Between‐ and Within‐Cluster Spearman Rank Correlations

ABSTRACT Clustered data are common in practice. Clustering arises when subjects are measured repeatedly, or subjects are nested in groups (e.g., households, schools). It is often of interest to evaluate the correlation between two variables with clustered data. There are three commonly used Pearson...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 44; no. 3-4; pp. e10326 - n/a
Main Authors Tu, Shengxin, Li, Chun, Shepherd, Bryan E.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.02.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.10326

Cover

Loading…
Abstract ABSTRACT Clustered data are common in practice. Clustering arises when subjects are measured repeatedly, or subjects are nested in groups (e.g., households, schools). It is often of interest to evaluate the correlation between two variables with clustered data. There are three commonly used Pearson correlation coefficients (total, between‐, and within‐cluster), which together provide an enriched perspective of the correlation. However, these Pearson correlation coefficients are sensitive to extreme values and skewed distributions. They also vary with data transformation, which is arbitrary and often difficult to choose, and they are not applicable to ordered categorical data. Current nonparametric correlation measures for clustered data are only for the total correlation. Here we define population parameters for the between‐ and within‐cluster Spearman rank correlations. The definitions are natural extensions of the Pearson between‐ and within‐cluster correlations to the rank scale. We show that the total Spearman rank correlation approximates a linear combination of the between‐ and within‐cluster Spearman rank correlations, where the weights are functions of rank intraclass correlations of the two random variables. We also discuss the equivalence between the within‐cluster Spearman rank correlation and the covariate‐adjusted partial Spearman rank correlation. Furthermore, we describe estimation and inference for the three Spearman rank correlations, conduct simulations to evaluate the performance of our estimators, and illustrate their use with data from a longitudinal biomarker study and a clustered randomized trial.
AbstractList ABSTRACT Clustered data are common in practice. Clustering arises when subjects are measured repeatedly, or subjects are nested in groups (e.g., households, schools). It is often of interest to evaluate the correlation between two variables with clustered data. There are three commonly used Pearson correlation coefficients (total, between‐, and within‐cluster), which together provide an enriched perspective of the correlation. However, these Pearson correlation coefficients are sensitive to extreme values and skewed distributions. They also vary with data transformation, which is arbitrary and often difficult to choose, and they are not applicable to ordered categorical data. Current nonparametric correlation measures for clustered data are only for the total correlation. Here we define population parameters for the between‐ and within‐cluster Spearman rank correlations. The definitions are natural extensions of the Pearson between‐ and within‐cluster correlations to the rank scale. We show that the total Spearman rank correlation approximates a linear combination of the between‐ and within‐cluster Spearman rank correlations, where the weights are functions of rank intraclass correlations of the two random variables. We also discuss the equivalence between the within‐cluster Spearman rank correlation and the covariate‐adjusted partial Spearman rank correlation. Furthermore, we describe estimation and inference for the three Spearman rank correlations, conduct simulations to evaluate the performance of our estimators, and illustrate their use with data from a longitudinal biomarker study and a clustered randomized trial.
Clustered data are common in practice. Clustering arises when subjects are measured repeatedly, or subjects are nested in groups (e.g., households, schools). It is often of interest to evaluate the correlation between two variables with clustered data. There are three commonly used Pearson correlation coefficients (total, between‐, and within‐cluster), which together provide an enriched perspective of the correlation. However, these Pearson correlation coefficients are sensitive to extreme values and skewed distributions. They also vary with data transformation, which is arbitrary and often difficult to choose, and they are not applicable to ordered categorical data. Current nonparametric correlation measures for clustered data are only for the total correlation. Here we define population parameters for the between‐ and within‐cluster Spearman rank correlations. The definitions are natural extensions of the Pearson between‐ and within‐cluster correlations to the rank scale. We show that the total Spearman rank correlation approximates a linear combination of the between‐ and within‐cluster Spearman rank correlations, where the weights are functions of rank intraclass correlations of the two random variables. We also discuss the equivalence between the within‐cluster Spearman rank correlation and the covariate‐adjusted partial Spearman rank correlation. Furthermore, we describe estimation and inference for the three Spearman rank correlations, conduct simulations to evaluate the performance of our estimators, and illustrate their use with data from a longitudinal biomarker study and a clustered randomized trial.
Clustered data are common in practice. Clustering arises when subjects are measured repeatedly, or subjects are nested in groups (e.g., households, schools). It is often of interest to evaluate the correlation between two variables with clustered data. There are three commonly used Pearson correlation coefficients (total, between-, and within-cluster), which together provide an enriched perspective of the correlation. However, these Pearson correlation coefficients are sensitive to extreme values and skewed distributions. They also vary with data transformation, which is arbitrary and often difficult to choose, and they are not applicable to ordered categorical data. Current nonparametric correlation measures for clustered data are only for the total correlation. Here we define population parameters for the between- and within-cluster Spearman rank correlations. The definitions are natural extensions of the Pearson between- and within-cluster correlations to the rank scale. We show that the total Spearman rank correlation approximates a linear combination of the between- and within-cluster Spearman rank correlations, where the weights are functions of rank intraclass correlations of the two random variables. We also discuss the equivalence between the within-cluster Spearman rank correlation and the covariate-adjusted partial Spearman rank correlation. Furthermore, we describe estimation and inference for the three Spearman rank correlations, conduct simulations to evaluate the performance of our estimators, and illustrate their use with data from a longitudinal biomarker study and a clustered randomized trial.Clustered data are common in practice. Clustering arises when subjects are measured repeatedly, or subjects are nested in groups (e.g., households, schools). It is often of interest to evaluate the correlation between two variables with clustered data. There are three commonly used Pearson correlation coefficients (total, between-, and within-cluster), which together provide an enriched perspective of the correlation. However, these Pearson correlation coefficients are sensitive to extreme values and skewed distributions. They also vary with data transformation, which is arbitrary and often difficult to choose, and they are not applicable to ordered categorical data. Current nonparametric correlation measures for clustered data are only for the total correlation. Here we define population parameters for the between- and within-cluster Spearman rank correlations. The definitions are natural extensions of the Pearson between- and within-cluster correlations to the rank scale. We show that the total Spearman rank correlation approximates a linear combination of the between- and within-cluster Spearman rank correlations, where the weights are functions of rank intraclass correlations of the two random variables. We also discuss the equivalence between the within-cluster Spearman rank correlation and the covariate-adjusted partial Spearman rank correlation. Furthermore, we describe estimation and inference for the three Spearman rank correlations, conduct simulations to evaluate the performance of our estimators, and illustrate their use with data from a longitudinal biomarker study and a clustered randomized trial.
Author Li, Chun
Shepherd, Bryan E.
Tu, Shengxin
AuthorAffiliation 1 Department of Biostatistics Vanderbilt University Nashville Tennessee USA
2 Department of Population and Public Health Sciences University of Southern California California Los Angeles USA
AuthorAffiliation_xml – name: 1 Department of Biostatistics Vanderbilt University Nashville Tennessee USA
– name: 2 Department of Population and Public Health Sciences University of Southern California California Los Angeles USA
Author_xml – sequence: 1
  givenname: Shengxin
  orcidid: 0000-0002-3937-8903
  surname: Tu
  fullname: Tu, Shengxin
  organization: Vanderbilt University
– sequence: 2
  givenname: Chun
  surname: Li
  fullname: Li, Chun
  organization: University of Southern California
– sequence: 3
  givenname: Bryan E.
  surname: Shepherd
  fullname: Shepherd, Bryan E.
  email: bryan.shepherd@vanderbilt.edu
  organization: Vanderbilt University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39853810$$D View this record in MEDLINE/PubMed
BookMark eNp1kctKxTAQhoMoerwsfAEpuNFFNWmaS92IHryBInjBZUjbORptk2PSKu58BJ_RJzF6VFSQWWSGfPn5J_88mrbOAkLLBG8QjLPNYNrY0IxPoQHBhUhxxuQ0GuBMiJQLwubQfAi3GBPCMjGL5mghGZUED9DWLnSPAPb1-SXRtk6uTHdj3qdh04cOfHI-Bu1bbZMzbe-SofMeGt0ZZ8MimhnpJsDS57mALvf3LoaH6fHpwdFw5zitcpzzVEDGRqykvKYMOMZFzaOvWLkWhOKSAqNUYqhLybUsR7wQVS3rkhCZV3Wu6QLanuiO-7KFugLbed2osTet9k_KaaN-31hzo67dgyJEMJmLPCqsfSp4d99D6FRrQgVNoy24PihKWMELSrMsoqt_0FvXexv3-6AKWnBCI7Xy09K3l69_jcD6BKi8C8HD6BshWL1npmJm6iOzyG5O2EfTwNP_oDo_Opm8eAP5tpgG
Cites_doi 10.1093/biomet/asr073
10.1002/sim.9864
10.1111/biom.12653
10.1007/s11222-015-9590-5
10.1002/sim.7433
10.1080/03610918.2012.752832
10.1002/cjs.11302
10.1111/biom.13904
10.2143/AST.37.2.2024077
10.1111/biom.12812
10.1097/QAD.0000000000001005
10.1111/stan.12261
10.1002/sim.7257
10.2307/2527727
10.1016/j.cct.2018.05.020
10.1080/01621459.1958.10501481
10.1093/aje/kwi242
10.1198/000313002753631330
10.1093/biomet/30.1-2.81
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
2025 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.
2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
– notice: 2025 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.
– notice: 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.10326
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage n/a
ExternalDocumentID PMC11758474
39853810
10_1002_sim_10326
SIM10326
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: K23AI120875; P30AI110527; R01AI093234; R01MH113478
– fundername: NIAID NIH HHS
  grantid: R01 AI093234
– fundername: NIAID NIH HHS
  grantid: K23 AI120875
– fundername: NIH HHS
  grantid: R01AI093234
– fundername: NIH HHS
  grantid: K23AI120875
– fundername: NIH HHS
  grantid: R01MH113478
– fundername: NIAID NIH HHS
  grantid: P30 AI110527
– fundername: NIMH NIH HHS
  grantid: R01 MH113478
– fundername: NIH HHS
  grantid: P30AI110527
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4046-7e25f5b36d35e6009d60272724a7130b3e53380edb86a8bf697cd8db1184cd4a3
IEDL.DBID 24P
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:40:47 EDT 2025
Fri Jul 11 11:34:34 EDT 2025
Fri Jul 25 22:25:40 EDT 2025
Mon Jul 21 06:05:25 EDT 2025
Tue Jul 01 05:10:48 EDT 2025
Wed Mar 19 09:30:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords clustered data
rank association measures
nonparametric correlation measures
Language English
License Attribution-NonCommercial
2025 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4046-7e25f5b36d35e6009d60272724a7130b3e53380edb86a8bf697cd8db1184cd4a3
Notes Funding
This study was supported by the National Institutes of Health, K23AI120875, P30AI110527, R01AI093234, R01MH113478.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding: This study was supported by the National Institutes of Health, K23AI120875, P30AI110527, R01AI093234, R01MH113478.
ORCID 0000-0002-3937-8903
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10326
PMID 39853810
PQID 3159939613
PQPubID 48361
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11758474
proquest_miscellaneous_3159693322
proquest_journals_3159939613
pubmed_primary_39853810
crossref_primary_10_1002_sim_10326
wiley_primary_10_1002_sim_10326_SIM10326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-10
PublicationDateYYYYMMDD 2025-02-10
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-10
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 79
2023; 4
2002; 56
1958; 14
1958; 53
2016; 30
2024; 96
2006
1970
2012; 99
2014; 43
2007; 37
1999
2017; 73
2023; 42
2016; 4
2005; 162
1904; 15
2017; 36
2018; 74
2022; 76
2018; 71
1907
1938; 30
2016; 26
1925
2016; 44
e_1_2_13_25_1
Nelsen R. B. (e_1_2_13_7_1) 2006
e_1_2_13_26_1
e_1_2_13_21_1
e_1_2_13_20_1
e_1_2_13_23_1
e_1_2_13_9_1
Kendall M. G. (e_1_2_13_19_1) 1970
e_1_2_13_8_1
e_1_2_13_6_1
Harrell F. E. (e_1_2_13_24_1) 2016; 4
Pearson K. G. (e_1_2_13_27_1) 1907
Tu S. (e_1_2_13_17_1) 2023; 4
Spearman C. (e_1_2_13_5_1) 1904; 15
Snijders T. (e_1_2_13_2_1) 1999
e_1_2_13_18_1
e_1_2_13_13_1
e_1_2_13_14_1
Fisher R. (e_1_2_13_22_1) 1925
e_1_2_13_15_1
e_1_2_13_16_1
Audet C. M. (e_1_2_13_29_1) 2024; 96
e_1_2_13_10_1
e_1_2_13_11_1
e_1_2_13_12_1
e_1_2_13_4_1
e_1_2_13_3_1
e_1_2_13_28_1
References_xml – volume: 71
  start-page: 63
  year: 2018
  end-page: 69
  article-title: Partners‐Based HIV Treatment for Seroconcordant Couples Attending Antenatal and Postnatal Care in Rural Mozambique: A Cluster Randomized Trial Protocol
  publication-title: Contemporary Clinical Trials
– volume: 76
  start-page: 309
  issue: 3
  year: 2022
  end-page: 330
  article-title: Rank Correlation Inferences for Clustered Data With Small Sample Size
  publication-title: Statistica Neerlandica
– volume: 56
  start-page: 29
  issue: 1
  year: 2002
  end-page: 38
  article-title: The Calculus of M‐Estimation
  publication-title: American Statistician
– volume: 73
  start-page: 822
  issue: 3
  year: 2017
  end-page: 834
  article-title: Pearson's Chi‐Square Test and Rank Correlation Inferences for Clustered Data
  publication-title: Biometrics
– volume: 14
  start-page: 18
  year: 1958
  end-page: 38
  article-title: How to Use Ridit Analysis
  publication-title: Biometrics
– volume: 79
  start-page: 3764
  issue: 4
  year: 2023
  end-page: 3777
  article-title: Analyzing Clustered Continuous Response Variables With Ordinal Regression Models
  publication-title: Biometrics
– volume: 99
  start-page: 473
  issue: 2
  year: 2012
  end-page: 480
  article-title: A New Residual for Ordinal Outcomes
  publication-title: Biometrika
– volume: 4
  start-page: 1
  year: 2023
  end-page: 2
  article-title: rankCorr: Total, Between‐, and Within‐Cluster Spearman Rank Correlations for Clustered Data
  publication-title: arXiv preprint arXiv:2402.11341
– volume: 44
  start-page: 463
  issue: 4
  year: 2016
  end-page: 479
  article-title: Probability‐Scale Residuals for Continuous, Discrete, and Censored Data
  publication-title: Canadian Journal of Statistics
– volume: 53
  start-page: 814
  issue: 284
  year: 1958
  end-page: 861
  article-title: Ordinal Measures of Association
  publication-title: Journal of the American Statistical Association
– year: 1925
– volume: 26
  start-page: 1079
  issue: 6
  year: 2016
  end-page: 1099
  article-title: Model‐Based Clustering Using Copulas With Applications
  publication-title: Statistics and Computing
– volume: 30
  start-page: 899
  issue: 6
  year: 2016
  end-page: 908
  article-title: CD4+/CD8+ Ratio, Age, and Risk of Serious Noncommunicable Diseases in HIV‐Infected Adults on Antiretroviral Therapy
  publication-title: Aids
– volume: 15
  start-page: 72
  issue: 1
  year: 1904
  end-page: 101
  article-title: The Proof and Measurement of Association between Two Things
  publication-title: Journal of Psychopathology and Clinical Science
– volume: 96
  start-page: 259
  issue: 3
  year: 2024
  end-page: 269
  article-title: Partner‐Based HIV Treatment for Seroconcordant Couples Attending Antenatal and Postnatal Care in Rural Mozambique: A Cluster Randomized Controlled Trial
  publication-title: Journal of Acquired Immune Deficiency Syndromes
– volume: 30
  start-page: 81
  issue: 1–2
  year: 1938
  end-page: 89
  article-title: A New Measure of Rank Correlation
  publication-title: Biometrika
– volume: 162
  start-page: 591
  issue: 6
  year: 2005
  end-page: 598
  article-title: An Approach to Estimate Between‐ and Within‐Group Correlation Coefficients in Multicenter Studies: Plasma Carotenoids as Biomarkers of Intake of Fruits and Vegetables
  publication-title: American Journal of Epidemiology
– volume: 42
  start-page: 4333
  issue: 24
  year: 2023
  end-page: 4348
  article-title: Rank Intraclass Correlation for Clustered Data
  publication-title: Statistics in Medicine
– year: 1907
– volume: 43
  start-page: 1644
  issue: 7
  year: 2014
  end-page: 1661
  article-title: Clustering Dependencies via Mixtures of Copulas
  publication-title: Communications in Statistics‐Simulation and Computation
– volume: 74
  start-page: 595
  issue: 2
  year: 2018
  end-page: 605
  article-title: Covariate‐Adjusted Spearman's Rank Correlation With Probability‐Scale Residuals
  publication-title: Biometrics
– volume: 4
  start-page: 5
  year: 2016
  article-title: rms: Regression Modeling Strategies
  publication-title: R package version
– year: 2006
– volume: 37
  start-page: 475
  issue: 2
  year: 2007
  end-page: 515
  article-title: A Primer on Copulas for Count Data
  publication-title: ASTIN Bulletin
– volume: 36
  start-page: 4316
  issue: 27
  year: 2017
  end-page: 4335
  article-title: Modeling Continuous Response Variables Using Ordinal Regression
  publication-title: Statistics in Medicine
– year: 1970
– volume: 36
  start-page: 2163
  issue: 14
  year: 2017
  end-page: 2186
  article-title: Estimation of Rank Correlation for Clustered Data
  publication-title: Statistics in Medicine
– year: 1999
– volume-title: An Introduction to Copulas
  year: 2006
  ident: e_1_2_13_7_1
– ident: e_1_2_13_20_1
  doi: 10.1093/biomet/asr073
– ident: e_1_2_13_15_1
  doi: 10.1002/sim.9864
– volume: 4
  start-page: 1
  year: 2023
  ident: e_1_2_13_17_1
  article-title: rankCorr: Total, Between‐, and Within‐Cluster Spearman Rank Correlations for Clustered Data
  publication-title: arXiv preprint arXiv:2402.11341
– ident: e_1_2_13_12_1
  doi: 10.1111/biom.12653
– ident: e_1_2_13_9_1
  doi: 10.1007/s11222-015-9590-5
– ident: e_1_2_13_23_1
  doi: 10.1002/sim.7433
– volume: 4
  start-page: 5
  year: 2016
  ident: e_1_2_13_24_1
  article-title: rms: Regression Modeling Strategies
  publication-title: R package version
– ident: e_1_2_13_8_1
  doi: 10.1080/03610918.2012.752832
– ident: e_1_2_13_21_1
  doi: 10.1002/cjs.11302
– ident: e_1_2_13_26_1
  doi: 10.1111/biom.13904
– volume-title: Rank Correlation Methods
  year: 1970
  ident: e_1_2_13_19_1
– ident: e_1_2_13_10_1
  doi: 10.2143/AST.37.2.2024077
– volume-title: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling
  year: 1999
  ident: e_1_2_13_2_1
– ident: e_1_2_13_16_1
  doi: 10.1111/biom.12812
– ident: e_1_2_13_4_1
  doi: 10.1097/QAD.0000000000001005
– ident: e_1_2_13_14_1
  doi: 10.1111/stan.12261
– volume: 15
  start-page: 72
  issue: 1
  year: 1904
  ident: e_1_2_13_5_1
  article-title: The Proof and Measurement of Association between Two Things
  publication-title: Journal of Psychopathology and Clinical Science
– ident: e_1_2_13_11_1
  doi: 10.1002/sim.7257
– ident: e_1_2_13_13_1
  doi: 10.2307/2527727
– volume: 96
  start-page: 259
  issue: 3
  year: 2024
  ident: e_1_2_13_29_1
  article-title: Partner‐Based HIV Treatment for Seroconcordant Couples Attending Antenatal and Postnatal Care in Rural Mozambique: A Cluster Randomized Controlled Trial
  publication-title: Journal of Acquired Immune Deficiency Syndromes
– ident: e_1_2_13_28_1
  doi: 10.1016/j.cct.2018.05.020
– ident: e_1_2_13_18_1
  doi: 10.1080/01621459.1958.10501481
– volume-title: On Further Methods of Determining Correlation
  year: 1907
  ident: e_1_2_13_27_1
– ident: e_1_2_13_3_1
  doi: 10.1093/aje/kwi242
– ident: e_1_2_13_25_1
  doi: 10.1198/000313002753631330
– volume-title: Statistical Methods for Research Workers
  year: 1925
  ident: e_1_2_13_22_1
– ident: e_1_2_13_6_1
  doi: 10.1093/biomet/30.1-2.81
SSID ssj0011527
Score 2.4626176
Snippet ABSTRACT Clustered data are common in practice. Clustering arises when subjects are measured repeatedly, or subjects are nested in groups (e.g., households,...
Clustered data are common in practice. Clustering arises when subjects are measured repeatedly, or subjects are nested in groups (e.g., households, schools)....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e10326
SubjectTerms Cluster Analysis
clustered data
Computer Simulation
Correlation of Data
Data Interpretation, Statistical
Humans
Models, Statistical
nonparametric correlation measures
Random variables
rank association measures
Statistics, Nonparametric
Title Between‐ and Within‐Cluster Spearman Rank Correlations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10326
https://www.ncbi.nlm.nih.gov/pubmed/39853810
https://www.proquest.com/docview/3159939613
https://www.proquest.com/docview/3159693322
https://pubmed.ncbi.nlm.nih.gov/PMC11758474
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSsNAEB60gggiWv-iVaJ48BJMsj9J9KRVUaEirUVvYbfZ0KJGse3dR_AZfRJns0m0FEECIWE3JMzMZr-d2fkG4IApNF2miKOERxyqPOWERKSOq1iKNo0WrbS_o3XLr7r05pE9zsBJmQtj-CEqh5seGfn_Wg9wIYdHP6Shw8GLzhj3-SzM6dRabeQ-vatCCGW9Vh2j5IHHSloh1z-qHp2cjKYQ5vRGyd8ANp-BLpdhqYCO9qnR9QrMqKwO860iOF6HReOCs01mUR0WNJA0PMyrcHxmNmR9fXzaIkvsh8GoP9B3zeex5kqwO2-5dzuz2yJ7spu6aEexTW4NupcX980rp6ib4PQoLnedQPksZZLwhDCFgCZKOEoBDypwSepKohDjha5KZMhFKFMeBb0kTCSuNWgvoYKsQy17zdQm2GGPixQRiBSIm1hAJQJGBFiB76YqjVLPgv1SgPGboceIDRGyH6OU41zKFjRK0cbFCBnGBHFURCJEExbsVc1o2zpgITL1OjZ9eETwn2PBhtFE9RYSIdAIPdeCcEJHVQfNmz3Zkg36OX-2ZifFSZlacJir8-8vjzvXrfxi6_9dt2HB1zWCddEYtwG10ftY7SBwGcnd3EDxfN72vwGlBemy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58gAoiur7qs4oHL8W2ebQVL7q4rI-KuIp7K-k2xaJW0d27P8Hf6C9x0rTVZRGkl5aktMxMkm9mkm8A9phE02WSWFI4xKLSkZZPRGrZkqVo02jRUsU7wivevqPnXdYdg6PqLIzmh6gDbmpkFPO1GuAqIH3wwxr6nj2rI-MuH4dJyl1PFW5w6XWdQ6gKtqokJfccVvEK2e5B_erwajQCMUd3Sv5GsMUS1JqHuRI7msda2QswJvMGTIVldrwBszoGZ-qjRQ2YUUhSEzEvwuGJ3pH19fFpijwx77P-Q6aemk8DRZZgdl6L8HZu3oj80Wyqqh3lPrkluGud3jbbVlk4wepR9HctT7osZTHhCWESEU2QcJQCXlSgT2rHRCLI822ZxD4XfpzywOslfhKjs0F7CRVkGSbyl1yugun3uEgRgsQCgRPzaIyIERGW59qpTIPUMWC3EmD0qvkxIs2E7EYo5aiQsgEblWijcoi8RwSBVEAChBMG7NTNaNwqYyFy-TLQfXhAcNIxYEVrov4KCRBp-I5tgD-ko7qDIs4ebsmzh4JAW9GT4qpMDdgv1Pn3n0eds7C4Wft_122Ybt-Gl9Hl2dXFOsy4qmCwqiBjb8BE_20gNxHF9OOtwli_AcOb7DU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58gAgiur6qq1bx4KXYNo-2etLVxdeK-EBvJd0m7KLWxd29-xP8jf4SJ01bXUSQXlqS0jIzSb6ZSb4B2GESTZdJ4kjhEYdKTzohEcpxJVNo02jRUsc7Wlf89J6eP7LHMTgoz8IYfogq4KZHRj5f6wHeS9XeN2lov_uiT4z7fBwmdbJPm7dPr6sUQlmvVecoeeCxklbI9feqV0cXo18I8_dGyZ8ANl-BmnMwW0BH-9Doeh7GZFaDqVaRHK_BjAnB2eZkUQ2mNZA0PMwLsH9kNmR9vn_YIkvth-6g09VPjeeh5kqwb3t5dDuzb0T2ZDd00Y5im9wi3DdP7hqnTlE3wWlTdHedQPpMsYTwlDCJgCZKOUoBLyrQJXUTIhHjha5Mk5CLMFE8CtppmCboa9B2SgVZgonsNZMrYIdtLhQikEQgbmIBTRAwIsAKfFdJFSnPgu1SgHHP0GPEhgjZj1HKcS5lC-qlaONihPRjgjgqIhGiCQu2qma0bZ2wEJl8HZo-PCI451iwbDRRfYVECDRCz7UgHNFR1UHzZo-2ZN1Ozp-t2UlxUaYW7Obq_PvP49uzVn6z-v-umzB1fdyML8-uLtZg2tflgnX9GLcOE4O3oVxHDDNINnJb_QJ09Otn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Between-+and+Within-Cluster+Spearman+Rank+Correlations&rft.jtitle=Statistics+in+medicine&rft.au=Tu%2C+Shengxin&rft.au=Li%2C+Chun&rft.au=Shepherd%2C+Bryan+E&rft.date=2025-02-10&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=44&rft.issue=3-4&rft.spage=e10326&rft_id=info:doi/10.1002%2Fsim.10326&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon