Modeling count data in the addiction field: Some simple recommendations

Analyzing count data is frequent in addiction studies but may be cumbersome, time‐consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of methods in psychiatric research Vol. 27; no. 1
Main Authors Baggio, Stéphanie, Iglesias, Katia, Rousson, Valentin
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.03.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analyzing count data is frequent in addiction studies but may be cumbersome, time‐consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We used 2 simulation studies to test the performance of 7 statistical models (classical or quasi‐Poisson regression, classical or zero‐inflated negative binomial regression, classical or heteroskedasticity‐consistent linear regression, and Mann‐Whitney test) for predicting the differences between population means for 9 different population distributions (Poisson, negative binomial, zero‐ and one‐inflated Poisson and negative binomial, uniform, left‐skewed, and bimodal). We considered a large number of scenarios likely to occur in addiction research: presence of outliers, unbalanced design, and the presence of confounding factors. In unadjusted models, the Mann‐Whitney test was the best model, followed closely by the heteroskedasticity‐consistent linear regression and quasi‐Poisson regression. Poisson regression was by far the worst model. In adjusted models, quasi‐Poisson regression was the best model. If the goal is to compare 2 groups with respect to count data, a simple recommendation would be to use quasi‐Poisson regression, which was the most generally valid model in our extensive simulations.
AbstractList Analyzing count data is frequent in addiction studies but may be cumbersome, time‐consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We used 2 simulation studies to test the performance of 7 statistical models (classical or quasi‐Poisson regression, classical or zero‐inflated negative binomial regression, classical or heteroskedasticity‐consistent linear regression, and Mann‐Whitney test) for predicting the differences between population means for 9 different population distributions (Poisson, negative binomial, zero‐ and one‐inflated Poisson and negative binomial, uniform, left‐skewed, and bimodal). We considered a large number of scenarios likely to occur in addiction research: presence of outliers, unbalanced design, and the presence of confounding factors. In unadjusted models, the Mann‐Whitney test was the best model, followed closely by the heteroskedasticity‐consistent linear regression and quasi‐Poisson regression. Poisson regression was by far the worst model. In adjusted models, quasi‐Poisson regression was the best model. If the goal is to compare 2 groups with respect to count data, a simple recommendation would be to use quasi‐Poisson regression, which was the most generally valid model in our extensive simulations.
Analyzing count data is frequent in addiction studies but may be cumbersome, time-consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We used 2 simulation studies to test the performance of 7 statistical models (classical or quasi-Poisson regression, classical or zero-inflated negative binomial regression, classical or heteroskedasticity-consistent linear regression, and Mann-Whitney test) for predicting the differences between population means for 9 different population distributions (Poisson, negative binomial, zero- and one-inflated Poisson and negative binomial, uniform, left-skewed, and bimodal). We considered a large number of scenarios likely to occur in addiction research: presence of outliers, unbalanced design, and the presence of confounding factors. In unadjusted models, the Mann-Whitney test was the best model, followed closely by the heteroskedasticity-consistent linear regression and quasi-Poisson regression. Poisson regression was by far the worst model. In adjusted models, quasi-Poisson regression was the best model. If the goal is to compare 2 groups with respect to count data, a simple recommendation would be to use quasi-Poisson regression, which was the most generally valid model in our extensive simulations.Analyzing count data is frequent in addiction studies but may be cumbersome, time-consuming, and cause misleading inference if models are not correctly specified. We compared different statistical models in a simulation study to provide simple, yet valid, recommendations when analyzing count data.We used 2 simulation studies to test the performance of 7 statistical models (classical or quasi-Poisson regression, classical or zero-inflated negative binomial regression, classical or heteroskedasticity-consistent linear regression, and Mann-Whitney test) for predicting the differences between population means for 9 different population distributions (Poisson, negative binomial, zero- and one-inflated Poisson and negative binomial, uniform, left-skewed, and bimodal). We considered a large number of scenarios likely to occur in addiction research: presence of outliers, unbalanced design, and the presence of confounding factors. In unadjusted models, the Mann-Whitney test was the best model, followed closely by the heteroskedasticity-consistent linear regression and quasi-Poisson regression. Poisson regression was by far the worst model. In adjusted models, quasi-Poisson regression was the best model. If the goal is to compare 2 groups with respect to count data, a simple recommendation would be to use quasi-Poisson regression, which was the most generally valid model in our extensive simulations.
Author Iglesias, Katia
Rousson, Valentin
Baggio, Stéphanie
AuthorAffiliation 1 Life Course and Inequality Research Centre University of Lausanne Lausanne Switzerland
3 Institute for Social and Preventive Medicine University Hospital Lausanne Lausanne Switzerland
2 Centre for the Understanding of Social Processes University of Neuchâtel Neuchâtel Switzerland
AuthorAffiliation_xml – name: 3 Institute for Social and Preventive Medicine University Hospital Lausanne Lausanne Switzerland
– name: 2 Centre for the Understanding of Social Processes University of Neuchâtel Neuchâtel Switzerland
– name: 1 Life Course and Inequality Research Centre University of Lausanne Lausanne Switzerland
Author_xml – sequence: 1
  givenname: Stéphanie
  orcidid: 0000-0002-5347-5937
  surname: Baggio
  fullname: Baggio, Stéphanie
  email: stephanie.baggio@unil.ch
  organization: University of Lausanne
– sequence: 2
  givenname: Katia
  orcidid: 0000-0003-1308-1631
  surname: Iglesias
  fullname: Iglesias, Katia
  organization: University of Neuchâtel
– sequence: 3
  givenname: Valentin
  orcidid: 0000-0001-8092-4446
  surname: Rousson
  fullname: Rousson, Valentin
  organization: University Hospital Lausanne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29027305$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFTEQhkOp2A8Ff4EEvPFmj8luskm8EErpF7RYql6HnGS2Tckmx2TX0n_ftKetVfRqBuaZl3fm3UGbMUVA6B0lC0pI-2lc5QXlkm-gbcq5aEjPxWbtCVONVB3dQjulXBNCZdv2r9FWq0grOsK30dFZchB8vMQ2zXHCzkwG-4inK8DGOW8nnyIePAT3GX9LI-Dix1UAnMGmcYRYFypR3qBXgwkF3j7WXfTj8OD7_nFz-vXoZH_vtLGMMN4wzkRrFe0GJZxTnBvG1QCCSyfASGHBLpkAWaGhox3vpVoSZZeWUeKkcN0u-rLWXc3LEZyFOGUT9Cr70eRbnYzXf06iv9KX6ZfupRBUyirw8VEgp58zlEmPvlgIwURIc9FUccp7Qhmr6Ie_0Os051jP0y0hignKel6p9y8dPVt5-nEFFmvA5lRKhkFbPz18rRr0QVOi70PUNUR9H-Jvi88LT5r_QJs1euMD3P6X02fnFw_8HVaAqow
CitedBy_id crossref_primary_10_1111_add_14864
crossref_primary_10_1016_j_comppsych_2022_152331
crossref_primary_10_1080_14459795_2025_2467936
crossref_primary_10_2196_14035
crossref_primary_10_1177_00207640241264661
crossref_primary_10_1007_s11192_022_04378_7
crossref_primary_10_1016_j_addbeh_2021_106924
crossref_primary_10_1371_journal_pone_0277123
crossref_primary_10_1016_j_chb_2021_106828
crossref_primary_10_1080_07448481_2022_2108323
crossref_primary_10_1016_j_scitotenv_2023_163580
crossref_primary_10_1111_acer_15232
crossref_primary_10_1007_s40429_024_00594_8
crossref_primary_10_1016_j_addbeh_2023_107718
crossref_primary_10_1080_10826084_2021_2012697
crossref_primary_10_1177_10731911241240618
crossref_primary_10_1111_acer_15282
Cites_doi 10.1037/a0029508
10.2307/2685594
10.1186/1471-2288-7-9
10.1177/00131649921969956
10.1016/j.jacr.2011.02.002
10.1002/sim.6804
10.1177/1368430214556702
10.3109/00952990.2015.1085264
10.1890/07-0043.1
10.1016/j.aap.2009.08.018
10.2307/1912934
10.2466/pr0.103.1.145-160
10.18637/jss.v027.i08
10.1111/j.2044-8317.1978.tb00581.x
10.1027/1614-2241/a000110
10.1037/0033-2909.118.3.392
10.3109/00952990.2015.1056447
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1002/mpr.1585
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Neurosciences Abstracts
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Baggio et al
EISSN 1557-0657
EndPage n/a
ExternalDocumentID PMC6877188
29027305
10_1002_mpr_1585
MPR1585
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
29J
31~
33P
36B
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABIVO
ABLJU
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACHQT
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.X
HF~
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2M
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PIMPY
PQQKQ
PSYQQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWI
RX1
SUPJJ
SV3
TEORI
TUS
UB1
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WQJ
WRC
WVDHM
WXI
XG1
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7X8
5PM
ID FETCH-LOGICAL-c4045-45472c913f97dd955a459fe758d7ea87cecb47e872cf3135689b09cbc410d87d3
IEDL.DBID DR2
ISSN 1049-8931
1557-0657
IngestDate Thu Aug 21 14:11:56 EDT 2025
Fri Jul 11 15:06:36 EDT 2025
Wed Aug 13 04:36:39 EDT 2025
Thu Apr 03 07:00:22 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
Tue Jul 01 03:23:17 EDT 2025
Wed Jan 22 16:52:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords coverage of confidence interval
substance use
guidelines
type 1 error
simulation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2017 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4045-45472c913f97dd955a459fe758d7ea87cecb47e872cf3135689b09cbc410d87d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present address: Stéphanie Baggio, Division of Correctional Medicine and Psychiatry, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
ORCID 0000-0001-8092-4446
0000-0002-5347-5937
0000-0003-1308-1631
PMID 29027305
PQID 2009471465
PQPubID 2034146
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6877188
proquest_miscellaneous_1951560144
proquest_journals_2009471465
pubmed_primary_29027305
crossref_citationtrail_10_1002_mpr_1585
crossref_primary_10_1002_mpr_1585
wiley_primary_10_1002_mpr_1585_MPR1585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chichester
– name: Hoboken
PublicationTitle International journal of methods in psychiatric research
PublicationTitleAlternate Int J Methods Psychiatr Res
PublicationYear 2018
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 1980; 48
2010; 42
2015; 4
2015; 18
2013; 27
1978; 31
2000; 54
2015; 41
1999; 59
2008; 27
1995; 118
2007; 7
2015
2008; 103
2007; 88
2011; 8
2016; 35
2016; 12
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Herbison P. (e_1_2_7_7_1) 2015; 4
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_20_1
Payne E. H. (e_1_2_7_10_1) 2015
Sturman M. C. (e_1_2_7_14_1) 1999; 59
References_xml – volume: 41
  start-page: 475
  issue: 6
  year: 2015
  end-page: 478
  article-title: Improving the analysis and modeling of substance use
  publication-title: The American Journal of Drug and Alcohol Abuse
– volume: 118
  start-page: 392
  issue: 3
  year: 1995
  end-page: 404
  article-title: Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models
  publication-title: Psychological Bulletin
– volume: 31
  start-page: 144
  issue: 2
  year: 1978
  end-page: 152
  article-title: Robustness?
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 27
  start-page: 1
  issue: 8
  year: 2008
  end-page: 25
  article-title: Regression models for count data in R
  publication-title: Journal of Statistical Software
– volume: 27
  start-page: 166
  issue: 1
  year: 2013
  end-page: 177
  article-title: A tutorial on count regression and zero‐altered count models for longitudinal substance use data
  publication-title: Psychology of Addictive Behaviors
– volume: 42
  start-page: 384
  issue: 2
  year: 2010
  end-page: 392
  article-title: Statistical modelling for falls count data
  publication-title: Accident Analysis & Prevention
– volume: 59
  start-page: 414(411)
  issue: 3
  year: 1999
  article-title: Multiple approaches to analyzing count data in studies of individual differences: the propensity for type I errors, illustrated with the case of absenteeism prediction
  publication-title: Educational and Psychological Measurement
– volume: 41
  start-page: 489
  issue: 6
  year: 2015
  end-page: 497
  article-title: The importance of distribution‐choice in modeling substance use data: a comparison of negative binomial, beta binomial, and zero‐inflated distributions
  publication-title: The American Journal of Drug and Alcohol Abuse
– year: 2015
  article-title: Approaches for dealing with various sources of overdispersion in modeling count data: scale adjustment versus modeling
  publication-title: Statistical Methods in Medical Research
– volume: 103
  start-page: 145
  issue: 1
  year: 2008
  end-page: 160
  article-title: Overdispersion tests in count‐data analysis
  publication-title: Psychological Reports
– volume: 8
  start-page: 575
  issue: 8
  year: 2011
  end-page: 582
  article-title: Methodologic challenges in the analysis of count data in radiology health services research
  publication-title: Journal of the American College of Radiology: JACR
– volume: 48
  start-page: 817
  issue: 4
  year: 1980
  end-page: 838
  article-title: A heteroskedasticity‐consistent covariance matrix estimator and a direct test for heteroskedasticity
  publication-title: Econometrica
– volume: 7
  start-page: 9
  year: 2007
  article-title: A cautionary note regarding count models of alcohol consumption in randomized controlled trials
  publication-title: BMC Medical Research Methodology
– volume: 18
  start-page: 290
  issue: 3
  year: 2015
  end-page: 314
  article-title: Analyzing count variables in individuals and groups: single level and multilevel models
  publication-title: Group Processes & Intergroup Relations
– volume: 35
  start-page: 1722
  issue: 10
  year: 2016
  end-page: 1735
  article-title: Marginalized zero‐inflated negative binomial regression with application to dental caries
  publication-title: Statistics in Medicine
– volume: 12
  start-page: 61
  issue: 2
  year: 2016
  end-page: 71
  article-title: Normality and sample size do not matter for the selection of an appropriate statistical test for two‐group comparisons
  publication-title: Methodology
– volume: 88
  start-page: 2766
  issue: 11
  year: 2007
  end-page: 2772
  article-title: Quasi‐Poisson vs. negative binomial regression: how should we model overdispersed count data?
  publication-title: Ecology
– volume: 4
  year: 2015
  article-title: Do alternative methods for analysing count data produce similar estimates?
  publication-title: Implications for meta‐analyses. Systematic Reviews
– volume: 54
  start-page: 217
  issue: 3
  year: 2000
  end-page: 224
  article-title: Using heteroscedasticity consistent standard errors in the linear regression model
  publication-title: The American Statistician
– ident: e_1_2_7_3_1
  doi: 10.1037/a0029508
– ident: e_1_2_7_9_1
  doi: 10.2307/2685594
– ident: e_1_2_7_8_1
  doi: 10.1186/1471-2288-7-9
– volume: 59
  start-page: 414(411)
  issue: 3
  year: 1999
  ident: e_1_2_7_14_1
  article-title: Multiple approaches to analyzing count data in studies of individual differences: the propensity for type I errors, illustrated with the case of absenteeism prediction
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/00131649921969956
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jacr.2011.02.002
– year: 2015
  ident: e_1_2_7_10_1
  article-title: Approaches for dealing with various sources of overdispersion in modeling count data: scale adjustment versus modeling
  publication-title: Statistical Methods in Medical Research
– ident: e_1_2_7_12_1
  doi: 10.1002/sim.6804
– ident: e_1_2_7_2_1
  doi: 10.1177/1368430214556702
– ident: e_1_2_7_6_1
  doi: 10.3109/00952990.2015.1085264
– ident: e_1_2_7_16_1
  doi: 10.1890/07-0043.1
– ident: e_1_2_7_15_1
  doi: 10.1016/j.aap.2009.08.018
– ident: e_1_2_7_19_1
  doi: 10.2307/1912934
– ident: e_1_2_7_17_1
  doi: 10.2466/pr0.103.1.145-160
– ident: e_1_2_7_20_1
  doi: 10.18637/jss.v027.i08
– ident: e_1_2_7_4_1
  doi: 10.1111/j.2044-8317.1978.tb00581.x
– ident: e_1_2_7_11_1
  doi: 10.1027/1614-2241/a000110
– volume: 4
  year: 2015
  ident: e_1_2_7_7_1
  article-title: Do alternative methods for analysing count data produce similar estimates?
  publication-title: Implications for meta‐analyses. Systematic Reviews
– ident: e_1_2_7_5_1
  doi: 10.1037/0033-2909.118.3.392
– ident: e_1_2_7_18_1
  doi: 10.3109/00952990.2015.1056447
SSID ssj0018226
Score 2.2776647
Snippet Analyzing count data is frequent in addiction studies but may be cumbersome, time‐consuming, and cause misleading inference if models are not correctly...
Analyzing count data is frequent in addiction studies but may be cumbersome, time-consuming, and cause misleading inference if models are not correctly...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Addictions
Biomedical Research - methods
Computer Simulation
coverage of confidence interval
Data Interpretation, Statistical
Data processing
Economic models
guidelines
Humans
Mathematical models
Models, Statistical
Original
Psychiatry - methods
Regression analysis
simulation
Statistical analysis
Statistical Distributions
substance use
type 1 error
Title Modeling count data in the addiction field: Some simple recommendations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmpr.1585
https://www.ncbi.nlm.nih.gov/pubmed/29027305
https://www.proquest.com/docview/2009471465
https://www.proquest.com/docview/1951560144
https://pubmed.ncbi.nlm.nih.gov/PMC6877188
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJceJXH0lIZCcEp283Gjm1uLbCtkLaqCpUqcYj8ili1m0Vk99Jfz4zzoEupVHHKweM8bI_9TTz-PoC3hsss99wmQluRcGlVYjNXJgpDD89xkPCoGTk9zo_O-Jdzcd5mVdJZmIYfov_hRp4R52tycGPrvT-koRhzD1MEuzj9UqoW4aHTnjkKUXNUWsNgQye4JKcd7-xovNdVXF-JbsDLm1mS19FrXH4mj-B79-JN1snFcLW0Q3f1F6fj_33ZY3jYolK23wyjJ7ARqqdwf9ruu2_BIUmm0cF1FrUlGOWVslnFED0yykiKhyNYzIb7wL4u5oHVM6IdZhRvz-ehVW6qn8HZ5PO3j0dJK8GQOI5gjxjR5djpNCu19F4LYbjQZcAgw8tglHTBWS6DQqMySzORK21H2lnH05FX0mfPYbNaVOElsNSI3GO0qFNDm4fGWEsCOZ57gZVMOYD3XXcUruUnJ5mMy6JhVh4X2C4FtcsA3vSWPxtOjn_Y7HQ9WrReWZPkpsbFmOd0i74Y_Yk2SUwVFqu6SBFyUpTK-QBeNAOgf8hYE_vPCGvLtaHRGxBX93pJNfsRObtzJREFqAG8iz1_63sX05NTur66q-E2PEAMp5q0uB3YXP5ahdeIk5Z2F-7tH3w6mOxGz_gNOa8ROA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVgIu0PIMFGokBKdNs1l7bcMJoZZAmwqVVuoBaeXXqlHJBpHkwq9nxvsooVRCnPaw4315Zv2NPf4-gJeGyyz33CZCW5FwaVViM1cmClMPz9FJeNSMHB_lo1P-6UycrcHbdi9MzQ_RTbhRZMT_NQU4TUjvXrKGYtLdTxHt3oANEvSO-dRxxx2FuDlqrWG6oRMclNOWeXYw3G1bro5FVwDm1TrJ3_FrHID278LX9tHrupOL_nJh--7nH6yO__lum3CnAabsXe1JW7AWqntwc9wsvd-HD6SaRnvXWZSXYFRayiYVQwDJqCgp7o9gsSDuDfsymwY2nxDzMKOUezoNjXjT_AGc7u-dvB8ljQpD4jjiPSJFl0On06zU0nsthOFClwHzDC-DUdIFZ7kMCo3KLM1ErrQdaGcdTwdeSZ89hPVqVoXHwFIjco8Jo04NrR8aYy1p5HjuBTYyZQ9et_1RuIainJQyvhU1ufKwwO9S0HfpwYvO8ntNy_EXm-22S4smMOekuqlxPEaHwUt0pzGkaJ3EVGG2nBcpok5KVDnvwaPaA7qbDDURAA2wtVzxjc6A6LpXz1ST80jbnSuJQED14FXs-mufuxh_Pqbjk3813IFbo5PxYXH48ejgKdxGSKfqKrltWF_8WIZnCJsW9nkMj1-WmhPh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkSou5U2XFjASglO2ycaObW6IspTHVlWhUiUOkV8Rq3azFbt74dd3xnnAUpAQpxwyzsOeib-Jx98H8NxwmRee20RoKxIurUps7qpEYerhOToJj5qRk8Pi4IR_OBWnbVUl7YVp-CH6H24UGfF7TQF-4au9n6ShmHMPMwS71-EGL1JFHr1_3FNHIWyOUmuYbegE5-SsI55NR3tdy_Wp6Aq-vFom-St8jfPP-BZ87Z68KTs5G66Wduh-_Ebq-H-vdhu2WljKXjd-dAeuhfoubE7ahfd78I4002jnOoviEowKS9m0ZggfGZUkxd0RLJbDvWKf57PAFlPiHWaUcM9moZVuWtyHk_HbL28OklaDIXEc0R5RosuR01leaem9FsJwoauAWYaXwSjpgrNcBoVGVZ7lolDaptpZx7PUK-nzB7BRz-uwDSwzovCYLurM0OqhMdaSQo7nXmAjUw3gZTccpWsJykkn47xsqJVHJfZLSf0ygGe95UVDyvEHm91uRMs2LBekualxNuYFXaI_jQFFqySmDvPVoswQc1KayvkAHjYO0N9kpIn-J8XWcs01egMi614_U0-_RdLuQkmEAWoAL-LI__W5y8nRMR0f_avhU9g82h-Xn94fftyBm4jnVFMitwsby--r8Bgx09I-icFxCXLNEpk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+count+data+in+the+addiction+field%3A+Some+simple+recommendations&rft.jtitle=International+journal+of+methods+in+psychiatric+research&rft.au=Baggio%2C+St%C3%A9phanie&rft.au=Iglesias%2C+Katia&rft.au=Rousson%2C+Valentin&rft.date=2018-03-01&rft.eissn=1557-0657&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1002%2Fmpr.1585&rft_id=info%3Apmid%2F29027305&rft.externalDocID=29027305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8931&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8931&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8931&client=summon