Investigating the biochar effects on C‐mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach

Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendme...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology. Bioenergy Vol. 9; no. 6; pp. 1085 - 1099
Main Authors Yousaf, Balal, Liu, Guijian, Wang, Ruwei, Abbas, Qumber, Imtiaz, Muhammad, Liu, Ruijia
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons, Inc 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐CO2–C g−1‐C compared to the control (0.24–1.86 mg‐CO2–C g−1‐C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (−10.22 to −23.56 mg‐CO2–C g−1‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐CO2–C g−1‐soil‐C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC‐C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g−1‐soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles. Biochar reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C in biochar.
AbstractList Abstract Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar ( BC ) priming relative to conventional biowaste ( BW ) amendments remains uncertain. Here, we used a stable carbon isotope ( δ 13 C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐ CO 2 –C g −1 ‐C compared to the control (0.24–1.86 mg‐ CO 2 –C g −1 ‐C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (−10.22 to −23.56 mg‐ CO 2 –C g −1 ‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐ CO 2 –C g −1 ‐soil‐C). Furthermore, according to the residual carbon and δ 13 C signature of postexperimental soil carbon, BC ‐C significantly increased ( P  < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO 2 –C emissions, relative priming effects, and carbon storage indicate that BC reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g −1 ‐soil) in BC , the reduced microbial activity, and the sorption of labile organic carbon ( OC ) onto BC particles.
Biomass-derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long-term C-sequestration in soil and to influence C-mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C-mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C-mineralization, causing a loss of 0.14–7.17 mg-CO2–C g−1-C compared to the control (0.24–1.86 mg-CO2–C g−1-C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (−10.22 to −23.56 mg-CO2–C g−1-soil-C); however, it was trivially positive relative to that of the control (8.64 mg-CO2–C g−1-soil-C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC-C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C-mineralization, resulting in greater C-sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant-C (4.92 mg-C g−1-soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles.
Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐CO2–C g−1‐C compared to the control (0.24–1.86 mg‐CO2–C g−1‐C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (−10.22 to −23.56 mg‐CO2–C g−1‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐CO2–C g−1‐soil‐C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC‐C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g−1‐soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles. Biochar reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C in biochar.
Author Yousaf, Balal
Imtiaz, Muhammad
Wang, Ruwei
Liu, Guijian
Liu, Ruijia
Abbas, Qumber
Author_xml – sequence: 1
  givenname: Balal
  surname: Yousaf
  fullname: Yousaf, Balal
  organization: The Chinese Academy of Sciences
– sequence: 2
  givenname: Guijian
  surname: Liu
  fullname: Liu, Guijian
  email: lgj@ustc.edu.cn
  organization: The Chinese Academy of Sciences
– sequence: 3
  givenname: Ruwei
  surname: Wang
  fullname: Wang, Ruwei
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Qumber
  surname: Abbas
  fullname: Abbas, Qumber
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Muhammad
  surname: Imtiaz
  fullname: Imtiaz, Muhammad
  organization: Huazhong Agricultural University
– sequence: 6
  givenname: Ruijia
  surname: Liu
  fullname: Liu, Ruijia
  organization: University of Science and Technology of China
BookMark eNp9kc9KAzEQxoNUUKsXnyDgRYXWZLN_j7poLQhe9LzMppM2sk3WZKvoyUfwPbz6HD6ET2Lq2quBIZPhN_Nl-PbIwFiDhBxyNubhnM1lXY95FDO-RXZ5lmQjnrFssMnTQuyQPe8fGEuTlBe75GNqntB3eg6dNnPaLZDW2soFOIpKoew8tYaW32_vS23QQaNfAxlKYGbU4-MqNLu-YhWV4OqQaUO91Q2VdtmCwxl91t0ivIKUWaPQUFiimYUI81d-o-w7qBuk2tvOtkiPvz65KE8otK2zIBf7ZFtB4_Hg7x6S-6vLu_J6dHM7mZbnNyMZs5iPYl5gpDKBiYrzVDKVYJIhS0AUeRFFaiaB8zTKYiWjKAUeFwLyOlOC1QwBCjEkR_3cIPu7YPVgVy782lc8L1LBRB6ngTrtKems9w5V1Tq9BPdScVatzajWZlS_ZgSY9_CzbvDlH7KalBcXfc8PSeySxA
CitedBy_id crossref_primary_10_3390_agronomy8110256
crossref_primary_10_3390_agronomy11020336
crossref_primary_10_1016_j_catena_2020_104618
crossref_primary_10_3390_w13121615
crossref_primary_10_1016_j_jenvman_2023_119018
crossref_primary_10_1016_j_jaap_2018_06_018
crossref_primary_10_1016_j_envres_2023_116131
crossref_primary_10_1016_j_jclepro_2018_05_034
crossref_primary_10_1007_s11368_017_1899_6
crossref_primary_10_1111_sum_13075
crossref_primary_10_1016_j_cej_2024_148970
crossref_primary_10_1007_s10661_023_11561_7
crossref_primary_10_1002_ghg_1890
crossref_primary_10_1016_j_catena_2022_106603
crossref_primary_10_1016_j_still_2024_106051
crossref_primary_10_1016_j_uclim_2018_10_003
crossref_primary_10_1038_s41598_024_59352_5
crossref_primary_10_1016_j_jclepro_2019_118409
crossref_primary_10_1093_jxb_erz301
crossref_primary_10_3934_environsci_2017_6_743
crossref_primary_10_1002_jeq2_20504
crossref_primary_10_1016_j_jclepro_2018_07_272
crossref_primary_10_1111_gcb_17349
crossref_primary_10_1016_j_geoderma_2020_114184
crossref_primary_10_1016_j_scitotenv_2019_134773
crossref_primary_10_1016_j_renene_2020_03_113
crossref_primary_10_1016_j_fuel_2021_121762
crossref_primary_10_1016_j_still_2019_104477
crossref_primary_10_3390_agronomy13051316
crossref_primary_10_1016_j_still_2021_104982
crossref_primary_10_2139_ssrn_4160571
crossref_primary_10_1007_s11368_019_02547_5
crossref_primary_10_1016_j_geoderma_2021_115536
crossref_primary_10_1016_j_seppur_2023_124595
crossref_primary_10_1016_j_ecoenv_2020_110181
crossref_primary_10_1016_S1002_0160_21_60003_6
crossref_primary_10_1007_s10661_019_7956_4
crossref_primary_10_1007_s42729_023_01498_8
crossref_primary_10_1016_S1002_0160_21_60087_5
crossref_primary_10_1016_j_compag_2023_107859
crossref_primary_10_1002_ldr_2821
crossref_primary_10_1016_j_oneear_2020_12_006
crossref_primary_10_1016_j_chemosphere_2018_04_057
crossref_primary_10_1016_j_geothermics_2021_102338
crossref_primary_10_1016_j_ijbiomac_2024_132075
crossref_primary_10_1016_j_jece_2023_110009
crossref_primary_10_1016_j_biortech_2020_124541
crossref_primary_10_1007_s11368_020_02745_6
crossref_primary_10_1002_saj2_20081
crossref_primary_10_1016_j_envpol_2019_113887
crossref_primary_10_1016_j_jhazmat_2021_126131
crossref_primary_10_1016_j_chemosphere_2021_130350
crossref_primary_10_5433_1679_0359_2019v40n4p1405
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_1007_s42965_020_00100_x
crossref_primary_10_1016_j_jenvman_2023_119586
crossref_primary_10_3390_agronomy12010197
crossref_primary_10_1016_j_envres_2024_118645
crossref_primary_10_1016_j_jenvman_2023_118092
crossref_primary_10_3390_jox14010026
crossref_primary_10_3390_molecules24091798
crossref_primary_10_1111_gcbb_12644
crossref_primary_10_3390_w15193387
crossref_primary_10_1111_gcbb_12763
crossref_primary_10_1016_j_plaphy_2024_108704
crossref_primary_10_1038_s41598_017_01173_w
crossref_primary_10_1021_acsearthspacechem_1c00041
crossref_primary_10_1016_j_scitotenv_2021_151337
crossref_primary_10_1080_03650340_2021_1892651
Cites_doi 10.1016/j.catena.2013.06.021
10.1038/nclimate2869
10.1007/s11368-011-0467-8
10.1038/298156a0
10.1016/j.apsoil.2011.07.012
10.2134/jeq2012.0460
10.1111/gcbb.12219
10.1016/j.geoderma.2014.09.002
10.1016/j.ecoenv.2012.10.031
10.1007/s00374-009-0416-5
10.1038/nature17174
10.2134/jeq2011.0456
10.1007/s10584-006-9173-8
10.1016/j.soilbio.2011.02.005
10.1111/j.1365-2389.1996.tb01386.x
10.1038/srep16000
10.1007/s12155-014-9574-x
10.1016/j.scitotenv.2013.03.090
10.1016/j.jhazmat.2012.03.055
10.1016/j.scitotenv.2006.06.007
10.1080/03650340.2013.789870
10.1016/j.geoderma.2013.06.016
10.1038/nature10386
10.4324/9780203762264
10.1016/j.soilbio.2014.04.029
10.1007/s00374-015-1047-7
10.1016/j.agee.2014.01.007
10.1007/s13593-012-0128-3
10.1111/gcbb.12137
10.1038/nature04448
10.1890/13-2126.1
10.1371/journal.pone.0084849
10.1016/j.chemosphere.2013.06.004
10.1016/j.scitotenv.2014.03.141
10.1016/j.soilbio.2012.10.035
10.1128/AEM.67.7.3046-3052.2001
10.1007/s11027-005-9006-5
10.1038/ncomms1053
10.1126/science.1103934
10.1111/j.1461-0248.2004.00579.x
10.1016/j.catena.2014.07.005
10.1016/S0038-0717(96)00302-1
10.1016/j.envint.2014.03.017
10.1038/srep03687
10.1002/wcc.75
10.1016/j.chemosphere.2012.11.021
10.1371/journal.pone.0113888
10.1080/00103629709369827
10.1016/0038-0717(93)90186-F
10.1016/S0269-7491(02)00287-7
10.1186/2251-6832-3-32
10.1016/0038-0717(87)90052-6
10.1016/j.jenvman.2014.09.033
10.1038/nature14093
10.1111/j.1475-2743.1997.tb00594.x
10.1016/j.chemosphere.2015.04.087
10.1016/j.chemosphere.2012.12.057
10.1021/es202186j
10.1371/journal.pone.0138781
10.1126/science.1106663
10.1016/j.soilbio.2011.04.022
10.1126/science.1154960
10.1016/j.envpol.2009.07.027
10.5194/npg-21-439-2014
10.1038/417279a
10.1007/s12665-016-5285-2
10.1016/S0167-8809(98)00097-8
10.1038/nclimate3036
10.1029/2006GB002798
10.1016/j.soilbio.2011.07.020
10.1038/nclimate2578
10.1038/srep25127
10.1038/nclimate2572
10.1038/30661
10.1021/es302545b
10.1002/jpln.201300590
10.1111/gcbb.12234
10.1016/S0038-0717(00)00151-6
10.2136/sssaj2008.0193
ContentType Journal Article
Copyright 2016 The Authors. Published by John Wiley & Sons Ltd.
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016 The Authors. Published by John Wiley & Sons Ltd.
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
3V.
7SN
7ST
7U6
7XB
8FE
8FG
8FH
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
KB.
LK8
M2O
M7P
MBDVC
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1111/gcbb.12401
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library Journals
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Materials Science Database
Biological Sciences
Research Library (ProQuest)
Biological Science Database
Research Library (Corporate)
Materials Science Collection
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
Sustainability Science Abstracts
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1757-1707
EndPage 1099
ExternalDocumentID 10_1111_gcbb_12401
GCBB12401
Genre article
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2014CB238903
– fundername: National Natural Science Foundation of China
  funderid: 41373110
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8G5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABJCF
ABPVW
ABUWG
ACBWZ
ACCFJ
ACIWK
ACPRK
ACSCC
ACXQS
ADBBV
ADIZJ
ADKYN
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
AZQEC
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CAG
CCPQU
COF
D-E
D-F
D1I
DPXWK
DR2
DU5
DWQXO
EBD
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IGS
IHR
J0M
KB.
KQ8
L8X
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M2O
M7P
MK4
M~E
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2X
P4D
PDBOC
PIMPY
PQQKQ
PROAC
Q.N
Q11
QB0
R.K
ROL
RWI
RX1
SUPJJ
TEORI
TUS
UB1
W8V
W99
WIH
WIN
WNSPC
WQJ
WRC
XG1
XV2
~IA
~WT
AAYXX
CITATION
ITC
3V.
7SN
7ST
7U6
7XB
8FK
C1K
MBDVC
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c4041-419e2f73e5f486c0f5e57e05a398922fdca116274fc226a1493a8b7f30b0eaa93
IEDL.DBID DR2
ISSN 1757-1693
IngestDate Thu Oct 10 17:05:43 EDT 2024
Thu Sep 26 17:19:28 EDT 2024
Sat Aug 24 00:59:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4041-419e2f73e5f486c0f5e57e05a398922fdca116274fc226a1493a8b7f30b0eaa93
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12401
PQID 1896303846
PQPubID 866396
PageCount 15
ParticipantIDs proquest_journals_1896303846
crossref_primary_10_1111_gcbb_12401
wiley_primary_10_1111_gcbb_12401_GCBB12401
PublicationCentury 2000
PublicationDate June 2017
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology. Bioenergy
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2011; 478
1993; 25
2013; 209–210
2015; 149
2004; 7
2016; 75
2014; 68
2006; 370
2013; 8
2014; 177
2012; 12
2014; 60
1998; 393
2016; 142
2013; 9
2014; 21
2013; 58
2014; 4
2010; 1
2010; 158
1997; 13
1982; 298
2005; 307
2013; 110
2014; 9
2007; 21
2003; 122
2014; 123
2014; 487
2006; 439
2015; 5
2013; 88
2006; 11
2013; 42
2015; 10
1998
1997; 29
2013; 90
2014; 191
1997; 28
2016; 52
1996
2013; 93
2013; 465
1995
1992
2002; 417
2001; 67
2008; 320
2015; 8
1987; 19
2015; 7
1998; 69
2016; 6
2015; 25
2009; 73
2012; 3
2010; 46
2013; 33
2015; 237
2011; 50
2007; 80
2015; 517
2011; 43
2016
2011; 45
2015
2016; 532
1996; 47
2001; 33
2012; 46
2012; 217–218
1967
2014; 76
2012; 41
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
Czimczik CI (e_1_2_6_10_1) 2007; 21
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
Karlen DL (e_1_2_6_28_1) 1996
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
Jackson ML (e_1_2_6_24_1) 1967
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Schlesinger WH (e_1_2_6_60_1) 1995
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Li X (e_1_2_6_35_1) 2013; 8
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 28
  start-page: 747
  year: 1997
  end-page: 757
  article-title: Continuous flow isotope ratio mass spectrometry of carbon dioxide trapped as strontium carbonate
  publication-title: Communications in Soil Science & Plant Analysis
– volume: 3
  start-page: 32
  year: 2012
  article-title: Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: a review
  publication-title: International Journal of Energy and Environmental Engineering
– volume: 7
  start-page: 1150
  year: 2015
  end-page: 1160
  article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices
  publication-title: GCB Bioenergy
– start-page: 235
  year: 2015
  end-page: 282
– volume: 11
  start-page: 403
  year: 2006
  end-page: 427
  article-title: Bio‐char sequestration in terrestrial ecosystems – a review
  publication-title: Mitigation and Adaptation Strategies for Global Change
– volume: 21
  start-page: 439
  year: 2014
  end-page: 450
  article-title: Application of multifractal analysis to the study of SAR features and oil spills on the ocean surface
  publication-title: Nonlinear Processes in Geophysics
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  article-title: Biochar effects on soil biota – a review
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 1
  year: 2015
  end-page: 19
  article-title: Effect of soil pH Increase by biochar on NO, N O and N production during denitrification in acid soils
  publication-title: PLoS One
– volume: 43
  start-page: 2304
  year: 2011
  end-page: 2314
  article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH
  publication-title: Soil Biology and Biochemistry
– volume: 532
  start-page: 49
  year: 2016
  end-page: 57
  article-title: Climate‐smart soils
  publication-title: Nature
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 1
  start-page: 56
  year: 2010
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nature Communications
– volume: 393
  start-page: 325
  year: 1998
  end-page: 332
  article-title: Global warming and the stability of the West Antarctic Ice Sheet
  publication-title: Nature
– volume: 149
  start-page: 9
  year: 2015
  end-page: 16
  article-title: Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil
  publication-title: Journal of Environmental Management
– volume: 417
  start-page: 279
  year: 2002
  end-page: 282
  article-title: Nonlinear grassland responses to past and future atmospheric CO
  publication-title: Nature
– volume: 158
  start-page: 148
  year: 2010
  end-page: 154
  article-title: Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils
  publication-title: Environmental Pollution
– volume: 76
  start-page: 12
  year: 2014
  end-page: 21
  article-title: Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect
  publication-title: Soil Biology and Biochemistry
– volume: 33
  start-page: 475
  year: 2013
  end-page: 484
  article-title: Enhanced wheat yield by biochar addition under different mineral fertilization levels
  publication-title: Agronomy for Sustainable Development
– volume: 21
  start-page: 1
  year: 2007
  end-page: 8
  article-title: Controls on black carbon storage in soils
  publication-title: Global Biogeochemical Cycles
– volume: 439
  start-page: 311
  year: 2006
  end-page: 313
  article-title: Low sea level rise projections from mountain glaciers and icecaps under global warming
  publication-title: Nature
– volume: 298
  start-page: 156
  year: 1982
  end-page: 159
  article-title: Soil carbon pool and life zones
  publication-title: Nature
– start-page: 395
  year: 1996
  end-page: 420
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  article-title: An extraction method for measuring microbial biomass C
  publication-title: Soil Biology and Biochemistry
– year: 1998
– volume: 9
  start-page: 1
  year: 2014
  end-page: 19
  article-title: Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate
  publication-title: PLoS One
– volume: 177
  start-page: 681
  year: 2014
  end-page: 695
  article-title: Farmer‐led maize biochar trials: effect on crop yield and soil nutrients under conservation farming
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 25
  start-page: 1803
  year: 1993
  end-page: 1805
  article-title: Release of ninhydrin‐reactive compounds during fumigation of soil to estimate microbial C and N
  publication-title: Soil Biology and Biochemistry
– volume: 307
  start-page: 1769
  year: 2005
  end-page: 1772
  article-title: How much more global warming and sea level rise?
  publication-title: Science
– volume: 25
  start-page: 531
  year: 2015
  end-page: 545
  article-title: Long‐term climate change mitigation potential with organic matter management on grasslands
  publication-title: Ecological Applications
– volume: 47
  start-page: 151
  year: 1996
  end-page: 163
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: European Journal of Soil Science
– volume: 217–218
  start-page: 391
  year: 2012
  end-page: 397
  article-title: Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar
  publication-title: Journal of Hazardous Materials
– volume: 50
  start-page: 45
  year: 2011
  end-page: 51
  article-title: Microbial mineralization of biochar and wheat straw mixture in soil: a short‐term study
  publication-title: Applied Soil Ecology
– volume: 8
  start-page: 1
  year: 2013
  end-page: 9
  article-title: Long‐term effect of manure and fertilizer on soil organic carbon pools in dryland farming in northwest China
  publication-title: PLoS One
– volume: 60
  start-page: 393
  year: 2014
  end-page: 404
  article-title: Effect of biochar on chemical properties of acidic soil
  publication-title: Archives of Agronomy and Soil Science
– volume: 110
  start-page: 225
  year: 2013
  end-page: 233
  article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil
  publication-title: Catena
– volume: 75
  start-page: 1
  year: 2016
  end-page: 10
  article-title: Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system
  publication-title: Environmental Earth Sciences
– volume: 7
  start-page: 1294
  year: 2015
  end-page: 1304
  article-title: Emission of CO from biochar‐amended soils and implications for soil organic carbon
  publication-title: GCB Bioenergy
– volume: 4
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Long‐term influence of biochar on native organic carbon mineralisation in a low‐carbon clayey soil
  publication-title: Scientific Reports
– volume: 68
  start-page: 154
  year: 2014
  end-page: 161
  article-title: Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China
  publication-title: Environment International
– volume: 6
  start-page: 851
  year: 2016
  end-page: 855
  article-title: The climate response to five trillion tonnes of carbon
  publication-title: Nature Climate Change
– volume: 5
  start-page: 1
  year: 2015
  end-page: 11
  article-title: Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14 C‐catechol and microbial community in soil
  publication-title: Scientific Reports
– volume: 142
  start-page: 100
  year: 2016
  end-page: 105
  article-title: Biochar amendment to soil changes dissolved organic matter content and composition
  publication-title: Chemosphere
– volume: 191
  start-page: 108
  year: 2014
  end-page: 116
  article-title: Short‐term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand
  publication-title: Agriculture, Ecosystems & Environment
– volume: 42
  start-page: 925
  year: 2013
  end-page: 930
  article-title: Improved florescence excitation‐emission matrix regional integration to quantify spectra for florescent dissolved organic matter
  publication-title: Journal of Environmental Quality
– volume: 52
  start-page: 1
  year: 2016
  end-page: 14
  article-title: Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long‐term biochar‐amended soil incubations
  publication-title: Biology and Fertility of Soils
– volume: 88
  start-page: 9
  year: 2013
  end-page: 15
  article-title: High concentrations of single‐walled carbon nanotubes lower soil enzyme activity and microbial biomass
  publication-title: Ecotoxicology and Environmental Safety
– volume: 9
  start-page: 1612
  year: 2013
  end-page: 1619
  article-title: The sorption and desorption of phosphate‐P, ammonium‐N and nitrate‐N in cacao shell and corn cob biochars
  publication-title: Chemosphere
– volume: 67
  start-page: 3046
  year: 2001
  end-page: 3052
  article-title: Effects of rice seed surface sterilization with hypochlorite on inoculated
  publication-title: Applied and Environmental Microbiology
– start-page: 9
  year: 1995
  end-page: 27
– volume: 80
  start-page: 25
  year: 2007
  end-page: 41
  article-title: Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity
  publication-title: Climatic Change
– volume: 46
  start-page: 159
  year: 2010
  end-page: 167
  article-title: Does long‐term farmyard manure fertilization affect short‐term nitrogen mineralization from farmyard manure?
  publication-title: Biology and Fertility of Soils
– volume: 46
  start-page: 11770
  year: 2012
  end-page: 11778
  article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
  publication-title: Environmental Science & Technology
– volume: 320
  start-page: 629
  year: 2008
  article-title: Fire‐derived charcoal causes loss of forest humus
  publication-title: Science
– volume: 12
  start-page: 457
  year: 2012
  end-page: 470
  article-title: Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China
  publication-title: Journal of Soils and Sediments
– volume: 5
  start-page: 1022
  year: 2015
  end-page: 1023
  article-title: A role for tropical forests in stabilizing atmospheric CO
  publication-title: Nature Climate Change
– volume: 8
  start-page: 1
  year: 2013
  end-page: 7
  article-title: Functional groups determine biochar properties (pH and EC) as studied by two‐dimensional C NMR correlation spectroscopy
  publication-title: PLoS One
– volume: 7
  start-page: 314
  year: 2004
  end-page: 320
  article-title: Carbon input to soil may decrease soil carbon content
  publication-title: Ecology Letters
– volume: 73
  start-page: 622
  year: 2009
  end-page: 629
  article-title: Rebuilding soil organic matter contents in sandy Coastal Plain soils using conservation tillage management systems
  publication-title: Soil Science Society of American Journal
– volume: 5
  start-page: 419
  year: 2015
  end-page: 423
  article-title: Fossil fuels in a trillion tonne world
  publication-title: Nature Climate Change
– volume: 307
  start-page: 1766
  year: 2005
  end-page: 1769
  article-title: The climate change commitment
  publication-title: Science
– volume: 209–210
  start-page: 188
  year: 2013
  end-page: 197
  article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol
  publication-title: Geoderma
– volume: 123
  start-page: 45
  year: 2014
  end-page: 51
  article-title: Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil
  publication-title: Catena
– volume: 237
  start-page: 149
  year: 2015
  end-page: 158
  article-title: Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India
  publication-title: Geoderma
– year: 2016
– volume: 41
  start-page: 1337
  year: 2012
  end-page: 1347
  article-title: Carbon and nitrogen stocks and nitrogen mineralization in organically managed soils amended with composted manures
  publication-title: Journal of Environmental Quality
– year: 1992
– volume: 33
  start-page: 365
  year: 2001
  end-page: 373
  article-title: Contrasting effects of elevated CO on old and new soil carbon pools
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 230
  year: 1997
  end-page: 244
  article-title: Agricultural soil as a C sink to offset CO emissions
  publication-title: Soil Use Manage
– volume: 5
  start-page: 519
  year: 2015
  end-page: 538
  article-title: Energy system transformations for limiting end‐of‐century warming to below 1.5 °C
  publication-title: Nature Climate Change
– volume: 6
  start-page: 1
  year: 2016
  end-page: 13
  article-title: Biochar affects carbon composition and stability in soil: a combined spectroscopy‐microscopy study
  publication-title: Scientific Reports
– volume: 7
  start-page: 349
  year: 2015
  end-page: 361
  article-title: Pyrolysis biochar systems, balance between bioenergy and carbon sequestration
  publication-title: GCB Bioenergy
– volume: 90
  start-page: 2623
  year: 2013
  end-page: 2630
  article-title: Effect of pH on surface characteristics of switchgrass‐derived biochars produced by fast pyrolysis
  publication-title: Chemosphere
– volume: 58
  start-page: 99
  year: 2013
  end-page: 106
  article-title: Biochar addition indirectly affects N O emissions via soil moisture and plant N uptake
  publication-title: Soil Biology and Biochemistry
– year: 1967
– volume: 69
  start-page: 113
  year: 1998
  end-page: 119
  article-title: Adsorption on soil of dissolved organic carbon from farmyard manure
  publication-title: Agriculture, Ecosystems & Environment
– volume: 45
  start-page: 9611
  year: 2011
  end-page: 9618
  article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite‐rich soil
  publication-title: Environmental Science & Technology
– volume: 487
  start-page: 26
  year: 2014
  end-page: 36
  article-title: Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil
  publication-title: Science of the Total Environment
– volume: 29
  start-page: 115
  year: 1997
  end-page: 122
  article-title: Carbon substrate mineralization and sulphur limitation
  publication-title: Soil Biology and Biochemistry
– volume: 517
  start-page: 481
  year: 2015
  end-page: 484
  article-title: Probabilistic reanalysis of twentieth‐century sea‐level rise
  publication-title: Nature
– volume: 370
  start-page: 190
  year: 2006
  end-page: 206
  article-title: Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems
  publication-title: Science of the Total Environment
– volume: 465
  start-page: 288
  year: 2013
  end-page: 297
  article-title: Microbial utilisation of biochar‐derived carbon
  publication-title: Science of the Total Environment
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar‐amended soils
  publication-title: Soil Biology and Biochemistry
– volume: 93
  start-page: 668
  year: 2013
  end-page: 676
  article-title: Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil
  publication-title: Chemosphere
– volume: 122
  start-page: 303
  year: 2003
  end-page: 312
  article-title: The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils
  publication-title: Environmental Pollution
– volume: 8
  start-page: 1183
  year: 2015
  end-page: 1196
  article-title: Effects of biochar on yield, nutrient recovery, and soil properties in a canola ( L)‐wheat ( L) rotation grown under controlled environmental conditions
  publication-title: BioEnergy Research
– volume: 1
  start-page: 786
  year: 2010
  end-page: 802
  article-title: The physical concept of climate forcing
  publication-title: Wiley Interdisciplinary Reviews: Climate Change
– ident: e_1_2_6_26_1
  doi: 10.1016/j.catena.2013.06.021
– ident: e_1_2_6_23_1
– ident: e_1_2_6_76_1
– ident: e_1_2_6_22_1
  doi: 10.1038/nclimate2869
– ident: e_1_2_6_86_1
  doi: 10.1007/s11368-011-0467-8
– ident: e_1_2_6_52_1
  doi: 10.1038/298156a0
– ident: e_1_2_6_85_1
  doi: 10.1016/j.apsoil.2011.07.012
– ident: e_1_2_6_87_1
  doi: 10.2134/jeq2012.0460
– ident: e_1_2_6_78_1
  doi: 10.1111/gcbb.12219
– ident: e_1_2_6_5_1
  doi: 10.1016/j.geoderma.2014.09.002
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ecoenv.2012.10.031
– ident: e_1_2_6_46_1
  doi: 10.1007/s00374-009-0416-5
– ident: e_1_2_6_51_1
  doi: 10.1038/nature17174
– ident: e_1_2_6_56_1
  doi: 10.2134/jeq2011.0456
– ident: e_1_2_6_75_1
– ident: e_1_2_6_81_1
  doi: 10.1007/s10584-006-9173-8
– ident: e_1_2_6_88_1
  doi: 10.1016/j.soilbio.2011.02.005
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1365-2389.1996.tb01386.x
– ident: e_1_2_6_63_1
  doi: 10.1038/srep16000
– ident: e_1_2_6_2_1
  doi: 10.1007/s12155-014-9574-x
– ident: e_1_2_6_12_1
  doi: 10.1016/j.scitotenv.2013.03.090
– ident: e_1_2_6_68_1
  doi: 10.1016/j.jhazmat.2012.03.055
– ident: e_1_2_6_14_1
  doi: 10.1016/j.scitotenv.2006.06.007
– ident: e_1_2_6_8_1
  doi: 10.1080/03650340.2013.789870
– ident: e_1_2_6_20_1
  doi: 10.1016/j.geoderma.2013.06.016
– ident: e_1_2_6_61_1
  doi: 10.1038/nature10386
– ident: e_1_2_6_34_1
  doi: 10.4324/9780203762264
– ident: e_1_2_6_39_1
  doi: 10.1016/j.soilbio.2014.04.029
– ident: e_1_2_6_25_1
  doi: 10.1007/s00374-015-1047-7
– ident: e_1_2_6_72_1
  doi: 10.1016/j.agee.2014.01.007
– ident: e_1_2_6_3_1
  doi: 10.1007/s13593-012-0128-3
– ident: e_1_2_6_9_1
  doi: 10.1111/gcbb.12137
– ident: e_1_2_6_53_1
  doi: 10.1038/nature04448
– ident: e_1_2_6_66_1
– ident: e_1_2_6_57_1
  doi: 10.1890/13-2126.1
– ident: e_1_2_6_37_1
  doi: 10.1371/journal.pone.0084849
– start-page: 9
  volume-title: Soils and Global Change
  year: 1995
  ident: e_1_2_6_60_1
  contributor:
    fullname: Schlesinger WH
– ident: e_1_2_6_43_1
  doi: 10.1016/j.chemosphere.2013.06.004
– ident: e_1_2_6_45_1
  doi: 10.1016/j.scitotenv.2014.03.141
– ident: e_1_2_6_58_1
  doi: 10.1016/j.soilbio.2012.10.035
– ident: e_1_2_6_44_1
  doi: 10.1128/AEM.67.7.3046-3052.2001
– ident: e_1_2_6_32_1
  doi: 10.1007/s11027-005-9006-5
– ident: e_1_2_6_83_1
  doi: 10.1038/ncomms1053
– ident: e_1_2_6_82_1
  doi: 10.1126/science.1103934
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1461-0248.2004.00579.x
– ident: e_1_2_6_38_1
  doi: 10.1016/j.catena.2014.07.005
– volume: 8
  start-page: 1
  year: 2013
  ident: e_1_2_6_35_1
  article-title: Functional groups determine biochar properties (pH and EC) as studied by two‐dimensional 13C NMR correlation spectroscopy
  publication-title: PLoS One
  contributor:
    fullname: Li X
– ident: e_1_2_6_7_1
  doi: 10.1016/S0038-0717(96)00302-1
– ident: e_1_2_6_30_1
  doi: 10.1016/j.envint.2014.03.017
– ident: e_1_2_6_64_1
  doi: 10.1038/srep03687
– ident: e_1_2_6_36_1
  doi: 10.1002/wcc.75
– ident: e_1_2_6_31_1
  doi: 10.1016/j.chemosphere.2012.11.021
– ident: e_1_2_6_15_1
  doi: 10.1371/journal.pone.0113888
– ident: e_1_2_6_18_1
  doi: 10.1080/00103629709369827
– ident: e_1_2_6_69_1
  doi: 10.1016/0038-0717(93)90186-F
– ident: e_1_2_6_79_1
  doi: 10.1016/S0269-7491(02)00287-7
– ident: e_1_2_6_71_1
  doi: 10.1186/2251-6832-3-32
– ident: e_1_2_6_77_1
  doi: 10.1016/0038-0717(87)90052-6
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jenvman.2014.09.033
– ident: e_1_2_6_19_1
  doi: 10.1038/nature14093
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1475-2743.1997.tb00594.x
– ident: e_1_2_6_67_1
  doi: 10.1016/j.chemosphere.2015.04.087
– ident: e_1_2_6_17_1
  doi: 10.1016/j.chemosphere.2012.12.057
– ident: e_1_2_6_29_1
  doi: 10.1021/es202186j
– ident: e_1_2_6_48_1
  doi: 10.1371/journal.pone.0138781
– ident: e_1_2_6_42_1
  doi: 10.1126/science.1106663
– ident: e_1_2_6_33_1
  doi: 10.1016/j.soilbio.2011.04.022
– ident: e_1_2_6_80_1
  doi: 10.1126/science.1154960
– ident: e_1_2_6_70_1
  doi: 10.1016/j.envpol.2009.07.027
– ident: e_1_2_6_73_1
  doi: 10.5194/npg-21-439-2014
– start-page: 395
  volume-title: Structure and Organic Matter Storage in Agricultural Soils
  year: 1996
  ident: e_1_2_6_28_1
  contributor:
    fullname: Karlen DL
– ident: e_1_2_6_16_1
  doi: 10.1038/417279a
– ident: e_1_2_6_84_1
  doi: 10.1007/s12665-016-5285-2
– ident: e_1_2_6_54_1
  doi: 10.1016/S0167-8809(98)00097-8
– ident: e_1_2_6_74_1
  doi: 10.1038/nclimate3036
– volume: 21
  start-page: 1
  year: 2007
  ident: e_1_2_6_10_1
  article-title: Controls on black carbon storage in soils
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2006GB002798
  contributor:
    fullname: Czimczik CI
– ident: e_1_2_6_40_1
  doi: 10.1016/j.soilbio.2011.07.020
– ident: e_1_2_6_62_1
  doi: 10.1038/nclimate2578
– volume-title: Soil Chemical Analysis
  year: 1967
  ident: e_1_2_6_24_1
  contributor:
    fullname: Jackson ML
– ident: e_1_2_6_21_1
  doi: 10.1038/srep25127
– ident: e_1_2_6_55_1
  doi: 10.1038/nclimate2572
– ident: e_1_2_6_49_1
  doi: 10.1038/30661
– ident: e_1_2_6_65_1
  doi: 10.1021/es302545b
– ident: e_1_2_6_41_1
  doi: 10.1002/jpln.201300590
– ident: e_1_2_6_59_1
  doi: 10.1111/gcbb.12234
– ident: e_1_2_6_6_1
  doi: 10.1016/S0038-0717(00)00151-6
– ident: e_1_2_6_47_1
  doi: 10.2136/sssaj2008.0193
SSID ssj0065619
ssib009979516
ssib036249247
Score 2.4561038
Snippet Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence...
Abstract Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to...
Biomass-derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long-term C-sequestration in soil and to influence...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1085
SubjectTerms biochar
Biogeochemistry
Biomass
biowaste
Black carbon
Carbon 13
Carbon dioxide
carbon mineralization
Carbon sequestration
carbon stable isotope
C‐sequestration
Global warming
Mineralization
Organic carbon
priming effects
Soils
Sorption
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELXocmkPFR-tui2gkeihVErrxPYmOSF2xYcqFSFUJG6R7YxRJEgWdvujeu_v4Dcx9jq7e-LmkyN5Jp434zdvGPuKUvGslqOEbG8TKXSeGKEJyEleE-S3xqW-wfn35ejiRv66Vbex4DaLtMr-TgwXdd1ZXyP_mRbkKlxQuDyePiZ-apR_XY0jNN6wzYwyhWzANsenl1fXS48qy7xUKwBEt7WkhGOZkhGYCaM_KIbmiZcliQKmnutzZ435QdEvjotZhqwVDl1HsyEcnW2x9xFHwsnC8NtsA9sd9m5NXXCX_VvT0GjvgJAemKbzbVYQWRzQtTBJHpqgPB0bMkG3NQSCda-oC50Dq58MrZoWZl1zDz1zHXwZF9aZ66AfsK1D3xx4Tv3iuwRBzT1CM-vm3RTh2_P_VEyOoBc0_8Buzk7_TC6SOJkhsZLL1D8dY-ZygcrJYmS5U6hy5EqLsiizzNVWp6mf6uMswTtNWZjQhcmd4Iaj1qX4yAZt1-InBkJhrtAqq4yWhrYYOawLl3M01tUch-ywP_xquhDgqPrExZuoCiYasr3eLlX8CWfVymWG7Huw1Ss7VOeT8TisPr--1xf2NvOhPVRi9thg_vQX9wmYzM1B9L4X1AvipA
  priority: 102
  providerName: ProQuest
Title Investigating the biochar effects on C‐mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12401
https://www.proquest.com/docview/1896303846
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcoED_4iFshoJDoCUlRPbm0Tiwi7dViCqUlGpFxTZjl1FtEnV3V448Qi8B1eeg4fgSRg7STdwQIKL5UPkyJ6M5xvnm88AT62QLCnFNCLbm0hwlUaaKwJygpUE-Y12sS9wfrc33T0Ub47k0Qa87GthWn2IywM37xlhv_YOrvRy4OTHRusJRadQvBXz1PO5Xh-sY3Wep7lcYx_aqAXlGpfZGOGYcOsHhc808ooknXapp_msh_49Wq0h6BDIhki0uAkf-zm0BJRPk4uVnpjPf8g7_u8kb8GNDqLiq_abug0btr4D1wfChXfh20Ceoz5GApGoq8ZXcGFHEMGmxvnPL19PqyBr3VV7oqpLDOztXq4XG4dGnWvqVTUum-oEe1o8-jNiHNLiUZ3augxFeegJ--2bCd_qE4vVslk1Zxaf_fge8_lz7NXS78HhYvvDfDfqrn2IjGAi9v-lbeJSbqUT2dQwJ61MLZOK51meJK40Ko79lUHOEHZUlOJxlenUcaaZVSrn92Gzbmr7AJBLm0prpJFaCU1DTJ0tM5cyq40rmR3Bk968xVmr7lH0WZFf-iIs_Qi2essXnYcvizijrYtxgm8jeBFM-JcRip35bBZ6D__l4UdwLfEoIhz6bMHm6vzCPiYMtNJjuJKIfWqzxc4Yrs629_YPxuE8YRy8gNq377Nf_98JZA
link.rule.ids 315,783,787,867,1378,11576,12779,21402,27938,27939,33387,33758,43614,43819,46066,46308,46490,46732,50828,50937,74371,74638
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUoHNoeUD_VpUBHooe2UlontjfJCZUVy9ICJ5C4RbYzRpEg2bLLj-qd39Hf1LHX2d0TN58cyTPxezOeecPYZ5SKZ7UcJmR7m0ih88QITURO8poovzUu9Q3O5xfDyZX8da2uY8JtFssq-zsxXNR1Z32O_EdakKtwQXB5OP2T-KlR_nU1jtB4xrakIKDxneLjk6U_lWVeqhX9obtaUrixDMiIyoTBH4SgeeJFSaJ8qa_0ubHGfCfsi8NiloC1YqHrXDaA0fgV244sEn4uzP6abWD7hr1c0xZ8y_6uKWi0N0A8D0zT-SYriDUc0LUwSu6aoDsd2zFBtzWE8upeTxc6B1bfG1o1Lcy65hb6unXwSVxYr1sHfYdtHbrmwFfUL75LBNTcIjSzbt5NEb78e0zF6Cv0cubv2NX4-HI0SeJchsRKLlP_cIyZywUqJ4uh5U6hypErLcqizDJXW52mfqaPs0TuNMVgQhcmd4IbjlqX4j3bbLsWPzAQCnOFVllltDS0xdBhXbico7Gu5jhgB_3hV9OF_EbVhy3eRFUw0YDt9nap4i84q1YOM2Dfgq2e2KE6GR0dhdXO03t9Ys8nl-dn1dnpxe-P7EXmQT7kZHbZ5vz-AfeIoszNfvDD_82i5C8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELXKVkJwqFo-1IUWRqIHQAp1YnudnBC7dPsFqwpRqbfIduwqUpss3e2P4s7v6G9i7HV299RbTo6UefG8sd-8IeTAckGzig8SjL1JOFMy0UwhkeO0QspvtEt9g_PPyeDkkp9diauof5pFWWW3J4aNumqNPyM_THOECmWYLg9dlEVcfB9_nf5J_AQpf9Max2k8IZuSI6p6ZHN4NLn4tURXUchCrMgQ7twci49leYbEJowBwXwqE29REs1Mve7n2mj9BTNhHB2zTF8rTrrObENqGm-Trcgp4dsCBDtkwzYvyPM1p8GX5O-an0ZzDcj6QNetb7mCqOiAtoFRclsHF-rYnAmqqSCIrTt3XWgdGHWn8aluYNbWN9Cp2MEf6cK6ih3UrW2q0EMHXl-_eC_SUX1joZ6183Zq4ePDv5SNPkFnbv6KXI6Pfo9OkjilITGc8tRfI9vMSWaF4_nAUCeskJYKxYq8yDJXGZWmfsKPM0j1FFZkTOVaOkY1tUoV7DXpNW1jdwkwYaWwRhihFde4xMDZKneSWm1cRW2ffOg-fjldmHGUXRHjQ1SGEPXJXheXMv6Qs3IFnz75HGL1yArl8Wg4DE9vHl_rPXmKICx_nE7O35Jnmc_44YBmj_Tmd_d2H_nKXL-LQPwPaSDp0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+biochar+effects+on+C%E2%80%90mineralization+and+sequestration+of+carbon+in+soil+compared+with+conventional+amendments+using+the+stable+isotope+%28%CE%B413C%29+approach&rft.jtitle=Global+change+biology.+Bioenergy&rft.au=Yousaf%2C+Balal&rft.au=Liu%2C+Guijian&rft.au=Wang%2C+Ruwei&rft.au=Abbas%2C+Qumber&rft.date=2017-06-01&rft.issn=1757-1693&rft.eissn=1757-1707&rft.volume=9&rft.issue=6&rft.spage=1085&rft.epage=1099&rft_id=info:doi/10.1111%2Fgcbb.12401&rft.externalDBID=10.1111%252Fgcbb.12401&rft.externalDocID=GCBB12401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-1693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-1693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-1693&client=summon