Precision fMRI and cluster‐failure in the individual brain
Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel size...
Saved in:
Published in | Human brain mapping Vol. 45; no. 12; pp. e26813 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.26813 |
Cover
Loading…
Abstract | Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.
Functional magnetic resonance imaging (fMRI) at ≥7 T achieves finer spatial resolution, eventually causing a decrement in temporal signal‐to‐noise ratio and thus blood oxygen level‐dependent (BOLD) sensitivity. Adaptive‐weight smoothing with optimized metrics (AWSOM) enhances BOLD effects detection with high spatial accuracy and preserves the integrity of BOLD signal magnitudes. AWSOM minimizes family‐wise error rates by effectively suppressing false positives in single‐subject fMRI analysis. |
---|---|
AbstractList | Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.
Functional magnetic resonance imaging (fMRI) at ≥7 T achieves finer spatial resolution, eventually causing a decrement in temporal signal‐to‐noise ratio and thus blood oxygen level‐dependent (BOLD) sensitivity. Adaptive‐weight smoothing with optimized metrics (AWSOM) enhances BOLD effects detection with high spatial accuracy and preserves the integrity of BOLD signal magnitudes. AWSOM minimizes family‐wise error rates by effectively suppressing false positives in single‐subject fMRI analysis. Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download. Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal-to-noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level-dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single-subject analysis. We introduce adaptive-weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster-corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole-brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family-wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal-to-noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level-dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single-subject analysis. We introduce adaptive-weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster-corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole-brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family-wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download. Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download. Functional magnetic resonance imaging (fMRI) at ≥7 T achieves finer spatial resolution, eventually causing a decrement in temporal signal‐to‐noise ratio and thus blood oxygen level‐dependent (BOLD) sensitivity. Adaptive‐weight smoothing with optimized metrics (AWSOM) enhances BOLD effects detection with high spatial accuracy and preserves the integrity of BOLD signal magnitudes. AWSOM minimizes family‐wise error rates by effectively suppressing false positives in single‐subject fMRI analysis. Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download. |
Author | Tabelow, Karsten Starke, Ludger Reimann, Henning Matthias Ceja, Igor Fabian Tellez Gladytz, Thomas Niendorf, Thoralf |
AuthorAffiliation | 2 Charité—Universitätsmedizin Berlin Berlin Germany 3 Weierstrass Institute for Applied Analysis and Stochastics Berlin Germany 1 Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.) Berlin Germany 4 Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany |
AuthorAffiliation_xml | – name: 4 Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany – name: 2 Charité—Universitätsmedizin Berlin Berlin Germany – name: 3 Weierstrass Institute for Applied Analysis and Stochastics Berlin Germany – name: 1 Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.) Berlin Germany |
Author_xml | – sequence: 1 givenname: Igor Fabian Tellez orcidid: 0009-0008-0541-9536 surname: Ceja fullname: Ceja, Igor Fabian Tellez organization: Charité—Universitätsmedizin Berlin – sequence: 2 givenname: Thomas surname: Gladytz fullname: Gladytz, Thomas organization: Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.) – sequence: 3 givenname: Ludger surname: Starke fullname: Starke, Ludger organization: Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.) – sequence: 4 givenname: Karsten orcidid: 0000-0003-1274-9951 surname: Tabelow fullname: Tabelow, Karsten organization: Weierstrass Institute for Applied Analysis and Stochastics – sequence: 5 givenname: Thoralf surname: Niendorf fullname: Niendorf, Thoralf organization: Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine in the Helmholtz Association – sequence: 6 givenname: Henning Matthias orcidid: 0000-0003-1053-9256 surname: Reimann fullname: Reimann, Henning Matthias email: henning.reimann@mdc-berlin.de organization: Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39185695$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctKBDEQRYMoPkYX_oA0uNFFa6rz6A4IouILFEV0HdLpxIn0pDWZVtz5CX6jX2LGUVHBVRWpk0vVvUto1nfeILQKeAswLraH9Wir4BWQGbQIWJQ5BkFmJz1nuaAlLKClGO8wBmAY5tECEVAxLtgi2rkMRrvoOp_Z86vTTPkm020fxya8vbxa5do-mMz5bDyclMY9uqZXbVYH5fwymrOqjWblsw7QzdHh9cFJfnZxfHqwd5ZriinJmQJMdG0LDFYYXlcl5Q0rStYIopuKWMuKBmtCaHrAinNecxBWGUsrpgQnA7Q71b3v65FptPHjoFp5H9xIhWfZKSd_T7wbytvuUQIQykqMk8LGp0LoHnoTx3LkojZtq7zp-ihJcg0YcEETuv4Hvev64NN9H5SgokjuDtDaz5W-d_lyNgGbU0CHLsZg7DcCWE5Skyk1-ZFaYren7JNrzfP_oDzZP5_-eAfGe5fA |
Cites_doi | 10.1101/2020.12.18.423495 10.1109/TPAMI.1980.4766994 10.1259/bjr/33553595 10.1002/jmri.21660 10.1002/jmri.22003 10.1016/j.neuroimage.2013.05.077 10.1016/j.neuron.2019.02.039 10.1007/s00234-013-1312-0 10.1016/j.neuroimage.2017.02.052 10.1073/PNAS.89.13.5951 10.3389/fnhum.2017.00345 10.1007/s10334-015-0483-6 10.1016/j.neuroimage.2013.12.058 10.18637/jss.v044.i11 10.1016/j.neuroimage.2012.02.018 10.1016/j.neuroimage.2016.11.039 10.1016/j.neuroimage.2023.120361 10.1016/j.neuroimage.2006.06.029 10.1016/j.neuroimage.2005.01.007 10.1016/J.NEUROIMAGE.2017.07.007 10.1038/s41467-021-25431-8 10.1016/j.cobeha.2021.01.011 10.3389/fnhum.2014.00715 10.1006/nimg.1997.0306 10.1101/2020.05.12.090175 10.1016/j.jneumeth.2008.12.011 10.1016/j.neuroimage.2017.03.060 10.1007/978-3-030-29184-6 10.1109/TBME.2022.3168592 10.1002/nbm.1783 10.1016/j.mri.2007.08.006 10.1002/ima.20166 10.1038/s41592-018-0235-4 10.1101/2022.06.11.495736 10.1007/S11336-012-9294-0 10.1016/j.neuroimage.2006.09.032 10.1101/2021.03.17.21253439 10.1007/S00440-005-0464-1 10.1371/journal.pone.0077089 10.1002/mrm.23007 10.1152/jn.00499.2012 10.1006/nimg.1999.0490 10.1017/CBO9780511895029 10.1016/j.pneurobio.2020.101835 10.1016/j.neuroimage.2023.119949 10.1016/j.neuroimage.2006.12.029 10.1016/j.tics.2022.12.015 10.1016/J.CORTEX.2021.12.015 10.18637/jss.v095.i06 10.1016/j.neuroimage.2004.07.051 10.1016/j.cobme.2021.100288 10.1007/s11263-007-0052-1 10.1016/j.neuroimage.2020.116992 10.1002/mrm.1080 10.1016/j.neuroimage.2011.12.060 10.1371/journal.pone.0259592 10.1006/cbmr.1996.0014 10.1016/j.mri.2018.01.004 10.1016/j.neuroimage.2016.12.018 10.1016/j.neuroimage.2019.116468 10.1016/j.brainresrev.2009.12.004 10.1016/j.neuroimage.2010.04.241 10.1523/JNEUROSCI.1713-20.2021 10.1016/j.neuroimage.2006.09.019 10.1006/nimg.1998.0419 10.1016/J.TICS.2016.03.014 10.1016/j.mri.2004.10.018 10.1002/hbm.23839 10.1007/s12021-011-9109-y 10.1002/hbm.1038 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2011.04.018 10.1016/J.NEUROIMAGE.2016.09.008 10.1073/pnas.1602413113 10.1006/nimg.1995.1007 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by Wiley Periodicals LLC. 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC. – notice: 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7X7 7XB 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH K9. M0S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1002/hbm.26813 |
DatabaseName | Open Access资源_Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Chemoreception Abstracts ProQuest Central (New) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Ceja et al |
EISSN | 1097-0193 |
EndPage | n/a |
ExternalDocumentID | PMC11345700 39185695 10_1002_hbm_26813 HBM26813 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: European Research Council funderid: 743077 – fundername: European Research Council grantid: 743077 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HMCUK HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO FR3 K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c4043-5a103cbf201f9e6b8746d5275d93cd83ff52d0c334d930a666b619faef485a963 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:32:15 EDT 2025 Thu Jul 10 22:41:09 EDT 2025 Sat Jul 26 02:00:32 EDT 2025 Thu Apr 03 06:57:15 EDT 2025 Tue Jul 01 01:11:18 EDT 2025 Wed Jan 22 17:14:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | spatial smoothing adaptive weights smoothing fMRI cluster failure single‐subject spatial accuracy BOLD |
Language | English |
License | Attribution 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4043-5a103cbf201f9e6b8746d5275d93cd83ff52d0c334d930a666b619faef485a963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0008-0541-9536 0000-0003-1274-9951 0000-0003-1053-9256 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26813 |
PMID | 39185695 |
PQID | 3097949219 |
PQPubID | 996345 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11345700 proquest_miscellaneous_3097151694 proquest_journals_3097949219 pubmed_primary_39185695 crossref_primary_10_1002_hbm_26813 wiley_primary_10_1002_hbm_26813_HBM26813 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 15, 2024 |
PublicationDateYYYYMMDD | 2024-08-15 |
PublicationDate_xml | – month: 08 year: 2024 text: August 15, 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2018; 164 2012; 60 2004; 22 2005; 135 2006; 33 2018; 168 2021; 207 2004; 23 2019; 16 2022; 69 2016; 143 2008; 76 2011; 57 2017; 154 2005; 26 2013; 8 2001; 45 2007; 34 2018; 49 2007; 35 2010; 62 2020; 209 2004; 77 1996; 29 2001 2020; 95 2023; 27 2016; 113 2003; 2 2008; 26 1999; 10 2012; 25 2014; 8 2021; 41 2012; 67 2001; 14 1992; 89 2021; 40 2014; 56 2020; 219 2012; 62 2010; 31 2023; 280 2014; 91 2013; 109 2011 2008; 18 2007 2019; 102 2009; 178 2003 1995; 2 2009; 29 2011; 9 1999; 9 2021; 16 2023; 270 2015; 28 2019; 40 2021; 12 2022 2020 2013; 78 1980; 2 2017; 11 2021; 18 2013; 80 2016; 20 2019 2011; 44 1998; 7 2010; 52 2022; 149 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Liu C.‐S. J. (e_1_2_11_42_1) 2001 e_1_2_11_83_1 Biswas J. (e_1_2_11_8_1) 2007 e_1_2_11_60_1 e_1_2_11_81_1 Penny W. (e_1_2_11_53_1) 2007 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 Worsley K. (e_1_2_11_82_1) 2003; 2 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 16 start-page: 111 issue: 1 year: 2019 end-page: 116 article-title: fMRIPrep: A robust preprocessing pipeline for functional MRI publication-title: Nature Methods – year: 2011 – volume: 49 start-page: 101 year: 2018 end-page: 115 article-title: Cluster‐level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions publication-title: Magnetic Resonance Imaging – volume: 7 start-page: 30 issue: 1 year: 1998 end-page: 40 article-title: Event‐related fMRI: Characterizing differential responses publication-title: NeuroImage – volume: 135 start-page: 335 issue: 3 year: 2005 end-page: 362 article-title: Propagation‐separation approach for local likelihood estimation publication-title: Probability Theory and Related Fields – volume: 62 start-page: 782 issue: 2 year: 2012 end-page: 790 article-title: Fsl publication-title: NeuroImage – volume: 62 start-page: 2222 issue: 4 year: 2012 end-page: 2231 article-title: The Human Connectome Project: A data acquisition perspective publication-title: NeuroImage – volume: 26 start-page: 243 issue: 1 year: 2005 end-page: 250 article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters publication-title: NeuroImage – year: 2001 – volume: 77 start-page: S167 issue: suppl_2 year: 2004 end-page: S175 article-title: Overview of fMRI analysis publication-title: The British Journal of Radiology – volume: 20 start-page: 425 issue: 6 year: 2016 end-page: 443 article-title: Building a science of individual differences from fMRI publication-title: Trends in Cognitive Sciences – volume: 168 start-page: 7 year: 2018 end-page: 32 article-title: Imaging at ultrahigh magnetic fields: History, challenges, and solutions publication-title: NeuroImage – volume: 16 issue: 11 year: 2021 article-title: Temporal SNR optimization through RF coil combination in fMRI: The more, the better? publication-title: PLoS One – volume: 102 start-page: 280 issue: 2 year: 2019 end-page: 293 article-title: Filters: When, why, and how (not) to use them publication-title: Neuron – volume: 113 start-page: 7900 issue: 28 year: 2016 end-page: 7905 article-title: Cluster failure: Why fMRI inferences for spatial extent have inflated false‐positive rates publication-title: Proceedings of the National Academy of Sciences – volume: 34 start-page: 565 issue: 2 year: 2007 end-page: 574 article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration publication-title: NeuroImage – volume: 35 start-page: 881 issue: 2 year: 2007 end-page: 903 article-title: Localization of load sensitivity of working memory storage: Quantitatively and qualitatively discrepant results yielded by single‐subject and group‐averaged approaches to fMRI group analysis publication-title: NeuroImage – volume: 80 start-page: 202 year: 2013 end-page: 219 article-title: Human Connectome Project informatics: Quality control, database services, and data visualization publication-title: NeuroImage – volume: 154 start-page: 128 year: 2017 end-page: 149 article-title: Methods for cleaning the BOLD fMRI signal publication-title: NeuroImage – volume: 67 start-page: 344 issue: 2 year: 2012 end-page: 352 article-title: Temporal SNR characteristics in segmented 3D‐EPI at 7T publication-title: Magnetic Resonance in Medicine – volume: 91 start-page: 412 year: 2014 end-page: 419 article-title: Cluster‐extent based thresholding in fMRI analyses: Pitfalls and recommendations publication-title: NeuroImage – volume: 8 start-page: 715 year: 2014 article-title: Using fMRI non‐local means denoising to uncover activation in sub‐cortical structures at 1.5 T for guided HARDI tractography publication-title: Frontiers in Human Neuroscience – year: 2022 – volume: 23 start-page: S208 year: 2004 end-page: S219 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – volume: 209 year: 2020 article-title: Cluster failure or power failure? Evaluating sensitivity in cluster‐level inference publication-title: NeuroImage – volume: 95 start-page: 1 issue: 6 year: 2020 end-page: 27 article-title: Patch‐wise adaptive weights smoothing in R publication-title: Journal of Statistical Software – volume: 29 start-page: 162 issue: 3 year: 1996 end-page: 173 article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Computers and Biomedical Research – volume: 52 start-page: 515 issue: 2 year: 2010 end-page: 523 article-title: Structural adaptive segmentation for statistical parametric mapping publication-title: NeuroImage – volume: 270 year: 2023 article-title: Evaluating increases in sensitivity from NORDIC for diverse fMRI acquisition strategies publication-title: NeuroImage – volume: 164 start-page: 131 year: 2018 end-page: 143 article-title: Techniques for blood volume fMRI with VASO: From low‐resolution mapping towards sub‐millimeter layer‐dependent applications publication-title: NeuroImage – year: 2019 – volume: 143 start-page: 141 year: 2016 end-page: 151 article-title: Noise contributions to the fMRI signal: An overview publication-title: NeuroImage – volume: 149 start-page: 101 year: 2022 end-page: 122 article-title: Limits of decoding mental states with fMRI publication-title: Cortex – volume: 10 start-page: 530 issue: 5 year: 1999 end-page: 543 article-title: Comparison of filtering methods for fMRI datasets publication-title: NeuroImage – volume: 219 year: 2020 article-title: fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7T publication-title: NeuroImage – volume: 40 start-page: 2052 issue: 7 year: 2019 end-page: 2054 article-title: Analysis of family‐wise error rates in statistical parametric mapping using random field theory publication-title: Human Brain Mapping – volume: 34 start-page: 127 issue: 1 year: 2007 end-page: 136 article-title: Meaningful design and contrast estimability in FMRI publication-title: NeuroImage – volume: 44 start-page: 1 issue: 11 year: 2011 end-page: 21 article-title: Statistical parametric maps for functional MRI experiments in R: The package fMRI publication-title: Journal of Statistical Software – volume: 9 start-page: 381 year: 2011 end-page: 400 article-title: An open source multivariate framework for n‐tissue segmentation with evaluation on public data publication-title: Neuroinformatics – volume: 28 start-page: 485 year: 2015 end-page: 492 article-title: Physiological noise in human cerebellar fMRI publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine – volume: 280 year: 2023 article-title: Comparing the efficacy of data‐driven denoising methods for a multi‐echo fMRI acquisition at 7T publication-title: NeuroImage – volume: 27 start-page: 246 year: 2023 end-page: 257 article-title: Improving the study of brain‐behavior relationships by revisiting basic assumptions publication-title: Trends in Cognitive Sciences – year: 2007 – volume: 25 start-page: 717 issue: 5 year: 2012 end-page: 725 article-title: Spatial location and strength of BOLD activation in high‐spatial‐resolution fMRI of the motor cortex: A comparison of spin echo and gradient echo fMRI at 7 T publication-title: NMR in Biomedicine – year: 2003 – volume: 22 start-page: 1517 issue: 10 year: 2004 end-page: 1531 article-title: On the nature of the BOLD fMRI contrast mechanism publication-title: Magnetic Resonance Imaging – volume: 33 start-page: 55 issue: 1 year: 2006 end-page: 62 article-title: Analyzing fMRI experiments with structural adaptive smoothing procedures publication-title: NeuroImage – volume: 12 start-page: 5181 issue: 1 year: 2021 article-title: Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging publication-title: Nature Communications – volume: 11 start-page: 345 year: 2017 article-title: Commentary: Cluster failure: Why fMRI inferences for spatial extent have inflated false‐positive rates publication-title: Frontiers in Human Neuroscience – volume: 168 start-page: 366 year: 2018 end-page: 382 article-title: The impact of ultra‐high field MRI on cognitive and computational neuroimaging publication-title: NeuroImage – volume: 2 start-page: 45 issue: 1 year: 1995 end-page: 53 article-title: Analysis of fMRI time‐series revisited publication-title: NeuroImage – volume: 56 start-page: 177 year: 2014 end-page: 186 article-title: High‐resolution anatomy of the human brain stem using 7‐T MRI: Improved detection of inner structures and nerves? publication-title: Neuroradiology – volume: 2 start-page: 165 issue: 2 year: 1980 end-page: 168 article-title: Digital image enhancement and noise filtering by use of local statistics publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 207 year: 2021 article-title: Layer‐dependent functional connectivity methods publication-title: Progress in Neurobiology – volume: 26 start-page: 490 issue: 4 year: 2008 end-page: 503 article-title: Effects of spatial smoothing on fMRI group inferences publication-title: Magnetic Resonance Imaging – volume: 8 issue: 11 year: 2013 article-title: On the definition of signal‐to‐noise ratio and contrast‐to‐noise ratio for fMRI data publication-title: PLoS One – volume: 29 start-page: 461 issue: 2 year: 2009 end-page: 465 article-title: 7T head volume coils: Improvements for rostral brain imaging publication-title: Journal of Magnetic Resonance Imaging – volume: 31 start-page: 192 issue: 1 year: 2010 end-page: 203 article-title: Adaptive non‐local means denoising of MR images with spatially varying noise levels publication-title: Journal of Magnetic Resonance Imaging – volume: 109 start-page: 2293 issue: 9 year: 2013 end-page: 2305 article-title: Single‐subject fMRI mapping at 7 T of the representation of fingertips in S1: A comparison of event‐related and phase‐encoding designs publication-title: Journal of Neurophysiology – volume: 57 start-page: 101 issue: 1 year: 2011 end-page: 112 article-title: The impact of physiological noise correction on fMRI at 7 T publication-title: NeuroImage – volume: 78 start-page: 396 issue: 3 year: 2013 end-page: 416 article-title: A survey of the sources of noise in fMRI publication-title: Psychometrika – volume: 89 start-page: 5951 issue: 13 year: 1992 end-page: 5955 article-title: Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 18 year: 2021 article-title: Ultrahigh field and ultrahigh resolution fMRI publication-title: Current Opinion in Biomedical Engineering – volume: 69 start-page: 3377 issue: 11 year: 2022 end-page: 3388 article-title: Denoise functional magnetic resonance imaging with random matrix theory based principal component analysis publication-title: IEEE Transactions on Biomedical Engineering – year: 2020 – volume: 178 start-page: 357 issue: 2 year: 2009 end-page: 365 article-title: High‐resolution fMRI: Overcoming the signal‐to‐noise problem publication-title: Journal of Neuroscience Methods – volume: 60 start-page: 747 issue: 1 year: 2012 end-page: 765 article-title: FMRI group analysis combining effect estimates and their variances publication-title: NeuroImage – volume: 45 start-page: 588 issue: 4 year: 2001 end-page: 594 article-title: Imaging brain function in humans at 7 Tesla publication-title: Magnetic Resonance in Medicine – volume: 41 start-page: 2684 issue: 12 year: 2021 end-page: 2702 article-title: The functional relevance of task‐state functional connectivity publication-title: Journal of Neuroscience – volume: 9 start-page: 416 issue: 4 year: 1999 end-page: 429 article-title: Deconvolution of impulse response in event‐related BOLD fMRI1 publication-title: NeuroImage – volume: 18 start-page: 345 issue: 5–6 year: 2008 end-page: 349 article-title: Artifactual time‐course correlations in echo‐planar fMRI with implications for studies of brain function publication-title: International Journal of Imaging Systems and Technology – volume: 40 start-page: 96 year: 2021 end-page: 104 article-title: High‐resolution fMRI at 7 tesla: Challenges, promises and recent developments for individual‐focused fMRI studies publication-title: Current Opinion in Behavioral Sciences – volume: 2 start-page: 881 year: 2003 end-page: 886 article-title: Developments in random field theory publication-title: Human Brain Function – volume: 168 start-page: 412 year: 2018 end-page: 426 article-title: Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI publication-title: NeuroImage – volume: 76 start-page: 123 year: 2008 end-page: 139 article-title: Nonlocal image and movie denoising publication-title: International Journal of Computer Vision – volume: 14 start-page: 16 issue: 1 year: 2001 end-page: 27 article-title: Multiresolution analysis in fMRI: Sensitivity and specificity in the detection of brain activation publication-title: Human Brain Mapping – volume: 62 start-page: 233 issue: 2 year: 2010 end-page: 244 article-title: How and when the fMRI BOLD signal relates to underlying neural activity: The danger in dissociation publication-title: Brain Research Reviews – ident: e_1_2_11_76_1 doi: 10.1101/2020.12.18.423495 – ident: e_1_2_11_41_1 doi: 10.1109/TPAMI.1980.4766994 – ident: e_1_2_11_62_1 doi: 10.1259/bjr/33553595 – ident: e_1_2_11_3_1 doi: 10.1002/jmri.21660 – ident: e_1_2_11_45_1 doi: 10.1002/jmri.22003 – ident: e_1_2_11_46_1 doi: 10.1016/j.neuroimage.2013.05.077 – ident: e_1_2_11_15_1 doi: 10.1016/j.neuron.2019.02.039 – ident: e_1_2_11_28_1 doi: 10.1007/s00234-013-1312-0 – ident: e_1_2_11_59_1 doi: 10.1016/j.neuroimage.2017.02.052 – ident: e_1_2_11_52_1 doi: 10.1073/PNAS.89.13.5951 – ident: e_1_2_11_49_1 doi: 10.3389/fnhum.2017.00345 – ident: e_1_2_11_72_1 doi: 10.1007/s10334-015-0483-6 – ident: e_1_2_11_81_1 doi: 10.1016/j.neuroimage.2013.12.058 – ident: e_1_2_11_66_1 doi: 10.18637/jss.v044.i11 – ident: e_1_2_11_74_1 doi: 10.1016/j.neuroimage.2012.02.018 – ident: e_1_2_11_34_1 doi: 10.1016/j.neuroimage.2016.11.039 – ident: e_1_2_11_32_1 – ident: e_1_2_11_64_1 doi: 10.18637/jss.v044.i11 – ident: e_1_2_11_5_1 doi: 10.1016/j.neuroimage.2023.120361 – ident: e_1_2_11_67_1 doi: 10.1016/j.neuroimage.2006.06.029 – ident: e_1_2_11_69_1 doi: 10.1016/j.neuroimage.2005.01.007 – ident: e_1_2_11_70_1 doi: 10.1016/J.NEUROIMAGE.2017.07.007 – ident: e_1_2_11_77_1 doi: 10.1038/s41467-021-25431-8 – ident: e_1_2_11_75_1 doi: 10.1016/j.cobeha.2021.01.011 – ident: e_1_2_11_6_1 doi: 10.3389/fnhum.2014.00715 – ident: e_1_2_11_25_1 doi: 10.1006/nimg.1997.0306 – ident: e_1_2_11_13_1 doi: 10.1101/2020.05.12.090175 – ident: e_1_2_11_65_1 doi: 10.1016/j.jneumeth.2008.12.011 – ident: e_1_2_11_16_1 doi: 10.1016/j.neuroimage.2017.03.060 – ident: e_1_2_11_57_1 doi: 10.1007/978-3-030-29184-6 – ident: e_1_2_11_84_1 doi: 10.1109/TBME.2022.3168592 – ident: e_1_2_11_31_1 doi: 10.1002/nbm.1783 – ident: e_1_2_11_47_1 doi: 10.1016/j.mri.2007.08.006 – ident: e_1_2_11_39_1 doi: 10.1002/ima.20166 – ident: e_1_2_11_22_1 doi: 10.1038/s41592-018-0235-4 – ident: e_1_2_11_27_1 doi: 10.1101/2022.06.11.495736 – ident: e_1_2_11_30_1 doi: 10.1007/S11336-012-9294-0 – ident: e_1_2_11_50_1 doi: 10.1016/j.neuroimage.2006.09.032 – ident: e_1_2_11_60_1 doi: 10.1101/2021.03.17.21253439 – ident: e_1_2_11_68_1 – ident: e_1_2_11_56_1 doi: 10.1007/S00440-005-0464-1 – ident: e_1_2_11_79_1 doi: 10.1371/journal.pone.0077089 – ident: e_1_2_11_73_1 doi: 10.1002/mrm.23007 – ident: e_1_2_11_7_1 doi: 10.1152/jn.00499.2012 – ident: e_1_2_11_40_1 doi: 10.1006/nimg.1999.0490 – ident: e_1_2_11_54_1 doi: 10.1017/CBO9780511895029 – ident: e_1_2_11_33_1 doi: 10.1016/j.pneurobio.2020.101835 – ident: e_1_2_11_18_1 doi: 10.1016/j.neuroimage.2023.119949 – ident: e_1_2_11_23_1 doi: 10.1016/j.neuroimage.2006.12.029 – ident: e_1_2_11_80_1 doi: 10.1016/j.tics.2022.12.015 – ident: e_1_2_11_36_1 doi: 10.1016/J.CORTEX.2021.12.015 – ident: e_1_2_11_55_1 doi: 10.18637/jss.v095.i06 – ident: e_1_2_11_63_1 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_11_71_1 doi: 10.1016/j.cobme.2021.100288 – ident: e_1_2_11_9_1 doi: 10.1007/s11263-007-0052-1 – ident: e_1_2_11_48_1 doi: 10.1016/j.neuroimage.2020.116992 – ident: e_1_2_11_83_1 doi: 10.1002/mrm.1080 – ident: e_1_2_11_11_1 doi: 10.1016/j.neuroimage.2011.12.060 – ident: e_1_2_11_37_1 doi: 10.1371/journal.pone.0259592 – ident: e_1_2_11_14_1 doi: 10.1006/cbmr.1996.0014 – ident: e_1_2_11_4_1 doi: 10.1016/j.mri.2018.01.004 – volume-title: Clinical 3 T Magnetic Resonance year: 2007 ident: e_1_2_11_8_1 – ident: e_1_2_11_10_1 doi: 10.1016/j.neuroimage.2016.12.018 – ident: e_1_2_11_51_1 doi: 10.1016/j.neuroimage.2019.116468 – volume-title: Statistical parametric mapping: The analysis of functional brain images year: 2007 ident: e_1_2_11_53_1 – ident: e_1_2_11_21_1 doi: 10.1016/j.brainresrev.2009.12.004 – ident: e_1_2_11_58_1 doi: 10.1016/j.neuroimage.2010.04.241 – ident: e_1_2_11_12_1 doi: 10.1523/JNEUROSCI.1713-20.2021 – ident: e_1_2_11_61_1 doi: 10.1016/j.neuroimage.2006.09.019 – ident: e_1_2_11_29_1 doi: 10.1006/nimg.1998.0419 – ident: e_1_2_11_19_1 doi: 10.1016/J.TICS.2016.03.014 – ident: e_1_2_11_44_1 doi: 10.1016/j.mri.2004.10.018 – ident: e_1_2_11_24_1 doi: 10.1002/hbm.23839 – ident: e_1_2_11_2_1 doi: 10.1007/s12021-011-9109-y – ident: e_1_2_11_17_1 doi: 10.1002/hbm.1038 – ident: e_1_2_11_38_1 doi: 10.1016/j.neuroimage.2011.09.015 – volume: 2 start-page: 881 year: 2003 ident: e_1_2_11_82_1 article-title: Developments in random field theory publication-title: Human Brain Function – ident: e_1_2_11_35_1 doi: 10.1016/j.neuroimage.2011.04.018 – ident: e_1_2_11_43_1 doi: 10.1016/J.NEUROIMAGE.2016.09.008 – ident: e_1_2_11_20_1 doi: 10.1073/pnas.1602413113 – ident: e_1_2_11_26_1 doi: 10.1006/nimg.1995.1007 – ident: e_1_2_11_78_1 – volume-title: Proceedings of the International Society for Magnetic Resonance in Medicine year: 2001 ident: e_1_2_11_42_1 |
SSID | ssj0011501 |
Score | 2.4478912 |
Snippet | Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e26813 |
SubjectTerms | adaptive weights smoothing Adult Blood levels BOLD Brain Brain - diagnostic imaging Brain - physiology Brain mapping Brain Mapping - methods Brain research Cluster Analysis cluster failure Cost analysis Error correction fMRI Functional magnetic resonance imaging Humans Image Processing, Computer-Assisted - methods Inference Magnetic fields Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Neuroimaging Neurosciences Oxygen - blood Sensitivity analysis Signal integrity Signal to noise ratio single‐subject Smoothing spatial accuracy Spatial discrimination Spatial resolution Spatial smoothing Statistical inference Temporal resolution |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD5oBfFFtFWbtspYivgyNplLdgYEqWJZC1tELOxbyEwy7EKbrbvdh771J_gb-0t6ziQbXYq-hcyEJOfM5TuX-Q7AgU9t5EXjubaGKx0cN8pZLoRz2lgtTE2nkUen-fBMnYz1uHO4Lbq0ytWaGBfqaubJR34oU4tDx-IE-3T5i1PVKIqudiU0HsIjoi6jlK7BuDe4COxEgwu3WW5xFV4xC6XicOIuPojcZHJ9P7oHMu_nSv6NYeMmdPwMnnbokR216n4OD-pmE7aOGrScL67ZOxbzOaOjfBMej7qw-RZ8_D7vSumwMPrxjZVNxfz5kjgSbm9-h3JKuels2jBEg2zaH9FijupHvICz468_vwx5VzaBe6LK4brMUuldwK092Dp3ZqDySouBrqz0lZEhaFGlXkqFN9IS7ReHVlQo66CMLnFCvoSNZtbU28CM9ficoLoHlfLClghnrLS6GvjcOVMnsL8SXnHZsmMULQ-yKFDCRZRwAnsrsRbdBFkUf9SZwNu-GYc2xSvKpp4t2z4ZxfFUAq9aLfRvkRaBRm51AmZNP30Hos1eb2mmk0ifnWVSEat_Au-jKv_95cXw8yhe7Pz_F3bhiUCsQ67mTO_BxtV8Wb9GrHLl3sQBeQcDQuZR priority: 102 providerName: ProQuest |
Title | Precision fMRI and cluster‐failure in the individual brain |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26813 https://www.ncbi.nlm.nih.gov/pubmed/39185695 https://www.proquest.com/docview/3097949219 https://www.proquest.com/docview/3097151694 https://pubmed.ncbi.nlm.nih.gov/PMC11345700 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIiEuLbRAU8rKIIS4ZJv4J7EFlxa1WpC2Wq2otAekyHZidUWbVu3uAU48As_IkzB2fmCpkBCXKIptxfFk7G_G428AXtpEBV60OBNKxlw4E0tuVEypMUIqQWXlTyOPT7LRKf8wE7M1eNOdhWn4IXqHm9eMMF97BdfmZv8XaeiZuRjSTIaMtT5WywOiaU8d5YFOMLZwiY0VzsAdq1BC9_uWq2vRLYB5O07yd_waFqDjTfjUdb2JO_k8XC7M0H79g9XxP7_tAWy0wJQcNH_SQ1ir6i3YPqjRKL_4Ql6RECoafPBbcG_c7shvw9vJdZulh7jx9D3RdUns-dLTL_z49t3puQ97J_OaINAk8_70FzE-NcUjOD0--vhuFLcZGWLrWXhiodOEWeMQNThVZUbmPCsFzUWpmC0lc07QMrGMcXyQaDSNDBpoTleOS6FR1x_Den1ZVztApLLYjvqUCiW3VGlESoopUeY2M0ZWEbzoZFNcNcQbRUOxTAscniIMTwR7ndSKVvduCpYonGQUTsURPO-LUWv8Voiuq8tlUyf1W4Q8gieNkPu3MIUYJlMiArki_r6CZ-ReLannZ4GZO00Z9wkDIngdxPv3nhejw3G42f33qk_hPkVI5T3aqdiD9cX1snqGkGhhBnCH8gle81k-gLuHRyeT6SC4FwZBK34CQ3YKjA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrQR9QdByhBYwCBAvoYmPrC2BUAutdmmzqqpW6luIHUddqc32WqG-8RP4Jf1R_SWMnQNWFbz1LUqcaw7PN57xDMAbEylfFy1MhJIhF6UOJdcqpFRrIZWg0rrdyOkoGezzbwfiYA6u2r0wLq2ynRP9RF1MjFsjX2WRQtFRqGCfT05D1zXKRVfbFhq1WGzZyx_osp1_Gn5F_r6ldHNj78sgbLoKhMZVkglFHkfM6BItX6lsomWfJ4WgfVEoZgrJylLQIjKMcTwR5QjvNToZZW5LLkWO8orPvQPznKEr04P59Y3Rzm4Xt0B45V08NOyhwnm_rWUU0dVDffyBJjJmsxbwBqy9mZ35N2r2Zm_zAdxv8CpZqwXsIczZahGW1ir01Y8vyTviM0j90vwi3E2bQP0SfNw5a5r3kDLdHZK8Kog5mrqqDNc_f5X52GXDk3FFEH-ScbcpjGjXseIR7N8KSR9Dr5pU9ikQqQzeR12nhYIbqnIEUIopUfRNorW0AbxuiZed1PU4srryMs2QwpmncAArLVmzRiXPsz8CFMCr7jIqk4uQ5JWdTOsxsYsc8gCe1Fzo3sIUQptEiQDkDH-6Aa5Q9-yVanzoC3bHMeOuj0AA7z0r__3l2WA99QfP_v8LL-HeYC_dzraHo61lWKCItNxCdyxWoHdxNrXPESld6BeNeBL4ftsa8Ru9gyOV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcELQ8AgUMAsTF3cSPxJZAqFBWu5StKkSlvYXYidWVaLa0XaHe-An8Hn4Ov4Sx84BVBbfeosR5zcPzjWc8A_DUxjrURaOp1IoK6QxVwmjKmDFSaclU5XcjT_bS0YF4P5XTFfjZ7YXxaZXdnBgm6nJu_Rr5gMcaRUejgg1cmxaxvzN8ffyV-g5SPtLatdNoRGS3Ov-G7tvpq_EO8voZY8N3n96OaNthgFpfVYbKIom5NQ6toNNValQm0lKyTJaa21Jx5yQrY8u5wBNxgVDfoMPhisoJJQuUXXzuFbiacZl4HcumvbPngVZw9tDEU40WoKtqFLPBoTnaYqlK-LItvABwL-Zp_o2fgwEc3oDrLXIl242o3YSVql6Hje0avfajc_KchFzSsEi_DmuTNmS_AS_3T9o2PsRNPo5JUZfEfln4-gy_vv9wxcznxZNZTRCJklm_PYwY37viFhxcCkFvw2o9r6u7QJS2eB_zPRdKYZkuEEpprmWZ2dQYVUXwpCNeftxU5sibGswsRwrngcIRbHZkzVvlPM3_iFIEj_vLqFY-VlLU1XzRjEl8DFFEcKfhQv8WrhHkpFpGoJb40w_wJbuXr9Szw1C6O0m48B0FIngRWPnvL89Hbybh4N7_f-ERrKEe5B_Ge7v34RpDyOVXvBO5CatnJ4vqAUKmM_MwyCaBz5etDL8BPikmZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+fMRI+and+cluster-failure+in+the+individual+brain&rft.jtitle=Human+brain+mapping&rft.au=Ceja%2C+Igor+Fabian+Tellez&rft.au=Gladytz%2C+Thomas&rft.au=Starke%2C+Ludger&rft.au=Tabelow%2C+Karsten&rft.date=2024-08-15&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=45&rft.issue=12&rft.spage=e26813&rft_id=info:doi/10.1002%2Fhbm.26813&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |