Modeling count data in the addiction field: Some simple recommendations
Analyzing count data is frequent in addiction studies but may be cumbersome, time‐consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We...
Saved in:
Published in | International journal of methods in psychiatric research Vol. 27; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.03.2018
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analyzing count data is frequent in addiction studies but may be cumbersome, time‐consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We used 2 simulation studies to test the performance of 7 statistical models (classical or quasi‐Poisson regression, classical or zero‐inflated negative binomial regression, classical or heteroskedasticity‐consistent linear regression, and Mann‐Whitney test) for predicting the differences between population means for 9 different population distributions (Poisson, negative binomial, zero‐ and one‐inflated Poisson and negative binomial, uniform, left‐skewed, and bimodal). We considered a large number of scenarios likely to occur in addiction research: presence of outliers, unbalanced design, and the presence of confounding factors. In unadjusted models, the Mann‐Whitney test was the best model, followed closely by the heteroskedasticity‐consistent linear regression and quasi‐Poisson regression. Poisson regression was by far the worst model. In adjusted models, quasi‐Poisson regression was the best model. If the goal is to compare 2 groups with respect to count data, a simple recommendation would be to use quasi‐Poisson regression, which was the most generally valid model in our extensive simulations. |
---|---|
AbstractList | Analyzing count data is frequent in addiction studies but may be cumbersome, time‐consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We used 2 simulation studies to test the performance of 7 statistical models (classical or quasi‐Poisson regression, classical or zero‐inflated negative binomial regression, classical or heteroskedasticity‐consistent linear regression, and Mann‐Whitney test) for predicting the differences between population means for 9 different population distributions (Poisson, negative binomial, zero‐ and one‐inflated Poisson and negative binomial, uniform, left‐skewed, and bimodal). We considered a large number of scenarios likely to occur in addiction research: presence of outliers, unbalanced design, and the presence of confounding factors. In unadjusted models, the Mann‐Whitney test was the best model, followed closely by the heteroskedasticity‐consistent linear regression and quasi‐Poisson regression. Poisson regression was by far the worst model. In adjusted models, quasi‐Poisson regression was the best model. If the goal is to compare 2 groups with respect to count data, a simple recommendation would be to use quasi‐Poisson regression, which was the most generally valid model in our extensive simulations. Analyzing count data is frequent in addiction studies but may be cumbersome, time-consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We used 2 simulation studies to test the performance of 7 statistical models (classical or quasi-Poisson regression, classical or zero-inflated negative binomial regression, classical or heteroskedasticity-consistent linear regression, and Mann-Whitney test) for predicting the differences between population means for 9 different population distributions (Poisson, negative binomial, zero- and one-inflated Poisson and negative binomial, uniform, left-skewed, and bimodal). We considered a large number of scenarios likely to occur in addiction research: presence of outliers, unbalanced design, and the presence of confounding factors. In unadjusted models, the Mann-Whitney test was the best model, followed closely by the heteroskedasticity-consistent linear regression and quasi-Poisson regression. Poisson regression was by far the worst model. In adjusted models, quasi-Poisson regression was the best model. If the goal is to compare 2 groups with respect to count data, a simple recommendation would be to use quasi-Poisson regression, which was the most generally valid model in our extensive simulations.Analyzing count data is frequent in addiction studies but may be cumbersome, time-consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We used 2 simulation studies to test the performance of 7 statistical models (classical or quasi-Poisson regression, classical or zero-inflated negative binomial regression, classical or heteroskedasticity-consistent linear regression, and Mann-Whitney test) for predicting the differences between population means for 9 different population distributions (Poisson, negative binomial, zero- and one-inflated Poisson and negative binomial, uniform, left-skewed, and bimodal). We considered a large number of scenarios likely to occur in addiction research: presence of outliers, unbalanced design, and the presence of confounding factors. In unadjusted models, the Mann-Whitney test was the best model, followed closely by the heteroskedasticity-consistent linear regression and quasi-Poisson regression. Poisson regression was by far the worst model. In adjusted models, quasi-Poisson regression was the best model. If the goal is to compare 2 groups with respect to count data, a simple recommendation would be to use quasi-Poisson regression, which was the most generally valid model in our extensive simulations. |
Author | Iglesias, Katia Rousson, Valentin Baggio, Stéphanie |
AuthorAffiliation | 1 Life Course and Inequality Research Centre University of Lausanne Lausanne Switzerland 3 Institute for Social and Preventive Medicine University Hospital Lausanne Lausanne Switzerland 2 Centre for the Understanding of Social Processes University of Neuchâtel Neuchâtel Switzerland |
AuthorAffiliation_xml | – name: 3 Institute for Social and Preventive Medicine University Hospital Lausanne Lausanne Switzerland – name: 2 Centre for the Understanding of Social Processes University of Neuchâtel Neuchâtel Switzerland – name: 1 Life Course and Inequality Research Centre University of Lausanne Lausanne Switzerland |
Author_xml | – sequence: 1 givenname: Stéphanie orcidid: 0000-0002-5347-5937 surname: Baggio fullname: Baggio, Stéphanie email: stephanie.baggio@unil.ch organization: University of Lausanne – sequence: 2 givenname: Katia orcidid: 0000-0003-1308-1631 surname: Iglesias fullname: Iglesias, Katia organization: University of Neuchâtel – sequence: 3 givenname: Valentin orcidid: 0000-0001-8092-4446 surname: Rousson fullname: Rousson, Valentin organization: University Hospital Lausanne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29027305$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1rFTEQhkOp2A8Ff4EEvPFmj8luskm8EErpF7RYql6HnGS2Tckmx2TX0n_ftKetVfRqBuaZl3fm3UGbMUVA6B0lC0pI-2lc5QXlkm-gbcq5aEjPxWbtCVONVB3dQjulXBNCZdv2r9FWq0grOsK30dFZchB8vMQ2zXHCzkwG-4inK8DGOW8nnyIePAT3GX9LI-Dix1UAnMGmcYRYFypR3qBXgwkF3j7WXfTj8OD7_nFz-vXoZH_vtLGMMN4wzkRrFe0GJZxTnBvG1QCCSyfASGHBLpkAWaGhox3vpVoSZZeWUeKkcN0u-rLWXc3LEZyFOGUT9Cr70eRbnYzXf06iv9KX6ZfupRBUyirw8VEgp58zlEmPvlgIwURIc9FUccp7Qhmr6Ie_0Os051jP0y0hignKel6p9y8dPVt5-nEFFmvA5lRKhkFbPz18rRr0QVOi70PUNUR9H-Jvi88LT5r_QJs1euMD3P6X02fnFw_8HVaAqow |
CitedBy_id | crossref_primary_10_1111_add_14864 crossref_primary_10_1016_j_comppsych_2022_152331 crossref_primary_10_1080_14459795_2025_2467936 crossref_primary_10_2196_14035 crossref_primary_10_1177_00207640241264661 crossref_primary_10_1007_s11192_022_04378_7 crossref_primary_10_1016_j_addbeh_2021_106924 crossref_primary_10_1371_journal_pone_0277123 crossref_primary_10_1016_j_chb_2021_106828 crossref_primary_10_1080_07448481_2022_2108323 crossref_primary_10_1016_j_scitotenv_2023_163580 crossref_primary_10_1111_acer_15232 crossref_primary_10_1007_s40429_024_00594_8 crossref_primary_10_1016_j_addbeh_2023_107718 crossref_primary_10_1080_10826084_2021_2012697 crossref_primary_10_1177_10731911241240618 crossref_primary_10_1111_acer_15282 |
Cites_doi | 10.1037/a0029508 10.2307/2685594 10.1186/1471-2288-7-9 10.1177/00131649921969956 10.1016/j.jacr.2011.02.002 10.1002/sim.6804 10.1177/1368430214556702 10.3109/00952990.2015.1085264 10.1890/07-0043.1 10.1016/j.aap.2009.08.018 10.2307/1912934 10.2466/pr0.103.1.145-160 10.18637/jss.v027.i08 10.1111/j.2044-8317.1978.tb00581.x 10.1027/1614-2241/a000110 10.1037/0033-2909.118.3.392 10.3109/00952990.2015.1056447 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/mpr.1585 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Baggio et al |
EISSN | 1557-0657 |
EndPage | n/a |
ExternalDocumentID | PMC6877188 29027305 10_1002_mpr_1585 MPR1585 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 29J 31~ 33P 36B 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAHHS AANHP AAONW AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABIVO ABLJU ABUWG ACBWZ ACCFJ ACCMX ACGFS ACHQT ACMXC ACPOU ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DU5 DWQXO EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN EPL EPS ESX F00 F01 F04 F5P FEDTE FUBAC FYUFA G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ H.X HF~ HVGLF HZ~ IAO IHR ITC IX1 J0M JPC LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2M MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 NF~ O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PIMPY PQQKQ PSYQQ Q.N Q11 QB0 QRW R.K ROL RPM RWI RX1 SUPJJ SV3 TEORI TUS UB1 UKHRP W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WQJ WRC WVDHM WXI XG1 XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY 7X8 5PM |
ID | FETCH-LOGICAL-c4045-45472c913f97dd955a459fe758d7ea87cecb47e872cf3135689b09cbc410d87d3 |
IEDL.DBID | DR2 |
ISSN | 1049-8931 1557-0657 |
IngestDate | Thu Aug 21 14:11:56 EDT 2025 Fri Jul 11 15:06:36 EDT 2025 Wed Aug 13 04:36:39 EDT 2025 Thu Apr 03 07:00:22 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 Tue Jul 01 03:23:17 EDT 2025 Wed Jan 22 16:52:02 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | coverage of confidence interval substance use guidelines type 1 error simulation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2017 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4045-45472c913f97dd955a459fe758d7ea87cecb47e872cf3135689b09cbc410d87d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Present address: Stéphanie Baggio, Division of Correctional Medicine and Psychiatry, Geneva University Hospitals, University of Geneva, Geneva, Switzerland. |
ORCID | 0000-0001-8092-4446 0000-0002-5347-5937 0000-0003-1308-1631 |
PMID | 29027305 |
PQID | 2009471465 |
PQPubID | 2034146 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6877188 proquest_miscellaneous_1951560144 proquest_journals_2009471465 pubmed_primary_29027305 crossref_citationtrail_10_1002_mpr_1585 crossref_primary_10_1002_mpr_1585 wiley_primary_10_1002_mpr_1585_MPR1585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Chichester – name: Hoboken |
PublicationTitle | International journal of methods in psychiatric research |
PublicationTitleAlternate | Int J Methods Psychiatr Res |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 1980; 48 2010; 42 2015; 4 2015; 18 2013; 27 1978; 31 2000; 54 2015; 41 1999; 59 2008; 27 1995; 118 2007; 7 2015 2008; 103 2007; 88 2011; 8 2016; 35 2016; 12 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 Herbison P. (e_1_2_7_7_1) 2015; 4 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_20_1 Payne E. H. (e_1_2_7_10_1) 2015 Sturman M. C. (e_1_2_7_14_1) 1999; 59 |
References_xml | – volume: 41 start-page: 475 issue: 6 year: 2015 end-page: 478 article-title: Improving the analysis and modeling of substance use publication-title: The American Journal of Drug and Alcohol Abuse – volume: 118 start-page: 392 issue: 3 year: 1995 end-page: 404 article-title: Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models publication-title: Psychological Bulletin – volume: 31 start-page: 144 issue: 2 year: 1978 end-page: 152 article-title: Robustness? publication-title: British Journal of Mathematical and Statistical Psychology – volume: 27 start-page: 1 issue: 8 year: 2008 end-page: 25 article-title: Regression models for count data in R publication-title: Journal of Statistical Software – volume: 27 start-page: 166 issue: 1 year: 2013 end-page: 177 article-title: A tutorial on count regression and zero‐altered count models for longitudinal substance use data publication-title: Psychology of Addictive Behaviors – volume: 42 start-page: 384 issue: 2 year: 2010 end-page: 392 article-title: Statistical modelling for falls count data publication-title: Accident Analysis & Prevention – volume: 59 start-page: 414(411) issue: 3 year: 1999 article-title: Multiple approaches to analyzing count data in studies of individual differences: the propensity for type I errors, illustrated with the case of absenteeism prediction publication-title: Educational and Psychological Measurement – volume: 41 start-page: 489 issue: 6 year: 2015 end-page: 497 article-title: The importance of distribution‐choice in modeling substance use data: a comparison of negative binomial, beta binomial, and zero‐inflated distributions publication-title: The American Journal of Drug and Alcohol Abuse – year: 2015 article-title: Approaches for dealing with various sources of overdispersion in modeling count data: scale adjustment versus modeling publication-title: Statistical Methods in Medical Research – volume: 103 start-page: 145 issue: 1 year: 2008 end-page: 160 article-title: Overdispersion tests in count‐data analysis publication-title: Psychological Reports – volume: 8 start-page: 575 issue: 8 year: 2011 end-page: 582 article-title: Methodologic challenges in the analysis of count data in radiology health services research publication-title: Journal of the American College of Radiology: JACR – volume: 48 start-page: 817 issue: 4 year: 1980 end-page: 838 article-title: A heteroskedasticity‐consistent covariance matrix estimator and a direct test for heteroskedasticity publication-title: Econometrica – volume: 7 start-page: 9 year: 2007 article-title: A cautionary note regarding count models of alcohol consumption in randomized controlled trials publication-title: BMC Medical Research Methodology – volume: 18 start-page: 290 issue: 3 year: 2015 end-page: 314 article-title: Analyzing count variables in individuals and groups: single level and multilevel models publication-title: Group Processes & Intergroup Relations – volume: 35 start-page: 1722 issue: 10 year: 2016 end-page: 1735 article-title: Marginalized zero‐inflated negative binomial regression with application to dental caries publication-title: Statistics in Medicine – volume: 12 start-page: 61 issue: 2 year: 2016 end-page: 71 article-title: Normality and sample size do not matter for the selection of an appropriate statistical test for two‐group comparisons publication-title: Methodology – volume: 88 start-page: 2766 issue: 11 year: 2007 end-page: 2772 article-title: Quasi‐Poisson vs. negative binomial regression: how should we model overdispersed count data? publication-title: Ecology – volume: 4 year: 2015 article-title: Do alternative methods for analysing count data produce similar estimates? publication-title: Implications for meta‐analyses. Systematic Reviews – volume: 54 start-page: 217 issue: 3 year: 2000 end-page: 224 article-title: Using heteroscedasticity consistent standard errors in the linear regression model publication-title: The American Statistician – ident: e_1_2_7_3_1 doi: 10.1037/a0029508 – ident: e_1_2_7_9_1 doi: 10.2307/2685594 – ident: e_1_2_7_8_1 doi: 10.1186/1471-2288-7-9 – volume: 59 start-page: 414(411) issue: 3 year: 1999 ident: e_1_2_7_14_1 article-title: Multiple approaches to analyzing count data in studies of individual differences: the propensity for type I errors, illustrated with the case of absenteeism prediction publication-title: Educational and Psychological Measurement doi: 10.1177/00131649921969956 – ident: e_1_2_7_13_1 doi: 10.1016/j.jacr.2011.02.002 – year: 2015 ident: e_1_2_7_10_1 article-title: Approaches for dealing with various sources of overdispersion in modeling count data: scale adjustment versus modeling publication-title: Statistical Methods in Medical Research – ident: e_1_2_7_12_1 doi: 10.1002/sim.6804 – ident: e_1_2_7_2_1 doi: 10.1177/1368430214556702 – ident: e_1_2_7_6_1 doi: 10.3109/00952990.2015.1085264 – ident: e_1_2_7_16_1 doi: 10.1890/07-0043.1 – ident: e_1_2_7_15_1 doi: 10.1016/j.aap.2009.08.018 – ident: e_1_2_7_19_1 doi: 10.2307/1912934 – ident: e_1_2_7_17_1 doi: 10.2466/pr0.103.1.145-160 – ident: e_1_2_7_20_1 doi: 10.18637/jss.v027.i08 – ident: e_1_2_7_4_1 doi: 10.1111/j.2044-8317.1978.tb00581.x – ident: e_1_2_7_11_1 doi: 10.1027/1614-2241/a000110 – volume: 4 year: 2015 ident: e_1_2_7_7_1 article-title: Do alternative methods for analysing count data produce similar estimates? publication-title: Implications for meta‐analyses. Systematic Reviews – ident: e_1_2_7_5_1 doi: 10.1037/0033-2909.118.3.392 – ident: e_1_2_7_18_1 doi: 10.3109/00952990.2015.1056447 |
SSID | ssj0018226 |
Score | 2.2776647 |
Snippet | Analyzing count data is frequent in addiction studies but may be cumbersome, time‐consuming, and cause misleading inference if models are not correctly... Analyzing count data is frequent in addiction studies but may be cumbersome, time-consuming, and cause misleading inference if models are not correctly... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Addictions Biomedical Research - methods Computer Simulation coverage of confidence interval Data Interpretation, Statistical Data processing Economic models guidelines Humans Mathematical models Models, Statistical Original Psychiatry - methods Regression analysis simulation Statistical analysis Statistical Distributions substance use type 1 error |
Title | Modeling count data in the addiction field: Some simple recommendations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmpr.1585 https://www.ncbi.nlm.nih.gov/pubmed/29027305 https://www.proquest.com/docview/2009471465 https://www.proquest.com/docview/1951560144 https://pubmed.ncbi.nlm.nih.gov/PMC6877188 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJceJXH0lIZCcEp283Gjm1uLbCtkLaqCpUqcYj8ili1m0Vk99Jfz4zzoEupVHHKweM8bI_9TTz-PoC3hsss99wmQluRcGlVYjNXJgpDD89xkPCoGTk9zo_O-Jdzcd5mVdJZmIYfov_hRp4R52tycGPrvT-koRhzD1MEuzj9UqoW4aHTnjkKUXNUWsNgQye4JKcd7-xovNdVXF-JbsDLm1mS19FrXH4mj-B79-JN1snFcLW0Q3f1F6fj_33ZY3jYolK23wyjJ7ARqqdwf9ruu2_BIUmm0cF1FrUlGOWVslnFED0yykiKhyNYzIb7wL4u5oHVM6IdZhRvz-ehVW6qn8HZ5PO3j0dJK8GQOI5gjxjR5djpNCu19F4LYbjQZcAgw8tglHTBWS6DQqMySzORK21H2lnH05FX0mfPYbNaVOElsNSI3GO0qFNDm4fGWEsCOZ57gZVMOYD3XXcUruUnJ5mMy6JhVh4X2C4FtcsA3vSWPxtOjn_Y7HQ9WrReWZPkpsbFmOd0i74Y_Yk2SUwVFqu6SBFyUpTK-QBeNAOgf8hYE_vPCGvLtaHRGxBX93pJNfsRObtzJREFqAG8iz1_63sX05NTur66q-E2PEAMp5q0uB3YXP5ahdeIk5Z2F-7tH3w6mOxGz_gNOa8ROA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVgIu0PIMFGokBKdNs1l7bcMJoZZAmwqVVuoBaeXXqlHJBpHkwq9nxvsooVRCnPaw4315Zv2NPf4-gJeGyyz33CZCW5FwaVViM1cmClMPz9FJeNSMHB_lo1P-6UycrcHbdi9MzQ_RTbhRZMT_NQU4TUjvXrKGYtLdTxHt3oANEvSO-dRxxx2FuDlqrWG6oRMclNOWeXYw3G1bro5FVwDm1TrJ3_FrHID278LX9tHrupOL_nJh--7nH6yO__lum3CnAabsXe1JW7AWqntwc9wsvd-HD6SaRnvXWZSXYFRayiYVQwDJqCgp7o9gsSDuDfsymwY2nxDzMKOUezoNjXjT_AGc7u-dvB8ljQpD4jjiPSJFl0On06zU0nsthOFClwHzDC-DUdIFZ7kMCo3KLM1ErrQdaGcdTwdeSZ89hPVqVoXHwFIjco8Jo04NrR8aYy1p5HjuBTYyZQ9et_1RuIainJQyvhU1ufKwwO9S0HfpwYvO8ntNy_EXm-22S4smMOekuqlxPEaHwUt0pzGkaJ3EVGG2nBcpok5KVDnvwaPaA7qbDDURAA2wtVzxjc6A6LpXz1ST80jbnSuJQED14FXs-mufuxh_Pqbjk3813IFbo5PxYXH48ejgKdxGSKfqKrltWF_8WIZnCJsW9nkMj1-WmhPh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkSou5U2XFjASglO2ycaObW6IspTHVlWhUiUOkV8Rq3azFbt74dd3xnnAUpAQpxwyzsOeib-Jx98H8NxwmRee20RoKxIurUps7qpEYerhOToJj5qRk8Pi4IR_OBWnbVUl7YVp-CH6H24UGfF7TQF-4au9n6ShmHMPMwS71-EGL1JFHr1_3FNHIWyOUmuYbegE5-SsI55NR3tdy_Wp6Aq-vFom-St8jfPP-BZ87Z68KTs5G66Wduh-_Ebq-H-vdhu2WljKXjd-dAeuhfoubE7ahfd78I4002jnOoviEowKS9m0ZggfGZUkxd0RLJbDvWKf57PAFlPiHWaUcM9moZVuWtyHk_HbL28OklaDIXEc0R5RosuR01leaem9FsJwoauAWYaXwSjpgrNcBoVGVZ7lolDaptpZx7PUK-nzB7BRz-uwDSwzovCYLurM0OqhMdaSQo7nXmAjUw3gZTccpWsJykkn47xsqJVHJfZLSf0ygGe95UVDyvEHm91uRMs2LBekualxNuYFXaI_jQFFqySmDvPVoswQc1KayvkAHjYO0N9kpIn-J8XWcs01egMi614_U0-_RdLuQkmEAWoAL-LI__W5y8nRMR0f_avhU9g82h-Xn94fftyBm4jnVFMitwsby--r8Bgx09I-icFxCXLNEpk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+count+data+in+the+addiction+field%3A+Some+simple+recommendations&rft.jtitle=International+journal+of+methods+in+psychiatric+research&rft.au=Baggio%2C+St%C3%A9phanie&rft.au=Iglesias%2C+Katia&rft.au=Rousson%2C+Valentin&rft.date=2018-03-01&rft.eissn=1557-0657&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1002%2Fmpr.1585&rft_id=info%3Apmid%2F29027305&rft.externalDocID=29027305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8931&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8931&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8931&client=summon |