Precision fMRI and cluster‐failure in the individual brain

Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel size...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 45; no. 12; pp. e26813 - n/a
Main Authors Ceja, Igor Fabian Tellez, Gladytz, Thomas, Starke, Ludger, Tabelow, Karsten, Niendorf, Thoralf, Reimann, Henning Matthias
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.08.2024
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.26813

Cover

Loading…
Abstract Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download. Functional magnetic resonance imaging (fMRI) at ≥7 T achieves finer spatial resolution, eventually causing a decrement in temporal signal‐to‐noise ratio and thus blood oxygen level‐dependent (BOLD) sensitivity. Adaptive‐weight smoothing with optimized metrics (AWSOM) enhances BOLD effects detection with high spatial accuracy and preserves the integrity of BOLD signal magnitudes. AWSOM minimizes family‐wise error rates by effectively suppressing false positives in single‐subject fMRI analysis.
AbstractList Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download. Functional magnetic resonance imaging (fMRI) at ≥7 T achieves finer spatial resolution, eventually causing a decrement in temporal signal‐to‐noise ratio and thus blood oxygen level‐dependent (BOLD) sensitivity. Adaptive‐weight smoothing with optimized metrics (AWSOM) enhances BOLD effects detection with high spatial accuracy and preserves the integrity of BOLD signal magnitudes. AWSOM minimizes family‐wise error rates by effectively suppressing false positives in single‐subject fMRI analysis.
Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.
Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal-to-noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level-dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single-subject analysis. We introduce adaptive-weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster-corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole-brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family-wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal-to-noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level-dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single-subject analysis. We introduce adaptive-weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster-corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole-brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family-wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.
Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download. Functional magnetic resonance imaging (fMRI) at ≥7 T achieves finer spatial resolution, eventually causing a decrement in temporal signal‐to‐noise ratio and thus blood oxygen level‐dependent (BOLD) sensitivity. Adaptive‐weight smoothing with optimized metrics (AWSOM) enhances BOLD effects detection with high spatial accuracy and preserves the integrity of BOLD signal magnitudes. AWSOM minimizes family‐wise error rates by effectively suppressing false positives in single‐subject fMRI analysis.
Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.
Author Tabelow, Karsten
Starke, Ludger
Reimann, Henning Matthias
Ceja, Igor Fabian Tellez
Gladytz, Thomas
Niendorf, Thoralf
AuthorAffiliation 2 Charité—Universitätsmedizin Berlin Berlin Germany
3 Weierstrass Institute for Applied Analysis and Stochastics Berlin Germany
1 Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.) Berlin Germany
4 Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
AuthorAffiliation_xml – name: 4 Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
– name: 2 Charité—Universitätsmedizin Berlin Berlin Germany
– name: 3 Weierstrass Institute for Applied Analysis and Stochastics Berlin Germany
– name: 1 Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.) Berlin Germany
Author_xml – sequence: 1
  givenname: Igor Fabian Tellez
  orcidid: 0009-0008-0541-9536
  surname: Ceja
  fullname: Ceja, Igor Fabian Tellez
  organization: Charité—Universitätsmedizin Berlin
– sequence: 2
  givenname: Thomas
  surname: Gladytz
  fullname: Gladytz, Thomas
  organization: Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)
– sequence: 3
  givenname: Ludger
  surname: Starke
  fullname: Starke, Ludger
  organization: Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)
– sequence: 4
  givenname: Karsten
  orcidid: 0000-0003-1274-9951
  surname: Tabelow
  fullname: Tabelow, Karsten
  organization: Weierstrass Institute for Applied Analysis and Stochastics
– sequence: 5
  givenname: Thoralf
  surname: Niendorf
  fullname: Niendorf, Thoralf
  organization: Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine in the Helmholtz Association
– sequence: 6
  givenname: Henning Matthias
  orcidid: 0000-0003-1053-9256
  surname: Reimann
  fullname: Reimann, Henning Matthias
  email: henning.reimann@mdc-berlin.de
  organization: Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39185695$$D View this record in MEDLINE/PubMed
BookMark eNp1kctKBDEQRYMoPkYX_oA0uNFFa6rz6A4IouILFEV0HdLpxIn0pDWZVtz5CX6jX2LGUVHBVRWpk0vVvUto1nfeILQKeAswLraH9Wir4BWQGbQIWJQ5BkFmJz1nuaAlLKClGO8wBmAY5tECEVAxLtgi2rkMRrvoOp_Z86vTTPkm020fxya8vbxa5do-mMz5bDyclMY9uqZXbVYH5fwymrOqjWblsw7QzdHh9cFJfnZxfHqwd5ZriinJmQJMdG0LDFYYXlcl5Q0rStYIopuKWMuKBmtCaHrAinNecxBWGUsrpgQnA7Q71b3v65FptPHjoFp5H9xIhWfZKSd_T7wbytvuUQIQykqMk8LGp0LoHnoTx3LkojZtq7zp-ihJcg0YcEETuv4Hvev64NN9H5SgokjuDtDaz5W-d_lyNgGbU0CHLsZg7DcCWE5Skyk1-ZFaYren7JNrzfP_oDzZP5_-eAfGe5fA
Cites_doi 10.1101/2020.12.18.423495
10.1109/TPAMI.1980.4766994
10.1259/bjr/33553595
10.1002/jmri.21660
10.1002/jmri.22003
10.1016/j.neuroimage.2013.05.077
10.1016/j.neuron.2019.02.039
10.1007/s00234-013-1312-0
10.1016/j.neuroimage.2017.02.052
10.1073/PNAS.89.13.5951
10.3389/fnhum.2017.00345
10.1007/s10334-015-0483-6
10.1016/j.neuroimage.2013.12.058
10.18637/jss.v044.i11
10.1016/j.neuroimage.2012.02.018
10.1016/j.neuroimage.2016.11.039
10.1016/j.neuroimage.2023.120361
10.1016/j.neuroimage.2006.06.029
10.1016/j.neuroimage.2005.01.007
10.1016/J.NEUROIMAGE.2017.07.007
10.1038/s41467-021-25431-8
10.1016/j.cobeha.2021.01.011
10.3389/fnhum.2014.00715
10.1006/nimg.1997.0306
10.1101/2020.05.12.090175
10.1016/j.jneumeth.2008.12.011
10.1016/j.neuroimage.2017.03.060
10.1007/978-3-030-29184-6
10.1109/TBME.2022.3168592
10.1002/nbm.1783
10.1016/j.mri.2007.08.006
10.1002/ima.20166
10.1038/s41592-018-0235-4
10.1101/2022.06.11.495736
10.1007/S11336-012-9294-0
10.1016/j.neuroimage.2006.09.032
10.1101/2021.03.17.21253439
10.1007/S00440-005-0464-1
10.1371/journal.pone.0077089
10.1002/mrm.23007
10.1152/jn.00499.2012
10.1006/nimg.1999.0490
10.1017/CBO9780511895029
10.1016/j.pneurobio.2020.101835
10.1016/j.neuroimage.2023.119949
10.1016/j.neuroimage.2006.12.029
10.1016/j.tics.2022.12.015
10.1016/J.CORTEX.2021.12.015
10.18637/jss.v095.i06
10.1016/j.neuroimage.2004.07.051
10.1016/j.cobme.2021.100288
10.1007/s11263-007-0052-1
10.1016/j.neuroimage.2020.116992
10.1002/mrm.1080
10.1016/j.neuroimage.2011.12.060
10.1371/journal.pone.0259592
10.1006/cbmr.1996.0014
10.1016/j.mri.2018.01.004
10.1016/j.neuroimage.2016.12.018
10.1016/j.neuroimage.2019.116468
10.1016/j.brainresrev.2009.12.004
10.1016/j.neuroimage.2010.04.241
10.1523/JNEUROSCI.1713-20.2021
10.1016/j.neuroimage.2006.09.019
10.1006/nimg.1998.0419
10.1016/J.TICS.2016.03.014
10.1016/j.mri.2004.10.018
10.1002/hbm.23839
10.1007/s12021-011-9109-y
10.1002/hbm.1038
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2011.04.018
10.1016/J.NEUROIMAGE.2016.09.008
10.1073/pnas.1602413113
10.1006/nimg.1995.1007
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC.
2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC.
– notice: 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1002/hbm.26813
DatabaseName Open Access资源_Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Ceja et al
EISSN 1097-0193
EndPage n/a
ExternalDocumentID PMC11345700
39185695
10_1002_hbm_26813
HBM26813
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 743077
– fundername: European Research Council
  grantid: 743077
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4043-5a103cbf201f9e6b8746d5275d93cd83ff52d0c334d930a666b619faef485a963
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:32:15 EDT 2025
Thu Jul 10 22:41:09 EDT 2025
Sat Jul 26 02:00:32 EDT 2025
Thu Apr 03 06:57:15 EDT 2025
Tue Jul 01 01:11:18 EDT 2025
Wed Jan 22 17:14:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords spatial smoothing
adaptive weights smoothing
fMRI
cluster failure
single‐subject
spatial accuracy
BOLD
Language English
License Attribution
2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4043-5a103cbf201f9e6b8746d5275d93cd83ff52d0c334d930a666b619faef485a963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0008-0541-9536
0000-0003-1274-9951
0000-0003-1053-9256
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26813
PMID 39185695
PQID 3097949219
PQPubID 996345
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11345700
proquest_miscellaneous_3097151694
proquest_journals_3097949219
pubmed_primary_39185695
crossref_primary_10_1002_hbm_26813
wiley_primary_10_1002_hbm_26813_HBM26813
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 15, 2024
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: August 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 164
2012; 60
2004; 22
2005; 135
2006; 33
2018; 168
2021; 207
2004; 23
2019; 16
2022; 69
2016; 143
2008; 76
2011; 57
2017; 154
2005; 26
2013; 8
2001; 45
2007; 34
2018; 49
2007; 35
2010; 62
2020; 209
2004; 77
1996; 29
2001
2020; 95
2023; 27
2016; 113
2003; 2
2008; 26
1999; 10
2012; 25
2014; 8
2021; 41
2012; 67
2001; 14
1992; 89
2021; 40
2014; 56
2020; 219
2012; 62
2010; 31
2023; 280
2014; 91
2013; 109
2011
2008; 18
2007
2019; 102
2009; 178
2003
1995; 2
2009; 29
2011; 9
1999; 9
2021; 16
2023; 270
2015; 28
2019; 40
2021; 12
2022
2020
2013; 78
1980; 2
2017; 11
2021; 18
2013; 80
2016; 20
2019
2011; 44
1998; 7
2010; 52
2022; 149
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Liu C.‐S. J. (e_1_2_11_42_1) 2001
e_1_2_11_83_1
Biswas J. (e_1_2_11_8_1) 2007
e_1_2_11_60_1
e_1_2_11_81_1
Penny W. (e_1_2_11_53_1) 2007
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
Worsley K. (e_1_2_11_82_1) 2003; 2
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 16
  start-page: 111
  issue: 1
  year: 2019
  end-page: 116
  article-title: fMRIPrep: A robust preprocessing pipeline for functional MRI
  publication-title: Nature Methods
– year: 2011
– volume: 49
  start-page: 101
  year: 2018
  end-page: 115
  article-title: Cluster‐level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions
  publication-title: Magnetic Resonance Imaging
– volume: 7
  start-page: 30
  issue: 1
  year: 1998
  end-page: 40
  article-title: Event‐related fMRI: Characterizing differential responses
  publication-title: NeuroImage
– volume: 135
  start-page: 335
  issue: 3
  year: 2005
  end-page: 362
  article-title: Propagation‐separation approach for local likelihood estimation
  publication-title: Probability Theory and Related Fields
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  end-page: 790
  article-title: Fsl
  publication-title: NeuroImage
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  end-page: 2231
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: NeuroImage
– volume: 26
  start-page: 243
  issue: 1
  year: 2005
  end-page: 250
  article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters
  publication-title: NeuroImage
– year: 2001
– volume: 77
  start-page: S167
  issue: suppl_2
  year: 2004
  end-page: S175
  article-title: Overview of fMRI analysis
  publication-title: The British Journal of Radiology
– volume: 20
  start-page: 425
  issue: 6
  year: 2016
  end-page: 443
  article-title: Building a science of individual differences from fMRI
  publication-title: Trends in Cognitive Sciences
– volume: 168
  start-page: 7
  year: 2018
  end-page: 32
  article-title: Imaging at ultrahigh magnetic fields: History, challenges, and solutions
  publication-title: NeuroImage
– volume: 16
  issue: 11
  year: 2021
  article-title: Temporal SNR optimization through RF coil combination in fMRI: The more, the better?
  publication-title: PLoS One
– volume: 102
  start-page: 280
  issue: 2
  year: 2019
  end-page: 293
  article-title: Filters: When, why, and how (not) to use them
  publication-title: Neuron
– volume: 113
  start-page: 7900
  issue: 28
  year: 2016
  end-page: 7905
  article-title: Cluster failure: Why fMRI inferences for spatial extent have inflated false‐positive rates
  publication-title: Proceedings of the National Academy of Sciences
– volume: 34
  start-page: 565
  issue: 2
  year: 2007
  end-page: 574
  article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration
  publication-title: NeuroImage
– volume: 35
  start-page: 881
  issue: 2
  year: 2007
  end-page: 903
  article-title: Localization of load sensitivity of working memory storage: Quantitatively and qualitatively discrepant results yielded by single‐subject and group‐averaged approaches to fMRI group analysis
  publication-title: NeuroImage
– volume: 80
  start-page: 202
  year: 2013
  end-page: 219
  article-title: Human Connectome Project informatics: Quality control, database services, and data visualization
  publication-title: NeuroImage
– volume: 154
  start-page: 128
  year: 2017
  end-page: 149
  article-title: Methods for cleaning the BOLD fMRI signal
  publication-title: NeuroImage
– volume: 67
  start-page: 344
  issue: 2
  year: 2012
  end-page: 352
  article-title: Temporal SNR characteristics in segmented 3D‐EPI at 7T
  publication-title: Magnetic Resonance in Medicine
– volume: 91
  start-page: 412
  year: 2014
  end-page: 419
  article-title: Cluster‐extent based thresholding in fMRI analyses: Pitfalls and recommendations
  publication-title: NeuroImage
– volume: 8
  start-page: 715
  year: 2014
  article-title: Using fMRI non‐local means denoising to uncover activation in sub‐cortical structures at 1.5 T for guided HARDI tractography
  publication-title: Frontiers in Human Neuroscience
– year: 2022
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– volume: 209
  year: 2020
  article-title: Cluster failure or power failure? Evaluating sensitivity in cluster‐level inference
  publication-title: NeuroImage
– volume: 95
  start-page: 1
  issue: 6
  year: 2020
  end-page: 27
  article-title: Patch‐wise adaptive weights smoothing in R
  publication-title: Journal of Statistical Software
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  end-page: 173
  article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Computers and Biomedical Research
– volume: 52
  start-page: 515
  issue: 2
  year: 2010
  end-page: 523
  article-title: Structural adaptive segmentation for statistical parametric mapping
  publication-title: NeuroImage
– volume: 270
  year: 2023
  article-title: Evaluating increases in sensitivity from NORDIC for diverse fMRI acquisition strategies
  publication-title: NeuroImage
– volume: 164
  start-page: 131
  year: 2018
  end-page: 143
  article-title: Techniques for blood volume fMRI with VASO: From low‐resolution mapping towards sub‐millimeter layer‐dependent applications
  publication-title: NeuroImage
– year: 2019
– volume: 143
  start-page: 141
  year: 2016
  end-page: 151
  article-title: Noise contributions to the fMRI signal: An overview
  publication-title: NeuroImage
– volume: 149
  start-page: 101
  year: 2022
  end-page: 122
  article-title: Limits of decoding mental states with fMRI
  publication-title: Cortex
– volume: 10
  start-page: 530
  issue: 5
  year: 1999
  end-page: 543
  article-title: Comparison of filtering methods for fMRI datasets
  publication-title: NeuroImage
– volume: 219
  year: 2020
  article-title: fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7T
  publication-title: NeuroImage
– volume: 40
  start-page: 2052
  issue: 7
  year: 2019
  end-page: 2054
  article-title: Analysis of family‐wise error rates in statistical parametric mapping using random field theory
  publication-title: Human Brain Mapping
– volume: 34
  start-page: 127
  issue: 1
  year: 2007
  end-page: 136
  article-title: Meaningful design and contrast estimability in FMRI
  publication-title: NeuroImage
– volume: 44
  start-page: 1
  issue: 11
  year: 2011
  end-page: 21
  article-title: Statistical parametric maps for functional MRI experiments in R: The package fMRI
  publication-title: Journal of Statistical Software
– volume: 9
  start-page: 381
  year: 2011
  end-page: 400
  article-title: An open source multivariate framework for n‐tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
– volume: 28
  start-page: 485
  year: 2015
  end-page: 492
  article-title: Physiological noise in human cerebellar fMRI
  publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine
– volume: 280
  year: 2023
  article-title: Comparing the efficacy of data‐driven denoising methods for a multi‐echo fMRI acquisition at 7T
  publication-title: NeuroImage
– volume: 27
  start-page: 246
  year: 2023
  end-page: 257
  article-title: Improving the study of brain‐behavior relationships by revisiting basic assumptions
  publication-title: Trends in Cognitive Sciences
– year: 2007
– volume: 25
  start-page: 717
  issue: 5
  year: 2012
  end-page: 725
  article-title: Spatial location and strength of BOLD activation in high‐spatial‐resolution fMRI of the motor cortex: A comparison of spin echo and gradient echo fMRI at 7 T
  publication-title: NMR in Biomedicine
– year: 2003
– volume: 22
  start-page: 1517
  issue: 10
  year: 2004
  end-page: 1531
  article-title: On the nature of the BOLD fMRI contrast mechanism
  publication-title: Magnetic Resonance Imaging
– volume: 33
  start-page: 55
  issue: 1
  year: 2006
  end-page: 62
  article-title: Analyzing fMRI experiments with structural adaptive smoothing procedures
  publication-title: NeuroImage
– volume: 12
  start-page: 5181
  issue: 1
  year: 2021
  article-title: Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging
  publication-title: Nature Communications
– volume: 11
  start-page: 345
  year: 2017
  article-title: Commentary: Cluster failure: Why fMRI inferences for spatial extent have inflated false‐positive rates
  publication-title: Frontiers in Human Neuroscience
– volume: 168
  start-page: 366
  year: 2018
  end-page: 382
  article-title: The impact of ultra‐high field MRI on cognitive and computational neuroimaging
  publication-title: NeuroImage
– volume: 2
  start-page: 45
  issue: 1
  year: 1995
  end-page: 53
  article-title: Analysis of fMRI time‐series revisited
  publication-title: NeuroImage
– volume: 56
  start-page: 177
  year: 2014
  end-page: 186
  article-title: High‐resolution anatomy of the human brain stem using 7‐T MRI: Improved detection of inner structures and nerves?
  publication-title: Neuroradiology
– volume: 2
  start-page: 165
  issue: 2
  year: 1980
  end-page: 168
  article-title: Digital image enhancement and noise filtering by use of local statistics
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 207
  year: 2021
  article-title: Layer‐dependent functional connectivity methods
  publication-title: Progress in Neurobiology
– volume: 26
  start-page: 490
  issue: 4
  year: 2008
  end-page: 503
  article-title: Effects of spatial smoothing on fMRI group inferences
  publication-title: Magnetic Resonance Imaging
– volume: 8
  issue: 11
  year: 2013
  article-title: On the definition of signal‐to‐noise ratio and contrast‐to‐noise ratio for fMRI data
  publication-title: PLoS One
– volume: 29
  start-page: 461
  issue: 2
  year: 2009
  end-page: 465
  article-title: 7T head volume coils: Improvements for rostral brain imaging
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 31
  start-page: 192
  issue: 1
  year: 2010
  end-page: 203
  article-title: Adaptive non‐local means denoising of MR images with spatially varying noise levels
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 109
  start-page: 2293
  issue: 9
  year: 2013
  end-page: 2305
  article-title: Single‐subject fMRI mapping at 7 T of the representation of fingertips in S1: A comparison of event‐related and phase‐encoding designs
  publication-title: Journal of Neurophysiology
– volume: 57
  start-page: 101
  issue: 1
  year: 2011
  end-page: 112
  article-title: The impact of physiological noise correction on fMRI at 7 T
  publication-title: NeuroImage
– volume: 78
  start-page: 396
  issue: 3
  year: 2013
  end-page: 416
  article-title: A survey of the sources of noise in fMRI
  publication-title: Psychometrika
– volume: 89
  start-page: 5951
  issue: 13
  year: 1992
  end-page: 5955
  article-title: Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 18
  year: 2021
  article-title: Ultrahigh field and ultrahigh resolution fMRI
  publication-title: Current Opinion in Biomedical Engineering
– volume: 69
  start-page: 3377
  issue: 11
  year: 2022
  end-page: 3388
  article-title: Denoise functional magnetic resonance imaging with random matrix theory based principal component analysis
  publication-title: IEEE Transactions on Biomedical Engineering
– year: 2020
– volume: 178
  start-page: 357
  issue: 2
  year: 2009
  end-page: 365
  article-title: High‐resolution fMRI: Overcoming the signal‐to‐noise problem
  publication-title: Journal of Neuroscience Methods
– volume: 60
  start-page: 747
  issue: 1
  year: 2012
  end-page: 765
  article-title: FMRI group analysis combining effect estimates and their variances
  publication-title: NeuroImage
– volume: 45
  start-page: 588
  issue: 4
  year: 2001
  end-page: 594
  article-title: Imaging brain function in humans at 7 Tesla
  publication-title: Magnetic Resonance in Medicine
– volume: 41
  start-page: 2684
  issue: 12
  year: 2021
  end-page: 2702
  article-title: The functional relevance of task‐state functional connectivity
  publication-title: Journal of Neuroscience
– volume: 9
  start-page: 416
  issue: 4
  year: 1999
  end-page: 429
  article-title: Deconvolution of impulse response in event‐related BOLD fMRI1
  publication-title: NeuroImage
– volume: 18
  start-page: 345
  issue: 5–6
  year: 2008
  end-page: 349
  article-title: Artifactual time‐course correlations in echo‐planar fMRI with implications for studies of brain function
  publication-title: International Journal of Imaging Systems and Technology
– volume: 40
  start-page: 96
  year: 2021
  end-page: 104
  article-title: High‐resolution fMRI at 7 tesla: Challenges, promises and recent developments for individual‐focused fMRI studies
  publication-title: Current Opinion in Behavioral Sciences
– volume: 2
  start-page: 881
  year: 2003
  end-page: 886
  article-title: Developments in random field theory
  publication-title: Human Brain Function
– volume: 168
  start-page: 412
  year: 2018
  end-page: 426
  article-title: Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI
  publication-title: NeuroImage
– volume: 76
  start-page: 123
  year: 2008
  end-page: 139
  article-title: Nonlocal image and movie denoising
  publication-title: International Journal of Computer Vision
– volume: 14
  start-page: 16
  issue: 1
  year: 2001
  end-page: 27
  article-title: Multiresolution analysis in fMRI: Sensitivity and specificity in the detection of brain activation
  publication-title: Human Brain Mapping
– volume: 62
  start-page: 233
  issue: 2
  year: 2010
  end-page: 244
  article-title: How and when the fMRI BOLD signal relates to underlying neural activity: The danger in dissociation
  publication-title: Brain Research Reviews
– ident: e_1_2_11_76_1
  doi: 10.1101/2020.12.18.423495
– ident: e_1_2_11_41_1
  doi: 10.1109/TPAMI.1980.4766994
– ident: e_1_2_11_62_1
  doi: 10.1259/bjr/33553595
– ident: e_1_2_11_3_1
  doi: 10.1002/jmri.21660
– ident: e_1_2_11_45_1
  doi: 10.1002/jmri.22003
– ident: e_1_2_11_46_1
  doi: 10.1016/j.neuroimage.2013.05.077
– ident: e_1_2_11_15_1
  doi: 10.1016/j.neuron.2019.02.039
– ident: e_1_2_11_28_1
  doi: 10.1007/s00234-013-1312-0
– ident: e_1_2_11_59_1
  doi: 10.1016/j.neuroimage.2017.02.052
– ident: e_1_2_11_52_1
  doi: 10.1073/PNAS.89.13.5951
– ident: e_1_2_11_49_1
  doi: 10.3389/fnhum.2017.00345
– ident: e_1_2_11_72_1
  doi: 10.1007/s10334-015-0483-6
– ident: e_1_2_11_81_1
  doi: 10.1016/j.neuroimage.2013.12.058
– ident: e_1_2_11_66_1
  doi: 10.18637/jss.v044.i11
– ident: e_1_2_11_74_1
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: e_1_2_11_34_1
  doi: 10.1016/j.neuroimage.2016.11.039
– ident: e_1_2_11_32_1
– ident: e_1_2_11_64_1
  doi: 10.18637/jss.v044.i11
– ident: e_1_2_11_5_1
  doi: 10.1016/j.neuroimage.2023.120361
– ident: e_1_2_11_67_1
  doi: 10.1016/j.neuroimage.2006.06.029
– ident: e_1_2_11_69_1
  doi: 10.1016/j.neuroimage.2005.01.007
– ident: e_1_2_11_70_1
  doi: 10.1016/J.NEUROIMAGE.2017.07.007
– ident: e_1_2_11_77_1
  doi: 10.1038/s41467-021-25431-8
– ident: e_1_2_11_75_1
  doi: 10.1016/j.cobeha.2021.01.011
– ident: e_1_2_11_6_1
  doi: 10.3389/fnhum.2014.00715
– ident: e_1_2_11_25_1
  doi: 10.1006/nimg.1997.0306
– ident: e_1_2_11_13_1
  doi: 10.1101/2020.05.12.090175
– ident: e_1_2_11_65_1
  doi: 10.1016/j.jneumeth.2008.12.011
– ident: e_1_2_11_16_1
  doi: 10.1016/j.neuroimage.2017.03.060
– ident: e_1_2_11_57_1
  doi: 10.1007/978-3-030-29184-6
– ident: e_1_2_11_84_1
  doi: 10.1109/TBME.2022.3168592
– ident: e_1_2_11_31_1
  doi: 10.1002/nbm.1783
– ident: e_1_2_11_47_1
  doi: 10.1016/j.mri.2007.08.006
– ident: e_1_2_11_39_1
  doi: 10.1002/ima.20166
– ident: e_1_2_11_22_1
  doi: 10.1038/s41592-018-0235-4
– ident: e_1_2_11_27_1
  doi: 10.1101/2022.06.11.495736
– ident: e_1_2_11_30_1
  doi: 10.1007/S11336-012-9294-0
– ident: e_1_2_11_50_1
  doi: 10.1016/j.neuroimage.2006.09.032
– ident: e_1_2_11_60_1
  doi: 10.1101/2021.03.17.21253439
– ident: e_1_2_11_68_1
– ident: e_1_2_11_56_1
  doi: 10.1007/S00440-005-0464-1
– ident: e_1_2_11_79_1
  doi: 10.1371/journal.pone.0077089
– ident: e_1_2_11_73_1
  doi: 10.1002/mrm.23007
– ident: e_1_2_11_7_1
  doi: 10.1152/jn.00499.2012
– ident: e_1_2_11_40_1
  doi: 10.1006/nimg.1999.0490
– ident: e_1_2_11_54_1
  doi: 10.1017/CBO9780511895029
– ident: e_1_2_11_33_1
  doi: 10.1016/j.pneurobio.2020.101835
– ident: e_1_2_11_18_1
  doi: 10.1016/j.neuroimage.2023.119949
– ident: e_1_2_11_23_1
  doi: 10.1016/j.neuroimage.2006.12.029
– ident: e_1_2_11_80_1
  doi: 10.1016/j.tics.2022.12.015
– ident: e_1_2_11_36_1
  doi: 10.1016/J.CORTEX.2021.12.015
– ident: e_1_2_11_55_1
  doi: 10.18637/jss.v095.i06
– ident: e_1_2_11_63_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_11_71_1
  doi: 10.1016/j.cobme.2021.100288
– ident: e_1_2_11_9_1
  doi: 10.1007/s11263-007-0052-1
– ident: e_1_2_11_48_1
  doi: 10.1016/j.neuroimage.2020.116992
– ident: e_1_2_11_83_1
  doi: 10.1002/mrm.1080
– ident: e_1_2_11_11_1
  doi: 10.1016/j.neuroimage.2011.12.060
– ident: e_1_2_11_37_1
  doi: 10.1371/journal.pone.0259592
– ident: e_1_2_11_14_1
  doi: 10.1006/cbmr.1996.0014
– ident: e_1_2_11_4_1
  doi: 10.1016/j.mri.2018.01.004
– volume-title: Clinical 3 T Magnetic Resonance
  year: 2007
  ident: e_1_2_11_8_1
– ident: e_1_2_11_10_1
  doi: 10.1016/j.neuroimage.2016.12.018
– ident: e_1_2_11_51_1
  doi: 10.1016/j.neuroimage.2019.116468
– volume-title: Statistical parametric mapping: The analysis of functional brain images
  year: 2007
  ident: e_1_2_11_53_1
– ident: e_1_2_11_21_1
  doi: 10.1016/j.brainresrev.2009.12.004
– ident: e_1_2_11_58_1
  doi: 10.1016/j.neuroimage.2010.04.241
– ident: e_1_2_11_12_1
  doi: 10.1523/JNEUROSCI.1713-20.2021
– ident: e_1_2_11_61_1
  doi: 10.1016/j.neuroimage.2006.09.019
– ident: e_1_2_11_29_1
  doi: 10.1006/nimg.1998.0419
– ident: e_1_2_11_19_1
  doi: 10.1016/J.TICS.2016.03.014
– ident: e_1_2_11_44_1
  doi: 10.1016/j.mri.2004.10.018
– ident: e_1_2_11_24_1
  doi: 10.1002/hbm.23839
– ident: e_1_2_11_2_1
  doi: 10.1007/s12021-011-9109-y
– ident: e_1_2_11_17_1
  doi: 10.1002/hbm.1038
– ident: e_1_2_11_38_1
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 2
  start-page: 881
  year: 2003
  ident: e_1_2_11_82_1
  article-title: Developments in random field theory
  publication-title: Human Brain Function
– ident: e_1_2_11_35_1
  doi: 10.1016/j.neuroimage.2011.04.018
– ident: e_1_2_11_43_1
  doi: 10.1016/J.NEUROIMAGE.2016.09.008
– ident: e_1_2_11_20_1
  doi: 10.1073/pnas.1602413113
– ident: e_1_2_11_26_1
  doi: 10.1006/nimg.1995.1007
– ident: e_1_2_11_78_1
– volume-title: Proceedings of the International Society for Magnetic Resonance in Medicine
  year: 2001
  ident: e_1_2_11_42_1
SSID ssj0011501
Score 2.4478912
Snippet Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e26813
SubjectTerms adaptive weights smoothing
Adult
Blood levels
BOLD
Brain
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Brain Mapping - methods
Brain research
Cluster Analysis
cluster failure
Cost analysis
Error correction
fMRI
Functional magnetic resonance imaging
Humans
Image Processing, Computer-Assisted - methods
Inference
Magnetic fields
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Neuroimaging
Neurosciences
Oxygen - blood
Sensitivity analysis
Signal integrity
Signal to noise ratio
single‐subject
Smoothing
spatial accuracy
Spatial discrimination
Spatial resolution
Spatial smoothing
Statistical inference
Temporal resolution
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD5oBfFFtFWbtspYivgyNplLdgYEqWJZC1tELOxbyEwy7EKbrbvdh771J_gb-0t6ziQbXYq-hcyEJOfM5TuX-Q7AgU9t5EXjubaGKx0cN8pZLoRz2lgtTE2nkUen-fBMnYz1uHO4Lbq0ytWaGBfqaubJR34oU4tDx-IE-3T5i1PVKIqudiU0HsIjoi6jlK7BuDe4COxEgwu3WW5xFV4xC6XicOIuPojcZHJ9P7oHMu_nSv6NYeMmdPwMnnbokR216n4OD-pmE7aOGrScL67ZOxbzOaOjfBMej7qw-RZ8_D7vSumwMPrxjZVNxfz5kjgSbm9-h3JKuels2jBEg2zaH9FijupHvICz468_vwx5VzaBe6LK4brMUuldwK092Dp3ZqDySouBrqz0lZEhaFGlXkqFN9IS7ReHVlQo66CMLnFCvoSNZtbU28CM9ficoLoHlfLClghnrLS6GvjcOVMnsL8SXnHZsmMULQ-yKFDCRZRwAnsrsRbdBFkUf9SZwNu-GYc2xSvKpp4t2z4ZxfFUAq9aLfRvkRaBRm51AmZNP30Hos1eb2mmk0ifnWVSEat_Au-jKv_95cXw8yhe7Pz_F3bhiUCsQ67mTO_BxtV8Wb9GrHLl3sQBeQcDQuZR
  priority: 102
  providerName: ProQuest
Title Precision fMRI and cluster‐failure in the individual brain
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26813
https://www.ncbi.nlm.nih.gov/pubmed/39185695
https://www.proquest.com/docview/3097949219
https://www.proquest.com/docview/3097151694
https://pubmed.ncbi.nlm.nih.gov/PMC11345700
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIiEuLbRAU8rKIIS4ZJv4J7EFlxa1WpC2Wq2otAekyHZidUWbVu3uAU48As_IkzB2fmCpkBCXKIptxfFk7G_G428AXtpEBV60OBNKxlw4E0tuVEypMUIqQWXlTyOPT7LRKf8wE7M1eNOdhWn4IXqHm9eMMF97BdfmZv8XaeiZuRjSTIaMtT5WywOiaU8d5YFOMLZwiY0VzsAdq1BC9_uWq2vRLYB5O07yd_waFqDjTfjUdb2JO_k8XC7M0H79g9XxP7_tAWy0wJQcNH_SQ1ir6i3YPqjRKL_4Ql6RECoafPBbcG_c7shvw9vJdZulh7jx9D3RdUns-dLTL_z49t3puQ97J_OaINAk8_70FzE-NcUjOD0--vhuFLcZGWLrWXhiodOEWeMQNThVZUbmPCsFzUWpmC0lc07QMrGMcXyQaDSNDBpoTleOS6FR1x_Den1ZVztApLLYjvqUCiW3VGlESoopUeY2M0ZWEbzoZFNcNcQbRUOxTAscniIMTwR7ndSKVvduCpYonGQUTsURPO-LUWv8Voiuq8tlUyf1W4Q8gieNkPu3MIUYJlMiArki_r6CZ-ReLannZ4GZO00Z9wkDIngdxPv3nhejw3G42f33qk_hPkVI5T3aqdiD9cX1snqGkGhhBnCH8gle81k-gLuHRyeT6SC4FwZBK34CQ3YKjA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrQR9QdByhBYwCBAvoYmPrC2BUAutdmmzqqpW6luIHUddqc32WqG-8RP4Jf1R_SWMnQNWFbz1LUqcaw7PN57xDMAbEylfFy1MhJIhF6UOJdcqpFRrIZWg0rrdyOkoGezzbwfiYA6u2r0wLq2ynRP9RF1MjFsjX2WRQtFRqGCfT05D1zXKRVfbFhq1WGzZyx_osp1_Gn5F_r6ldHNj78sgbLoKhMZVkglFHkfM6BItX6lsomWfJ4WgfVEoZgrJylLQIjKMcTwR5QjvNToZZW5LLkWO8orPvQPznKEr04P59Y3Rzm4Xt0B45V08NOyhwnm_rWUU0dVDffyBJjJmsxbwBqy9mZ35N2r2Zm_zAdxv8CpZqwXsIczZahGW1ir01Y8vyTviM0j90vwi3E2bQP0SfNw5a5r3kDLdHZK8Kog5mrqqDNc_f5X52GXDk3FFEH-ScbcpjGjXseIR7N8KSR9Dr5pU9ikQqQzeR12nhYIbqnIEUIopUfRNorW0AbxuiZed1PU4srryMs2QwpmncAArLVmzRiXPsz8CFMCr7jIqk4uQ5JWdTOsxsYsc8gCe1Fzo3sIUQptEiQDkDH-6Aa5Q9-yVanzoC3bHMeOuj0AA7z0r__3l2WA99QfP_v8LL-HeYC_dzraHo61lWKCItNxCdyxWoHdxNrXPESld6BeNeBL4ftsa8Ru9gyOV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcELQ8AgUMAsTF3cSPxJZAqFBWu5StKkSlvYXYidWVaLa0XaHe-An8Hn4Ov4Sx84BVBbfeosR5zcPzjWc8A_DUxjrURaOp1IoK6QxVwmjKmDFSaclU5XcjT_bS0YF4P5XTFfjZ7YXxaZXdnBgm6nJu_Rr5gMcaRUejgg1cmxaxvzN8ffyV-g5SPtLatdNoRGS3Ov-G7tvpq_EO8voZY8N3n96OaNthgFpfVYbKIom5NQ6toNNValQm0lKyTJaa21Jx5yQrY8u5wBNxgVDfoMPhisoJJQuUXXzuFbiacZl4HcumvbPngVZw9tDEU40WoKtqFLPBoTnaYqlK-LItvABwL-Zp_o2fgwEc3oDrLXIl242o3YSVql6Hje0avfajc_KchFzSsEi_DmuTNmS_AS_3T9o2PsRNPo5JUZfEfln4-gy_vv9wxcznxZNZTRCJklm_PYwY37viFhxcCkFvw2o9r6u7QJS2eB_zPRdKYZkuEEpprmWZ2dQYVUXwpCNeftxU5sibGswsRwrngcIRbHZkzVvlPM3_iFIEj_vLqFY-VlLU1XzRjEl8DFFEcKfhQv8WrhHkpFpGoJb40w_wJbuXr9Szw1C6O0m48B0FIngRWPnvL89Hbybh4N7_f-ERrKEe5B_Ge7v34RpDyOVXvBO5CatnJ4vqAUKmM_MwyCaBz5etDL8BPikmZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+fMRI+and+cluster-failure+in+the+individual+brain&rft.jtitle=Human+brain+mapping&rft.au=Ceja%2C+Igor+Fabian+Tellez&rft.au=Gladytz%2C+Thomas&rft.au=Starke%2C+Ludger&rft.au=Tabelow%2C+Karsten&rft.date=2024-08-15&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=45&rft.issue=12&rft.spage=e26813&rft_id=info:doi/10.1002%2Fhbm.26813&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon