental breakup to igneous oceanic crust in the South China Sea publication-title: Nature Geosci – volume: 215 start-page: 403 year: 1990 end-page: 410 article-title: Basic local alignment search tool publication-title: J Mol Biol – volume: 2 start-page: 431 year: 2020b end-page: 441 article-title: Metabolic diversification of anaerobic methanotrophic archaea in a deep‐sea cold seep publication-title: Mar Life Sci Technol – volume: 113 start-page: 12815 year: 2016 end-page: 12819 article-title: Expression of multiple cbb3 cytochrome c oxidase isoforms by combinations of multiple isosubunits in Pseudomonas aeruginosa publication-title: Proc Natl Acad Sci U S A – volume: 25 start-page: 1043 year: 2015 end-page: 1055 article-title: CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes publication-title: Genome Res – volume: 8 start-page: 102 year: 2020 article-title: Microbial succession during the transition from active to inactive stages of deep‐sea hydrothermal vent sulfide chimneys publication-title: Microbiome – volume: 5 start-page: 565 year: 2011 end-page: 567 article-title: High rates of denitrification and nitrate removal in cold seep sediments publication-title: ISME J – volume: 9 start-page: 9725 year: 2019 article-title: Methane‐fuelled biofilms predominantly composed of methanotrophic ANME‐1 in Arctic gas hydrate‐related sediments publication-title: Sci Rep – volume: 18 start-page: 344 year: 2013 end-page: 354 article-title: Chinese JIAOLONG's first scientific cruise in 2013 publication-title: J Ship Mech – volume: 32 start-page: 268 year: 2015 end-page: 274 article-title: IQ‐TREE: a fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies publication-title: Mol Biol Evol – volume: 33 start-page: 1246 year: 2015 end-page: 1259 article-title: Sulfur‐oxidizing bacteria in environmental technology publication-title: Biotechnol Adv – volume: 98 start-page: 13408 year: 2001 end-page: 13413 article-title: A paradox resolved: sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy publication-title: Proc Natl Acad Sci U S A – volume: 25 start-page: 1338 year: 2009 end-page: 1340 article-title: Identification of ribosomal RNA genes in metagenomic fragments publication-title: Bioinformatics – volume: 7 year: 2012 article-title: FastUniq: a fast de novo duplicates removal tool for paired short reads publication-title: PLoS One – volume: 7 start-page: 91 year: 2012 end-page: 106 article-title: Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOB(T)) publication-title: Stand Genomic Sci – volume: 20 start-page: 643 year: 2015 end-page: 651 article-title: Aerobic denitrification: a review of important advances of the last 30 years publication-title: Biotechnol Bioproc E – volume: 14 start-page: 104 year: 2020 end-page: 122 article-title: Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free‐living Campylobacterota (formerly Epsilonproteobacteria) publication-title: ISME J – volume: 407 start-page: 623 year: 2000 end-page: 626 article-title: A marine microbial consortium apparently mediating anaerobic oxidation of methane publication-title: Nature – volume: 10 start-page: 1816 year: 2019 article-title: Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep‐sea sediments publication-title: Nat Commun – volume: 6 start-page: 158 year: 2018 article-title: MetaWRAP‐a flexible pipeline for genome‐resolved metagenomic data analysis publication-title: Microbiome – volume: 7 year: 2012 article-title: NGS QC toolkit: a toolkit for quality control of next generation sequencing data publication-title: PLoS ONE – volume: 173 start-page: 117 year: 2000 end-page: 125 article-title: Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17 publication-title: Arch Microbiol – volume: 35 start-page: 145 year: 2001 end-page: 150 article-title: Molecular characterization of sulfate‐reducing bacteria in anaerobic hydrocarbon‐degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsr AB) genes publication-title: FEMS Microbiol Ecol – volume: 11 start-page: 3941 year: 2020 article-title: Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea publication-title: Nat Commun – volume: 2 start-page: 103 year: 2011 article-title: Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa publication-title: Front Microbiol – volume: 8 start-page: 12 year: 2016 end-page: 24 article-title: Genomics and taxonomy in diagnostics for food security: soft‐rotting enterobacterial plant pathogens publication-title: Anal Methods – volume: 14 start-page: 417 year: 2017 end-page: 419 article-title: Salmon provides fast and bias‐aware quantification of transcript expression publication-title: Nat Methods – volume: 63 start-page: 311 year: 2009 end-page: 334 article-title: Anaerobic oxidation of methane: progress with an unknown process publication-title: Annu Rev Microbiol – volume: 26 start-page: 715 year: 2010 end-page: 721 article-title: Identifying biologically relevant differences between metagenomic communities publication-title: Bioinformatics – volume: 235 start-page: 825 year: 1960 end-page: 831 article-title: Isolation and properties of two soluble heme proteins in extracts of the photoanaerobe Chromatium publication-title: J Biol Chem – volume: 3 start-page: 276 year: 2010 end-page: 284 article-title: Complete genome sequence of Desulfarculus baarsii type strain (2st14) publication-title: Stand Genomic Sci – volume: 11 start-page: 1409 year: 2020a article-title: Niche differentiation of sulfate‐ and iron‐dependent anaerobic methane oxidation and methylotrophic Methanogenesis in Deep Sea methane seeps publication-title: Front Microbiol – year: 2011 article-title: Using QIIME to analyze 16S rRNA gene sequences from microbial communities publication-title: Curr Protoc Bioinfo – volume: 11 start-page: 1144 year: 2014 end-page: 1146 article-title: Binning metagenomic contigs by coverage and composition publication-title: Nat Methods – volume: 11 start-page: 5825 year: 2020 article-title: Thermogenic hydrocarbon biodegradation by diverse depth‐stratified microbial populations at a Scotian Basin cold seep publication-title: Nat Commun – volume: 10 start-page: 5772 year: 2020 article-title: Metagenomic views of microbial dynamics influenced by hydrocarbon seepage in sediments of the Gulf of Mexico publication-title: Sci Rep – volume: 11 start-page: 1932 year: 2020 article-title: The impact of methane on microbial communities at marine Arctic gas hydrate bearing sediment publication-title: Front Microbiol – volume: 6 start-page: 725 year: 2013 end-page: 734 article-title: Seafloor oxygen consumption fuelled by methane from cold seeps publication-title: Nat Geosci – volume: 14 start-page: 1834 year: 2020 end-page: 1846 article-title: Soil bacterial populations are shaped by recombination and gene‐specific selection across a grassland meadow publication-title: ISME J – volume: 181 start-page: 6516 year: 1999 end-page: 6523 article-title: Sulfide‐quinone reductase from Rhodobacter capsulatus: requirement for growth, periplasmic localization, and extension of gene sequence analysis publication-title: J Bacteriol – volume: 9 start-page: 330 year: 2011 end-page: 348 article-title: Niche differentiation among mat‐forming, sulfide‐oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea) publication-title: Geobiology – volume: 9 start-page: 1152 year: 2015 end-page: 1165 article-title: Phylogenetic and environmental diversity of DsrAB‐type dissimilatory (bi)sulfite reductases publication-title: ISME J – volume: 57 start-page: 827 year: 2007 end-page: 831 article-title: Sulfurospirillum cavolei sp nov, a facultatively anaerobic sulfur‐reducing bacterium isolated from an underground crude oil storage cavity publication-title: Int J Syst Evol Microbiol – volume: 43 start-page: 676 year: 2014 end-page: 706 article-title: Nitrate and periplasmic nitrate reductases publication-title: Chem Soc Rev – volume: 12 start-page: 2327 year: 2010 end-page: 2340 article-title: Identification of the dominant sulfate‐reducing bacterial partner of anaerobic methanotrophs of the ANME‐2 clade publication-title: Environ Microbiol – volume: 168 start-page: 3 year: 2018 end-page: 16 article-title: Cold seep systems in the South China Sea: An overview publication-title: J Asian Earth Sci – volume: 7 start-page: 885 year: 2013 end-page: 895 article-title: Anaerobic degradation of propane and butane by sulfate‐reducing bacteria enriched from marine hydrocarbon cold seeps publication-title: ISME J – volume: 74 start-page: 781 year: 2018 end-page: 786 article-title: Crystal structure of the dimethylsulfide monooxygenase DmoA from Hyphomicrobium sulfonivorans publication-title: Acta Crystallogr F Struct Biol Commun – volume: 31 start-page: 1674 year: 2015 end-page: 1676 article-title: MEGAHIT: an ultra‐fast single‐node solution for large and complex metagenomics assembly via succinct de Bruijn graph publication-title: Bioinformatics – volume: 15 start-page: 1334 year: 2013 end-page: 1355 article-title: Complete genome, catabolic sub‐proteomes and key‐metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound‐degrading, sulfate‐reducing bacterium publication-title: Environ Microbiol – volume: 34 start-page: 2115 year: 2017 end-page: 2122 article-title: Fast genome‐wide functional annotation through orthology assignment by eggNOG‐Mapper publication-title: Mol Biol Evol – volume: 85 start-page: e00523 year: 2019 end-page: e00519 article-title: New microbial lineages capable of carbon fixation and nutrient cycling in deep‐sea sediments of the northern South China Sea publication-title: Appl Environ Microbiol – volume: 8 start-page: 253 year: 2005 end-page: 259 article-title: Prokaryotic sulfur oxidation publication-title: Curr Opin Microbiol – ident: e_1_2_8_62_1 doi: 10.1038/nmeth.4197 – ident: e_1_2_8_48_1 doi: 10.1093/bioinformatics/btv033 – ident: e_1_2_8_34_1 doi: 10.1093/bioinformatics/btp161 – ident: e_1_2_8_18_1 doi: 10.1093/nar/gkx295 – ident: e_1_2_8_74_1 doi: 10.1039/C3CS60249D – ident: e_1_2_8_82_1 doi: 10.1371/journal.pone.0052249 – ident: e_1_2_8_56_1 doi: 10.1093/molbev/msu300 – ident: e_1_2_8_33_1 doi: 10.1128/AEM.00523-19 – volume: 18 start-page: 344 year: 2013 ident: e_1_2_8_52_1 article-title: Chinese JIAOLONG's first scientific cruise in 2013 publication-title: J Ship Mech – ident: e_1_2_8_4_1 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_2_8_22_1 doi: 10.1029/2018GC007496 – ident: e_1_2_8_58_1 doi: 10.1093/bioinformatics/btq041 – ident: e_1_2_8_6_1 doi: 10.1093/bioinformatics/btz859 – ident: e_1_2_8_83_1 doi: 10.3389/fmicb.2021.698286 – ident: e_1_2_8_38_1 doi: 10.1038/ismej.2012.159 – ident: e_1_2_8_85_1 doi: 10.1038/s41598-020-62840-z – ident: e_1_2_8_45_1 doi: 10.1093/bioinformatics/bts611 – ident: e_1_2_8_16_1 doi: 10.1093/bioinformatics/bty560 – ident: e_1_2_8_20_1 doi: 10.1038/s41467-020-19648-2 – ident: e_1_2_8_78_1 doi: 10.1111/j.1462-2920.2012.02885.x – ident: e_1_2_8_7_1 doi: 10.1038/s41396-019-0508-7 – ident: e_1_2_8_43_1 doi: 10.1146/annurev.micro.61.080706.093130 – ident: e_1_2_8_10_1 doi: 10.1038/35036572 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-019-09747-0 – ident: e_1_2_8_46_1 doi: 10.1002/0471250953.bi1007s36 – ident: e_1_2_8_13_1 doi: 10.1107/S2053230X18015844 – ident: e_1_2_8_23_1 doi: 10.1016/j.dsr2.2015.02.003 – ident: e_1_2_8_67_1 doi: 10.1007/s002039900118 – ident: e_1_2_8_24_1 doi: 10.1016/j.jseaes.2018.09.021 – ident: e_1_2_8_39_1 doi: 10.1007/s12257-015-0009-0 – ident: e_1_2_8_81_1 doi: 10.3389/fmicb.2020.02064 – volume: 8 start-page: e00530 year: 2017 ident: e_1_2_8_73_1 article-title: Methane‐fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea publication-title: mBio – ident: e_1_2_8_9_1 doi: 10.1038/ngeo1926 – ident: e_1_2_8_30_1 doi: 10.1111/j.1472-4669.2011.00281.x – ident: e_1_2_8_41_1 doi: 10.7717/peerj.7359 – ident: e_1_2_8_8_1 doi: 10.1016/S0021-9258(19)67945-7 – ident: e_1_2_8_17_1 doi: 10.1038/s41396-020-0655-x – ident: e_1_2_8_60_1 doi: 10.1038/s41587-020-0501-8 – ident: e_1_2_8_65_1 doi: 10.1016/j.biotechadv.2015.02.007 – ident: e_1_2_8_68_1 doi: 10.7717/peerj.2584 – ident: e_1_2_8_57_1 doi: 10.1089/cmb.2013.0084 – ident: e_1_2_8_80_1 doi: 10.1093/bioinformatics/btv638 – ident: e_1_2_8_53_1 doi: 10.1038/s41396-021-00932-y – ident: e_1_2_8_59_1 doi: 10.1101/gr.186072.114 – ident: e_1_2_8_71_1 doi: 10.1111/j.1462-2920.2010.02275.x – ident: e_1_2_8_3_1 doi: 10.1038/nmeth.3103 – ident: e_1_2_8_51_1 doi: 10.1007/s42995-020-00057-9 – ident: e_1_2_8_72_1 doi: 10.1128/JB.181.20.6516-6523.1999 – ident: e_1_2_8_25_1 doi: 10.3389/fcimb.2017.00321 – ident: e_1_2_8_40_1 doi: 10.1038/srep40371 – ident: e_1_2_8_69_1 doi: 10.1073/pnas.1421865112 – ident: e_1_2_8_42_1 doi: 10.1111/j.1462-2920.2012.02832.x – ident: e_1_2_8_63_1 doi: 10.1111/j.1574-6941.2001.tb00798.x – ident: e_1_2_8_49_1 doi: 10.1016/j.ymeth.2016.02.020 – ident: e_1_2_8_70_1 doi: 10.1126/science.aad7154 – ident: e_1_2_8_28_1 doi: 10.5194/bg-13-4065-2016 – ident: e_1_2_8_61_1 doi: 10.1371/journal.pone.0030619 – ident: e_1_2_8_64_1 doi: 10.4056/sigs.2996379 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.1613308113 – ident: e_1_2_8_29_1 doi: 10.1038/s41598-019-46209-5 – ident: e_1_2_8_21_1 doi: 10.1186/s12864-016-3236-7 – ident: e_1_2_8_54_1 doi: 10.1038/ismej.2011.139 – ident: e_1_2_8_35_1 doi: 10.1093/molbev/msx148 – ident: e_1_2_8_5_1 doi: 10.3389/fmicb.2011.00103 – ident: e_1_2_8_12_1 doi: 10.1038/ismej.2010.134 – ident: e_1_2_8_79_1 doi: 10.1007/s00792-018-1012-0 – ident: e_1_2_8_15_1 doi: 10.1093/bioinformatics/btz848 – ident: e_1_2_8_75_1 doi: 10.1128/mBio.02099-18 – ident: e_1_2_8_84_1 doi: 10.1038/s41467-020-17860-8 – ident: e_1_2_8_66_1 doi: 10.1039/C5AY02550H – ident: e_1_2_8_2_1 doi: 10.3389/fmicb.2013.00185 – ident: e_1_2_8_26_1 doi: 10.1073/pnas.231589498 – ident: e_1_2_8_14_1 doi: 10.3389/fmicb.2020.01932 – ident: e_1_2_8_27_1 doi: 10.1016/j.mib.2005.04.005 – ident: e_1_2_8_37_1 doi: 10.1016/j.marpolbul.2021.112126 – ident: e_1_2_8_76_1 doi: 10.4056/sigs.1243258 – ident: e_1_2_8_77_1 doi: 10.1186/s40168-018-0541-1 – ident: e_1_2_8_36_1 doi: 10.1093/bioinformatics/bts429 – ident: e_1_2_8_11_1 doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2 – ident: e_1_2_8_32_1 doi: 10.1186/s40168-020-00851-8 – ident: e_1_2_8_50_1 doi: 10.3389/fmicb.2020.01409 – ident: e_1_2_8_44_1 doi: 10.1099/ijs.0.64823-0 – ident: e_1_2_8_47_1 doi: 10.1038/s41561-018-0198-1 – ident: e_1_2_8_55_1 doi: 10.1038/ismej.2014.208 |
SSID | ssj0017370 |
Score | 2.5596545 |
Snippet | Summary
Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate–methane transition zone (SMTZ) of... Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate–methane transition zone (SMTZ) of deep‐sea... Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate-methane transition zone (SMTZ) of deep-sea... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6844 |
SubjectTerms | Alkanes alpha-Proteobacteria Anaerobic microorganisms Bacteria Biodegradation carbon Carbon cycle Carbon dioxide Carbon dioxide fixation Carbon fixation cold Cores Cycles gamma-Proteobacteria genome Genomes Geologic Sediments - microbiology lifestyle Metabolism metagenomics Methane Methane - metabolism microbial ecology Microbiological strains Microorganisms Nitrogen Nitrogen fixation Nitrogen oxides Nitrogenation Oxidation Oxidation-Reduction oxygen Photochemicals Phylogeny Population studies RNA, Ribosomal, 16S - genetics RNA, Ribosomal, 16S - metabolism Sediment Sediments Seepages South China Sea Sulfate reduction Sulfates Sulfates - metabolism sulfides Sulfur Sulfur - metabolism Sulphate reduction Sulphides Sulphur thiosulfates Transition zone |
Title | Microbial ecology of sulfur cycling near the sulfate–methane transition of deep‐sea cold seep sediments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.15796 https://www.ncbi.nlm.nih.gov/pubmed/34622529 https://www.proquest.com/docview/2602467420 https://www.proquest.com/docview/2580697931 https://www.proquest.com/docview/2636449091 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EELz4flSrrODBS0Kyee5RxCKCHsSCt5DsQ0RJpUkO9dSfIPgP-0uc2Tywiop4KWk6GzaT_Wa_SedByHGkYZeVmlu-70kLrCSzuODcYpJrGSvNuDLRFtfhxdC_vAvaaELMhanrQ3Qv3BAZxl4jwNOs-ABygDizsNeS7WI-JVhhjNhCWnTTFZByI8-0i2tkXdYU98FYnk_j5_elL2RznruazWewSrJ22nXMyaNdlZktXj5VdPzXfa2RlYaa0tN6La2TBZVvkKW6WeVkkzxePZiiTSCiTKnrCR1pWlRPuhpTMcEUy3uaA3AocEpzHmjsbPqGParTXNESd0UTIIbjpFLPs-krAI3CxSQt4Dt8SNNsoNgiw8H57dmF1bRqsIQPHraVppGvpXAyJbkjQe9xCI6WAmvKVeq4aYCVAcGUahanERxlUmh8W-zIGHO4tbdNFvNRrnYJlZ4WIowi6Qjug8MFBFMGikkFJ1jm6B6x2weViKaOObbTeEpafwY1mKAGE6PBHjnpBjzXJTy-F-23Tz5psFwk4PEx7MnCnB456n4GFOJfK6C_UQUyQeyEHGyd-4NM6AH55EDQemSnXlXdfDyYBwsYh5sza-O3iSYAUnOw99cB-2SZYViOSafsk8VyXKkD4FVldmig8w7fMhe6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5Rqqq9FGih3QLFSCBxySpxXusDB8RDS3kcEEjcQuIHQqAsIhtV2xM_oVL_Sf8K_4BfwozzUKGiFQcOXFbZxI7G9sx4xpn5BmApNrjLKiOcIPCVg1qSO0IK4XAljOppw4W20Rb7Uf8o-HYcHo_B7yYXpsKHaA_cSDKsviYBpwPpP6QcZZw7VGyp61FCZR1YuaNH39FtK1a3N3CNlznf2jxc7zt1ZQFHBugQOmkaB0ZJN9NKuIoq1EfoF2gUfqFT10tDArJDyTe8l8Z4lSlp6HDTVT1KOTY-vvcVvKY64oTXv3HQQlZ5sW8L1NXEebyGE6LooQcE398J_zJv71vLdrvbmoCbZqKqKJfzbjnMuvLHAwzJlzWTk_C-tr7ZWiUuUzCm8w_wpqrHOfoI53tnFpcKm2iL5j1iA8OK8sKUV0yOKIv0lOVINkOz2d5HS_32-heV4U5zzYa08dsYOOqntL68vf6Jw2T4MsUK_I8_ytZTKKbh6FlGOgPj-SDXn4Ep30gZxbFypQjQp0QbWoWaK403eOaaDnQbzkhkDdVOFUMuksZloxVLaMUSu2IdWGk7XFYoJY83nWtYLanVVZGgU8up7Ax3O7DYPkZFQ1-PcP4GJbYJe24kUJ17_2gT-WhfC7RBO_CpYuOWHh_p4CEXODjLjP8jNEE9ZC--PLXDArztH-7tJrvb-zuz8I5TFJLNHp2D8eFVqefRjBxmX63cMjh5bva-AzizdmU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4gRMNFRQVXUdtEEy-z6en52z5wICwbECXGSMJtnOkfQiCzG2YnZj3xCCY-ia_CI_AkVPX8BDBqOHDwMpmf7kl1d1V11UxVfQBvEou7rLbSC8NAe6glhSeVlJ7Q0uqBsUIaF22xG2_the_3o_05-NXmwtT1IboPbiQZTl-TgE-0vSTkKOLCI6ylvk_5lE1c5Y6ZfUOvrVzbHuISvxVitPllY8trgAU8FaI_6GVZElqteG605JoA6mN0CwzKvjQZ97OI6tih4FsxyBI8y7Wy9G2T6wFlHNsA33sHFsKYS0KLGH7uKlb5SeDw6RrifNFUE6LgoWsEX90If7NurxrLbrcbPYCzdp7qIJejfjXN--r7tRKS_9VEPoT7je3N1mthWYI5UzyCuzUa5-wxHH08dFWpsIlxtbxnbGxZWR3b6oSpGeWQHrACyWZoNLv7aKefn_4kEO6sMGxK276LgKN-2pjJ-ekPHCbDl2lW4jUetENTKJ_A3q2MdBnmi3FhngLTgVUqThLNlQzRo0QLWkdGaIM3RM5tD_otY6SqKdROeCHHaeuw0YqltGKpW7EevOs6TOoaJX9uutpyWtooqzJFl1YQ6IzgPXjdPUY1Q_-OcP7GFbaJBjyWqMz9v7SJA7SuJVqgPVipubijJ0A6RCQkDs7x4r8ITVELuZNnN-3wCu59Go7SD9u7O89hUVAIkksdXYX56UllXqANOc1fOqll8PW2ufsCQER1FA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+ecology+of+sulfur+cycling+near+the+sulfate%E2%80%93methane+transition+of+deep%E2%80%90sea+cold+seep+sediments&rft.jtitle=Environmental+microbiology&rft.au=Li%2C+Wen%E2%80%90Li&rft.au=Dong%2C+Xiyang&rft.au=Lu%2C+Rui&rft.au=Zhou%2C+Ying%E2%80%90Li&rft.date=2021-11-01&rft.issn=1462-2912&rft.volume=23&rft.issue=11+p.6844-6858&rft.spage=6844&rft.epage=6858&rft_id=info:doi/10.1111%2F1462-2920.15796&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |