Hand‐held electron spin resonance scanner for subcutaneous oximetry using OxyChip

Purpose Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 92; no. 1; pp. 430 - 439
Main Authors Almog, Nir, Zgadzai, Oleg, Kuppusamy, Periannan, Zur, Yehonatan, Baruch, Limor, Machluf, Marcelle, Blank, Aharon
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30066

Cover

Loading…
Abstract Purpose Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating within local static magnetic fields. Our group recently developed such a compact scanner for transcutaneous (surface) pO2 measurements of skin tissue. Here we extend this capability to subsurface (subcutaneous) pO2 measurements and verify it using an artificial tissue emulating (ATE) phantom. Methods We introduce a new scanner, tailored for subcutaneous measurements up to 2 mm beneath the skin's surface. This scanner captures pulsed ESR signals from embedded approximate 1‐mm oxygen‐sensing solid paramagnetic implant, OxyChip. The scanner features a static magnetic field source, producing a uniform region outside its surface, and a compact microwave resonator, for exciting and receiving ESR signals. Results ESR readings derived from an OxyChip, positioned approximately 1.5 mm from the scanner's surface, embedded in ATE phantom, exhibited a linear relation of 1/T2 versus pO2 for pO2 levels at 0, 7.6, 30, and 160 mmHg, with relative reading accuracy of about 10%. Conclusion The compact ESR scanner can report pO2 data in ATE phantom from an external position relative to the scanner. Implementing this scanner in preclinical and clinical applications for subcutaneous pO2 measurements is a feasible next phase for this development. This innovative design also has the potential to operate in conjunction with artificial skin graft for wound healing, combining therapeutic and pO2 diagnostic features.
AbstractList Purpose Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating within local static magnetic fields. Our group recently developed such a compact scanner for transcutaneous (surface) pO2 measurements of skin tissue. Here we extend this capability to subsurface (subcutaneous) pO2 measurements and verify it using an artificial tissue emulating (ATE) phantom. Methods We introduce a new scanner, tailored for subcutaneous measurements up to 2 mm beneath the skin's surface. This scanner captures pulsed ESR signals from embedded approximate 1‐mm oxygen‐sensing solid paramagnetic implant, OxyChip. The scanner features a static magnetic field source, producing a uniform region outside its surface, and a compact microwave resonator, for exciting and receiving ESR signals. Results ESR readings derived from an OxyChip, positioned approximately 1.5 mm from the scanner's surface, embedded in ATE phantom, exhibited a linear relation of 1/T2 versus pO2 for pO2 levels at 0, 7.6, 30, and 160 mmHg, with relative reading accuracy of about 10%. Conclusion The compact ESR scanner can report pO2 data in ATE phantom from an external position relative to the scanner. Implementing this scanner in preclinical and clinical applications for subcutaneous pO2 measurements is a feasible next phase for this development. This innovative design also has the potential to operate in conjunction with artificial skin graft for wound healing, combining therapeutic and pO2 diagnostic features.
Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating within local static magnetic fields. Our group recently developed such a compact scanner for transcutaneous (surface) pO2 measurements of skin tissue. Here we extend this capability to subsurface (subcutaneous) pO2 measurements and verify it using an artificial tissue emulating (ATE) phantom.PURPOSEElectron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating within local static magnetic fields. Our group recently developed such a compact scanner for transcutaneous (surface) pO2 measurements of skin tissue. Here we extend this capability to subsurface (subcutaneous) pO2 measurements and verify it using an artificial tissue emulating (ATE) phantom.We introduce a new scanner, tailored for subcutaneous measurements up to 2 mm beneath the skin's surface. This scanner captures pulsed ESR signals from embedded approximate 1-mm oxygen-sensing solid paramagnetic implant, OxyChip. The scanner features a static magnetic field source, producing a uniform region outside its surface, and a compact microwave resonator, for exciting and receiving ESR signals.METHODSWe introduce a new scanner, tailored for subcutaneous measurements up to 2 mm beneath the skin's surface. This scanner captures pulsed ESR signals from embedded approximate 1-mm oxygen-sensing solid paramagnetic implant, OxyChip. The scanner features a static magnetic field source, producing a uniform region outside its surface, and a compact microwave resonator, for exciting and receiving ESR signals.ESR readings derived from an OxyChip, positioned approximately 1.5 mm from the scanner's surface, embedded in ATE phantom, exhibited a linear relation of 1/T2 versus pO2 for pO2 levels at 0, 7.6, 30, and 160 mmHg, with relative reading accuracy of about 10%.RESULTSESR readings derived from an OxyChip, positioned approximately 1.5 mm from the scanner's surface, embedded in ATE phantom, exhibited a linear relation of 1/T2 versus pO2 for pO2 levels at 0, 7.6, 30, and 160 mmHg, with relative reading accuracy of about 10%.The compact ESR scanner can report pO2 data in ATE phantom from an external position relative to the scanner. Implementing this scanner in preclinical and clinical applications for subcutaneous pO2 measurements is a feasible next phase for this development. This innovative design also has the potential to operate in conjunction with artificial skin graft for wound healing, combining therapeutic and pO2 diagnostic features.CONCLUSIONThe compact ESR scanner can report pO2 data in ATE phantom from an external position relative to the scanner. Implementing this scanner in preclinical and clinical applications for subcutaneous pO2 measurements is a feasible next phase for this development. This innovative design also has the potential to operate in conjunction with artificial skin graft for wound healing, combining therapeutic and pO2 diagnostic features.
Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO ) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating within local static magnetic fields. Our group recently developed such a compact scanner for transcutaneous (surface) pO measurements of skin tissue. Here we extend this capability to subsurface (subcutaneous) pO measurements and verify it using an artificial tissue emulating (ATE) phantom. We introduce a new scanner, tailored for subcutaneous measurements up to 2 mm beneath the skin's surface. This scanner captures pulsed ESR signals from embedded approximate 1-mm oxygen-sensing solid paramagnetic implant, OxyChip. The scanner features a static magnetic field source, producing a uniform region outside its surface, and a compact microwave resonator, for exciting and receiving ESR signals. ESR readings derived from an OxyChip, positioned approximately 1.5 mm from the scanner's surface, embedded in ATE phantom, exhibited a linear relation of 1/T versus pO for pO levels at 0, 7.6, 30, and 160 mmHg, with relative reading accuracy of about 10%. The compact ESR scanner can report pO data in ATE phantom from an external position relative to the scanner. Implementing this scanner in preclinical and clinical applications for subcutaneous pO measurements is a feasible next phase for this development. This innovative design also has the potential to operate in conjunction with artificial skin graft for wound healing, combining therapeutic and pO diagnostic features.
PurposeElectron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating within local static magnetic fields. Our group recently developed such a compact scanner for transcutaneous (surface) pO2 measurements of skin tissue. Here we extend this capability to subsurface (subcutaneous) pO2 measurements and verify it using an artificial tissue emulating (ATE) phantom.MethodsWe introduce a new scanner, tailored for subcutaneous measurements up to 2 mm beneath the skin's surface. This scanner captures pulsed ESR signals from embedded approximate 1‐mm oxygen‐sensing solid paramagnetic implant, OxyChip. The scanner features a static magnetic field source, producing a uniform region outside its surface, and a compact microwave resonator, for exciting and receiving ESR signals.ResultsESR readings derived from an OxyChip, positioned approximately 1.5 mm from the scanner's surface, embedded in ATE phantom, exhibited a linear relation of 1/T2 versus pO2 for pO2 levels at 0, 7.6, 30, and 160 mmHg, with relative reading accuracy of about 10%.ConclusionThe compact ESR scanner can report pO2 data in ATE phantom from an external position relative to the scanner. Implementing this scanner in preclinical and clinical applications for subcutaneous pO2 measurements is a feasible next phase for this development. This innovative design also has the potential to operate in conjunction with artificial skin graft for wound healing, combining therapeutic and pO2 diagnostic features.
Author Zur, Yehonatan
Baruch, Limor
Blank, Aharon
Zgadzai, Oleg
Machluf, Marcelle
Almog, Nir
Kuppusamy, Periannan
AuthorAffiliation 2 Departments of Radiology, Radiation Oncology, and Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
1 Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Haifa 32000, Israel
3 Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
AuthorAffiliation_xml – name: 3 Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
– name: 1 Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Haifa 32000, Israel
– name: 2 Departments of Radiology, Radiation Oncology, and Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
Author_xml – sequence: 1
  givenname: Nir
  surname: Almog
  fullname: Almog, Nir
  organization: Technion–Israel Institute of Technology
– sequence: 2
  givenname: Oleg
  surname: Zgadzai
  fullname: Zgadzai, Oleg
  organization: Technion–Israel Institute of Technology
– sequence: 3
  givenname: Periannan
  orcidid: 0000-0002-3214-0660
  surname: Kuppusamy
  fullname: Kuppusamy, Periannan
  organization: Geisel School of Medicine, Dartmouth College
– sequence: 4
  givenname: Yehonatan
  surname: Zur
  fullname: Zur, Yehonatan
  organization: Technion–Israel Institute of Technology
– sequence: 5
  givenname: Limor
  surname: Baruch
  fullname: Baruch, Limor
  organization: Technion–Israel Institute of Technology
– sequence: 6
  givenname: Marcelle
  surname: Machluf
  fullname: Machluf, Marcelle
  organization: Technion–Israel Institute of Technology
– sequence: 7
  givenname: Aharon
  orcidid: 0000-0003-4056-8103
  surname: Blank
  fullname: Blank, Aharon
  email: ab359@technion.ac.il
  organization: Technion–Israel Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38411265$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9OFTEUxhuDkQu48AVMEze6GOi_mWlXhtyImEBIBNZNb3vKLZlpr-2Mcnc8gs_okzg4SNTE1Vmc3_nyfefbQzsxRUDoFSWHlBB21Of-kBPSNM_QgtaMVaxWYgctSCtIxakSu2ivlFtCiFKteIF2uRSUsqZeoMtTE92P--9r6ByGDuyQU8RlEyLOUFI00QIu1sQIGfuUcRlXdhxMhDQWnO5CD0Pe4rGEeIMv7rbLddgcoOfedAVePs59dH3y4Wp5Wp1dfPy0PD6rrCCiqSQ3yntgVDgqqTcr4ohnrReUscYZ25rGWSEtqT1bSU6c9EzS1gEw4lXr-D56P-tuxlUPzkIcsun0Jofe5K1OJui_NzGs9U36qikldd20YlJ4-6iQ05cRyqD7UCx03ZxPM8WZ4FIyOqFv_kFv05jjlE_zKY1SitUP1Os_LT15-f3wCXg3AzanUjL4J4QS_VCmnsrUv8qc2KOZ_RY62P4f1Oefz-eLn_EYoj0
Cites_doi 10.1007/978-0-387-74911-2_6
10.1111/j.1524-475X.2008.00436.x
10.3389/fonc.2021.743256
10.1007/978-3-642-16307-4_2
10.1016/j.freeradbiomed.2022.08.020
10.1007/0-306-48533-8_2
10.21236/ADA303903
10.3390/medicina57090864
10.1186/1471-2431-5-30
10.1016/j.jmr.2004.05.018
10.1007/0-387-26206-7_17
10.1002/mrm.28595
10.1097/HP.0000000000000187
10.1007/s10544-019-0421-x
10.1007/s10334-023-01109-8
10.1007/978-3-642-71226-5
10.1007/978-1-4419-1241-1_21
10.1002/elan.202060242
10.1021/cr900396q
10.1021/cm101733h
10.1007/s00723-021-01358-7
10.1007/s10544-018-0272-x
10.1016/S0891-5849(03)00496-9
10.1016/S0891-5849(98)00039-2
10.3389/fonc.2020.572060
10.1002/mrm.27445
10.1016/B978-0-323-04177-5.00003-3
10.1016/j.mvr.2019.02.002
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.30066
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 439
ExternalDocumentID PMC11055674
38411265
10_1002_mrm_30066
MRM30066
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01 EB004031
– fundername: Israel Science Foundation (ISF), Personalized Medicine Program
  funderid: 2283/20
– fundername: Technion Additive Manufacturing Center
– fundername: NIH HHS
  grantid: R01 EB004031
– fundername: NCI NIH HHS
  grantid: R01 CA269234
– fundername: NIBIB NIH HHS
  grantid: R01 EB004031
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4046-83a9ffe214d181fab0d0f27f41226dac7a6dc48c05f2b830d8f2817dee20f97d3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:33:36 EDT 2025
Fri Jul 11 09:56:36 EDT 2025
Fri Jul 25 09:39:03 EDT 2025
Fri Jul 25 01:48:46 EDT 2025
Tue Jul 01 04:27:09 EDT 2025
Wed Jan 22 17:20:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords pulsed ESR
oximetry
tissue pO2
OxyChip
compact magnet
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4046-83a9ffe214d181fab0d0f27f41226dac7a6dc48c05f2b830d8f2817dee20f97d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3214-0660
0000-0003-4056-8103
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30066
PMID 38411265
PQID 3046999251
PQPubID 1016391
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11055674
proquest_miscellaneous_2932438821
proquest_journals_3046999251
pubmed_primary_38411265
crossref_primary_10_1002_mrm_30066
wiley_primary_10_1002_mrm_30066_MRM30066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 36
2011
2022; 190
2010; 662
2008; 17
2003; 35
2009
2019; 124
1996
2015; 108
2005
2020; 32
2020; 10
2021; 52
2018; 20
1998; 25
2010; 22
2021; 57
2019; 81
2021; 11
2004; 170
2019; 21
2005; 566
2010; 110
2005; 5
1987
2008; 614
2021; 85
2009; 17
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
Babilas P (e_1_2_8_12_1) 2008; 17
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_30_1
References_xml – volume: 20
  start-page: 29
  year: 2018
  article-title: Pre‐clinical evaluation of OxyChip for long‐term EPR oximetry
  publication-title: Biomed Microdevices.
– start-page: 19
  year: 2005
  end-page: 52
– volume: 190
  start-page: 226
  year: 2022
  end-page: 233
  article-title: Noninvasive detection of the endogenous free radical melanin in human skin melanomas using electron paramagnetic resonance (EPR)
  publication-title: Free Radic Biol Med.
– volume: 5
  start-page: 30
  year: 2005
  article-title: A survey of transcutaneous blood gas monitoring among European neonatal intensive care units
  publication-title: BMC Pediatr.
– year: 1987
– volume: 81
  start-page: 781
  year: 2019
  end-page: 794
  article-title: Transcutaneous oxygen measurement in humans using a paramagnetic skin adhesive film
  publication-title: Magn Reson Med.
– year: 1996
– volume: 57
  start-page: 864
  year: 2021
  article-title: A general overview on the hyperbaric oxygen therapy: applications
  publication-title: Medicina (Kaunas).
– volume: 52
  start-page: 1395
  year: 2021
  end-page: 1450
  article-title: Oxygenation status in normal tissues, pathological tissues and malignant tumors: a pO2 database based on electron paramagnetic resonance (EPR) oximetry measurements
  publication-title: Appl Magn Reson.
– volume: 108
  start-page: 326
  year: 2015
  end-page: 335
  article-title: A magnetic resonance probehead for evaluating the level of ionizing radiation absorbed in human teeth
  publication-title: Health Phys
– volume: 170
  start-page: 42
  year: 2004
  end-page: 48
  article-title: Mechanism of oxygen‐induced EPR line broadening in lithium phthalocyanine microcrystals
  publication-title: J Magn Reson.
– volume: 17
  start-page: 265
  year: 2008
  end-page: 311
  article-title: Transcutaneous pO imaging during tourniquet‐induced forearm ischemia using planar optical oxygen sensors
  publication-title: Exp Dermatol.
– volume: 110
  start-page: 3212
  year: 2010
  end-page: 3236
  article-title: Theory, instrumentation, and applications of electron paramagnetic resonance oximetry
  publication-title: Chem Rev.
– volume: 17
  start-page: 1
  year: 2009
  end-page: 18
  article-title: Wound healing essentials: let there be oxygen
  publication-title: Wound Repair Regen.
– volume: 32
  start-page: 2393
  year: 2020
  end-page: 2403
  article-title: Electrochemical monitoring of subcutaneous tissue pO fluctuations during exercise using a semi‐implantable needle electrode
  publication-title: Electroanalysis.
– volume: 21
  start-page: 71
  year: 2019
  article-title: Implantable microchip containing oxygen‐sensing paramagnetic crystals for long‐term, repeated, and multisite in vivo oximetry
  publication-title: Biomed Microdevices.
– volume: 36
  start-page: 933
  year: 2023
  end-page: 943
  article-title: A new method to improve RF safety of implantable medical devices using inductive coupling at 3.0 T MRI
  publication-title: MAGMA
– volume: 85
  start-page: 2915
  year: 2021
  end-page: 2925
  article-title: Compact electron spin resonance skin oximeter: properties and initial clinical results
  publication-title: Magn Reson Med.
– volume: 614
  start-page: 45
  year: 2008
  end-page: 52
  article-title: Measurement of oxygenation at the site of stem cell therapy in a murine model of myocardial infarction
  publication-title: Adv Exp Med Biol.
– volume: 124
  start-page: 6
  year: 2019
  end-page: 18
  article-title: Continuous monitoring of interstitial tissue oxygen using subcutaneous oxygen microsensors: in vivo characterization in healthy volunteers
  publication-title: Microvasc Res.
– volume: 35
  start-page: 1138
  year: 2003
  end-page: 1148
  article-title: Novel particulate spin probe for targeted determination of oxygen in cells and tissues
  publication-title: Free Radic Biol Med.
– volume: 11
  year: 2021
  article-title: First‐in‐human study in cancer patients establishing the feasibility of oxygen measurements in tumors using electron paramagnetic resonance with the OxyChip
  publication-title: Front Oncol.
– volume: 22
  start-page: 6254
  year: 2010
  end-page: 6262
  article-title: A new tetragonal crystalline polymorph of lithium octa‐n‐butoxy‐naphthalocyanine (LiNc‐BuO) radical: structural
  publication-title: Chem Mater
– start-page: 34
  year: 2009
  end-page: 48
– volume: 662
  start-page: 149
  year: 2010
  end-page: 156
  article-title: Clinical electron paramagnetic resonance (EPR) oximetry using India ink
  publication-title: Adv Exp Med Biol
– volume: 10
  year: 2020
  article-title: OxyChip implantation and subsequent electron paramagnetic resonance oximetry in human tumors is safe and feasible: first experience in 24 patients
  publication-title: Front Oncol.
– start-page: 11
  year: 2011
  end-page: 56
– volume: 25
  start-page: 72
  year: 1998
  end-page: 78
  article-title: Preparation and EPR studies of lithium phthalocyanine radical as an oxymetric probe
  publication-title: Free Radic Biol Med.
– volume: 566
  start-page: 119
  year: 2005
  end-page: 125
  article-title: Black magic and EPR oximetry: from lab to initial clinical trials
  publication-title: Adv Exp Med Biol.
– ident: e_1_2_8_8_1
  doi: 10.1007/978-0-387-74911-2_6
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1524-475X.2008.00436.x
– ident: e_1_2_8_20_1
  doi: 10.3389/fonc.2021.743256
– ident: e_1_2_8_27_1
  doi: 10.1007/978-3-642-16307-4_2
– ident: e_1_2_8_31_1
  doi: 10.1016/j.freeradbiomed.2022.08.020
– ident: e_1_2_8_23_1
  doi: 10.1007/0-306-48533-8_2
– ident: e_1_2_8_21_1
  doi: 10.21236/ADA303903
– ident: e_1_2_8_30_1
  doi: 10.3390/medicina57090864
– ident: e_1_2_8_9_1
  doi: 10.1186/1471-2431-5-30
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jmr.2004.05.018
– ident: e_1_2_8_7_1
  doi: 10.1007/0-387-26206-7_17
– ident: e_1_2_8_14_1
  doi: 10.1002/mrm.28595
– ident: e_1_2_8_22_1
  doi: 10.1097/HP.0000000000000187
– ident: e_1_2_8_18_1
  doi: 10.1007/s10544-019-0421-x
– ident: e_1_2_8_25_1
  doi: 10.1007/s10334-023-01109-8
– ident: e_1_2_8_11_1
  doi: 10.1007/978-3-642-71226-5
– ident: e_1_2_8_3_1
  doi: 10.1007/978-1-4419-1241-1_21
– ident: e_1_2_8_15_1
  doi: 10.1002/elan.202060242
– ident: e_1_2_8_2_1
  doi: 10.1021/cr900396q
– ident: e_1_2_8_28_1
  doi: 10.1021/cm101733h
– ident: e_1_2_8_29_1
  doi: 10.1007/s00723-021-01358-7
– ident: e_1_2_8_17_1
  doi: 10.1007/s10544-018-0272-x
– ident: e_1_2_8_5_1
  doi: 10.1016/S0891-5849(03)00496-9
– ident: e_1_2_8_6_1
  doi: 10.1016/S0891-5849(98)00039-2
– ident: e_1_2_8_19_1
  doi: 10.3389/fonc.2020.572060
– volume: 17
  start-page: 265
  year: 2008
  ident: e_1_2_8_12_1
  article-title: Transcutaneous pO2 imaging during tourniquet‐induced forearm ischemia using planar optical oxygen sensors
  publication-title: Exp Dermatol.
– ident: e_1_2_8_13_1
  doi: 10.1002/mrm.27445
– ident: e_1_2_8_24_1
  doi: 10.1016/B978-0-323-04177-5.00003-3
– ident: e_1_2_8_16_1
  doi: 10.1016/j.mvr.2019.02.002
– ident: e_1_2_8_26_1
SSID ssj0009974
Score 2.4547696
Snippet Purpose Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional...
Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO ) in biological media with many clinical applications. Traditional clinical ESR...
PurposeElectron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical...
Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 430
SubjectTerms Artificial tissues
compact magnet
Electron paramagnetic resonance
Electron spin
Electron spin resonance
Electron Spin Resonance Spectroscopy
Equipment Design
Humans
Magnetic fields
Magnets
Oximetry
Oximetry - methods
OxyChip
Oxygen
Partial pressure
Phantoms, Imaging
pulsed ESR
Scanners
Skin
Skin - diagnostic imaging
Skin grafts
Spin resonance
Therapeutic applications
tissue pO2
Wound healing
Title Hand‐held electron spin resonance scanner for subcutaneous oximetry using OxyChip
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30066
https://www.ncbi.nlm.nih.gov/pubmed/38411265
https://www.proquest.com/docview/3046999251
https://www.proquest.com/docview/2932438821
https://pubmed.ncbi.nlm.nih.gov/PMC11055674
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UguJL1XqbWksUH3yZ7WwmM0nwSYplEValWuiDMOTaXXRnl50daH3yJ_gb_SXmsjN1LYL4NpCESXJyki85X74AvAgab0qytKA4T4kRZcoN5imRhklhBFc6sHzflaNT8vasONuCV91dmKgP0R-4ec8I87V3cCGbwyvR0NlyNsj9iunmX8_V8oDo5Eo6ivOowEyJn2c46VSFMnzYl9xci64BzOs8yd_xa1iAju_A567qkXfyZdCu5EB9-0PV8T_bdhd21sAUvY4j6R5smXoXbo3XofdduBm4oqq5Dx9HotY_v_-YmK8adc_ooGYxrZHbu8-9godBjTNZbZbIYWLUtFK1DoSaedug-cV0ZlbLS-QZ9-fo_cXl0WS6eACnx28-HY3S9dsMqSJuS52yXHBrDR4S7TCCFTLTmcXUkqHDc1ooKkqtCFNZYbFkeaaZxWxItTE4s5zq_CFs1_PaPAbkinCLSyqIEoTSQnCdSy25ViWlWmcJPO-sVC2iBEcVxZZx5TqqCh2VwH5nv2rthU3lo74OADsIl8CzPtn5jw-KxFZXDu5gkrt9hsvzKJq7_0vOiL9hVSTANgZCn8Frc2-m1NNJ0OgehodHKUngZTD032tejU_G4WPv37M-gdvYgatIG96H7dWyNU8dOFrJA7iByYeD4Au_AD8vDrQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIiiXAoVCoIBBHLhkm3WcOJa4oIpqgW6RSiv1giL_sivY7GqzkVpOPEKfkSfBP5uUpUJC3CLZVmyPx_7GM_4G4KXneJOiiDOK05honsdMYxYToQvBNWdS-Sjfw3xwQt6fZqdr8Lp9CxP4IboLN6cZfr92Cu4upHcvWUMn80kvdUfmNbjuMnp7g-rokjyKscDBTInbaRhpeYUSvNs1XT2NrkDMq5GSvyNYfwTt34bPbedD5MnXXrMQPfn9D17H_x3dHdhcYlP0Jiymu7Cmqy24OVx637fghg8XlfU9-DTglfr542KkvynUZtJB9WxcIWu-Tx2Jh0a1lVql58jCYlQ3QjYWh-ppU6Pp2XiiF_Nz5ILuv6CPZ-d7o_HsPpzsvz3eG8TL9AyxJNaqjouUM2M07hNlYYLhIlGJwdSQvoV0ikvKcyVJIZPMYFGkiSoMLvpUaY0Tw6hKt2G9mlb6ISDbhBmcU04kJ5RmnKlUKMGUzClVKongRSumchZYOMrAt4xLO1Gln6gIdloBlktFrEvn-LUY2KK4CJ53xVaFnF8kjLq0iAeT1Joats6DIO_uL2lB3COrLIJiZSV0FRw992pJNR55mu6-zz1KSQSvvKT_3vNyeDT0H4_-veoz2BgcDw_Kg3eHHx7DLWyxVogi3oH1xbzRTyxWWoinXiV-AakwEfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMorUMAgDlyyzTpObIsTalktjy2oUKmHSpGf7Ao2u9pspJYTP4HfyC_BdjYpS4WEuEWyrdgej-cbz_gzwLPA8aYkizOK05gYkcfcYB4TaZgURnClQ5bvQT48Im-Os-MNeNHehWn4IboDN68ZYb_2Cj7XdvecNHS6mPZSbzEvwWWSJ8wv6f3Dc-4ozhsKZkr8RsNJSyuU4N2u6boxuoAwLyZK_g5ggwUaXIeTtu9N4smXXr2UPfXtD1rH_xzcDbi2QqboZbOUbsKGKbdha7SKvW_DlZAsqqpb8HEoSv3z-4-x-apR-44OquaTEjnnfeYpPAyqnMxKs0AOFKOqlqp2KNTM6grNTidTs1ycIZ9y_xm9Pz3bG0_mt-Fo8OrT3jBePc4QK-J86pilgltrcJ9oBxKskIlOLKaW9B2g00JRkWtFmEoyiyVLE80sZn2qjcGJ5VSnd2CznJXmHiDXhFucU0GUIJRmgutUasm1yinVOongaSulYt5wcBQN2zIu3EQVYaIi2GnlV6zUsCp82NchYIfhInjSFTsF8lGRZtSFwzuYpM7RcHXuNuLu_pIy4q9YZRGwtYXQVfDk3Osl5WQcSLr74eVRSiJ4HgT9954Xo8NR-Lj_71Ufw9aH_UHx7vXB2wdwFTug1aQQ78DmclGbhw4oLeWjoBC_AJCYELA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hand-held+Electron+Spin+Resonance+Scanner+for+Subcutaneous+Oximetry+using+OxyChip&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Almog%2C+Nir&rft.au=Zgadzai%2C+Oleg&rft.au=Kuppusamy%2C+Periannan&rft.au=Zur%2C+Yehonatan&rft.date=2024-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=1&rft.spage=430&rft.epage=439&rft_id=info:doi/10.1002%2Fmrm.30066&rft_id=info%3Apmid%2F38411265&rft.externalDocID=PMC11055674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon