Steroid hormone 20‐hydroxyecdysone disturbs fat body lipid metabolism and negatively regulates gluconeogenesis in Hyphantria cunea larvae

The steroid hormone 20‐hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E‐induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effe...

Full description

Saved in:
Bibliographic Details
Published inInsect science Vol. 30; no. 3; pp. 771 - 788
Main Authors Zhang, Sheng‐Yu, Gao, Han, Askar, Ankarjan, Li, Xing‐Peng, Zhang, Guo‐Cai, Jing, Tian‐Zhong, Zou, Hang, Guan, Hao, Zhao, Yun‐He, Zou, Chuan‐Shan
Format Journal Article
LanguageEnglish
Published Australia Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The steroid hormone 20‐hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E‐induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E‐treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β‐oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose‐1,6‐bisphosphatase, and glucose‐6‐phosphatase were dramatically suppressed by 20E in the fat body of H. cunea larvae. As well, the transcriptions of genes encoding these 4 rate‐limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β‐oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body. The steroid hormone 20‐hydroxyecdysone (20E) promotes lipid metabolism but inhibits gluconeogenesis in the fat body of Hyphantria cunea larvae. The effect of 20E on lipid metabolism in larval fat body of H. cunea is shown on the left: 20E increases the expression of lipase and promotes the degradation of triglycerides; 20E increases the concentrations of key enzymes (ECH and 3HCD) in fatty acid β‐oxidation pathway and the β‐oxidation intermediate (NADH); 20E upregulates the expressions of CPT1/2 and accelerates the transfer of acyl‐CoA; 20E downregulates FAS and inhibits the synthesis of fatty acids. The effect of 20E on gluconeogenesis in larval fat body of H. cunea is shown on the right: 20E suppresses the activities of 4 rate‐limiting gluconeogenic enzymes (PCase, PEPCK, FBP, G6Pase), and decreases the intermediate products (OA and PEP) in the gluconeogenesis pathway.
AbstractList The steroid hormone 20‐hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E‐induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E‐treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β‐oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose‐1,6‐bisphosphatase, and glucose‐6‐phosphatase were dramatically suppressed by 20E in the fat body of H. cunea larvae. As well, the transcriptions of genes encoding these 4 rate‐limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β‐oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body.
The steroid hormone 20‐hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E‐induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E‐treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β‐oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose‐1,6‐bisphosphatase, and glucose‐6‐phosphatase were dramatically suppressed by 20E in the fat body of H. cunea larvae. As well, the transcriptions of genes encoding these 4 rate‐limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β‐oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body. The steroid hormone 20‐hydroxyecdysone (20E) promotes lipid metabolism but inhibits gluconeogenesis in the fat body of Hyphantria cunea larvae. The effect of 20E on lipid metabolism in larval fat body of H. cunea is shown on the left: 20E increases the expression of lipase and promotes the degradation of triglycerides; 20E increases the concentrations of key enzymes (ECH and 3HCD) in fatty acid β‐oxidation pathway and the β‐oxidation intermediate (NADH); 20E upregulates the expressions of CPT1/2 and accelerates the transfer of acyl‐CoA; 20E downregulates FAS and inhibits the synthesis of fatty acids. The effect of 20E on gluconeogenesis in larval fat body of H. cunea is shown on the right: 20E suppresses the activities of 4 rate‐limiting gluconeogenic enzymes (PCase, PEPCK, FBP, G6Pase), and decreases the intermediate products (OA and PEP) in the gluconeogenesis pathway.
The steroid hormone 20‐hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E‐induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E‐treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β ‐oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose‐1,6‐bisphosphatase, and glucose‐6‐phosphatase were dramatically suppressed by 20E in the fat body of H. cunea  larvae. As well, the transcriptions of genes encoding these 4 rate‐limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea  larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β ‐oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body.
The steroid hormone 20-hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E-induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E-treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β-oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase were dramatically suppressed by 20E in the fat body of H. cunea larvae. As well, the transcriptions of genes encoding these 4 rate-limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β-oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body.The steroid hormone 20-hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E-induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E-treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β-oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase were dramatically suppressed by 20E in the fat body of H. cunea larvae. As well, the transcriptions of genes encoding these 4 rate-limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β-oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body.
The steroid hormone 20-hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E-induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E-treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β-oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase were dramatically suppressed by 20E in the fat body of H. cunea larvae. As well, the transcriptions of genes encoding these 4 rate-limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β-oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body.
Author Zou, Chuan‐Shan
Zhang, Sheng‐Yu
Zhang, Guo‐Cai
Zou, Hang
Jing, Tian‐Zhong
Guan, Hao
Gao, Han
Zhao, Yun‐He
Askar, Ankarjan
Li, Xing‐Peng
Author_xml – sequence: 1
  givenname: Sheng‐Yu
  surname: Zhang
  fullname: Zhang, Sheng‐Yu
  organization: Northeast Forestry University
– sequence: 2
  givenname: Han
  surname: Gao
  fullname: Gao, Han
  organization: Northeast Forestry University
– sequence: 3
  givenname: Ankarjan
  surname: Askar
  fullname: Askar, Ankarjan
  organization: Northeast Forestry University
– sequence: 4
  givenname: Xing‐Peng
  surname: Li
  fullname: Li, Xing‐Peng
  organization: Beihua University
– sequence: 5
  givenname: Guo‐Cai
  orcidid: 0000-0002-4004-2032
  surname: Zhang
  fullname: Zhang, Guo‐Cai
  organization: Northeast Forestry University
– sequence: 6
  givenname: Tian‐Zhong
  surname: Jing
  fullname: Jing, Tian‐Zhong
  organization: Northeast Forestry University
– sequence: 7
  givenname: Hang
  surname: Zou
  fullname: Zou, Hang
  organization: Northeast Forestry University
– sequence: 8
  givenname: Hao
  surname: Guan
  fullname: Guan, Hao
  organization: Northeast Forestry University
– sequence: 9
  givenname: Yun‐He
  surname: Zhao
  fullname: Zhao, Yun‐He
  organization: Northeast Forestry University
– sequence: 10
  givenname: Chuan‐Shan
  orcidid: 0000-0003-3834-5023
  surname: Zou
  fullname: Zou, Chuan‐Shan
  email: zoucs1980@126.com
  organization: Northeast Forestry University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36342157$$D View this record in MEDLINE/PubMed
BookMark eNqNkT1v1TAUhi1URD9gZkOWWFjS-jOOR1RRWqmCoWWOnPj4XldOfLGT0mzsLPxGfgm-3NKhS-vF9tHzvsc-7yHaG-MICL2l5JiWdUKVEJXSVB1TTjl5gQ4eKnvlXCtW6ZrofXSY8w0hXDPNXqF9XnPBqFQH6NfVBCl6i9cxDcUbM_Ln5-_1YlO8W6C3S94Wrc_TnLqMnZlwF-2Cg98U0QCT6WLwecBmtHiElZn8LYQFJ1jNwUyQ8SrMffGIKxgh-4z9iM-XzdqMU_IG9_MIBgeTbg28Ri-dCRne3O9H6NvZp-vT8-ry6-eL04-XVS-IIBVI7kjHHQjpRMMEyJq6zinbEEWINHXTWGcU9IxQ67QTUhnVdLpcqWqU4Efow853k-L3GfLUDj73EIIpz5xzy5oynYaI-hmo4pyRgtYFff8IvYlzGstHiiGTrNZaskK9u6fmbgDbbpIfTFra_4kU4GQH9CnmnMA9IJS028zbbcLtNuH2X-ZFIR8pej-VHGKZsPHhad0PH2B5qk178eVqp_sL89rACA
CitedBy_id crossref_primary_10_3390_ijms251910441
crossref_primary_10_1111_1744_7917_13321
crossref_primary_10_1134_S1607672923700242
crossref_primary_10_3390_insects14050474
crossref_primary_10_31857_S2686738923600206
Cites_doi 10.1146/annurev.ento.49.061802.123354
10.2337/db14-1402
10.1016/j.trecan.2018.11.003
10.1146/annurev-ento-011118-112007
10.1016/j.trecan.2019.09.007
10.1016/j.ibmb.2013.06.007
10.1002/dmrr.863
10.1016/j.cmet.2019.11.010
10.1093/jmcb/mjq006
10.1074/jbc.M116.764910
10.1016/j.devcel.2021.04.013
10.3389/fendo.2018.00802
10.1016/j.jinsphys.2010.02.011
10.1016/j.ibmb.2015.12.009
10.1016/j.ibmb.2015.06.013
10.1016/j.cell.2009.03.016
10.1002/arch.21682
10.1016/j.biocel.2011.10.001
10.1073/pnas.1305293110
10.1002/arch.20290
10.1073/pnas.1619326114
10.1242/jeb.00241
10.1074/jbc.M802537200
10.1146/annurev-ento-112408-085356
10.1038/s41586-019-1797-8
10.1126/science.1119432
10.1016/j.metabol.2019.06.002
10.1038/nature03967
10.1016/B978-0-12-819460-7.00143-2
10.1016/j.mce.2013.02.019
10.1016/j.bbrc.2012.03.135
10.3389/fphys.2020.00434
10.1074/jbc.M110.134890
10.1038/nm788
10.1038/ncomms14420
10.1016/j.abb.2019.07.022
10.1146/annurev-nutr-071714-034355
10.1016/j.cmet.2009.01.009
10.1111/nyas.13435
10.1371/journal.pgen.1008331
10.1074/jbc.RA118.004891
10.2353/ajpath.2010.100679
10.1016/j.molcel.2021.08.027
10.1016/S0022-2275(20)37276-X
10.1073/pnas.222657499
10.1016/j.ygcen.2016.06.022
10.1016/j.bbadis.2014.07.002
10.1007/s12272-013-0018-5
10.1152/physiolgenomics.00095.2009
10.1146/annurev.bi.57.070188.003543
10.1042/BJ20150125
10.1073/pnas.2000963117
10.1016/j.ibmb.2003.06.001
10.3389/fmolb.2021.640387
10.1006/meth.2001.1262
10.1371/journal.pgen.1010229
10.1111/j.1464-5491.2009.02894.x
10.1016/j.devcel.2018.11.030
10.1016/j.trecan.2020.10.004
10.1016/0003-2697(76)90527-3
ContentType Journal Article
Copyright 2022 Institute of Zoology, Chinese Academy of Sciences.
2023 Institute of Zoology, Chinese Academy of Sciences.
Copyright_xml – notice: 2022 Institute of Zoology, Chinese Academy of Sciences.
– notice: 2023 Institute of Zoology, Chinese Academy of Sciences.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7X8
7S9
L.6
DOI 10.1111/1744-7917.13130
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Technology Research Database
Animal Behavior Abstracts
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts

CrossRef
MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Forestry
EISSN 1744-7917
EndPage 788
ExternalDocumentID 36342157
10_1111_1744_7917_13130
INS13130
Genre article
Journal Article
GrantInformation_xml – fundername: National Undergraduate Training Programs for Innovations
  funderid: 202110225005
– fundername: Fundamental Research Fund for the Central Universities
  funderid: 2572022DS09; 2572020DR09; 2572020DR02
– fundername: Natural Science Foundation of Heilongjiang Province
  funderid: LH2021C010
– fundername: Fundamental Research Fund for the Central Universities
  grantid: 2572020DR02
– fundername: Natural Science Foundation of Heilongjiang Province
  grantid: LH2021C010
– fundername: National Undergraduate Training Programs for Innovations
  grantid: 202110225005
– fundername: Fundamental Research Fund for the Central Universities
  grantid: 2572020DR09
– fundername: Fundamental Research Fund for the Central Universities
  grantid: 2572022DS09
GroupedDBID -01
-0A
-SA
-S~
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92M
930
9D9
9DA
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXDM
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
JUIAU
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q--
Q-0
Q.N
Q11
QB0
R-A
R.K
RIWAO
RJQFR
ROL
RT1
RX1
SAMSI
SUPJJ
T8Q
TUS
U1F
U1G
U5A
U5K
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAYXX
ABJNI
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c4040-e53f0b3fe45f4824e561fbf7d807005a688dfa7ec201df9f457a78b9201178743
IEDL.DBID DR2
ISSN 1672-9609
1744-7917
IngestDate Fri Jul 11 18:29:58 EDT 2025
Thu Jul 10 17:25:10 EDT 2025
Fri Jul 25 10:48:24 EDT 2025
Mon Jul 21 06:06:15 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
Tue Jul 01 02:12:12 EDT 2025
Wed Jan 22 16:20:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords lipidomics analysis
Hyphantria cunea
gluconeogenesis
fat body
20-hydroxyecdysone
lipid metabolism
Language English
License 2022 Institute of Zoology, Chinese Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4040-e53f0b3fe45f4824e561fbf7d807005a688dfa7ec201df9f457a78b9201178743
Notes Sheng‐Yu Zhang and Han Gao: these authors contributed to the work equally and should be regarded as co‐first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4004-2032
0000-0003-3834-5023
PMID 36342157
PQID 2825269952
PQPubID 996379
PageCount 18
ParticipantIDs proquest_miscellaneous_2834280464
proquest_miscellaneous_2733200466
proquest_journals_2825269952
pubmed_primary_36342157
crossref_primary_10_1111_1744_7917_13130
crossref_citationtrail_10_1111_1744_7917_13130
wiley_primary_10_1111_1744_7917_13130_INS13130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Beijing
PublicationTitle Insect science
PublicationTitleAlternate Insect Sci
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
2010; 56
2010; 55
2017; 8
2015; 468
2019; 98
2019; 15
2016; 70
2020; 11
2017; 114
2003; 99
2014; 64
2010; 27
2003; 206
2018; 293
2019; 64
2019; 20
1976; 72
2008; 24
2017; 241
2013; 110
2010; 2
2019; 672
2021; 81
2021; 8
2021; 7
2019; 9
2018; 1411
2012; 421
2019; 5
2013; 43
2005; 310
2004; 49
2002; 8
2005; 437
2020; 104
2017; 292
2010; 285
1988; 57
2021; 1
2014; 1842
2001; 25
2009; 137
2008; 283
2003; 33
2013; 36
2021; 56
2020; 31
2009; 71
2019; 48
2010; 177
2009; 9
2020; 117
1997; 38
2019; 576
2017
2013; 372
2012; 44
2016; 69
2022; 18
2009; 39
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Van der Horst D.J. (e_1_2_6_49_1) 2017
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Wu W.M. (e_1_2_6_55_1) 2019; 20
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 5
  start-page: 693
  year: 2019
  end-page: 703
  article-title: Lipid metabolism at the Nexus of diet and tumor microenvironment
  publication-title: Trends in Cancer
– volume: 5
  start-page: 30
  year: 2019
  end-page: 45
  article-title: Gluconeogenesis in cancer: Function and regulation of PEPCK, FBPase, and G6Pase
  publication-title: Trends in Cancer
– volume: 7
  start-page: 198
  year: 2021
  end-page: 213
  article-title: Fat and furious: Lipid metabolism in antitumoral therapy response and resistance
  publication-title: Trends in Cancer
– volume: 206
  start-page: 2049
  year: 2003
  end-page: 2057
  article-title: Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function
  publication-title: Journal of Experimental Biology
– volume: 9
  start-page: 228
  year: 2009
  end-page: 239
  article-title: HNF4 regulates lipid mobilization and beta‐oxidation
  publication-title: Cell Metabolism
– volume: 372
  start-page: 30
  year: 2013
  end-page: 41
  article-title: Juvenile hormone and insulin suppress lipolysis between periods of lactation during pregnancy
  publication-title: Molecular and Cellular Endocrinology
– volume: 69
  start-page: 51
  year: 2016
  end-page: 60
  article-title: Adipokinetic hormone receptor gene identification and its role in triacylglycerol metabolism in the blood‐sucking insect
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 15
  issue: 8
  year: 2019
  article-title: The steroid hormone 20‐hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation
  publication-title: PLoS Genetics
– volume: 64
  start-page: 2042
  year: 2014
  end-page: 2055
  article-title: Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK‐dependent manner
  publication-title: Diabetes
– volume: 283
  start-page: 33902
  issue: 49
  year: 2008
  end-page: 33910
  article-title: AMP‐activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP‐responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver
  publication-title: The Journal of Biological Chemistry
– volume: 110
  start-page: E2173
  year: 2013
  end-page: E2181
  article-title: Juvenile hormone and its receptor, methoprene‐tolerant, control the dynamics of mosquito gene expression
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 36
  start-page: 189
  year: 2013
  end-page: 200
  article-title: Transcriptional regulators of hepatic gluconeogenesis
  publication-title: Archives of Pharmacal Research
– volume: 33
  start-page: 1327
  year: 2003
  end-page: 1338
  article-title: Insights into the molecular basis of the hormonal control of molting and metamorphosis from and
  publication-title: Insect Biochemistry & Molecular Biology
– volume: 11
  start-page: 434
  year: 2020
  article-title: The role of peptide hormones in insect lipid metabolism
  publication-title: Frontiers in Physiology
– volume: 64
  start-page: 315
  year: 2019
  end-page: 333
  article-title: Fat body biology in the last decade
  publication-title: Annual Review of Entomology
– start-page: 1
  year: 2017
  end-page: 5
  article-title: Adipokinetic hormones and lipid mobilization
  publication-title: Reference Module in Neuroscience and Biobehavioral Psychology
– volume: 18
  issue: 6
  year: 2022
  article-title: Krüppel‐like factor 15 integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20‐hydroxyecdysone regulation
  publication-title: PLoS Genetics
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using Real‐Time Quantitative PCR and the 2 method
  publication-title: Methods (San Diego, Calif.)
– volume: 1411
  start-page: 21
  year: 2018
  end-page: 35
  article-title: Insulin regulation of gluconeogenesis
  publication-title: Annals of the New York Academy of Sciences
– volume: 292
  start-page: 3420
  year: 2017
  end-page: 3432
  article-title: TGF‐ 1/Smad3 pathway targets PP2A‐AMPK‐FoxO1 signaling to regulate hepatic gluconeogenesis
  publication-title: Journal of Biological Chemistry
– volume: 241
  start-page: 108
  year: 2017
  end-page: 117
  article-title: Insulin and 20‐hydroxyecdysone action in : Glycogen content and expression pattern of insulin and ecdysone receptors in fat body
  publication-title: General and Comparative Endocrinology
– volume: 1
  start-page: 170
  year: 2021
  end-page: 186
– volume: 117
  start-page: 9292
  year: 2020
  end-page: 9301
  article-title: The AMPK‐PP2A axis in insect fat body is activated by 20‐hydroxyecdysone to antagonize insulin/IGF signaling and restrict growth rate
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 576
  start-page: 51
  year: 2019
  end-page: 60
  article-title: The integrative biology of type 2 diabetes
  publication-title: Nature
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Analytical Biochemistry
– volume: 49
  start-page: 93
  year: 2004
  end-page: 113
  article-title: Regulation of intermediary metabolism and water balance of insects by neuropeptides
  publication-title: Annual Review of Entomology
– volume: 20
  issue: 3
  year: 2019
  article-title: Sterol hormone 20E regulates autophagy via multiple pathways in insect
  publication-title: International Journal of Environmental Sciences & Natural Resources
– volume: 9
  start-page: 802
  year: 2019
  article-title: Unraveling the regulation of hepatic gluconeogenesis
  publication-title: Frontiers in Endocrinology
– volume: 27
  start-page: 136
  year: 2010
  end-page: 142
  article-title: Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications
  publication-title: Diabetic Medicine
– volume: 1842
  start-page: 1844
  year: 2014
  end-page: 1854
  article-title: AMPK activation prevents excess nutrient‐induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response
  publication-title: Biochimica et Biophysica Acta (BBA) ‐ Molecular Basis of Disease
– volume: 468
  start-page: 125
  year: 2015
  end-page: 132
  article-title: Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity
  publication-title: The Biochemical Journal
– volume: 99
  start-page: 16309
  year: 2003
  end-page: 16313
  article-title: Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl‐CoA carboxylase inhibition and AMP‐activated protein kinase activation
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 70
  start-page: 148
  year: 2016
  end-page: 159
  article-title: Identification of the first insulin‐like peptide in the disease vector : Involvement in metabolic homeostasis of lipids and carbohydrates
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 24
  start-page: 438
  year: 2008
  end-page: 458
  article-title: Regulation of hepatic glucose production and the role of gluconeogenesis in humans: Is the rate of gluconeogenesis constant?
  publication-title: Diabetes/Metabolism Research and Reviews
– volume: 56
  start-page: 1363
  year: 2021
  end-page: 1393
  article-title: Lipid metabolism in cancer: New perspectives and emerging mechanisms
  publication-title: Developmental Cell
– volume: 57
  start-page: 755
  year: 1988
  end-page: 783
  article-title: Hormonal regulation of hepatic gluconeogenesis and glycolysis
  publication-title: Annual Review of Biochemistry
– volume: 421
  start-page: 203
  year: 2012
  end-page: 207
  article-title: Ecdysone receptor (EcR) suppresses lipid accumulation in the fat body via transcription control
  publication-title: Biochemical and Biophysical Research Communications
– volume: 2
  start-page: 128
  year: 2010
  end-page: 138
  article-title: 20‐hydroxyecdysone reduces insect food consumption resulting in fat body lipolysis during molting and pupation
  publication-title: Journal of Molecular Cell Biology
– volume: 672
  year: 2019
  article-title: Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway
  publication-title: Archives of Biochemistry and Biophysics
– volume: 39
  start-page: 202
  year: 2009
  article-title: Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito
  publication-title: Physiological Genomics
– volume: 48
  start-page: 200
  year: 2019
  end-page: 214
  article-title: HNF4 directs a switch in lipid metabolism that supports the transition to adulthood
  publication-title: Developmental Cell
– volume: 38
  start-page: 68
  year: 1997
  end-page: 76
  article-title: Adipokinetic hormone‐induced lipolysis in the fat body of an insect, : Synthesis of sn‐1,2‐diacylglycerols
  publication-title: Journal of Lipid Research
– volume: 310
  start-page: 667
  year: 2005
  end-page: 670
  article-title: Antagonistic actions of ecdysone and insulins determine final size in
  publication-title: Science
– volume: 35
  start-page: 321
  year: 2015
  article-title: The roles of mTOR complexes in lipid metabolism
  publication-title: Annual Review of Nutrition
– volume: 8
  year: 2017
  article-title: Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation
  publication-title: Nature Communications
– volume: 293
  start-page: 18613
  year: 2018
  end-page: 18623
  article-title: Insulin and 20‐hydroxyecdysone oppose each other in the regulation of phosphoinositide‐dependent kinase‐1 expression during insect pupation
  publication-title: The Journal of Biological Chemistry
– volume: 114
  start-page: E2709
  year: 2017
  end-page: E2718
  article-title: Hormone and receptor interplay in the regulation of mosquito lipid metabolism
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 44
  start-page: 33
  year: 2012
  end-page: 45
  article-title: Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis
  publication-title: The International Journal of Biochemistry & Cell Biology
– volume: 285
  start-page: 32182
  year: 2010
  end-page: 32191
  article-title: AMPK‐dependent repression of hepatic gluconeogenesis via disruption of CREB·CRTC2 complex by orphan nuclear receptor small heterodimer partner
  publication-title: Journal of Biological Chemistry
– volume: 137
  start-page: 635
  year: 2009
  end-page: 646
  article-title: Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
  publication-title: Cell
– volume: 177
  start-page: 1600
  year: 2010
  end-page: 1602
  article-title: The physiological deadlock between AMPK and gluconeogenesis: SOGA, a novel protein, may provide the key
  publication-title: American Journal of Pathology
– volume: 55
  start-page: 207
  year: 2010
  end-page: 225
  article-title: Insect fat body: Energy, metabolism, and regulation
  publication-title: Annual Review of Entomology
– volume: 43
  start-page: 829
  year: 2013
  end-page: 838
  article-title: 20‐Hydroxyecdysone‐induced transcriptional activity of upregulates and acid and promotes lipolysis in fat body
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 71
  start-page: 16
  year: 2009
  end-page: 30
  article-title: Hormonal and nutritional regulation of insect fat body development and function
  publication-title: Archives of Insect Biochemistry and Physiology
– volume: 8
  year: 2021
  article-title: Lipidomic perturbations in cynomolgus monkeys are regulated by thyroid stimulating hormone
  publication-title: Frontiers in Molecular Biosciences
– volume: 31
  start-page: 62
  year: 2020
  end-page: 76
  article-title: Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer
  publication-title: Cell Metabolism
– volume: 81
  start-page: 3708
  year: 2021
  end-page: 3730
  article-title: Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity
  publication-title: Molecular cell
– volume: 437
  start-page: 1109
  year: 2005
  end-page: 1114
  article-title: The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
  publication-title: Nature
– volume: 56
  start-page: 1436
  year: 2010
  end-page: 1444
  article-title: Transcriptional regulation of the insulin signaling pathway genes by starvation and 20‐hydroxyecdysone in the fat body
  publication-title: Journal of Insect Physiology
– volume: 104
  year: 2020
  article-title: A journey into the world of insect lipid metabolism
  publication-title: Archives of Insect Biochemistry and Physiology
– volume: 8
  start-page: 1288
  year: 2002
  end-page: 1295
  article-title: Adiponectin stimulates glucose utilization and fatty‐acid oxidation by activating AMP‐activated protein kinase
  publication-title: Nature Medicine
– volume: 98
  start-page: 62
  year: 2019
  end-page: 75
  article-title: mediates metformin‐inhibited hepatic gluconeogenesis
  publication-title: Metabolism
– ident: e_1_2_6_15_1
  doi: 10.1146/annurev.ento.49.061802.123354
– ident: e_1_2_6_26_1
  doi: 10.2337/db14-1402
– ident: e_1_2_6_53_1
  doi: 10.1016/j.trecan.2018.11.003
– ident: e_1_2_6_42_1
  doi: 10.1146/annurev-ento-011118-112007
– ident: e_1_2_6_38_1
  doi: 10.1016/j.trecan.2019.09.007
– ident: e_1_2_6_20_1
  doi: 10.1016/j.ibmb.2013.06.007
– ident: e_1_2_6_34_1
  doi: 10.1002/dmrr.863
– ident: e_1_2_6_44_1
  doi: 10.1016/j.cmet.2019.11.010
– ident: e_1_2_6_50_1
  doi: 10.1093/jmcb/mjq006
– ident: e_1_2_6_57_1
  doi: 10.1074/jbc.M116.764910
– ident: e_1_2_6_9_1
  doi: 10.1016/j.devcel.2021.04.013
– ident: e_1_2_6_62_1
  doi: 10.3389/fendo.2018.00802
– ident: e_1_2_6_31_1
  doi: 10.1016/j.jinsphys.2010.02.011
– ident: e_1_2_6_12_1
  doi: 10.1016/j.ibmb.2015.12.009
– ident: e_1_2_6_2_1
  doi: 10.1016/j.ibmb.2015.06.013
– ident: e_1_2_6_19_1
  doi: 10.1016/j.cell.2009.03.016
– ident: e_1_2_6_48_1
  doi: 10.1002/arch.21682
– ident: e_1_2_6_22_1
  doi: 10.1016/j.biocel.2011.10.001
– ident: e_1_2_6_63_1
  doi: 10.1073/pnas.1305293110
– ident: e_1_2_6_30_1
  doi: 10.1002/arch.20290
– ident: e_1_2_6_51_1
  doi: 10.1073/pnas.1619326114
– ident: e_1_2_6_54_1
  doi: 10.1242/jeb.00241
– ident: e_1_2_6_33_1
  doi: 10.1074/jbc.M802537200
– ident: e_1_2_6_3_1
  doi: 10.1146/annurev-ento-112408-085356
– ident: e_1_2_6_41_1
  doi: 10.1038/s41586-019-1797-8
– ident: e_1_2_6_11_1
  doi: 10.1126/science.1119432
– ident: e_1_2_6_21_1
  doi: 10.1016/j.metabol.2019.06.002
– ident: e_1_2_6_27_1
  doi: 10.1038/nature03967
– ident: e_1_2_6_17_1
  doi: 10.1016/B978-0-12-819460-7.00143-2
– ident: e_1_2_6_6_1
  doi: 10.1016/j.mce.2013.02.019
– ident: e_1_2_6_23_1
  doi: 10.1016/j.bbrc.2012.03.135
– ident: e_1_2_6_47_1
  doi: 10.3389/fphys.2020.00434
– ident: e_1_2_6_28_1
  doi: 10.1074/jbc.M110.134890
– ident: e_1_2_6_58_1
  doi: 10.1038/nm788
– ident: e_1_2_6_7_1
  doi: 10.1038/ncomms14420
– ident: e_1_2_6_60_1
  doi: 10.1016/j.abb.2019.07.022
– ident: e_1_2_6_10_1
  doi: 10.1146/annurev-nutr-071714-034355
– ident: e_1_2_6_36_1
  doi: 10.1016/j.cmet.2009.01.009
– ident: e_1_2_6_18_1
  doi: 10.1111/nyas.13435
– ident: e_1_2_6_24_1
  doi: 10.1371/journal.pgen.1008331
– ident: e_1_2_6_37_1
  doi: 10.1074/jbc.RA118.004891
– ident: e_1_2_6_13_1
  doi: 10.2353/ajpath.2010.100679
– ident: e_1_2_6_59_1
  doi: 10.1016/j.molcel.2021.08.027
– ident: e_1_2_6_4_1
  doi: 10.1016/S0022-2275(20)37276-X
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.222657499
– ident: e_1_2_6_25_1
  doi: 10.1016/j.ygcen.2016.06.022
– ident: e_1_2_6_29_1
  doi: 10.1016/j.bbadis.2014.07.002
– ident: e_1_2_6_35_1
  doi: 10.1007/s12272-013-0018-5
– ident: e_1_2_6_43_1
  doi: 10.1152/physiolgenomics.00095.2009
– volume: 20
  issue: 3
  year: 2019
  ident: e_1_2_6_55_1
  article-title: Sterol hormone 20E regulates autophagy via multiple pathways in insect
  publication-title: International Journal of Environmental Sciences & Natural Resources
– ident: e_1_2_6_39_1
  doi: 10.1146/annurev.bi.57.070188.003543
– ident: e_1_2_6_14_1
  doi: 10.1042/BJ20150125
– ident: e_1_2_6_61_1
  doi: 10.1073/pnas.2000963117
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ibmb.2003.06.001
– start-page: 1
  year: 2017
  ident: e_1_2_6_49_1
  article-title: Adipokinetic hormones and lipid mobilization
  publication-title: Reference Module in Neuroscience and Biobehavioral Psychology
– ident: e_1_2_6_56_1
  doi: 10.3389/fmolb.2021.640387
– ident: e_1_2_6_32_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_6_52_1
  doi: 10.1371/journal.pgen.1010229
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1464-5491.2009.02894.x
– ident: e_1_2_6_45_1
  doi: 10.1016/j.devcel.2018.11.030
– ident: e_1_2_6_5_1
  doi: 10.1016/j.trecan.2020.10.004
– ident: e_1_2_6_8_1
  doi: 10.1016/0003-2697(76)90527-3
SSID ssj0039292
Score 2.332717
Snippet The steroid hormone 20‐hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism,...
The steroid hormone 20-hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 771
SubjectTerms 20‐hydroxyecdysone
Animals
body fat
carboxy-lyases
ecdysterone
Ecdysterone - metabolism
Fat body
Fat Body - metabolism
Fat metabolism
Fatty Acids
forestry
Gluconeogenesis
Glucose
Glucose metabolism
glucose-6-phosphatase
Homeostasis
hormonal regulation
Hyphantria cunea
Insects
Larva - genetics
Larvae
Lipid Metabolism
lipidomics
lipidomics analysis
Lipids
Lipolysis
Metabolism
Moths - genetics
Oxidation
pests
Pyruvate carboxylase
Pyruvic acid
Regulatory mechanisms (biology)
steroid hormones
Steroids
Title Steroid hormone 20‐hydroxyecdysone disturbs fat body lipid metabolism and negatively regulates gluconeogenesis in Hyphantria cunea larvae
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1744-7917.13130
https://www.ncbi.nlm.nih.gov/pubmed/36342157
https://www.proquest.com/docview/2825269952
https://www.proquest.com/docview/2733200466
https://www.proquest.com/docview/2834280464
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9QwFA-yIHjx-2PcVSJ48NKhbZKmPYq4jIJ7cF0QLyVpkpnBbjtM20M9ed-Lf6N_ie-lH7grKuKtNHnwkrz38kvy8gshz2NrnOGGBYxJF3AmeaCFkUHBbRgZ5mBFhneH350kqzP-9qOYsgnxLszADzFvuKFn-HiNDq5085OTA5TmSLYolxGDQAxRGDO2EBa9nwmkcPL3552JjAPkVhvJfTCX54r85XnpF7B5Gbv6yef4FtGT2kPOyedl1-pl8eUKo-N_tes2uTlCU_pysKU75Jqt7pLrn2q_8X6PXJzCENRbQzcAc-vK0jj8_vXbpjeolC1M3-BPA2bT7XVDnWqprk1Py-0OhM5tC-ZWbptzqipDK7v2jONlT_d2jU-I2Yb69PnK1muMv9uGbiu66ncbGHvwElp0lVW0xLeM7H1ydvz6w6tVMD7lAIOOOYtWMBdq5iwXjqcxtwDbnHbSpBByQqGSNDVOSVsAHjEuc1xIJVOdITyBkMLZA3JQgQaPCI241bFTmdKa84ILxZgV0sUgE4VMuAVZTgOZFyPPOT63UebTegd7OMcezn0PL8iLWWA3UHz8vurRZBn56OtNjrd_4yTLRLwgz-Zi8FI8elHQax3UkYz5vYjkD3VSBmtBPGpekIeD1c36sATKIiGhcd52_qZo_ubk1H88_leBQ3IjBhw3ZMMdkYN239kngLta_dS71g-XrCLh
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgCMGlfBYWChiJA5esktiOkyMCqi20e6CtVHGJ7NjejUizq032kJ64c-E38kuYcXZXbREgxC1K7Ghsz4yf7fEbQl7F1jjDDQsYky7gTPJACyODgtswMszBigzvDh-Ok9EJ_3AqTi_chen5ITYbbmgZ3l-jgeOG9AUrByzNkW1RDiMGnvg6uYF5vZE__92nDYUUTv_-xDORcYDsait6H4zmufKDyzPTL3DzMnr108_eHVKsBe-jTr4Ml60eFudXOB3_r2V3yfYKndI3vTrdI9dsfZ_c_Dzze-8PyLcjGIVZaegUkO6stjQOf3z9Pu0MSmUL0zX40oDmLBe6oU61VM9MR6tyDpXObAsaV5XNGVW1obWdeNLxqqMLO8EsYrahPoK-trMJuuCyoWVNR918CsMPhkKLZW0VrTCdkX1ITvbeH78dBatsDjDuGLZoBXOhZs5y4XgacwvIzWknTQpeJxQqSVPjlLQFQBLjMseFVDLVGSIU8Cqc7ZCtGiR4TGjErY6dypTWnBdcKMaskC6GOlHIhBuQ4Xok82JFdY4ZN6p8veTBHs6xh3PfwwPyelNh3rN8_L7o7lo18pW5NzleAI6TLBPxgLzcfAZDxdMXBb22hDKSMb8dkfyhTMpgOYinzQPyqFe7jTwsgW-RkNA4rzx_EzTfHx_5hyf_WuEFuTU6PjzID_bHH5-S2zHAuj44bpdstYulfQYwrNXPvZ39BL-rJv0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgEYgL70dhASNx4JIqje04OSKWqsujQiwrIS5RHNttRTapmuQQTty58Bv5Jcw4D7GLACFuUWJHY3tm_Nkef0PIk8Boq7lmHmPSepxJ7imhpZdx4880s7Aiw7vDb5bh4pi__CCGaEK8C9PxQ4wbbmgZzl-jgW-1_cnIAUpzJFuU0xkDR3yeXOChH2P2hoN3I4MUzv7uwDOUgYfkaj27DwbznPnB6YnpF7R5Gry62Wd-lahB7i7o5NO0qdU0-3yG0vG_GnaNXOmxKX3WKdN1cs4UN8jFj6Xbeb9Jvh7BGJQbTdeAc8vC0MD__uXbutUolMl0W-FLDXrT7FRFbVpTVeqW5pstVDoxNehbvqlOaFpoWpiVoxzPW7ozK8whZirq4ucLU67QAW8quinoot2uYfDBTGjWFCalOSYzMrfI8fzF--cLr8_lAKOOQYtGMOsrZg0XlkcBN4DbrLJSR-BzfJGGUaRtKk0GgETb2HIhUxmpGPEJ-BTObpO9AiS4S-iMGxXYNE6V4jzjImXMCGkDqDPzmbATMh0GMsl6onPMt5Enw4IHezjBHk5cD0_I07HCtuP4-H3R_UEzkt7YqwSv_wZhHItgQh6Pn8FM8ewlhV5roIxkzG1GhH8oEzFYDOJZ84Tc6bRulIeF8G0mJDTO6c7fBE0Ol0fu4d6_VnhELr09mCevD5ev7pPLAWC6LjJun-zVu8Y8AAxWq4fOyn4AIZElrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steroid+hormone+20-hydroxyecdysone+disturbs+fat+body+lipid+metabolism+and+negatively+regulates+gluconeogenesis+in+Hyphantria+cunea+larvae&rft.jtitle=Insect+science&rft.au=Zhang%2C+Sheng-Yu&rft.au=Gao%2C+Han&rft.au=Askar%2C+Ankarjan&rft.au=Li%2C+Xing-Peng&rft.date=2023-06-01&rft.issn=1744-7917&rft.eissn=1744-7917&rft.volume=30&rft.issue=3&rft.spage=771&rft_id=info:doi/10.1111%2F1744-7917.13130&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-9609&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-9609&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-9609&client=summon