Temporal progression of anaerobic fungal communities in dairy calves from birth to maturity

Establishment of microbial communities in neonatal calves is vital for their growth and overall health. While this process has received considerable attention for bacteria, our knowledge on temporal progression of anaerobic gut fungi (AGF) in calves is lacking. Here, we examined AGF communities in f...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 25; no. 11; pp. 2088 - 2101
Main Authors Jones, Adrienne L., Clayborn, Jordan, Pribil, Elizabeth, Foote, Andrew P., Montogomery, Dagan, Elshahed, Mostafa S., Youssef, Noha H.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Establishment of microbial communities in neonatal calves is vital for their growth and overall health. While this process has received considerable attention for bacteria, our knowledge on temporal progression of anaerobic gut fungi (AGF) in calves is lacking. Here, we examined AGF communities in faecal samples from six dairy cattle collected at 24 different time points during the pre‐weaning (days 1–48), weaning (days 48–60), and post‐weaning (days 60–360) phases. Quantitative polymerase chain reaction indicated that AGF colonisation occurs within 24 h after birth, with loads slowly increasing during pre‐weaning and weaning, then drastically increasing post‐weaning. Culture‐independent amplicon surveys identified higher alpha diversity during pre‐weaning/weaning, compared to post‐weaning. AGF community structure underwent a drastic shift post‐weaning, from a community enriched in genera commonly encountered in hindgut fermenters to one enriched in genera commonly encountered in adult ruminants. Comparison of AGF community between calves day 1 post‐birth and their mothers suggest a major role for maternal transmission, with additional input from cohabitating subjects. This distinct pattern of AGF progression could best be understood in‐light of their narrower niche preferences, metabolic specialisation, and physiological optima compared to bacteria, hence eliciting a unique response to changes in feeding pattern and associated structural GIT development during maturation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1462-2912
1462-2920
1462-2920
DOI:10.1111/1462-2920.16443