Investigating the biochar effects on C‐mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach
Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendme...
Saved in:
Published in | Global change biology. Bioenergy Vol. 9; no. 6; pp. 1085 - 1099 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons, Inc
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐CO2–C g−1‐C compared to the control (0.24–1.86 mg‐CO2–C g−1‐C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (−10.22 to −23.56 mg‐CO2–C g−1‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐CO2–C g−1‐soil‐C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC‐C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g−1‐soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles.
Biochar reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C in biochar. |
---|---|
AbstractList | Abstract
Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (
BC
) priming relative to conventional biowaste (
BW
) amendments remains uncertain. Here, we used a stable carbon isotope (
δ
13
C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various
BW
additions and potential carbon sequestration. The results show that immediately after application,
BC
suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐
CO
2
–C g
−1
‐C compared to the control (0.24–1.86 mg‐
CO
2
–C g
−1
‐C) over 1–120 days. Negative priming was observed for
BC
compared to various
BW
amendments (−10.22 to −23.56 mg‐
CO
2
–C g
−1
‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐
CO
2
–C g
−1
‐soil‐C). Furthermore, according to the residual carbon and
δ
13
C signature of postexperimental soil carbon,
BC
‐C significantly increased (
P
< 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative
CO
2
–C emissions, relative priming effects, and carbon storage indicate that
BC
reduces C‐mineralization, resulting in greater C‐sequestration compared with other
BW
amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g
−1
‐soil) in
BC
, the reduced microbial activity, and the sorption of labile organic carbon (
OC
) onto
BC
particles. Biomass-derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long-term C-sequestration in soil and to influence C-mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C-mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C-mineralization, causing a loss of 0.14–7.17 mg-CO2–C g−1-C compared to the control (0.24–1.86 mg-CO2–C g−1-C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (−10.22 to −23.56 mg-CO2–C g−1-soil-C); however, it was trivially positive relative to that of the control (8.64 mg-CO2–C g−1-soil-C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC-C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C-mineralization, resulting in greater C-sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant-C (4.92 mg-C g−1-soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles. Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐CO2–C g−1‐C compared to the control (0.24–1.86 mg‐CO2–C g−1‐C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (−10.22 to −23.56 mg‐CO2–C g−1‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐CO2–C g−1‐soil‐C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC‐C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g−1‐soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles. Biochar reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C in biochar. |
Author | Yousaf, Balal Imtiaz, Muhammad Wang, Ruwei Liu, Guijian Liu, Ruijia Abbas, Qumber |
Author_xml | – sequence: 1 givenname: Balal surname: Yousaf fullname: Yousaf, Balal organization: The Chinese Academy of Sciences – sequence: 2 givenname: Guijian surname: Liu fullname: Liu, Guijian email: lgj@ustc.edu.cn organization: The Chinese Academy of Sciences – sequence: 3 givenname: Ruwei surname: Wang fullname: Wang, Ruwei organization: University of Science and Technology of China – sequence: 4 givenname: Qumber surname: Abbas fullname: Abbas, Qumber organization: University of Science and Technology of China – sequence: 5 givenname: Muhammad surname: Imtiaz fullname: Imtiaz, Muhammad organization: Huazhong Agricultural University – sequence: 6 givenname: Ruijia surname: Liu fullname: Liu, Ruijia organization: University of Science and Technology of China |
BookMark | eNp9kc9KAzEQxoNUUKsXnyDgRYXWZLN_j7poLQhe9LzMppM2sk3WZKvoyUfwPbz6HD6ET2Lq2quBIZPhN_Nl-PbIwFiDhBxyNubhnM1lXY95FDO-RXZ5lmQjnrFssMnTQuyQPe8fGEuTlBe75GNqntB3eg6dNnPaLZDW2soFOIpKoew8tYaW32_vS23QQaNfAxlKYGbU4-MqNLu-YhWV4OqQaUO91Q2VdtmCwxl91t0ivIKUWaPQUFiimYUI81d-o-w7qBuk2tvOtkiPvz65KE8otK2zIBf7ZFtB4_Hg7x6S-6vLu_J6dHM7mZbnNyMZs5iPYl5gpDKBiYrzVDKVYJIhS0AUeRFFaiaB8zTKYiWjKAUeFwLyOlOC1QwBCjEkR_3cIPu7YPVgVy782lc8L1LBRB6ngTrtKems9w5V1Tq9BPdScVatzajWZlS_ZgSY9_CzbvDlH7KalBcXfc8PSeySxA |
CitedBy_id | crossref_primary_10_3390_agronomy8110256 crossref_primary_10_3390_agronomy11020336 crossref_primary_10_1016_j_catena_2020_104618 crossref_primary_10_3390_w13121615 crossref_primary_10_1016_j_jenvman_2023_119018 crossref_primary_10_1016_j_jaap_2018_06_018 crossref_primary_10_1016_j_envres_2023_116131 crossref_primary_10_1016_j_jclepro_2018_05_034 crossref_primary_10_1007_s11368_017_1899_6 crossref_primary_10_1111_sum_13075 crossref_primary_10_1016_j_cej_2024_148970 crossref_primary_10_1007_s10661_023_11561_7 crossref_primary_10_1002_ghg_1890 crossref_primary_10_1016_j_catena_2022_106603 crossref_primary_10_1016_j_still_2024_106051 crossref_primary_10_1016_j_uclim_2018_10_003 crossref_primary_10_1038_s41598_024_59352_5 crossref_primary_10_1016_j_jclepro_2019_118409 crossref_primary_10_1093_jxb_erz301 crossref_primary_10_3934_environsci_2017_6_743 crossref_primary_10_1002_jeq2_20504 crossref_primary_10_1016_j_jclepro_2018_07_272 crossref_primary_10_1111_gcb_17349 crossref_primary_10_1016_j_geoderma_2020_114184 crossref_primary_10_1016_j_scitotenv_2019_134773 crossref_primary_10_1016_j_renene_2020_03_113 crossref_primary_10_1016_j_fuel_2021_121762 crossref_primary_10_1016_j_still_2019_104477 crossref_primary_10_3390_agronomy13051316 crossref_primary_10_1016_j_still_2021_104982 crossref_primary_10_2139_ssrn_4160571 crossref_primary_10_1007_s11368_019_02547_5 crossref_primary_10_1016_j_geoderma_2021_115536 crossref_primary_10_1016_j_seppur_2023_124595 crossref_primary_10_1016_j_ecoenv_2020_110181 crossref_primary_10_1016_S1002_0160_21_60003_6 crossref_primary_10_1007_s10661_019_7956_4 crossref_primary_10_1007_s42729_023_01498_8 crossref_primary_10_1016_S1002_0160_21_60087_5 crossref_primary_10_1016_j_compag_2023_107859 crossref_primary_10_1002_ldr_2821 crossref_primary_10_1016_j_oneear_2020_12_006 crossref_primary_10_1016_j_chemosphere_2018_04_057 crossref_primary_10_1016_j_geothermics_2021_102338 crossref_primary_10_1016_j_ijbiomac_2024_132075 crossref_primary_10_1016_j_jece_2023_110009 crossref_primary_10_1016_j_biortech_2020_124541 crossref_primary_10_1007_s11368_020_02745_6 crossref_primary_10_1002_saj2_20081 crossref_primary_10_1016_j_envpol_2019_113887 crossref_primary_10_1016_j_jhazmat_2021_126131 crossref_primary_10_1016_j_chemosphere_2021_130350 crossref_primary_10_5433_1679_0359_2019v40n4p1405 crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_1007_s42965_020_00100_x crossref_primary_10_1016_j_jenvman_2023_119586 crossref_primary_10_3390_agronomy12010197 crossref_primary_10_1016_j_envres_2024_118645 crossref_primary_10_1016_j_jenvman_2023_118092 crossref_primary_10_3390_jox14010026 crossref_primary_10_3390_molecules24091798 crossref_primary_10_1111_gcbb_12644 crossref_primary_10_3390_w15193387 crossref_primary_10_1111_gcbb_12763 crossref_primary_10_1016_j_plaphy_2024_108704 crossref_primary_10_1038_s41598_017_01173_w crossref_primary_10_1021_acsearthspacechem_1c00041 crossref_primary_10_1016_j_scitotenv_2021_151337 crossref_primary_10_1080_03650340_2021_1892651 |
Cites_doi | 10.1016/j.catena.2013.06.021 10.1038/nclimate2869 10.1007/s11368-011-0467-8 10.1038/298156a0 10.1016/j.apsoil.2011.07.012 10.2134/jeq2012.0460 10.1111/gcbb.12219 10.1016/j.geoderma.2014.09.002 10.1016/j.ecoenv.2012.10.031 10.1007/s00374-009-0416-5 10.1038/nature17174 10.2134/jeq2011.0456 10.1007/s10584-006-9173-8 10.1016/j.soilbio.2011.02.005 10.1111/j.1365-2389.1996.tb01386.x 10.1038/srep16000 10.1007/s12155-014-9574-x 10.1016/j.scitotenv.2013.03.090 10.1016/j.jhazmat.2012.03.055 10.1016/j.scitotenv.2006.06.007 10.1080/03650340.2013.789870 10.1016/j.geoderma.2013.06.016 10.1038/nature10386 10.4324/9780203762264 10.1016/j.soilbio.2014.04.029 10.1007/s00374-015-1047-7 10.1016/j.agee.2014.01.007 10.1007/s13593-012-0128-3 10.1111/gcbb.12137 10.1038/nature04448 10.1890/13-2126.1 10.1371/journal.pone.0084849 10.1016/j.chemosphere.2013.06.004 10.1016/j.scitotenv.2014.03.141 10.1016/j.soilbio.2012.10.035 10.1128/AEM.67.7.3046-3052.2001 10.1007/s11027-005-9006-5 10.1038/ncomms1053 10.1126/science.1103934 10.1111/j.1461-0248.2004.00579.x 10.1016/j.catena.2014.07.005 10.1016/S0038-0717(96)00302-1 10.1016/j.envint.2014.03.017 10.1038/srep03687 10.1002/wcc.75 10.1016/j.chemosphere.2012.11.021 10.1371/journal.pone.0113888 10.1080/00103629709369827 10.1016/0038-0717(93)90186-F 10.1016/S0269-7491(02)00287-7 10.1186/2251-6832-3-32 10.1016/0038-0717(87)90052-6 10.1016/j.jenvman.2014.09.033 10.1038/nature14093 10.1111/j.1475-2743.1997.tb00594.x 10.1016/j.chemosphere.2015.04.087 10.1016/j.chemosphere.2012.12.057 10.1021/es202186j 10.1371/journal.pone.0138781 10.1126/science.1106663 10.1016/j.soilbio.2011.04.022 10.1126/science.1154960 10.1016/j.envpol.2009.07.027 10.5194/npg-21-439-2014 10.1038/417279a 10.1007/s12665-016-5285-2 10.1016/S0167-8809(98)00097-8 10.1038/nclimate3036 10.1029/2006GB002798 10.1016/j.soilbio.2011.07.020 10.1038/nclimate2578 10.1038/srep25127 10.1038/nclimate2572 10.1038/30661 10.1021/es302545b 10.1002/jpln.201300590 10.1111/gcbb.12234 10.1016/S0038-0717(00)00151-6 10.2136/sssaj2008.0193 |
ContentType | Journal Article |
Copyright | 2016 The Authors. Published by John Wiley & Sons Ltd. 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016 The Authors. Published by John Wiley & Sons Ltd. – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 3V. 7SN 7ST 7U6 7XB 8FE 8FG 8FH 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO GNUQQ GUQSH HCIFZ KB. LK8 M2O M7P MBDVC PDBOC PIMPY PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1111/gcbb.12401 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Online Library Journals CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Sustainability Science Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Materials Science Database Biological Sciences Research Library (ProQuest) Biological Science Database Research Library (Corporate) Materials Science Collection Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection Sustainability Science Abstracts ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1757-1707 |
EndPage | 1099 |
ExternalDocumentID | 10_1111_gcbb_12401 GCBB12401 |
Genre | article |
GrantInformation_xml | – fundername: National Basic Research Program of China funderid: 2014CB238903 – fundername: National Natural Science Foundation of China funderid: 41373110 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8G5 8UM 930 A03 AAEVG AAHBH AAHHS AAONW AAZKR ABCQN ABDBF ABEML ABJCF ABPVW ABUWG ACBWZ ACCFJ ACIWK ACPRK ACSCC ACXQS ADBBV ADIZJ ADKYN ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN AZQEC BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BPHCQ BROTX BRXPI BY8 CAG CCPQU COF D-E D-F D1I DPXWK DR2 DU5 DWQXO EBD EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IGS IHR J0M KB. KQ8 L8X LC2 LC3 LH4 LK8 LP6 LP7 LW6 M2O M7P MK4 M~E N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2X P4D PDBOC PIMPY PQQKQ PROAC Q.N Q11 QB0 R.K ROL RWI RX1 SUPJJ TEORI TUS UB1 W8V W99 WIH WIN WNSPC WQJ WRC XG1 XV2 ~IA ~WT AAYXX CITATION ITC 3V. 7SN 7ST 7U6 7XB 8FK C1K MBDVC PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c4041-419e2f73e5f486c0f5e57e05a398922fdca116274fc226a1493a8b7f30b0eaa93 |
IEDL.DBID | DR2 |
ISSN | 1757-1693 |
IngestDate | Thu Oct 10 17:05:43 EDT 2024 Thu Sep 26 17:19:28 EDT 2024 Sat Aug 24 00:59:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4041-419e2f73e5f486c0f5e57e05a398922fdca116274fc226a1493a8b7f30b0eaa93 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12401 |
PQID | 1896303846 |
PQPubID | 866396 |
PageCount | 15 |
ParticipantIDs | proquest_journals_1896303846 crossref_primary_10_1111_gcbb_12401 wiley_primary_10_1111_gcbb_12401_GCBB12401 |
PublicationCentury | 2000 |
PublicationDate | June 2017 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global change biology. Bioenergy |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2011; 478 1993; 25 2013; 209–210 2015; 149 2004; 7 2016; 75 2014; 68 2006; 370 2013; 8 2014; 177 2012; 12 2014; 60 1998; 393 2016; 142 2013; 9 2014; 21 2013; 58 2014; 4 2010; 1 2010; 158 1997; 13 1982; 298 2005; 307 2013; 110 2014; 9 2007; 21 2003; 122 2014; 123 2014; 487 2006; 439 2015; 5 2013; 88 2006; 11 2013; 42 2015; 10 1998 1997; 29 2013; 90 2014; 191 1997; 28 2016; 52 1996 2013; 93 2013; 465 1995 1992 2002; 417 2001; 67 2008; 320 2015; 8 1987; 19 2015; 7 1998; 69 2016; 6 2015; 25 2009; 73 2012; 3 2010; 46 2013; 33 2015; 237 2011; 50 2007; 80 2015; 517 2011; 43 2016 2011; 45 2015 2016; 532 1996; 47 2001; 33 2012; 46 2012; 217–218 1967 2014; 76 2012; 41 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 Czimczik CI (e_1_2_6_10_1) 2007; 21 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 Karlen DL (e_1_2_6_28_1) 1996 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 Jackson ML (e_1_2_6_24_1) 1967 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 Schlesinger WH (e_1_2_6_60_1) 1995 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Li X (e_1_2_6_35_1) 2013; 8 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 28 start-page: 747 year: 1997 end-page: 757 article-title: Continuous flow isotope ratio mass spectrometry of carbon dioxide trapped as strontium carbonate publication-title: Communications in Soil Science & Plant Analysis – volume: 3 start-page: 32 year: 2012 article-title: Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: a review publication-title: International Journal of Energy and Environmental Engineering – volume: 7 start-page: 1150 year: 2015 end-page: 1160 article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices publication-title: GCB Bioenergy – start-page: 235 year: 2015 end-page: 282 – volume: 11 start-page: 403 year: 2006 end-page: 427 article-title: Bio‐char sequestration in terrestrial ecosystems – a review publication-title: Mitigation and Adaptation Strategies for Global Change – volume: 21 start-page: 439 year: 2014 end-page: 450 article-title: Application of multifractal analysis to the study of SAR features and oil spills on the ocean surface publication-title: Nonlinear Processes in Geophysics – volume: 43 start-page: 1812 year: 2011 end-page: 1836 article-title: Biochar effects on soil biota – a review publication-title: Soil Biology and Biochemistry – volume: 10 start-page: 1 year: 2015 end-page: 19 article-title: Effect of soil pH Increase by biochar on NO, N O and N production during denitrification in acid soils publication-title: PLoS One – volume: 43 start-page: 2304 year: 2011 end-page: 2314 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biology and Biochemistry – volume: 532 start-page: 49 year: 2016 end-page: 57 article-title: Climate‐smart soils publication-title: Nature – volume: 478 start-page: 49 year: 2011 end-page: 56 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 1 start-page: 56 year: 2010 article-title: Sustainable biochar to mitigate global climate change publication-title: Nature Communications – volume: 393 start-page: 325 year: 1998 end-page: 332 article-title: Global warming and the stability of the West Antarctic Ice Sheet publication-title: Nature – volume: 149 start-page: 9 year: 2015 end-page: 16 article-title: Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil publication-title: Journal of Environmental Management – volume: 417 start-page: 279 year: 2002 end-page: 282 article-title: Nonlinear grassland responses to past and future atmospheric CO publication-title: Nature – volume: 158 start-page: 148 year: 2010 end-page: 154 article-title: Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils publication-title: Environmental Pollution – volume: 76 start-page: 12 year: 2014 end-page: 21 article-title: Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect publication-title: Soil Biology and Biochemistry – volume: 33 start-page: 475 year: 2013 end-page: 484 article-title: Enhanced wheat yield by biochar addition under different mineral fertilization levels publication-title: Agronomy for Sustainable Development – volume: 21 start-page: 1 year: 2007 end-page: 8 article-title: Controls on black carbon storage in soils publication-title: Global Biogeochemical Cycles – volume: 439 start-page: 311 year: 2006 end-page: 313 article-title: Low sea level rise projections from mountain glaciers and icecaps under global warming publication-title: Nature – volume: 298 start-page: 156 year: 1982 end-page: 159 article-title: Soil carbon pool and life zones publication-title: Nature – start-page: 395 year: 1996 end-page: 420 – volume: 19 start-page: 703 year: 1987 end-page: 707 article-title: An extraction method for measuring microbial biomass C publication-title: Soil Biology and Biochemistry – year: 1998 – volume: 9 start-page: 1 year: 2014 end-page: 19 article-title: Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate publication-title: PLoS One – volume: 177 start-page: 681 year: 2014 end-page: 695 article-title: Farmer‐led maize biochar trials: effect on crop yield and soil nutrients under conservation farming publication-title: Journal of Plant Nutrition and Soil Science – volume: 25 start-page: 1803 year: 1993 end-page: 1805 article-title: Release of ninhydrin‐reactive compounds during fumigation of soil to estimate microbial C and N publication-title: Soil Biology and Biochemistry – volume: 307 start-page: 1769 year: 2005 end-page: 1772 article-title: How much more global warming and sea level rise? publication-title: Science – volume: 25 start-page: 531 year: 2015 end-page: 545 article-title: Long‐term climate change mitigation potential with organic matter management on grasslands publication-title: Ecological Applications – volume: 47 start-page: 151 year: 1996 end-page: 163 article-title: Total carbon and nitrogen in the soils of the world publication-title: European Journal of Soil Science – volume: 217–218 start-page: 391 year: 2012 end-page: 397 article-title: Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar publication-title: Journal of Hazardous Materials – volume: 50 start-page: 45 year: 2011 end-page: 51 article-title: Microbial mineralization of biochar and wheat straw mixture in soil: a short‐term study publication-title: Applied Soil Ecology – volume: 8 start-page: 1 year: 2013 end-page: 9 article-title: Long‐term effect of manure and fertilizer on soil organic carbon pools in dryland farming in northwest China publication-title: PLoS One – volume: 60 start-page: 393 year: 2014 end-page: 404 article-title: Effect of biochar on chemical properties of acidic soil publication-title: Archives of Agronomy and Soil Science – volume: 110 start-page: 225 year: 2013 end-page: 233 article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil publication-title: Catena – volume: 75 start-page: 1 year: 2016 end-page: 10 article-title: Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system publication-title: Environmental Earth Sciences – volume: 7 start-page: 1294 year: 2015 end-page: 1304 article-title: Emission of CO from biochar‐amended soils and implications for soil organic carbon publication-title: GCB Bioenergy – volume: 4 start-page: 1 year: 2014 end-page: 9 article-title: Long‐term influence of biochar on native organic carbon mineralisation in a low‐carbon clayey soil publication-title: Scientific Reports – volume: 68 start-page: 154 year: 2014 end-page: 161 article-title: Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China publication-title: Environment International – volume: 6 start-page: 851 year: 2016 end-page: 855 article-title: The climate response to five trillion tonnes of carbon publication-title: Nature Climate Change – volume: 5 start-page: 1 year: 2015 end-page: 11 article-title: Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14 C‐catechol and microbial community in soil publication-title: Scientific Reports – volume: 142 start-page: 100 year: 2016 end-page: 105 article-title: Biochar amendment to soil changes dissolved organic matter content and composition publication-title: Chemosphere – volume: 191 start-page: 108 year: 2014 end-page: 116 article-title: Short‐term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand publication-title: Agriculture, Ecosystems & Environment – volume: 42 start-page: 925 year: 2013 end-page: 930 article-title: Improved florescence excitation‐emission matrix regional integration to quantify spectra for florescent dissolved organic matter publication-title: Journal of Environmental Quality – volume: 52 start-page: 1 year: 2016 end-page: 14 article-title: Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long‐term biochar‐amended soil incubations publication-title: Biology and Fertility of Soils – volume: 88 start-page: 9 year: 2013 end-page: 15 article-title: High concentrations of single‐walled carbon nanotubes lower soil enzyme activity and microbial biomass publication-title: Ecotoxicology and Environmental Safety – volume: 9 start-page: 1612 year: 2013 end-page: 1619 article-title: The sorption and desorption of phosphate‐P, ammonium‐N and nitrate‐N in cacao shell and corn cob biochars publication-title: Chemosphere – volume: 67 start-page: 3046 year: 2001 end-page: 3052 article-title: Effects of rice seed surface sterilization with hypochlorite on inoculated publication-title: Applied and Environmental Microbiology – start-page: 9 year: 1995 end-page: 27 – volume: 80 start-page: 25 year: 2007 end-page: 41 article-title: Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity publication-title: Climatic Change – volume: 46 start-page: 159 year: 2010 end-page: 167 article-title: Does long‐term farmyard manure fertilization affect short‐term nitrogen mineralization from farmyard manure? publication-title: Biology and Fertility of Soils – volume: 46 start-page: 11770 year: 2012 end-page: 11778 article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature publication-title: Environmental Science & Technology – volume: 320 start-page: 629 year: 2008 article-title: Fire‐derived charcoal causes loss of forest humus publication-title: Science – volume: 12 start-page: 457 year: 2012 end-page: 470 article-title: Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China publication-title: Journal of Soils and Sediments – volume: 5 start-page: 1022 year: 2015 end-page: 1023 article-title: A role for tropical forests in stabilizing atmospheric CO publication-title: Nature Climate Change – volume: 8 start-page: 1 year: 2013 end-page: 7 article-title: Functional groups determine biochar properties (pH and EC) as studied by two‐dimensional C NMR correlation spectroscopy publication-title: PLoS One – volume: 7 start-page: 314 year: 2004 end-page: 320 article-title: Carbon input to soil may decrease soil carbon content publication-title: Ecology Letters – volume: 73 start-page: 622 year: 2009 end-page: 629 article-title: Rebuilding soil organic matter contents in sandy Coastal Plain soils using conservation tillage management systems publication-title: Soil Science Society of American Journal – volume: 5 start-page: 419 year: 2015 end-page: 423 article-title: Fossil fuels in a trillion tonne world publication-title: Nature Climate Change – volume: 307 start-page: 1766 year: 2005 end-page: 1769 article-title: The climate change commitment publication-title: Science – volume: 209–210 start-page: 188 year: 2013 end-page: 197 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma – volume: 123 start-page: 45 year: 2014 end-page: 51 article-title: Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil publication-title: Catena – volume: 237 start-page: 149 year: 2015 end-page: 158 article-title: Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India publication-title: Geoderma – year: 2016 – volume: 41 start-page: 1337 year: 2012 end-page: 1347 article-title: Carbon and nitrogen stocks and nitrogen mineralization in organically managed soils amended with composted manures publication-title: Journal of Environmental Quality – year: 1992 – volume: 33 start-page: 365 year: 2001 end-page: 373 article-title: Contrasting effects of elevated CO on old and new soil carbon pools publication-title: Soil Biology and Biochemistry – volume: 13 start-page: 230 year: 1997 end-page: 244 article-title: Agricultural soil as a C sink to offset CO emissions publication-title: Soil Use Manage – volume: 5 start-page: 519 year: 2015 end-page: 538 article-title: Energy system transformations for limiting end‐of‐century warming to below 1.5 °C publication-title: Nature Climate Change – volume: 6 start-page: 1 year: 2016 end-page: 13 article-title: Biochar affects carbon composition and stability in soil: a combined spectroscopy‐microscopy study publication-title: Scientific Reports – volume: 7 start-page: 349 year: 2015 end-page: 361 article-title: Pyrolysis biochar systems, balance between bioenergy and carbon sequestration publication-title: GCB Bioenergy – volume: 90 start-page: 2623 year: 2013 end-page: 2630 article-title: Effect of pH on surface characteristics of switchgrass‐derived biochars produced by fast pyrolysis publication-title: Chemosphere – volume: 58 start-page: 99 year: 2013 end-page: 106 article-title: Biochar addition indirectly affects N O emissions via soil moisture and plant N uptake publication-title: Soil Biology and Biochemistry – year: 1967 – volume: 69 start-page: 113 year: 1998 end-page: 119 article-title: Adsorption on soil of dissolved organic carbon from farmyard manure publication-title: Agriculture, Ecosystems & Environment – volume: 45 start-page: 9611 year: 2011 end-page: 9618 article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite‐rich soil publication-title: Environmental Science & Technology – volume: 487 start-page: 26 year: 2014 end-page: 36 article-title: Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil publication-title: Science of the Total Environment – volume: 29 start-page: 115 year: 1997 end-page: 122 article-title: Carbon substrate mineralization and sulphur limitation publication-title: Soil Biology and Biochemistry – volume: 517 start-page: 481 year: 2015 end-page: 484 article-title: Probabilistic reanalysis of twentieth‐century sea‐level rise publication-title: Nature – volume: 370 start-page: 190 year: 2006 end-page: 206 article-title: Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems publication-title: Science of the Total Environment – volume: 465 start-page: 288 year: 2013 end-page: 297 article-title: Microbial utilisation of biochar‐derived carbon publication-title: Science of the Total Environment – volume: 43 start-page: 1169 year: 2011 end-page: 1179 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar‐amended soils publication-title: Soil Biology and Biochemistry – volume: 93 start-page: 668 year: 2013 end-page: 676 article-title: Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil publication-title: Chemosphere – volume: 122 start-page: 303 year: 2003 end-page: 312 article-title: The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils publication-title: Environmental Pollution – volume: 8 start-page: 1183 year: 2015 end-page: 1196 article-title: Effects of biochar on yield, nutrient recovery, and soil properties in a canola ( L)‐wheat ( L) rotation grown under controlled environmental conditions publication-title: BioEnergy Research – volume: 1 start-page: 786 year: 2010 end-page: 802 article-title: The physical concept of climate forcing publication-title: Wiley Interdisciplinary Reviews: Climate Change – ident: e_1_2_6_26_1 doi: 10.1016/j.catena.2013.06.021 – ident: e_1_2_6_23_1 – ident: e_1_2_6_76_1 – ident: e_1_2_6_22_1 doi: 10.1038/nclimate2869 – ident: e_1_2_6_86_1 doi: 10.1007/s11368-011-0467-8 – ident: e_1_2_6_52_1 doi: 10.1038/298156a0 – ident: e_1_2_6_85_1 doi: 10.1016/j.apsoil.2011.07.012 – ident: e_1_2_6_87_1 doi: 10.2134/jeq2012.0460 – ident: e_1_2_6_78_1 doi: 10.1111/gcbb.12219 – ident: e_1_2_6_5_1 doi: 10.1016/j.geoderma.2014.09.002 – ident: e_1_2_6_27_1 doi: 10.1016/j.ecoenv.2012.10.031 – ident: e_1_2_6_46_1 doi: 10.1007/s00374-009-0416-5 – ident: e_1_2_6_51_1 doi: 10.1038/nature17174 – ident: e_1_2_6_56_1 doi: 10.2134/jeq2011.0456 – ident: e_1_2_6_75_1 – ident: e_1_2_6_81_1 doi: 10.1007/s10584-006-9173-8 – ident: e_1_2_6_88_1 doi: 10.1016/j.soilbio.2011.02.005 – ident: e_1_2_6_4_1 doi: 10.1111/j.1365-2389.1996.tb01386.x – ident: e_1_2_6_63_1 doi: 10.1038/srep16000 – ident: e_1_2_6_2_1 doi: 10.1007/s12155-014-9574-x – ident: e_1_2_6_12_1 doi: 10.1016/j.scitotenv.2013.03.090 – ident: e_1_2_6_68_1 doi: 10.1016/j.jhazmat.2012.03.055 – ident: e_1_2_6_14_1 doi: 10.1016/j.scitotenv.2006.06.007 – ident: e_1_2_6_8_1 doi: 10.1080/03650340.2013.789870 – ident: e_1_2_6_20_1 doi: 10.1016/j.geoderma.2013.06.016 – ident: e_1_2_6_61_1 doi: 10.1038/nature10386 – ident: e_1_2_6_34_1 doi: 10.4324/9780203762264 – ident: e_1_2_6_39_1 doi: 10.1016/j.soilbio.2014.04.029 – ident: e_1_2_6_25_1 doi: 10.1007/s00374-015-1047-7 – ident: e_1_2_6_72_1 doi: 10.1016/j.agee.2014.01.007 – ident: e_1_2_6_3_1 doi: 10.1007/s13593-012-0128-3 – ident: e_1_2_6_9_1 doi: 10.1111/gcbb.12137 – ident: e_1_2_6_53_1 doi: 10.1038/nature04448 – ident: e_1_2_6_66_1 – ident: e_1_2_6_57_1 doi: 10.1890/13-2126.1 – ident: e_1_2_6_37_1 doi: 10.1371/journal.pone.0084849 – start-page: 9 volume-title: Soils and Global Change year: 1995 ident: e_1_2_6_60_1 contributor: fullname: Schlesinger WH – ident: e_1_2_6_43_1 doi: 10.1016/j.chemosphere.2013.06.004 – ident: e_1_2_6_45_1 doi: 10.1016/j.scitotenv.2014.03.141 – ident: e_1_2_6_58_1 doi: 10.1016/j.soilbio.2012.10.035 – ident: e_1_2_6_44_1 doi: 10.1128/AEM.67.7.3046-3052.2001 – ident: e_1_2_6_32_1 doi: 10.1007/s11027-005-9006-5 – ident: e_1_2_6_83_1 doi: 10.1038/ncomms1053 – ident: e_1_2_6_82_1 doi: 10.1126/science.1103934 – ident: e_1_2_6_13_1 doi: 10.1111/j.1461-0248.2004.00579.x – ident: e_1_2_6_38_1 doi: 10.1016/j.catena.2014.07.005 – volume: 8 start-page: 1 year: 2013 ident: e_1_2_6_35_1 article-title: Functional groups determine biochar properties (pH and EC) as studied by two‐dimensional 13C NMR correlation spectroscopy publication-title: PLoS One contributor: fullname: Li X – ident: e_1_2_6_7_1 doi: 10.1016/S0038-0717(96)00302-1 – ident: e_1_2_6_30_1 doi: 10.1016/j.envint.2014.03.017 – ident: e_1_2_6_64_1 doi: 10.1038/srep03687 – ident: e_1_2_6_36_1 doi: 10.1002/wcc.75 – ident: e_1_2_6_31_1 doi: 10.1016/j.chemosphere.2012.11.021 – ident: e_1_2_6_15_1 doi: 10.1371/journal.pone.0113888 – ident: e_1_2_6_18_1 doi: 10.1080/00103629709369827 – ident: e_1_2_6_69_1 doi: 10.1016/0038-0717(93)90186-F – ident: e_1_2_6_79_1 doi: 10.1016/S0269-7491(02)00287-7 – ident: e_1_2_6_71_1 doi: 10.1186/2251-6832-3-32 – ident: e_1_2_6_77_1 doi: 10.1016/0038-0717(87)90052-6 – ident: e_1_2_6_11_1 doi: 10.1016/j.jenvman.2014.09.033 – ident: e_1_2_6_19_1 doi: 10.1038/nature14093 – ident: e_1_2_6_50_1 doi: 10.1111/j.1475-2743.1997.tb00594.x – ident: e_1_2_6_67_1 doi: 10.1016/j.chemosphere.2015.04.087 – ident: e_1_2_6_17_1 doi: 10.1016/j.chemosphere.2012.12.057 – ident: e_1_2_6_29_1 doi: 10.1021/es202186j – ident: e_1_2_6_48_1 doi: 10.1371/journal.pone.0138781 – ident: e_1_2_6_42_1 doi: 10.1126/science.1106663 – ident: e_1_2_6_33_1 doi: 10.1016/j.soilbio.2011.04.022 – ident: e_1_2_6_80_1 doi: 10.1126/science.1154960 – ident: e_1_2_6_70_1 doi: 10.1016/j.envpol.2009.07.027 – ident: e_1_2_6_73_1 doi: 10.5194/npg-21-439-2014 – start-page: 395 volume-title: Structure and Organic Matter Storage in Agricultural Soils year: 1996 ident: e_1_2_6_28_1 contributor: fullname: Karlen DL – ident: e_1_2_6_16_1 doi: 10.1038/417279a – ident: e_1_2_6_84_1 doi: 10.1007/s12665-016-5285-2 – ident: e_1_2_6_54_1 doi: 10.1016/S0167-8809(98)00097-8 – ident: e_1_2_6_74_1 doi: 10.1038/nclimate3036 – volume: 21 start-page: 1 year: 2007 ident: e_1_2_6_10_1 article-title: Controls on black carbon storage in soils publication-title: Global Biogeochemical Cycles doi: 10.1029/2006GB002798 contributor: fullname: Czimczik CI – ident: e_1_2_6_40_1 doi: 10.1016/j.soilbio.2011.07.020 – ident: e_1_2_6_62_1 doi: 10.1038/nclimate2578 – volume-title: Soil Chemical Analysis year: 1967 ident: e_1_2_6_24_1 contributor: fullname: Jackson ML – ident: e_1_2_6_21_1 doi: 10.1038/srep25127 – ident: e_1_2_6_55_1 doi: 10.1038/nclimate2572 – ident: e_1_2_6_49_1 doi: 10.1038/30661 – ident: e_1_2_6_65_1 doi: 10.1021/es302545b – ident: e_1_2_6_41_1 doi: 10.1002/jpln.201300590 – ident: e_1_2_6_59_1 doi: 10.1111/gcbb.12234 – ident: e_1_2_6_6_1 doi: 10.1016/S0038-0717(00)00151-6 – ident: e_1_2_6_47_1 doi: 10.2136/sssaj2008.0193 |
SSID | ssj0065619 ssib009979516 ssib036249247 |
Score | 2.4561038 |
Snippet | Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence... Abstract Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to... Biomass-derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long-term C-sequestration in soil and to influence... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1085 |
SubjectTerms | biochar Biogeochemistry Biomass biowaste Black carbon Carbon 13 Carbon dioxide carbon mineralization Carbon sequestration carbon stable isotope C‐sequestration Global warming Mineralization Organic carbon priming effects Soils Sorption |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELXocmkPFR-tui2gkeihVErrxPYmOSF2xYcqFSFUJG6R7YxRJEgWdvujeu_v4Dcx9jq7e-LmkyN5Jp434zdvGPuKUvGslqOEbG8TKXSeGKEJyEleE-S3xqW-wfn35ejiRv66Vbex4DaLtMr-TgwXdd1ZXyP_mRbkKlxQuDyePiZ-apR_XY0jNN6wzYwyhWzANsenl1fXS48qy7xUKwBEt7WkhGOZkhGYCaM_KIbmiZcliQKmnutzZ435QdEvjotZhqwVDl1HsyEcnW2x9xFHwsnC8NtsA9sd9m5NXXCX_VvT0GjvgJAemKbzbVYQWRzQtTBJHpqgPB0bMkG3NQSCda-oC50Dq58MrZoWZl1zDz1zHXwZF9aZ66AfsK1D3xx4Tv3iuwRBzT1CM-vm3RTh2_P_VEyOoBc0_8Buzk7_TC6SOJkhsZLL1D8dY-ZygcrJYmS5U6hy5EqLsiizzNVWp6mf6uMswTtNWZjQhcmd4Iaj1qX4yAZt1-InBkJhrtAqq4yWhrYYOawLl3M01tUch-ywP_xquhDgqPrExZuoCiYasr3eLlX8CWfVymWG7Huw1Ss7VOeT8TisPr--1xf2NvOhPVRi9thg_vQX9wmYzM1B9L4X1AvipA priority: 102 providerName: ProQuest |
Title | Investigating the biochar effects on C‐mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12401 https://www.proquest.com/docview/1896303846 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcoED_4iFshoJDoCUlRPbm0Tiwi7dViCqUlGpFxTZjl1FtEnV3V448Qi8B1eeg4fgSRg7STdwQIKL5UPkyJ6M5xvnm88AT62QLCnFNCLbm0hwlUaaKwJygpUE-Y12sS9wfrc33T0Ub47k0Qa87GthWn2IywM37xlhv_YOrvRy4OTHRusJRadQvBXz1PO5Xh-sY3Wep7lcYx_aqAXlGpfZGOGYcOsHhc808ooknXapp_msh_49Wq0h6BDIhki0uAkf-zm0BJRPk4uVnpjPf8g7_u8kb8GNDqLiq_abug0btr4D1wfChXfh20Ceoz5GApGoq8ZXcGFHEMGmxvnPL19PqyBr3VV7oqpLDOztXq4XG4dGnWvqVTUum-oEe1o8-jNiHNLiUZ3augxFeegJ--2bCd_qE4vVslk1Zxaf_fge8_lz7NXS78HhYvvDfDfqrn2IjGAi9v-lbeJSbqUT2dQwJ61MLZOK51meJK40Ko79lUHOEHZUlOJxlenUcaaZVSrn92Gzbmr7AJBLm0prpJFaCU1DTJ0tM5cyq40rmR3Bk968xVmr7lH0WZFf-iIs_Qi2essXnYcvizijrYtxgm8jeBFM-JcRip35bBZ6D__l4UdwLfEoIhz6bMHm6vzCPiYMtNJjuJKIfWqzxc4Yrs629_YPxuE8YRy8gNq377Nf_98JZA |
link.rule.ids | 315,783,787,867,1378,11576,12779,21402,27938,27939,33387,33758,43614,43819,46066,46308,46490,46732,50828,50937,74371,74638 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUoHNoeUD_VpUBHooe2UlontjfJCZUVy9ICJ5C4RbYzRpEg2bLLj-qd39Hf1LHX2d0TN58cyTPxezOeecPYZ5SKZ7UcJmR7m0ih88QITURO8poovzUu9Q3O5xfDyZX8da2uY8JtFssq-zsxXNR1Z32O_EdakKtwQXB5OP2T-KlR_nU1jtB4xrakIKDxneLjk6U_lWVeqhX9obtaUrixDMiIyoTBH4SgeeJFSaJ8qa_0ubHGfCfsi8NiloC1YqHrXDaA0fgV244sEn4uzP6abWD7hr1c0xZ8y_6uKWi0N0A8D0zT-SYriDUc0LUwSu6aoDsd2zFBtzWE8upeTxc6B1bfG1o1Lcy65hb6unXwSVxYr1sHfYdtHbrmwFfUL75LBNTcIjSzbt5NEb78e0zF6Cv0cubv2NX4-HI0SeJchsRKLlP_cIyZywUqJ4uh5U6hypErLcqizDJXW52mfqaPs0TuNMVgQhcmd4IbjlqX4j3bbLsWPzAQCnOFVllltDS0xdBhXbico7Gu5jhgB_3hV9OF_EbVhy3eRFUw0YDt9nap4i84q1YOM2Dfgq2e2KE6GR0dhdXO03t9Ys8nl-dn1dnpxe-P7EXmQT7kZHbZ5vz-AfeIoszNfvDD_82i5C8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELXKVkJwqFo-1IUWRqIHQAp1YnudnBC7dPsFqwpRqbfIduwqUpss3e2P4s7v6G9i7HV299RbTo6UefG8sd-8IeTAckGzig8SjL1JOFMy0UwhkeO0QspvtEt9g_PPyeDkkp9diauof5pFWWW3J4aNumqNPyM_THOECmWYLg9dlEVcfB9_nf5J_AQpf9Max2k8IZuSI6p6ZHN4NLn4tURXUchCrMgQ7twci49leYbEJowBwXwqE29REs1Mve7n2mj9BTNhHB2zTF8rTrrObENqGm-Trcgp4dsCBDtkwzYvyPM1p8GX5O-an0ZzDcj6QNetb7mCqOiAtoFRclsHF-rYnAmqqSCIrTt3XWgdGHWn8aluYNbWN9Cp2MEf6cK6ih3UrW2q0EMHXl-_eC_SUX1joZ6183Zq4ePDv5SNPkFnbv6KXI6Pfo9OkjilITGc8tRfI9vMSWaF4_nAUCeskJYKxYq8yDJXGZWmfsKPM0j1FFZkTOVaOkY1tUoV7DXpNW1jdwkwYaWwRhihFde4xMDZKneSWm1cRW2ffOg-fjldmHGUXRHjQ1SGEPXJXheXMv6Qs3IFnz75HGL1yArl8Wg4DE9vHl_rPXmKICx_nE7O35Jnmc_44YBmj_Tmd_d2H_nKXL-LQPwPaSDp0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+biochar+effects+on+C%E2%80%90mineralization+and+sequestration+of+carbon+in+soil+compared+with+conventional+amendments+using+the+stable+isotope+%28%CE%B413C%29+approach&rft.jtitle=Global+change+biology.+Bioenergy&rft.au=Yousaf%2C+Balal&rft.au=Liu%2C+Guijian&rft.au=Wang%2C+Ruwei&rft.au=Abbas%2C+Qumber&rft.date=2017-06-01&rft.issn=1757-1693&rft.eissn=1757-1707&rft.volume=9&rft.issue=6&rft.spage=1085&rft.epage=1099&rft_id=info:doi/10.1111%2Fgcbb.12401&rft.externalDBID=10.1111%252Fgcbb.12401&rft.externalDocID=GCBB12401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-1693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-1693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-1693&client=summon |