Fault Classification in Phase‐Locked Loops Using Back Propagation Neural Networks

Phase‐locked loops (PLLs) are among the most important mixed‐signal building blocks of modern communication and control circuits, where they are used for frequency and phase synchronization, modulation, and demodulation as well as frequency synthesis. The growing popularity of PLLs has increased the...

Full description

Saved in:
Bibliographic Details
Published inETRI journal Vol. 30; no. 4; pp. 546 - 554
Main Authors Ramesh, Jayabalan, Vanathi, Ponnusamy Thangapandian, Gunavathi, Kandasamy
Format Journal Article
LanguageEnglish
Published 한국전자통신연구원 01.08.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase‐locked loops (PLLs) are among the most important mixed‐signal building blocks of modern communication and control circuits, where they are used for frequency and phase synchronization, modulation, and demodulation as well as frequency synthesis. The growing popularity of PLLs has increased the need to test these devices during prototyping and production. The problem of distinguishing and classifying the responses of analog integrated circuits containing catastrophic faults has aroused recent interest. This is because most analog and mixed signal circuits are tested by their functionality, which is both time consuming and expensive. The problem is made more difficult when parametric variations are taken into account. Hence, statistical methods and techniques can be employed to automate fault classification. As a possible solution, we use the back propagation neural network (BPNN) to classify the faults in the designed charge‐pump PLL. In order to classify the faults, the BPNN was trained with various training algorithms and their performance for the test structure was analyzed. The proposed method of fault classification gave fault coverage of 99.58%.
AbstractList Phase-locked loops (PLLs) are among the most important mixed-signal building blocks of modern communication and control circuits, where they are used for frequency and phase synchronization, modulation, and demodulation as well as frequency synthesis. The growing popularity of PLLs has increased the need to test these devices during prototyping and production. The problem of distinguishing and classifying the responses of analog integrated circuits containing catastrophic faults has aroused recent interest. This is because most analog and mixed signal circuits are tested by their functionality, which is both time consuming and expensive. The problem is made more difficult when parametric variations are taken into account. Hence, statistical methods and techniques can be employed to automate fault classification. As a possible solution, we use the back propagation neural network (BPNN) to classify the faults in the designed charge-pump PLL. In order to classify the faults, the BPNN was trained with various training algorithms and their performance for the test structure was analyzed. The proposed method of fault classification gave fault coverage of 99.58%. KCI Citation Count: 5
Phase-locked loops (PLLs) are among the most important mixed-signal building blocks of modern communication and control circuits, where they are used for frequency and phase synchronization, modulation, and demodulation as well as frequency synthesis. The growing popularity of PLLs has increased the need to test these devices during prototyping and production. The problem of distinguishing and classifying the responses of analog integrated circuits containing catastrophic faults has aroused recent interest. This is because most analog and mixed signal circuits are tested by their functionality, which is both time consuming and expensive. The problem is made more difficult when parametric variations are taken into account. Hence, statistical methods and techniques can be employed to automate fault classification. As a possible solution, we use the back propagation neural network (BPNN) to classify the faults in the designed charge-pump PLL. In order to classify the faults, the BPNN was trained with various training algorithms and their performance for the test structure was analyzed. The proposed method of fault classification gave fault coverage of 99.58%.
Author Ramesh, Jayabalan
Vanathi, Ponnusamy Thangapandian
Gunavathi, Kandasamy
Author_xml – sequence: 1
  givenname: Jayabalan
  surname: Ramesh
  fullname: Ramesh, Jayabalan
– sequence: 2
  givenname: Ponnusamy Thangapandian
  surname: Vanathi
  fullname: Vanathi, Ponnusamy Thangapandian
– sequence: 3
  givenname: Kandasamy
  surname: Gunavathi
  fullname: Gunavathi, Kandasamy
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001269284$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkc1OwkAURicGEwF9AVddGTfF-Ws7s0QCStIoQVhPhnGKQ0unzrQh7HwEn9EnsVAfwM39Fvd8d3HuAPRKW2oAbhEcUYzYg66d2Y0gG0F0HoRcgD7GhIQJwXEP9BHGURjTmFyBgfc7CDGkEeuDt5lsijqYFNJ7kxkla2PLwJTB4kN6_fP1nVqV6_cgtbbywdqbchs8SpUHC2crue3wF904WbRRH6zL_TW4zGTh9c1fDsF6Nl1NnsP09Wk-GaehopDGIU82mqtYbnCEtSJcZQhRxCVViLGIwIxniKl2B1nEecyJZopjzWmCIGJUkiG47-6WLhO5MsJKc86tFbkT4-VqLjhiCKMWvevQytnPRvta7I1XuihkqW3jBaGItXaSFsQdqJz13ulMVM7spTsKBMVJtTirFpCJk2pxUt2WWFc6mEIf_9EQ09USw6h9xy99XYW4
CitedBy_id crossref_primary_10_1002_dac_2625
crossref_primary_10_1016_j_measurement_2015_12_045
crossref_primary_10_1016_j_cmpb_2013_10_011
crossref_primary_10_31686_ijier_vol9_iss6_3150
crossref_primary_10_1007_s11356_015_5075_5
ContentType Journal Article
Copyright 2008 ETRI
Copyright_xml – notice: 2008 ETRI
DBID AAYXX
CITATION
7SP
8FD
L7M
ACYCR
DOI 10.4218/etrij.08.0108.0133
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 554
ExternalDocumentID oai_kci_go_kr_ARTI_918121
10_4218_etrij_08_0108_0133
ETR20546
Genre article
GroupedDBID -~X
.4S
.DC
.UV
0R~
1OC
29G
2WC
5GY
5VS
9ZL
AAKPC
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
P5Y
RIG
RNS
TR2
TUS
WIN
XSB
AAYBS
AAYXX
CITATION
7SP
8FD
L7M
08R
ID FETCH-LOGICAL-c4046-97be9c6ab252ec39cf11419a4c188530f9f18c52e08599693e8c92e94710184a3
ISSN 1225-6463
IngestDate Tue Nov 21 21:43:48 EST 2023
Sat Oct 26 00:58:07 EDT 2024
Thu Sep 12 16:54:22 EDT 2024
Sat Aug 24 00:58:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4046-97be9c6ab252ec39cf11419a4c188530f9f18c52e08599693e8c92e94710184a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
G704-001110.2008.30.4.011
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.4218/etrij.08.0108.0133
PQID 34186467
PQPubID 23500
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_918121
proquest_miscellaneous_34186467
crossref_primary_10_4218_etrij_08_0108_0133
wiley_primary_10_4218_etrij_08_0108_0133_ETR20546
PublicationCentury 2000
PublicationDate August 2008
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: August 2008
PublicationDecade 2000
PublicationTitle ETRI journal
PublicationYear 2008
Publisher 한국전자통신연구원
Publisher_xml – name: 한국전자통신연구원
References 1997
1980; COM‐28
2006
1993; 12
2005; 54
2005
2000; 19
2004
2004; 51
2005; 3
2006; 57
1999
References_xml – volume: 12
  start-page: 102
  issue: 1
  year: 1993
  end-page: 113
  article-title: Fault Detection and Classification in Linear Integrated Circuits: An Application of Discrimination Analysis and Hypothesis Testing
  publication-title: IEEE Trans. Computer‐Aided Design
– volume: COM‐28
  start-page: 1849
  issue: 11
  year: 1980
  end-page: 1858
  article-title: Charge‐Pump Phase‐Locked Loops
  publication-title: IEEE Trans. Communications
– start-page: 210
  year: 1997
  end-page: 213
  article-title: DFT for Embedded Charge‐Pump PLL Systems Incorporating IEEE 1149.1
– volume: 51
  start-page: 1301
  issue: 7
  year: 2004
  end-page: 1311
  article-title: An Analytical Charge‐Based Compact Delay Model for Submicrometer CMOS Inverters
  publication-title: IEEE Trans. Circuits and Systems I: Fundamental theory and Applications
– volume: 57
  start-page: 249
  issue: 5
  year: 2006
  end-page: 257
  article-title: Neural Network‐Based Defect Detection in Analog and Mixed IC Using Digital Signal Preprocessing
  publication-title: J. Electrical Engineering
– start-page: 269
  year: 1999
  end-page: 292
  article-title: A Unified Digital Test Technique for PLLs: Catastrophic Faults Covered
– year: 2005
– volume: 19
  start-page: 142
  issue: 1
  year: 2000
  end-page: 151
  article-title: Applying a Robust Heteroscedastic Probilisitic Neural Network to Analog Fault Detection and Classification
  publication-title: IEEE Trans. Computer Aided Design of Integrated Circuits an Systems
– volume: 54
  start-page: 996
  issue: 3
  year: 2005
  end-page: 1002
  article-title: Built‐in Self Test for Phase‐Lock Loops
  publication-title: IEEE Trans. Instrumentation and Measurement
– start-page: 115
  year: 2004
  end-page: 118
  article-title: New Concept to Analog Fault Diagnosis by Creating Two Fuzzy‐Neural Dictionaries Test
– volume: 3
  start-page: 171
  year: 2005
  end-page: 176
  article-title: Levenberg‐Marquardt Algorithm for Karachi Stock Exchange Share Rates Forecasting
  publication-title: Proc. of World Academy of Science, Engineering, and Technology
– start-page: 5744
  year: 2006
  end-page: 5747
  article-title: Analog Fault AC Dictionary Creation: The Fuzzy Set Approach
SSID ssj0020458
Score 1.8857129
Snippet Phase‐locked loops (PLLs) are among the most important mixed‐signal building blocks of modern communication and control circuits, where they are used for...
Phase-locked loops (PLLs) are among the most important mixed-signal building blocks of modern communication and control circuits, where they are used for...
Phase-locked loops (PLLs) are among the most important mixed-signal building blocks of modern communication and control circuits, where they are used for...
SourceID nrf
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 546
SubjectTerms back propagation neural network
charge‐pump
Fault classification
phase frequency detector
PLL testing
전자/정보통신공학
Title Fault Classification in Phase‐Locked Loops Using Back Propagation Neural Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.08.0108.0133
https://search.proquest.com/docview/34186467
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001269284
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2008, 30(4), , pp.546-554
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiKso1yDhpyqQxLnYj23XsaExjamdJl4i202gFJKpbZDG3-IPco7dZOkAqfBiRbbbOD6fz83Hx4S84toTuGHnxlki3JBnU1cyrVzOcuXBeprGIR4Ufn8cH0zCd-fReafzsxW1VK3Ua_3jj-dK_oeqUAd0xVOy_0DZ5k-hAp6BvlAChaHcisb7svq6svdaYsSPrAMXTz6DbHKPgNWBOnlUlhfLng0NGEg9x7MBwEVsZ8zNAUQ6tsHgyw0__fj0sNcehjmRfykVBkP2TjG6tnEln5RFUS3lt8veGB3QIIALk_LgTKJvftZwdXRbmG5vq0J-b5pqrwNvYt4sTuhoj4qIiiEd9ekgov09OhrSvkd5iA9iRIWHfXiMrVDDB9iKTQkdePWvhqZmQO2NoWsWDBzGjcM128tMHegwzE1Y0Ga10dp1aaV2ZFNRXxcIIWgwCI3VYvbFpGr1TcHYlfirt_yvScWN_NtzPUs_lel8kYKVcZgKVIvA5N4NgLsBW93tn00-Tho7H_ee0c6vP8Se1cKhvPl9IBv60I1ikW-YOm2DyWg84zvk9tpUcfoWd3dJJyvukVutBJb3yQeDQGcTgc6scNoIdAwCHYNABxHotBDoWAQ6NQIfkMn-aDw8cNeXdLg69MLYFYnKhI6lCqIg00zoHCxsX8hQ-xxUQS8Xuc81tGEmPRELlnEtgkyAUuT5PJTsIdkpyiJ7RBw_ULnioQITV4ci8VWeRVM29aY56vWJ6pJePVXphc3FkoINixObmolN8UZV3xSMdclLmE1Dur-SsEte1HOdAlvFvTJZZGW1TEG540C7pEt8Q4ItXpjCugzAAoofb_HmJ-Tm1bJ6SnZWiyp7BurtSj1fw-kXaOWc7Q
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB51uwfggPhZtF1-1kjcULRx7CbxsaBWLXSrFbRoxcWKHWe3dJWs0vbOI_CMPAkzTlu14oK4OIcktjTj8XyfZzwGeJfaUFHALohdogKZujzIhDVBKgoToj3lsaSDwpeTeDiTn6671y3ob8_CNPUhdhtuZBl-vSYDpw1psnKJbom0uKrnP3z9Te4bIY7guEuBvTYc977Nvs92zIuigcS8cPIGsYxFc3qG-rn4u5cDD3VU1sUB-NyHsN4HDZ7A4w14ZL1G20-h5cpn8GivpOBz-DrI1ncr5u-6pCwgL3g2L9nVLfqr3z9_jXEBdDkbV9X9kvmEAfYhswt2VSN9vmk-p4odOM6kSRFfnsBs0J9-HAabixMCK5HvBioxTtk4M1E3clYoWyDr4SqTlqfonsNCFTy1-I6qm6lYCZdaFTmFjipExpeJF9Auq9KdAuORKUwqDdIOK1XCTeG6ucjDvCCslZgOvN8KS9839TE08goSrfai1XTLJfeNEB14i_LUCzvXVNaanjeVXtQawftIK0IbvAPnW2lrnOoUv8hKV62XGh1uitpLOsC9Ev5hQN2ffokQlcZn__HPOTwYTi_HejyafH4JD5tMEUr9ewXtVb12rxGOrMybzWT7A6om2FQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB1kAYr2EKQb4jZpWKC3Qqgo0pJ4zGZkcQ2jjYugF0KkyNR1IRmyfc8n5BvzJZmh7CBBL0Uv1EESCczCeY8cDgE-5TZWtGEXpS5TkcxdGRXCmigX3sToT2Uq6aDw10F6OpLnV92rNThenYVp60M8LLiRZ4T5mhx8WnpycolRiZQ4b8a_Q_lNHhoh1mET4UaCdr558GP0c_RAvGgzkIgX2m6UylS0h2eony9_9_IkQK1XjX-CPR8j2BCCetuwtcSO7KBV9ktYc9UrePGoouBr-N4rFn_mLFx1SUlAQe5sXLHhLwxXdze3fZz_XMn6dT2dsZAvwA4LO2HDBtnzdfs5FezAcQZthvjsDYx6J5dHp9Hy3oTISqS7kcqMUzYtTNJNnBXKeiQ9XBXS8hyjc-yV57nFd1TcTKVKuNyqxCmMUzESvkK8hY2qrtwOMJ4Yb3JpkHVYqTJuvOuWooxLT1ArMx34vBKWnrblMTTSChKtDqLVdMklD40QHfiI8tQTO9ZU1Zqe17WeNBqx-5lWBDZ4B_ZX0tZo6bR9UVSuXsw0xtsctZd1gAcl_MOA-uTyW4KgNH33H__sw7PhcU_3zwYX7-F5mydCiX-7sDFvFm4PwcjcfFja2j1wMtd9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Classification+in+Phase-Locked+Loops+Using+Back+Propagation+Neural+Networks&rft.jtitle=ETRI+journal&rft.au=Jayabalan+Ramesh&rft.au=Ponnusamy+Thangapandian+Vanathi&rft.au=Kandasamy+Gunavathi&rft.date=2008-08-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%84%EC%9E%90%ED%86%B5%EC%8B%A0%EC%97%B0%EA%B5%AC%EC%9B%90&rft.issn=1225-6463&rft.eissn=2233-7326&rft.spage=546&rft.epage=554&rft_id=info:doi/10.4218%2Fetrij.08.0108.0133&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_918121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon