Single‐subject electroencephalography measurement of interhemispheric transfer time for the in‐vivo estimation of axonal morphology
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measu...
Saved in:
Published in | Human brain mapping Vol. 44; no. 14; pp. 4859 - 4874 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm−α. The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates.
Subject‐specific interhemispheric transfer time (IHTT) was estimated from electroencephalography, based on the maximal peak of neural response to visual stimuli within periods of statistically significant evoked activity. Subject‐specific axonal morphology was estimated from the combination of the estimated IHTT and magnetic resonance imaging data. IHTT and axonal morphology estimates were consistent with histological values. |
---|---|
AbstractList | Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm
−
α
. The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates. Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm−α. The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates. Subject‐specific interhemispheric transfer time (IHTT) was estimated from electroencephalography, based on the maximal peak of neural response to visual stimuli within periods of statistically significant evoked activity. Subject‐specific axonal morphology was estimated from the combination of the estimated IHTT and magnetic resonance imaging data. IHTT and axonal morphology estimates were consistent with histological values. Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm − α . The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates. Subject‐specific interhemispheric transfer time (IHTT) was estimated from electroencephalography, based on the maximal peak of neural response to visual stimuli within periods of statistically significant evoked activity. Subject‐specific axonal morphology was estimated from the combination of the estimated IHTT and magnetic resonance imaging data. IHTT and axonal morphology estimates were consistent with histological values. Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm−α. The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates. Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm-α . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates.Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm-α . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates. Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates. |
Author | De Lucia, Marzia Lutti, Antoine Oliveira, Rita |
AuthorAffiliation | 1 Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience Lausanne University Hospital and University of Lausanne Lausanne Switzerland |
AuthorAffiliation_xml | – name: 1 Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience Lausanne University Hospital and University of Lausanne Lausanne Switzerland |
Author_xml | – sequence: 1 givenname: Rita orcidid: 0000-0002-7597-6919 surname: Oliveira fullname: Oliveira, Rita email: ana.veiga-de-oliveira@chuv.ch organization: Lausanne University Hospital and University of Lausanne – sequence: 2 givenname: Marzia orcidid: 0000-0001-8792-7885 surname: De Lucia fullname: De Lucia, Marzia organization: Lausanne University Hospital and University of Lausanne – sequence: 3 givenname: Antoine orcidid: 0000-0003-3281-5477 surname: Lutti fullname: Lutti, Antoine organization: Lausanne University Hospital and University of Lausanne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37470446$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kr-O1DAQxi10iPsDBS-AItFAkbsZx4k3FYITcEiHKIDacpLxxqvEDnaysB0dLc_Ik-BljxMg0dgjzW--mbG_U3bkvCPGHiKcIwC_6JvxnFeCwx12glDLHLAujvZxVea1kHjMTmPcACCWgPfYcSGFBCGqE_btvXXrgX58_R6XZkPtnNGQzuDJtTT1evDroKd-l42k4xJoJDdn3mTWzRR6Gm2cegq2zeagXTQUstmOlBmfgp4SlpS3dusziimhZ-vdvlx_8U4P2ejD1PvUY3ef3TV6iPTg5j5jH1-9_HB5lV-_e_3m8vl13goQkDeNxqaEDnXHZSPqpltVvDOi0iV2yOuiE7UwNciu1UKuhFkZYzggEAJWXVOcsWcH3WlpRuratE7Qg5pCGi7slNdW_Z1xtldrv1UIQvIaq6Tw5EYh-E9LWkulR2hpGLQjv0TFVwK4EHxVJPTxP-jGLyEtvqfKupRYokzUoz9Hup3l9ycl4OkBaIOPMZC5RRDU3gAqGUD9MkBiLw7sZzvQ7v-gunrx9lDxE6fit1s |
Cites_doi | 10.1007/s10827-010-0262-3 10.1109/TMI.2004.837363 10.1016/j.jneumeth.2003.10.009 10.1371/journal.pone.0032379 10.1016/j.jneumeth.2020.108990 10.1186/1475-925X-9-45 10.1016/j.cogbrainres.2004.09.006 10.1016/j.jneumeth.2007.03.024 10.1080/00221309.1930.9918218 10.1007/s00429-014-0871-0 10.1007/s00429-019-01961-2 10.1016/j.neuroimage.2017.12.087 10.1016/j.neuroimage.2014.10.026 10.1073/pnas.0907655106 10.1016/j.bbr.2017.05.019 10.1002/hbm.20375 10.1007/s00422-014-0626-2 10.1080/17588928.2017.1333490 10.1016/j.neuroimage.2017.09.053 10.1016/j.neuroimage.2006.01.021 10.1093/brain/124.9.1813 10.1016/0028-3932(93)90097-J 10.1016/j.brainres.2007.09.049 10.1016/j.neulet.2006.09.028 10.1016/j.neuroimage.2017.08.038 10.1136/mp.54.6.386 10.1016/j.neuroimage.2023.119930 10.1016/j.neuropsychologia.2007.03.017 10.1016/0006-8993(92)90178-C 10.1002/mrm.21577 10.1016/j.neuroimage.2013.06.005 10.1088/1741-2552/ab6d89 10.1016/j.neuroimage.2012.03.072 10.1113/jphysiol.1951.sp004655 10.1016/j.neuroimage.2019.116137 10.1016/j.neuroimage.2015.10.019 10.1186/1743-0003-5-25 10.3389/fnins.2021.646034 10.1016/j.neuroimage.2010.06.037 10.3389/fnins.2018.00072 10.1002/hbm.23471 10.3389/fnins.2022.874023 10.1007/s00221-004-1873-6 10.1016/j.jmr.2014.06.017 10.1016/j.neuroimage.2019.01.029 10.1162/neco.1995.7.6.1129 10.1016/0028-3932(94)90089-2 10.1002/hbm.24522 10.1016/j.neuroimage.2010.05.043 10.1016/0028-3932(71)90067-4 10.1037/0735-7044.103.5.1115 10.7554/eLife.49855 10.1002/mrm.21732 10.1093/cercor/bhs011 10.1016/j.neuroimage.2012.01.021 10.1016/0028-3932(91)90031-3 10.1016/j.neuroimage.2009.12.002 10.1002/mrm.25631 10.1016/j.neuroimage.2020.117619.A 10.1186/s40478-018-0645-7 10.1523/JNEUROSCI.0761-13.2013 10.1002/hbm.10010 10.1007/BF01129642 10.1093/brain/awab362 10.1007/BF02512476 10.1038/nn.3635 10.1109/51.715495 10.1002/nbm.3711 10.1016/j.neulet.2007.04.048 10.1155/2011/879716 10.3233/bpl-160033 10.1007/s00221-001-0906-7 10.1016/j.neuroimage.2019.116017 10.1016/j.neuroimage.2020.117197 10.1002/mrm.21542 10.1038/newbio238217a0 10.1016/j.neuroimage.2015.06.092 10.1016/j.neuroimage.2019.03.025 10.1523/jneurosci.0938-22.2022 10.1007/s00429-021-02358-w 10.1002/hbm.23929 10.1155/2011/156869 10.1016/j.neuroimage.2011.01.084 10.1006/nimg.2001.1054 10.1016/j.neuroimage.2015.05.023 10.1016/j.neuroimage.2010.10.048 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Wiley Periodicals LLC. 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC. – notice: 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.26420 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Oliveira et al |
EISSN | 1097-0193 |
EndPage | 4874 |
ExternalDocumentID | PMC10472916 37470446 10_1002_hbm_26420 HBM26420 |
Genre | article Journal Article |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GrantInformation_xml | – fundername: Bertarelli Catalyst Foundation – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: 320030_184784; 32003B_212981 – fundername: ROGER DE SPOELBERCH Foundation – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 320030_184784 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 32003B_212981 – fundername: ; – fundername: ; grantid: 320030_184784; 32003B_212981 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HMCUK HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ AAFWJ AANHP AAYXX ABEML ABJNI ACBWZ ACRPL ACSCC ACYXJ ADNMO AFPKN AGQPQ ASPBG AVWKF AZFZN BFHJK CITATION EJD FEDTE GAKWD HF~ HVGLF LW6 M6M PHGZM PHGZT RIWAO RJQFR SAMSI WXSBR NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4040-bba1b50d1ad27b49bd862df46a51d1293d494f907dca4784f8fff2010e1016db3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:36:18 EDT 2025 Fri Jul 11 03:54:24 EDT 2025 Sat Jul 26 02:20:17 EDT 2025 Thu Apr 03 07:00:56 EDT 2025 Tue Jul 01 01:11:13 EDT 2025 Wed Jan 22 16:20:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | conduction velocity myelination tractography MRI g-ratio EEG |
Language | English |
License | Attribution-NonCommercial 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4040-bba1b50d1ad27b49bd862df46a51d1293d494f907dca4784f8fff2010e1016db3 |
Notes | Marzia De Lucia and Antoine Lutti contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8792-7885 0000-0002-7597-6919 0000-0003-3281-5477 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26420 |
PMID | 37470446 |
PQID | 2859571517 |
PQPubID | 996345 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10472916 proquest_miscellaneous_2840244283 proquest_journals_2859571517 pubmed_primary_37470446 crossref_primary_10_1002_hbm_26420 wiley_primary_10_1002_hbm_26420_HBM26420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 October, 2023 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 1 October, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2002; 16 2012; 61 2010; 53 2007; 1185 2006; 31 2015; 105 2015; 220 2020; 17 2016; 75 2019; 201 2023; 269 2019; 202 2011; 54 2008; 5 2011; 56 2005; 22 2005; 24 2004; 134 1971; 9 2018; 6 2006; 409 2018; 9 1998; 17 2018; 39 2017; 30 2002; 142 1989; 103 2017; 38 2008; 29 1992; 598 1993; 31 2020; 9 2001; 15 2014; 17 2019; 195 2007; 419 2008; 60 2014; 93 2019; 194 2012; 22 2014; 246 1994; 32 2010; 9 1951; 115 2001; 54 2012; 62 1997; 135 1991; 3 2001; 124 2018; 182 2012 2021; 227 2021; 348 2021; 226 2007; 164 2009 2008; 59 2020; 225 2011; 30 1930; 3 2020; 222 2022; 42 2016; 125 2017; 330 1972; 238 1995; 7 2022; 145 2014; 108 2011; 2011 1991; 29 2021; 15 2004; 158 2016; 2 2019; 40 2013; 33 2015; 119 2015; 118 2018; 12 2012; 7 2007; 45 2010; 52 2022; 16 2010; 50 2009; 106 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 Ipata A. (e_1_2_9_47_1) 1997; 135 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 Creel D. (e_1_2_9_20_1) 2012 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 Nunez P. L. (e_1_2_9_65_1) 2009 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 31 start-page: 1267 year: 1993 end-page: 1281 article-title: Bilateral visual field processing and evoked potential interhemispheric transmission time publication-title: Neuropsychologia – volume: 45 start-page: 2626 year: 2007 end-page: 2630 article-title: Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials publication-title: Neuropsychologia – volume: 17 year: 2020 article-title: EEG‐based personal identification method using unsupervised feature extraction and its robustness against intra‐subject variability publication-title: Journal of Neural Engineering – year: 2009 – volume: 330 start-page: 85 year: 2017 end-page: 91 article-title: Long‐term reliability of the visual EEG Poffenberger paradigm publication-title: Behavioural Brain Research – volume: 24 start-page: 12 year: 2005 end-page: 28 article-title: A common formalism for the integral formulations of the forward EEG problem publication-title: IEEE Transactions on Medical Imaging – volume: 105 start-page: 32 year: 2015 end-page: 44 article-title: Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data publication-title: NeuroImage – volume: 145 start-page: 1653 year: 2022 end-page: 1667 article-title: A brain atlas of axonal and synaptic delays based on modelling of cortico‐cortical evoked potentials publication-title: Brain – volume: 32 start-page: 439 year: 1994 end-page: 448 article-title: Directional asymmetries in interhemispheric transmission time: Evidence from visual evoked potentials publication-title: Neuropsychologia – volume: 195 start-page: 128 year: 2019 end-page: 139 article-title: Modeling conduction delays in the corpus callosum using MRI‐measured g‐ratio publication-title: NeuroImage – volume: 201 year: 2019 article-title: White matter information flow mapping from diffusion MRI and EEG publication-title: NeuroImage – volume: 2 start-page: 71 year: 2016 end-page: 91 article-title: Magnetic resonance of myelin water: An in vivo marker for myelin publication-title: Brain Plasticity – volume: 32 start-page: 35 year: 1994 end-page: 42 article-title: Interpreting magnetic fields of the brain: Minimum norm estimates publication-title: Medical & Biological Engineering & Computing – volume: 29 start-page: 1163 year: 1991 end-page: 1177 article-title: Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta‐analysis publication-title: Neuropsychologia – volume: 164 start-page: 177 year: 2007 end-page: 190 article-title: Nonparametric statistical testing of EEG‐ and MEG‐data publication-title: Journal of Neuroscience Methods – volume: 56 start-page: 1301 year: 2011 end-page: 1315 article-title: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI publication-title: NeuroImage – volume: 246 start-page: 36 year: 2014 end-page: 45 article-title: Nonparametric pore size distribution using d‐PFG: Comparison to s‐PFG and migration to MRI publication-title: Journal of Magnetic Resonance – volume: 5 start-page: 1 year: 2008 end-page: 33 article-title: Review on solving the inverse problem in EEG source analysis publication-title: Journal of Neuroengineering and Rehabilitation – volume: 118 start-page: 397 year: 2015 end-page: 405 article-title: In vivo histology of the myelin g‐ratio with magnetic resonance imaging publication-title: NeuroImage – volume: 142 start-page: 139 year: 2002 end-page: 150 article-title: Flow of activation from V1 to frontal cortex in humans: A framework for defining “early” visual processing publication-title: Experimental Brain Research – volume: 52 start-page: 1374 year: 2010 end-page: 1389 article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI publication-title: NeuroImage – volume: 60 start-page: 1396 year: 2008 end-page: 1407 article-title: High‐resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI publication-title: Magnetic Resonance in Medicine – volume: 33 start-page: 14501 year: 2013 end-page: 14511 article-title: Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: Comparing data from histology and magnetic resonance imaging diffusion tractography publication-title: The Journal of Neuroscience – volume: 269 year: 2023 article-title: Temporal diffusion ratio (TDR) for imaging restricted diffusion: Optimisation and pre‐clinical demonstration publication-title: NeuroImage – volume: 409 start-page: 140 year: 2006 end-page: 145 article-title: Interhemispheric transfer time and structural properties of the corpus callosum publication-title: Neuroscience Letters – volume: 22 start-page: 1463 year: 2012 end-page: 1472 article-title: Areal differences in diameter and length of corticofugal projections publication-title: Cerebral Cortex – volume: 9 year: 2020 article-title: Nonivasive quantification of axon radii using diffusion MRI publication-title: eLife – volume: 53 start-page: 257 year: 2010 end-page: 267 article-title: Electrical source dynamics in three functional localizer paradigms publication-title: NeuroImage – volume: 598 start-page: 143 year: 1992 end-page: 153 article-title: Fiber composition of the human corpus callosum publication-title: Brain Research – volume: 125 start-page: 1063 year: 2016 end-page: 1078 article-title: An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging publication-title: NeuroImage – volume: 106 start-page: 19551 year: 2009 end-page: 19556 article-title: Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates publication-title: PNAS – volume: 7 start-page: 1129 year: 1995 end-page: 1159 article-title: An information‐maximization approach to blind separation and blind deconvolution publication-title: Neural Computation – volume: 16 start-page: 1 year: 2022 end-page: 18 article-title: In vivo estimation of axonal morphology from magnetic resonance imaging and electroencephalography data publication-title: Frontiers in Neuroscience – volume: 7 start-page: 1 year: 2012 end-page: 7 article-title: Robust and fast whole brain mapping of the RF transmit field B1 at 7T publication-title: PLoS One – volume: 3 start-page: 412 year: 1930 end-page: 430 article-title: Ocular dominance in human adults publication-title: The Journal of General Psychology – volume: 61 start-page: 1000 year: 2012 end-page: 1016 article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: NeuroImage – volume: 135 start-page: 169 year: 1997 end-page: 182 article-title: Interhemispheric transfer of visual information in humans: The role of different callosal channels publication-title: Archives Italiennes de Biologie – volume: 30 start-page: 1 year: 2017 end-page: 13 article-title: Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion publication-title: NMR in Biomedicine – volume: 194 start-page: 191 year: 2019 end-page: 210 article-title: hMRI – A toolbox for quantitative MRI in neuroscience and clinical research publication-title: NeuroImage – volume: 42 start-page: JN‐RM‐0938‐22 year: 2022 end-page: JN‐RM‐0938‐8816 article-title: Whole‐brain propagation delays in multiple sclerosis, a combined tractography – Magnetoencephalography study publication-title: The Journal of Neuroscience – volume: 31 start-page: 968 year: 2006 end-page: 980 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage – volume: 220 start-page: 1777 year: 2015 end-page: 1788 article-title: In vivo correlation between axon diameter and conduction velocity in the human brain publication-title: Brain Structure & Function – volume: 9 start-page: 4 year: 2018 end-page: 19 article-title: Does spatial attention modulate the earliest component of the visual evoked potential? publication-title: Cognitive Neuroscience – volume: 108 start-page: 541 year: 2014 end-page: 557 article-title: Distribution of axon diameters in cortical white matter: An electron‐microscopic study on three human brains and a macaque publication-title: Biological Cybernetics – volume: 182 start-page: 136 year: 2018 end-page: 148 article-title: Inferring brain tissue composition and microstructure via MR relaxometry publication-title: NeuroImage – volume: 225 start-page: 1277 year: 2020 end-page: 1291 article-title: High‐gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain publication-title: Brain Structure & Function – volume: 119 start-page: 338 year: 2015 end-page: 351 article-title: SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: NeuroImage – volume: 40 start-page: 2252 year: 2019 end-page: 2268 article-title: Evolution of white matter tract microstructure across the life span publication-title: Human Brain Mapping – volume: 134 start-page: 9 year: 2004 end-page: 21 article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods – volume: 419 start-page: 131 year: 2007 end-page: 136 article-title: Inter‐individual differences in the polarity of early visual responses and attention effects publication-title: Neuroscience Letters – volume: 17 start-page: 455 year: 2014 end-page: 462 article-title: Resolving human object recognition in space and time publication-title: Nature Neuroscience – volume: 22 start-page: 309 year: 2005 end-page: 321 article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event‐related potential as revealed by independent component analysis publication-title: Cognitive Brain Research – volume: 182 start-page: 379 year: 2018 end-page: 388 article-title: Whole brain g‐ratio mapping using myelin water imaging (MWI) and neurite orientation dispersion and density imaging (NODDI) publication-title: NeuroImage – volume: 348 year: 2021 article-title: Towards in vivo g‐ratio mapping using MRI: Unifying myelin and diffusion imaging publication-title: Journal of Neuroscience Methods – volume: 6 start-page: 143 year: 2018 article-title: Deficit of corpus callosum axons, reduced axon diameter and decreased area are markers of abnormal development of interhemispheric connections in autistic subjects publication-title: Acta Neuropathologica Communications – volume: 59 start-page: 667 year: 2008 end-page: 672 article-title: Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation publication-title: Magnetic Resonance in Medicine – volume: 59 start-page: 1347 year: 2008 end-page: 1354 article-title: AxCaliber: A method for measuring axon diameter distribution from diffusion MRI publication-title: Magnetic Resonance in Medicine – volume: 75 start-page: 688 year: 2016 end-page: 700 article-title: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study publication-title: Magnetic Resonance in Medicine – volume: 50 start-page: 112 year: 2010 end-page: 123 article-title: Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG‐fMRI publication-title: NeuroImage – volume: 62 start-page: 774 year: 2012 end-page: 781 article-title: FreeSurfer publication-title: Neuroimage – volume: 2011 year: 2011 article-title: Brainstorm: A user‐friendly application for MEG/EEG analysis publication-title: Computational Intelligence and Neuroscience – volume: 2011 year: 2011 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Computational Intelligence and Neuroscience – volume: 238 start-page: 217 year: 1972 end-page: 219 article-title: Relative conduction velocities of small myelinated and non‐myelinated fibres in the central nervous system publication-title: Nature: New Biology – volume: 17 start-page: 118 year: 1998 end-page: 122 article-title: EEG dipole source localization: Using inverse solutions for determining source locations publication-title: IEEE Engineering in Medicine and Biology Magazine – volume: 222 year: 2020 article-title: Axon diameter index estimation independent of fiber orientation distribution using high‐gradient diffusion MRI publication-title: NeuroImage – year: 2012 – volume: 38 start-page: 1541 year: 2017 end-page: 1573 article-title: A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula publication-title: Human Brain Mapping – volume: 12 start-page: 1 year: 2018 end-page: 19 article-title: Interhemispheric transfer time asymmetry of visual information depends on eye dominance: An electrophysiological study publication-title: Frontiers in Neuroscience – volume: 54 start-page: 386 year: 2001 end-page: 392 article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis publication-title: Molecular Pathology – volume: 124 start-page: 1813 year: 2001 end-page: 1820 article-title: Size‐selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis publication-title: Brain – volume: 39 start-page: 1532 year: 2018 end-page: 1554 article-title: Networks of myelin covariance Lester publication-title: Human Brain Mapping – volume: 15 start-page: 1 year: 2021 end-page: 13 article-title: Bundle‐specific axon diameter index as a new contrast to differentiate white matter tracts publication-title: Frontiers in Neuroscience – volume: 182 start-page: 80 year: 2018 end-page: 96 article-title: Promise and pitfalls of g‐ratio estimation with MRI publication-title: NeuroImage – volume: 15 start-page: 95 year: 2001 end-page: 111 article-title: Cortical sources of the early components of the visual evoked potential publication-title: Human Brain Mapping – volume: 227 year: 2021 article-title: A simple estimate of axon size with diffusion MRI publication-title: NeuroImage – volume: 54 start-page: 2318 year: 2011 end-page: 2329 article-title: Predicting inter‐hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: A combined ERP and DTI study publication-title: NeuroImage – volume: 16 start-page: 217 year: 2002 end-page: 240 article-title: Image distortion correction in fMRI: A quantitative evaluation publication-title: NeuroImage – volume: 93 start-page: 176 year: 2014 end-page: 188 article-title: NeuroImage using high‐resolution quantitative mapping of R1 as an index of cortical myelination publication-title: NeuroImage – volume: 1185 start-page: 212 year: 2007 end-page: 220 article-title: ERP evidence for the split fovea theory publication-title: Brain Research – volume: 202 year: 2019 article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation publication-title: NeuroImage – volume: 115 start-page: 101 year: 1951 end-page: 122 article-title: A theory of the effects of fibre size in medullated nerve publication-title: The Journal of Physiology – volume: 103 start-page: 1115 year: 1989 end-page: 1138 article-title: Visual evoked potential measures of interhemispheric transfer time in humans publication-title: Behavioral Neuroscience – volume: 158 start-page: 67 year: 2004 end-page: 74 article-title: Visual and tactile interhemispheric transfer compared with the method of Poffenberger publication-title: Experimental Brain Research – volume: 9 start-page: 45 year: 2010 article-title: OpenMEEG: Opensource software for quasistatic bioelectromagnetics publication-title: Biomedical Engineering Online – volume: 29 start-page: 131 year: 2008 end-page: 141 article-title: Functional source separation applied to induced visual gamma activity publication-title: Human Brain Mapping – volume: 30 start-page: 45 year: 2011 end-page: 67 article-title: Transfer entropy‐a model‐free measure of effective connectivity for the neurosciences publication-title: Journal of Computational Neuroscience – volume: 3 start-page: 391 year: 1991 end-page: 396 article-title: Global field power measurement versus classical method in the determination of the latency of evoked potential components publication-title: Brain Topography – volume: 9 start-page: 97 year: 1971 end-page: 113 article-title: The assessment and analysis of handedness: The Edinburgh inventory publication-title: Neuropsychologia – volume: 226 start-page: 2651 year: 2021 end-page: 2663 article-title: Dissecting whole‐brain conduction delays through MRI microstructural measures publication-title: Brain Structure & Function – ident: e_1_2_9_83_1 doi: 10.1007/s10827-010-0262-3 – ident: e_1_2_9_49_1 doi: 10.1109/TMI.2004.837363 – ident: e_1_2_9_24_1 doi: 10.1016/j.jneumeth.2003.10.009 – ident: e_1_2_9_53_1 doi: 10.1371/journal.pone.0032379 – ident: e_1_2_9_62_1 doi: 10.1016/j.jneumeth.2020.108990 – volume: 135 start-page: 169 year: 1997 ident: e_1_2_9_47_1 article-title: Interhemispheric transfer of visual information in humans: The role of different callosal channels publication-title: Archives Italiennes de Biologie – ident: e_1_2_9_36_1 doi: 10.1186/1475-925X-9-45 – ident: e_1_2_9_23_1 doi: 10.1016/j.cogbrainres.2004.09.006 – ident: e_1_2_9_56_1 doi: 10.1016/j.jneumeth.2007.03.024 – ident: e_1_2_9_60_1 doi: 10.1080/00221309.1930.9918218 – ident: e_1_2_9_43_1 doi: 10.1007/s00429-014-0871-0 – ident: e_1_2_9_44_1 doi: 10.1007/s00429-019-01961-2 – ident: e_1_2_9_28_1 doi: 10.1016/j.neuroimage.2017.12.087 – ident: e_1_2_9_22_1 doi: 10.1016/j.neuroimage.2014.10.026 – ident: e_1_2_9_15_1 doi: 10.1073/pnas.0907655106 – ident: e_1_2_9_35_1 doi: 10.1016/j.bbr.2017.05.019 – ident: e_1_2_9_7_1 doi: 10.1002/hbm.20375 – ident: e_1_2_9_51_1 doi: 10.1007/s00422-014-0626-2 – ident: e_1_2_9_8_1 doi: 10.1080/17588928.2017.1333490 – ident: e_1_2_9_48_1 doi: 10.1016/j.neuroimage.2017.09.053 – ident: e_1_2_9_25_1 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_2_9_30_1 doi: 10.1093/brain/124.9.1813 – ident: e_1_2_9_12_1 doi: 10.1016/0028-3932(93)90097-J – volume-title: The organization of the retina and visual system year: 2012 ident: e_1_2_9_20_1 – ident: e_1_2_9_57_1 doi: 10.1016/j.brainres.2007.09.049 – ident: e_1_2_9_87_1 doi: 10.1016/j.neulet.2006.09.028 – ident: e_1_2_9_16_1 doi: 10.1016/j.neuroimage.2017.08.038 – ident: e_1_2_9_19_1 doi: 10.1136/mp.54.6.386 – ident: e_1_2_9_84_1 doi: 10.1016/j.neuroimage.2023.119930 – ident: e_1_2_9_61_1 doi: 10.1016/j.neuropsychologia.2007.03.017 – ident: e_1_2_9_2_1 doi: 10.1016/0006-8993(92)90178-C – ident: e_1_2_9_5_1 doi: 10.1002/mrm.21577 – volume-title: Electric fields of the brain: The neurophysics of EEG year: 2009 ident: e_1_2_9_65_1 – ident: e_1_2_9_52_1 doi: 10.1016/j.neuroimage.2013.06.005 – ident: e_1_2_9_64_1 doi: 10.1088/1741-2552/ab6d89 – ident: e_1_2_9_90_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_9_72_1 doi: 10.1113/jphysiol.1951.sp004655 – ident: e_1_2_9_81_1 doi: 10.1016/j.neuroimage.2019.116137 – ident: e_1_2_9_4_1 doi: 10.1016/j.neuroimage.2015.10.019 – ident: e_1_2_9_37_1 doi: 10.1186/1743-0003-5-25 – ident: e_1_2_9_6_1 doi: 10.3389/fnins.2021.646034 – ident: e_1_2_9_69_1 doi: 10.1016/j.neuroimage.2010.06.037 – ident: e_1_2_9_17_1 doi: 10.3389/fnins.2018.00072 – ident: e_1_2_9_46_1 doi: 10.1002/hbm.23471 – ident: e_1_2_9_67_1 doi: 10.3389/fnins.2022.874023 – ident: e_1_2_9_32_1 doi: 10.1007/s00221-004-1873-6 – ident: e_1_2_9_10_1 doi: 10.1016/j.jmr.2014.06.017 – ident: e_1_2_9_78_1 doi: 10.1016/j.neuroimage.2019.01.029 – ident: e_1_2_9_9_1 doi: 10.1162/neco.1995.7.6.1129 – ident: e_1_2_9_13_1 doi: 10.1016/0028-3932(94)90089-2 – ident: e_1_2_9_74_1 doi: 10.1002/hbm.24522 – ident: e_1_2_9_3_1 doi: 10.1016/j.neuroimage.2010.05.043 – ident: e_1_2_9_66_1 doi: 10.1016/0028-3932(71)90067-4 – ident: e_1_2_9_73_1 doi: 10.1037/0735-7044.103.5.1115 – ident: e_1_2_9_82_1 doi: 10.7554/eLife.49855 – ident: e_1_2_9_42_1 doi: 10.1002/mrm.21732 – ident: e_1_2_9_80_1 doi: 10.1093/cercor/bhs011 – ident: e_1_2_9_33_1 doi: 10.1016/j.neuroimage.2012.01.021 – ident: e_1_2_9_58_1 doi: 10.1016/0028-3932(91)90031-3 – ident: e_1_2_9_70_1 doi: 10.1016/j.neuroimage.2009.12.002 – ident: e_1_2_9_29_1 doi: 10.1002/mrm.25631 – ident: e_1_2_9_40_1 doi: 10.1016/j.neuroimage.2020.117619.A – ident: e_1_2_9_86_1 doi: 10.1186/s40478-018-0645-7 – ident: e_1_2_9_14_1 doi: 10.1523/JNEUROSCI.0761-13.2013 – ident: e_1_2_9_27_1 doi: 10.1002/hbm.10010 – ident: e_1_2_9_39_1 doi: 10.1007/BF01129642 – ident: e_1_2_9_50_1 doi: 10.1093/brain/awab362 – ident: e_1_2_9_38_1 doi: 10.1007/BF02512476 – ident: e_1_2_9_18_1 doi: 10.1038/nn.3635 – ident: e_1_2_9_21_1 doi: 10.1109/51.715495 – ident: e_1_2_9_63_1 doi: 10.1002/nbm.3711 – ident: e_1_2_9_71_1 doi: 10.1016/j.neulet.2007.04.048 – ident: e_1_2_9_79_1 doi: 10.1155/2011/879716 – ident: e_1_2_9_54_1 doi: 10.3233/bpl-160033 – ident: e_1_2_9_34_1 doi: 10.1007/s00221-001-0906-7 – ident: e_1_2_9_26_1 doi: 10.1016/j.neuroimage.2019.116017 – ident: e_1_2_9_31_1 doi: 10.1016/j.neuroimage.2020.117197 – ident: e_1_2_9_41_1 doi: 10.1002/mrm.21542 – ident: e_1_2_9_85_1 doi: 10.1038/newbio238217a0 – ident: e_1_2_9_75_1 doi: 10.1016/j.neuroimage.2015.06.092 – ident: e_1_2_9_11_1 doi: 10.1016/j.neuroimage.2019.03.025 – ident: e_1_2_9_76_1 doi: 10.1523/jneurosci.0938-22.2022 – ident: e_1_2_9_55_1 doi: 10.1007/s00429-021-02358-w – ident: e_1_2_9_59_1 doi: 10.1002/hbm.23929 – ident: e_1_2_9_68_1 doi: 10.1155/2011/156869 – ident: e_1_2_9_89_1 doi: 10.1016/j.neuroimage.2011.01.084 – ident: e_1_2_9_45_1 doi: 10.1006/nimg.2001.1054 – ident: e_1_2_9_77_1 doi: 10.1016/j.neuroimage.2015.05.023 – ident: e_1_2_9_88_1 doi: 10.1016/j.neuroimage.2010.10.048 |
SSID | ssj0011501 |
Score | 2.4228294 |
Snippet | Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4859 |
SubjectTerms | Biomarkers Cerebral hemispheres Computation conduction velocity Data acquisition EEG Electrodes Electroencephalography Estimates Functional anatomy g‐ratio In vivo methods and tests Interhemispheric transfer Magnetic resonance imaging Morphology MRI myelination Neuroimaging Solution space Statistical analysis Structure-function relationships tractography Variability Visual evoked potentials Visual stimuli |
Title | Single‐subject electroencephalography measurement of interhemispheric transfer time for the in‐vivo estimation of axonal morphology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26420 https://www.ncbi.nlm.nih.gov/pubmed/37470446 https://www.proquest.com/docview/2859571517 https://www.proquest.com/docview/2840244283 https://pubmed.ncbi.nlm.nih.gov/PMC10472916 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qBfHFj1ZrtB6riPiS6yXdu-ziUysth3ClVAv3IIT95A69pNxHUZ9889W_0b_Emc1HPYsgvoRANslmM7Pzm9nZ3wC8SAbCCKoRJox1MXdexVI7VDwuBtpp6bJQG3B0Mhie87fj_ngDXjd7YSp-iDbgRpoR5mtScKUXe1ekoRM966I1T8lfp1wtAkRnLXUUAZ3gbKGJjSXOwA2rUC_da-9ct0XXAOb1PMnf8WswQMd34UPT9Srv5GN3tdRd8_UPVsf__LZ7cKcGpuygkqT7sOGKLdg-KNApn31hL1lIFQ0x-C24NapX5Lfh-zu0fZ_cz28_FitNMR1WF9ahGeNiohpKbDa7Ckay0jOiqZiHYnPEazA1bBkQtJszqnbPEEozhKbYDJ98Ob0sGbGBVNss6Xb1mTwINitRTEKnHsD58dH7N8O4Lu4QG05ZjFqrRPd7NlE2zTSX2qJvZT0fqH5iCYRYLrlH190axTPBvfDe09K9o3iD1fsPYbMoC_cImLTKet2TPWMMlzaRWnjEhY4rlaZGqAieN785v6g4PPKKrTnNcaTzMNIR7DYCkNdqvMiJ3a-fISjKInjWXsahoVUVVbhyRW3QBefEWxfBTiUv7Vv20VmjFfMIxJoktQ2I3Hv9SjGdBJJvotBIEbtH8CpIyt97ng8PR-Hk8b83fQK3U0RrVVbiLmwu5yv3FNHVUnfgRspP8ZiNsw7cPDw6OT3rhEhFJyjYL4voLBk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrQRcaGl5pBQwCCEu2W5S78aWuJRHtUC3B2ilXlDkp3ZFN6m2uxVw6o0rv5FfwozzKEuFhLhFip04zoznm_H4G4CnSV8YQTXChLEu5s6rWGqHisdFXzstXRZqAw4P-oMj_u64d7wEL5qzMBU_RBtwI80I6zUpOAWkty9ZQ0d60kFznqLDvkIVvYk5__WHljyKoE5wt9DIxhLX4IZXqJtut10XrdEViHk1U_J3BBtM0N4qfGoGX2WefO7MZ7pjvv3B6_i_X7cGN2tsynYrYboFS65Yh43dAv3yyVf2jIVs0RCGX4drw3pTfgO-f0Tzd-J-Xvw4m2sK67C6tg4tGqcj1bBis8llPJKVnhFTxTTUmyNqg7FhswCi3ZRRwXuGaJohOsVm-OTz8XnJiBCkOmlJ3dUXciLYpERJCYO6DUd7bw5fDeK6vkNsOCUyaq0S3evaRNk001xqi-6V9byveoklHGK55B69d2sUzwT3wntPu_eOQg5W79yB5aIs3D1g0irrdVd2jTFc2kRq4REaOq5UmhqhInjS_Of8tKLxyCvC5jTHmc7DTEew1UhAXmvyWU4Ef70McVEWweP2Nk4NbayowpVzaoNeOCfqugjuVgLTvmUH_TXaNI9ALIhS24D4vRfvFONR4PkmFo0U4XsEz4Oo_H3k-eDlMFxs_nvTR3B9cDjcz_ffHry_DzdSBG9VkuIWLM-mc_cAwdZMPww69QuS1Cvo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB5CAqGX0jzaqk3TTSilFzWWsrZ26SltY9yHQ6AN5Cb2iQ21ZBw7tLfccu1v7C_JzOqRmFDITaBZSWg0mm8e-w3Am6QnjKAZYcJYF3PnVSy1Q8Pjoqedli4LswGHJ73BGf963j1fgQ_NXpiKH6JNuJFlhP81GfjU-oNb0tCRnrxHb55ivL5GxT7q50r5aVtCQKQToi30sbHEX3BDK9RJD9qly87oHsK83yh5F8AGD9R_Ao9r6MiOKl1vwIorNmHrqMCwefKHvWWhmTNkyTdhfVjXzLfg-gd6p1_u39Xfi4WmrAurR9-QTU9HqiGtZpPbdCErPSMiiVkYB0fMA2PD5gHjuhmjefQMwS5D8IhieOXL8WXJiK-j2ghJy9VvwvhsUqIiw0Ntw1n_-OenQVyPX4gNpz5DrVWiux2bKJtmmkttMfqxnvdUN7EEEyyX3GNwbY3imeBeeO-puO4oI2D14VNYLcrCPQcmrbJed2THGMOlTaQWHpGb40qlqREqgv1GD_m0YtnIKz7lNEdl5UFZEew0GsprQ7vIiX-vmyFsySLYa0_jq6G6hypcuSAZDJI5MctF8KxSaHuXQwynqKYdgVhSdStA9NvLZ4rxKNBwE8lFiug6gnfhq_j_k-eDj8Nw8OLhoq9h_fRzP__-5eTbS3hEQ-6rFsIdWJ3PFu4VQqG53g2f_A2CGApx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-subject+electroencephalography+measurement+of+interhemispheric+transfer+time+for+the+in-vivo+estimation+of+axonal+morphology&rft.jtitle=Human+brain+mapping&rft.au=Oliveira%2C+Rita&rft.au=De+Lucia%2C+Marzia&rft.au=Lutti%2C+Antoine&rft.date=2023-10-01&rft.eissn=1097-0193&rft_id=info:doi/10.1002%2Fhbm.26420&rft_id=info%3Apmid%2F37470446&rft.externalDocID=37470446 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |