Single‐subject electroencephalography measurement of interhemispheric transfer time for the in‐vivo estimation of axonal morphology

Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measu...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 44; no. 14; pp. 4859 - 4874
Main Authors Oliveira, Rita, De Lucia, Marzia, Lutti, Antoine
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm−α. The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates. Subject‐specific interhemispheric transfer time (IHTT) was estimated from electroencephalography, based on the maximal peak of neural response to visual stimuli within periods of statistically significant evoked activity. Subject‐specific axonal morphology was estimated from the combination of the estimated IHTT and magnetic resonance imaging data. IHTT and axonal morphology estimates were consistent with histological values.
AbstractList Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm − α . The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates.
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm−α. The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates. Subject‐specific interhemispheric transfer time (IHTT) was estimated from electroencephalography, based on the maximal peak of neural response to visual stimuli within periods of statistically significant evoked activity. Subject‐specific axonal morphology was estimated from the combination of the estimated IHTT and magnetic resonance imaging data. IHTT and axonal morphology estimates were consistent with histological values.
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm − α . The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates. Subject‐specific interhemispheric transfer time (IHTT) was estimated from electroencephalography, based on the maximal peak of neural response to visual stimuli within periods of statistically significant evoked activity. Subject‐specific axonal morphology was estimated from the combination of the estimated IHTT and magnetic resonance imaging data. IHTT and axonal morphology estimates were consistent with histological values.
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject‐specific IHTTs are computed in a data‐driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject‐specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between‐session variability was comparable to between‐subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g‐ratio with axonal radius ranged from 0.62 to 0.81 μm−α. The single‐subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single‐subject axonal morphology estimates.
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm-α . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates.Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm-α . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates.
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates.
Author De Lucia, Marzia
Lutti, Antoine
Oliveira, Rita
AuthorAffiliation 1 Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience Lausanne University Hospital and University of Lausanne Lausanne Switzerland
AuthorAffiliation_xml – name: 1 Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience Lausanne University Hospital and University of Lausanne Lausanne Switzerland
Author_xml – sequence: 1
  givenname: Rita
  orcidid: 0000-0002-7597-6919
  surname: Oliveira
  fullname: Oliveira, Rita
  email: ana.veiga-de-oliveira@chuv.ch
  organization: Lausanne University Hospital and University of Lausanne
– sequence: 2
  givenname: Marzia
  orcidid: 0000-0001-8792-7885
  surname: De Lucia
  fullname: De Lucia, Marzia
  organization: Lausanne University Hospital and University of Lausanne
– sequence: 3
  givenname: Antoine
  orcidid: 0000-0003-3281-5477
  surname: Lutti
  fullname: Lutti, Antoine
  organization: Lausanne University Hospital and University of Lausanne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37470446$$D View this record in MEDLINE/PubMed
BookMark eNp1kr-O1DAQxi10iPsDBS-AItFAkbsZx4k3FYITcEiHKIDacpLxxqvEDnaysB0dLc_Ik-BljxMg0dgjzW--mbG_U3bkvCPGHiKcIwC_6JvxnFeCwx12glDLHLAujvZxVea1kHjMTmPcACCWgPfYcSGFBCGqE_btvXXrgX58_R6XZkPtnNGQzuDJtTT1evDroKd-l42k4xJoJDdn3mTWzRR6Gm2cegq2zeagXTQUstmOlBmfgp4SlpS3dusziimhZ-vdvlx_8U4P2ejD1PvUY3ef3TV6iPTg5j5jH1-9_HB5lV-_e_3m8vl13goQkDeNxqaEDnXHZSPqpltVvDOi0iV2yOuiE7UwNciu1UKuhFkZYzggEAJWXVOcsWcH3WlpRuratE7Qg5pCGi7slNdW_Z1xtldrv1UIQvIaq6Tw5EYh-E9LWkulR2hpGLQjv0TFVwK4EHxVJPTxP-jGLyEtvqfKupRYokzUoz9Hup3l9ycl4OkBaIOPMZC5RRDU3gAqGUD9MkBiLw7sZzvQ7v-gunrx9lDxE6fit1s
Cites_doi 10.1007/s10827-010-0262-3
10.1109/TMI.2004.837363
10.1016/j.jneumeth.2003.10.009
10.1371/journal.pone.0032379
10.1016/j.jneumeth.2020.108990
10.1186/1475-925X-9-45
10.1016/j.cogbrainres.2004.09.006
10.1016/j.jneumeth.2007.03.024
10.1080/00221309.1930.9918218
10.1007/s00429-014-0871-0
10.1007/s00429-019-01961-2
10.1016/j.neuroimage.2017.12.087
10.1016/j.neuroimage.2014.10.026
10.1073/pnas.0907655106
10.1016/j.bbr.2017.05.019
10.1002/hbm.20375
10.1007/s00422-014-0626-2
10.1080/17588928.2017.1333490
10.1016/j.neuroimage.2017.09.053
10.1016/j.neuroimage.2006.01.021
10.1093/brain/124.9.1813
10.1016/0028-3932(93)90097-J
10.1016/j.brainres.2007.09.049
10.1016/j.neulet.2006.09.028
10.1016/j.neuroimage.2017.08.038
10.1136/mp.54.6.386
10.1016/j.neuroimage.2023.119930
10.1016/j.neuropsychologia.2007.03.017
10.1016/0006-8993(92)90178-C
10.1002/mrm.21577
10.1016/j.neuroimage.2013.06.005
10.1088/1741-2552/ab6d89
10.1016/j.neuroimage.2012.03.072
10.1113/jphysiol.1951.sp004655
10.1016/j.neuroimage.2019.116137
10.1016/j.neuroimage.2015.10.019
10.1186/1743-0003-5-25
10.3389/fnins.2021.646034
10.1016/j.neuroimage.2010.06.037
10.3389/fnins.2018.00072
10.1002/hbm.23471
10.3389/fnins.2022.874023
10.1007/s00221-004-1873-6
10.1016/j.jmr.2014.06.017
10.1016/j.neuroimage.2019.01.029
10.1162/neco.1995.7.6.1129
10.1016/0028-3932(94)90089-2
10.1002/hbm.24522
10.1016/j.neuroimage.2010.05.043
10.1016/0028-3932(71)90067-4
10.1037/0735-7044.103.5.1115
10.7554/eLife.49855
10.1002/mrm.21732
10.1093/cercor/bhs011
10.1016/j.neuroimage.2012.01.021
10.1016/0028-3932(91)90031-3
10.1016/j.neuroimage.2009.12.002
10.1002/mrm.25631
10.1016/j.neuroimage.2020.117619.A
10.1186/s40478-018-0645-7
10.1523/JNEUROSCI.0761-13.2013
10.1002/hbm.10010
10.1007/BF01129642
10.1093/brain/awab362
10.1007/BF02512476
10.1038/nn.3635
10.1109/51.715495
10.1002/nbm.3711
10.1016/j.neulet.2007.04.048
10.1155/2011/879716
10.3233/bpl-160033
10.1007/s00221-001-0906-7
10.1016/j.neuroimage.2019.116017
10.1016/j.neuroimage.2020.117197
10.1002/mrm.21542
10.1038/newbio238217a0
10.1016/j.neuroimage.2015.06.092
10.1016/j.neuroimage.2019.03.025
10.1523/jneurosci.0938-22.2022
10.1007/s00429-021-02358-w
10.1002/hbm.23929
10.1155/2011/156869
10.1016/j.neuroimage.2011.01.084
10.1006/nimg.2001.1054
10.1016/j.neuroimage.2015.05.023
10.1016/j.neuroimage.2010.10.048
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC.
2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC.
– notice: 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.26420
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef


Technology Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Oliveira et al
EISSN 1097-0193
EndPage 4874
ExternalDocumentID PMC10472916
37470446
10_1002_hbm_26420
HBM26420
Genre article
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GrantInformation_xml – fundername: Bertarelli Catalyst Foundation
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: 320030_184784; 32003B_212981
– fundername: ROGER DE SPOELBERCH Foundation
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 320030_184784
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 32003B_212981
– fundername: ;
– fundername: ;
  grantid: 320030_184784; 32003B_212981
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
WXSBR
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4040-bba1b50d1ad27b49bd862df46a51d1293d494f907dca4784f8fff2010e1016db3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:36:18 EDT 2025
Fri Jul 11 03:54:24 EDT 2025
Sat Jul 26 02:20:17 EDT 2025
Thu Apr 03 07:00:56 EDT 2025
Tue Jul 01 01:11:13 EDT 2025
Wed Jan 22 16:20:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords conduction velocity
myelination
tractography
MRI
g-ratio
EEG
Language English
License Attribution-NonCommercial
2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4040-bba1b50d1ad27b49bd862df46a51d1293d494f907dca4784f8fff2010e1016db3
Notes Marzia De Lucia and Antoine Lutti contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8792-7885
0000-0002-7597-6919
0000-0003-3281-5477
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26420
PMID 37470446
PQID 2859571517
PQPubID 996345
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10472916
proquest_miscellaneous_2840244283
proquest_journals_2859571517
pubmed_primary_37470446
crossref_primary_10_1002_hbm_26420
wiley_primary_10_1002_hbm_26420_HBM26420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 October, 2023
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 1 October, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2002; 16
2012; 61
2010; 53
2007; 1185
2006; 31
2015; 105
2015; 220
2020; 17
2016; 75
2019; 201
2023; 269
2019; 202
2011; 54
2008; 5
2011; 56
2005; 22
2005; 24
2004; 134
1971; 9
2018; 6
2006; 409
2018; 9
1998; 17
2018; 39
2017; 30
2002; 142
1989; 103
2017; 38
2008; 29
1992; 598
1993; 31
2020; 9
2001; 15
2014; 17
2019; 195
2007; 419
2008; 60
2014; 93
2019; 194
2012; 22
2014; 246
1994; 32
2010; 9
1951; 115
2001; 54
2012; 62
1997; 135
1991; 3
2001; 124
2018; 182
2012
2021; 227
2021; 348
2021; 226
2007; 164
2009
2008; 59
2020; 225
2011; 30
1930; 3
2020; 222
2022; 42
2016; 125
2017; 330
1972; 238
1995; 7
2022; 145
2014; 108
2011; 2011
1991; 29
2021; 15
2004; 158
2016; 2
2019; 40
2013; 33
2015; 119
2015; 118
2018; 12
2012; 7
2007; 45
2010; 52
2022; 16
2010; 50
2009; 106
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
Ipata A. (e_1_2_9_47_1) 1997; 135
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
Creel D. (e_1_2_9_20_1) 2012
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
Nunez P. L. (e_1_2_9_65_1) 2009
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 31
  start-page: 1267
  year: 1993
  end-page: 1281
  article-title: Bilateral visual field processing and evoked potential interhemispheric transmission time
  publication-title: Neuropsychologia
– volume: 45
  start-page: 2626
  year: 2007
  end-page: 2630
  article-title: Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials
  publication-title: Neuropsychologia
– volume: 17
  year: 2020
  article-title: EEG‐based personal identification method using unsupervised feature extraction and its robustness against intra‐subject variability
  publication-title: Journal of Neural Engineering
– year: 2009
– volume: 330
  start-page: 85
  year: 2017
  end-page: 91
  article-title: Long‐term reliability of the visual EEG Poffenberger paradigm
  publication-title: Behavioural Brain Research
– volume: 24
  start-page: 12
  year: 2005
  end-page: 28
  article-title: A common formalism for the integral formulations of the forward EEG problem
  publication-title: IEEE Transactions on Medical Imaging
– volume: 105
  start-page: 32
  year: 2015
  end-page: 44
  article-title: Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data
  publication-title: NeuroImage
– volume: 145
  start-page: 1653
  year: 2022
  end-page: 1667
  article-title: A brain atlas of axonal and synaptic delays based on modelling of cortico‐cortical evoked potentials
  publication-title: Brain
– volume: 32
  start-page: 439
  year: 1994
  end-page: 448
  article-title: Directional asymmetries in interhemispheric transmission time: Evidence from visual evoked potentials
  publication-title: Neuropsychologia
– volume: 195
  start-page: 128
  year: 2019
  end-page: 139
  article-title: Modeling conduction delays in the corpus callosum using MRI‐measured g‐ratio
  publication-title: NeuroImage
– volume: 201
  year: 2019
  article-title: White matter information flow mapping from diffusion MRI and EEG
  publication-title: NeuroImage
– volume: 2
  start-page: 71
  year: 2016
  end-page: 91
  article-title: Magnetic resonance of myelin water: An in vivo marker for myelin
  publication-title: Brain Plasticity
– volume: 32
  start-page: 35
  year: 1994
  end-page: 42
  article-title: Interpreting magnetic fields of the brain: Minimum norm estimates
  publication-title: Medical & Biological Engineering & Computing
– volume: 29
  start-page: 1163
  year: 1991
  end-page: 1177
  article-title: Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta‐analysis
  publication-title: Neuropsychologia
– volume: 164
  start-page: 177
  year: 2007
  end-page: 190
  article-title: Nonparametric statistical testing of EEG‐ and MEG‐data
  publication-title: Journal of Neuroscience Methods
– volume: 56
  start-page: 1301
  year: 2011
  end-page: 1315
  article-title: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI
  publication-title: NeuroImage
– volume: 246
  start-page: 36
  year: 2014
  end-page: 45
  article-title: Nonparametric pore size distribution using d‐PFG: Comparison to s‐PFG and migration to MRI
  publication-title: Journal of Magnetic Resonance
– volume: 5
  start-page: 1
  year: 2008
  end-page: 33
  article-title: Review on solving the inverse problem in EEG source analysis
  publication-title: Journal of Neuroengineering and Rehabilitation
– volume: 118
  start-page: 397
  year: 2015
  end-page: 405
  article-title: In vivo histology of the myelin g‐ratio with magnetic resonance imaging
  publication-title: NeuroImage
– volume: 142
  start-page: 139
  year: 2002
  end-page: 150
  article-title: Flow of activation from V1 to frontal cortex in humans: A framework for defining “early” visual processing
  publication-title: Experimental Brain Research
– volume: 52
  start-page: 1374
  year: 2010
  end-page: 1389
  article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI
  publication-title: NeuroImage
– volume: 60
  start-page: 1396
  year: 2008
  end-page: 1407
  article-title: High‐resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 33
  start-page: 14501
  year: 2013
  end-page: 14511
  article-title: Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: Comparing data from histology and magnetic resonance imaging diffusion tractography
  publication-title: The Journal of Neuroscience
– volume: 269
  year: 2023
  article-title: Temporal diffusion ratio (TDR) for imaging restricted diffusion: Optimisation and pre‐clinical demonstration
  publication-title: NeuroImage
– volume: 409
  start-page: 140
  year: 2006
  end-page: 145
  article-title: Interhemispheric transfer time and structural properties of the corpus callosum
  publication-title: Neuroscience Letters
– volume: 22
  start-page: 1463
  year: 2012
  end-page: 1472
  article-title: Areal differences in diameter and length of corticofugal projections
  publication-title: Cerebral Cortex
– volume: 9
  year: 2020
  article-title: Nonivasive quantification of axon radii using diffusion MRI
  publication-title: eLife
– volume: 53
  start-page: 257
  year: 2010
  end-page: 267
  article-title: Electrical source dynamics in three functional localizer paradigms
  publication-title: NeuroImage
– volume: 598
  start-page: 143
  year: 1992
  end-page: 153
  article-title: Fiber composition of the human corpus callosum
  publication-title: Brain Research
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  article-title: An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging
  publication-title: NeuroImage
– volume: 106
  start-page: 19551
  year: 2009
  end-page: 19556
  article-title: Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates
  publication-title: PNAS
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  article-title: An information‐maximization approach to blind separation and blind deconvolution
  publication-title: Neural Computation
– volume: 16
  start-page: 1
  year: 2022
  end-page: 18
  article-title: In vivo estimation of axonal morphology from magnetic resonance imaging and electroencephalography data
  publication-title: Frontiers in Neuroscience
– volume: 7
  start-page: 1
  year: 2012
  end-page: 7
  article-title: Robust and fast whole brain mapping of the RF transmit field B1 at 7T
  publication-title: PLoS One
– volume: 3
  start-page: 412
  year: 1930
  end-page: 430
  article-title: Ocular dominance in human adults
  publication-title: The Journal of General Psychology
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: NeuroImage
– volume: 135
  start-page: 169
  year: 1997
  end-page: 182
  article-title: Interhemispheric transfer of visual information in humans: The role of different callosal channels
  publication-title: Archives Italiennes de Biologie
– volume: 30
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion
  publication-title: NMR in Biomedicine
– volume: 194
  start-page: 191
  year: 2019
  end-page: 210
  article-title: hMRI – A toolbox for quantitative MRI in neuroscience and clinical research
  publication-title: NeuroImage
– volume: 42
  start-page: JN‐RM‐0938‐22
  year: 2022
  end-page: JN‐RM‐0938‐8816
  article-title: Whole‐brain propagation delays in multiple sclerosis, a combined tractography – Magnetoencephalography study
  publication-title: The Journal of Neuroscience
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 220
  start-page: 1777
  year: 2015
  end-page: 1788
  article-title: In vivo correlation between axon diameter and conduction velocity in the human brain
  publication-title: Brain Structure & Function
– volume: 9
  start-page: 4
  year: 2018
  end-page: 19
  article-title: Does spatial attention modulate the earliest component of the visual evoked potential?
  publication-title: Cognitive Neuroscience
– volume: 108
  start-page: 541
  year: 2014
  end-page: 557
  article-title: Distribution of axon diameters in cortical white matter: An electron‐microscopic study on three human brains and a macaque
  publication-title: Biological Cybernetics
– volume: 182
  start-page: 136
  year: 2018
  end-page: 148
  article-title: Inferring brain tissue composition and microstructure via MR relaxometry
  publication-title: NeuroImage
– volume: 225
  start-page: 1277
  year: 2020
  end-page: 1291
  article-title: High‐gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain
  publication-title: Brain Structure & Function
– volume: 119
  start-page: 338
  year: 2015
  end-page: 351
  article-title: SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography
  publication-title: NeuroImage
– volume: 40
  start-page: 2252
  year: 2019
  end-page: 2268
  article-title: Evolution of white matter tract microstructure across the life span
  publication-title: Human Brain Mapping
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
– volume: 419
  start-page: 131
  year: 2007
  end-page: 136
  article-title: Inter‐individual differences in the polarity of early visual responses and attention effects
  publication-title: Neuroscience Letters
– volume: 17
  start-page: 455
  year: 2014
  end-page: 462
  article-title: Resolving human object recognition in space and time
  publication-title: Nature Neuroscience
– volume: 22
  start-page: 309
  year: 2005
  end-page: 321
  article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event‐related potential as revealed by independent component analysis
  publication-title: Cognitive Brain Research
– volume: 182
  start-page: 379
  year: 2018
  end-page: 388
  article-title: Whole brain g‐ratio mapping using myelin water imaging (MWI) and neurite orientation dispersion and density imaging (NODDI)
  publication-title: NeuroImage
– volume: 348
  year: 2021
  article-title: Towards in vivo g‐ratio mapping using MRI: Unifying myelin and diffusion imaging
  publication-title: Journal of Neuroscience Methods
– volume: 6
  start-page: 143
  year: 2018
  article-title: Deficit of corpus callosum axons, reduced axon diameter and decreased area are markers of abnormal development of interhemispheric connections in autistic subjects
  publication-title: Acta Neuropathologica Communications
– volume: 59
  start-page: 667
  year: 2008
  end-page: 672
  article-title: Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation
  publication-title: Magnetic Resonance in Medicine
– volume: 59
  start-page: 1347
  year: 2008
  end-page: 1354
  article-title: AxCaliber: A method for measuring axon diameter distribution from diffusion MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 75
  start-page: 688
  year: 2016
  end-page: 700
  article-title: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study
  publication-title: Magnetic Resonance in Medicine
– volume: 50
  start-page: 112
  year: 2010
  end-page: 123
  article-title: Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG‐fMRI
  publication-title: NeuroImage
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 2011
  year: 2011
  article-title: Brainstorm: A user‐friendly application for MEG/EEG analysis
  publication-title: Computational Intelligence and Neuroscience
– volume: 2011
  year: 2011
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Computational Intelligence and Neuroscience
– volume: 238
  start-page: 217
  year: 1972
  end-page: 219
  article-title: Relative conduction velocities of small myelinated and non‐myelinated fibres in the central nervous system
  publication-title: Nature: New Biology
– volume: 17
  start-page: 118
  year: 1998
  end-page: 122
  article-title: EEG dipole source localization: Using inverse solutions for determining source locations
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– volume: 222
  year: 2020
  article-title: Axon diameter index estimation independent of fiber orientation distribution using high‐gradient diffusion MRI
  publication-title: NeuroImage
– year: 2012
– volume: 38
  start-page: 1541
  year: 2017
  end-page: 1573
  article-title: A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula
  publication-title: Human Brain Mapping
– volume: 12
  start-page: 1
  year: 2018
  end-page: 19
  article-title: Interhemispheric transfer time asymmetry of visual information depends on eye dominance: An electrophysiological study
  publication-title: Frontiers in Neuroscience
– volume: 54
  start-page: 386
  year: 2001
  end-page: 392
  article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis
  publication-title: Molecular Pathology
– volume: 124
  start-page: 1813
  year: 2001
  end-page: 1820
  article-title: Size‐selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis
  publication-title: Brain
– volume: 39
  start-page: 1532
  year: 2018
  end-page: 1554
  article-title: Networks of myelin covariance Lester
  publication-title: Human Brain Mapping
– volume: 15
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Bundle‐specific axon diameter index as a new contrast to differentiate white matter tracts
  publication-title: Frontiers in Neuroscience
– volume: 182
  start-page: 80
  year: 2018
  end-page: 96
  article-title: Promise and pitfalls of g‐ratio estimation with MRI
  publication-title: NeuroImage
– volume: 15
  start-page: 95
  year: 2001
  end-page: 111
  article-title: Cortical sources of the early components of the visual evoked potential
  publication-title: Human Brain Mapping
– volume: 227
  year: 2021
  article-title: A simple estimate of axon size with diffusion MRI
  publication-title: NeuroImage
– volume: 54
  start-page: 2318
  year: 2011
  end-page: 2329
  article-title: Predicting inter‐hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: A combined ERP and DTI study
  publication-title: NeuroImage
– volume: 16
  start-page: 217
  year: 2002
  end-page: 240
  article-title: Image distortion correction in fMRI: A quantitative evaluation
  publication-title: NeuroImage
– volume: 93
  start-page: 176
  year: 2014
  end-page: 188
  article-title: NeuroImage using high‐resolution quantitative mapping of R1 as an index of cortical myelination
  publication-title: NeuroImage
– volume: 1185
  start-page: 212
  year: 2007
  end-page: 220
  article-title: ERP evidence for the split fovea theory
  publication-title: Brain Research
– volume: 202
  year: 2019
  article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation
  publication-title: NeuroImage
– volume: 115
  start-page: 101
  year: 1951
  end-page: 122
  article-title: A theory of the effects of fibre size in medullated nerve
  publication-title: The Journal of Physiology
– volume: 103
  start-page: 1115
  year: 1989
  end-page: 1138
  article-title: Visual evoked potential measures of interhemispheric transfer time in humans
  publication-title: Behavioral Neuroscience
– volume: 158
  start-page: 67
  year: 2004
  end-page: 74
  article-title: Visual and tactile interhemispheric transfer compared with the method of Poffenberger
  publication-title: Experimental Brain Research
– volume: 9
  start-page: 45
  year: 2010
  article-title: OpenMEEG: Opensource software for quasistatic bioelectromagnetics
  publication-title: Biomedical Engineering Online
– volume: 29
  start-page: 131
  year: 2008
  end-page: 141
  article-title: Functional source separation applied to induced visual gamma activity
  publication-title: Human Brain Mapping
– volume: 30
  start-page: 45
  year: 2011
  end-page: 67
  article-title: Transfer entropy‐a model‐free measure of effective connectivity for the neurosciences
  publication-title: Journal of Computational Neuroscience
– volume: 3
  start-page: 391
  year: 1991
  end-page: 396
  article-title: Global field power measurement versus classical method in the determination of the latency of evoked potential components
  publication-title: Brain Topography
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  article-title: The assessment and analysis of handedness: The Edinburgh inventory
  publication-title: Neuropsychologia
– volume: 226
  start-page: 2651
  year: 2021
  end-page: 2663
  article-title: Dissecting whole‐brain conduction delays through MRI microstructural measures
  publication-title: Brain Structure & Function
– ident: e_1_2_9_83_1
  doi: 10.1007/s10827-010-0262-3
– ident: e_1_2_9_49_1
  doi: 10.1109/TMI.2004.837363
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_2_9_53_1
  doi: 10.1371/journal.pone.0032379
– ident: e_1_2_9_62_1
  doi: 10.1016/j.jneumeth.2020.108990
– volume: 135
  start-page: 169
  year: 1997
  ident: e_1_2_9_47_1
  article-title: Interhemispheric transfer of visual information in humans: The role of different callosal channels
  publication-title: Archives Italiennes de Biologie
– ident: e_1_2_9_36_1
  doi: 10.1186/1475-925X-9-45
– ident: e_1_2_9_23_1
  doi: 10.1016/j.cogbrainres.2004.09.006
– ident: e_1_2_9_56_1
  doi: 10.1016/j.jneumeth.2007.03.024
– ident: e_1_2_9_60_1
  doi: 10.1080/00221309.1930.9918218
– ident: e_1_2_9_43_1
  doi: 10.1007/s00429-014-0871-0
– ident: e_1_2_9_44_1
  doi: 10.1007/s00429-019-01961-2
– ident: e_1_2_9_28_1
  doi: 10.1016/j.neuroimage.2017.12.087
– ident: e_1_2_9_22_1
  doi: 10.1016/j.neuroimage.2014.10.026
– ident: e_1_2_9_15_1
  doi: 10.1073/pnas.0907655106
– ident: e_1_2_9_35_1
  doi: 10.1016/j.bbr.2017.05.019
– ident: e_1_2_9_7_1
  doi: 10.1002/hbm.20375
– ident: e_1_2_9_51_1
  doi: 10.1007/s00422-014-0626-2
– ident: e_1_2_9_8_1
  doi: 10.1080/17588928.2017.1333490
– ident: e_1_2_9_48_1
  doi: 10.1016/j.neuroimage.2017.09.053
– ident: e_1_2_9_25_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_9_30_1
  doi: 10.1093/brain/124.9.1813
– ident: e_1_2_9_12_1
  doi: 10.1016/0028-3932(93)90097-J
– volume-title: The organization of the retina and visual system
  year: 2012
  ident: e_1_2_9_20_1
– ident: e_1_2_9_57_1
  doi: 10.1016/j.brainres.2007.09.049
– ident: e_1_2_9_87_1
  doi: 10.1016/j.neulet.2006.09.028
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neuroimage.2017.08.038
– ident: e_1_2_9_19_1
  doi: 10.1136/mp.54.6.386
– ident: e_1_2_9_84_1
  doi: 10.1016/j.neuroimage.2023.119930
– ident: e_1_2_9_61_1
  doi: 10.1016/j.neuropsychologia.2007.03.017
– ident: e_1_2_9_2_1
  doi: 10.1016/0006-8993(92)90178-C
– ident: e_1_2_9_5_1
  doi: 10.1002/mrm.21577
– volume-title: Electric fields of the brain: The neurophysics of EEG
  year: 2009
  ident: e_1_2_9_65_1
– ident: e_1_2_9_52_1
  doi: 10.1016/j.neuroimage.2013.06.005
– ident: e_1_2_9_64_1
  doi: 10.1088/1741-2552/ab6d89
– ident: e_1_2_9_90_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_9_72_1
  doi: 10.1113/jphysiol.1951.sp004655
– ident: e_1_2_9_81_1
  doi: 10.1016/j.neuroimage.2019.116137
– ident: e_1_2_9_4_1
  doi: 10.1016/j.neuroimage.2015.10.019
– ident: e_1_2_9_37_1
  doi: 10.1186/1743-0003-5-25
– ident: e_1_2_9_6_1
  doi: 10.3389/fnins.2021.646034
– ident: e_1_2_9_69_1
  doi: 10.1016/j.neuroimage.2010.06.037
– ident: e_1_2_9_17_1
  doi: 10.3389/fnins.2018.00072
– ident: e_1_2_9_46_1
  doi: 10.1002/hbm.23471
– ident: e_1_2_9_67_1
  doi: 10.3389/fnins.2022.874023
– ident: e_1_2_9_32_1
  doi: 10.1007/s00221-004-1873-6
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jmr.2014.06.017
– ident: e_1_2_9_78_1
  doi: 10.1016/j.neuroimage.2019.01.029
– ident: e_1_2_9_9_1
  doi: 10.1162/neco.1995.7.6.1129
– ident: e_1_2_9_13_1
  doi: 10.1016/0028-3932(94)90089-2
– ident: e_1_2_9_74_1
  doi: 10.1002/hbm.24522
– ident: e_1_2_9_3_1
  doi: 10.1016/j.neuroimage.2010.05.043
– ident: e_1_2_9_66_1
  doi: 10.1016/0028-3932(71)90067-4
– ident: e_1_2_9_73_1
  doi: 10.1037/0735-7044.103.5.1115
– ident: e_1_2_9_82_1
  doi: 10.7554/eLife.49855
– ident: e_1_2_9_42_1
  doi: 10.1002/mrm.21732
– ident: e_1_2_9_80_1
  doi: 10.1093/cercor/bhs011
– ident: e_1_2_9_33_1
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: e_1_2_9_58_1
  doi: 10.1016/0028-3932(91)90031-3
– ident: e_1_2_9_70_1
  doi: 10.1016/j.neuroimage.2009.12.002
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.25631
– ident: e_1_2_9_40_1
  doi: 10.1016/j.neuroimage.2020.117619.A
– ident: e_1_2_9_86_1
  doi: 10.1186/s40478-018-0645-7
– ident: e_1_2_9_14_1
  doi: 10.1523/JNEUROSCI.0761-13.2013
– ident: e_1_2_9_27_1
  doi: 10.1002/hbm.10010
– ident: e_1_2_9_39_1
  doi: 10.1007/BF01129642
– ident: e_1_2_9_50_1
  doi: 10.1093/brain/awab362
– ident: e_1_2_9_38_1
  doi: 10.1007/BF02512476
– ident: e_1_2_9_18_1
  doi: 10.1038/nn.3635
– ident: e_1_2_9_21_1
  doi: 10.1109/51.715495
– ident: e_1_2_9_63_1
  doi: 10.1002/nbm.3711
– ident: e_1_2_9_71_1
  doi: 10.1016/j.neulet.2007.04.048
– ident: e_1_2_9_79_1
  doi: 10.1155/2011/879716
– ident: e_1_2_9_54_1
  doi: 10.3233/bpl-160033
– ident: e_1_2_9_34_1
  doi: 10.1007/s00221-001-0906-7
– ident: e_1_2_9_26_1
  doi: 10.1016/j.neuroimage.2019.116017
– ident: e_1_2_9_31_1
  doi: 10.1016/j.neuroimage.2020.117197
– ident: e_1_2_9_41_1
  doi: 10.1002/mrm.21542
– ident: e_1_2_9_85_1
  doi: 10.1038/newbio238217a0
– ident: e_1_2_9_75_1
  doi: 10.1016/j.neuroimage.2015.06.092
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuroimage.2019.03.025
– ident: e_1_2_9_76_1
  doi: 10.1523/jneurosci.0938-22.2022
– ident: e_1_2_9_55_1
  doi: 10.1007/s00429-021-02358-w
– ident: e_1_2_9_59_1
  doi: 10.1002/hbm.23929
– ident: e_1_2_9_68_1
  doi: 10.1155/2011/156869
– ident: e_1_2_9_89_1
  doi: 10.1016/j.neuroimage.2011.01.084
– ident: e_1_2_9_45_1
  doi: 10.1006/nimg.2001.1054
– ident: e_1_2_9_77_1
  doi: 10.1016/j.neuroimage.2015.05.023
– ident: e_1_2_9_88_1
  doi: 10.1016/j.neuroimage.2010.10.048
SSID ssj0011501
Score 2.4228294
Snippet Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4859
SubjectTerms Biomarkers
Cerebral hemispheres
Computation
conduction velocity
Data acquisition
EEG
Electrodes
Electroencephalography
Estimates
Functional anatomy
g‐ratio
In vivo methods and tests
Interhemispheric transfer
Magnetic resonance imaging
Morphology
MRI
myelination
Neuroimaging
Solution space
Statistical analysis
Structure-function relationships
tractography
Variability
Visual evoked potentials
Visual stimuli
Title Single‐subject electroencephalography measurement of interhemispheric transfer time for the in‐vivo estimation of axonal morphology
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26420
https://www.ncbi.nlm.nih.gov/pubmed/37470446
https://www.proquest.com/docview/2859571517
https://www.proquest.com/docview/2840244283
https://pubmed.ncbi.nlm.nih.gov/PMC10472916
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qBfHFj1ZrtB6riPiS6yXdu-ziUysth3ClVAv3IIT95A69pNxHUZ9889W_0b_Emc1HPYsgvoRANslmM7Pzm9nZ3wC8SAbCCKoRJox1MXdexVI7VDwuBtpp6bJQG3B0Mhie87fj_ngDXjd7YSp-iDbgRpoR5mtScKUXe1ekoRM966I1T8lfp1wtAkRnLXUUAZ3gbKGJjSXOwA2rUC_da-9ct0XXAOb1PMnf8WswQMd34UPT9Srv5GN3tdRd8_UPVsf__LZ7cKcGpuygkqT7sOGKLdg-KNApn31hL1lIFQ0x-C24NapX5Lfh-zu0fZ_cz28_FitNMR1WF9ahGeNiohpKbDa7Ckay0jOiqZiHYnPEazA1bBkQtJszqnbPEEozhKbYDJ98Ob0sGbGBVNss6Xb1mTwINitRTEKnHsD58dH7N8O4Lu4QG05ZjFqrRPd7NlE2zTSX2qJvZT0fqH5iCYRYLrlH190axTPBvfDe09K9o3iD1fsPYbMoC_cImLTKet2TPWMMlzaRWnjEhY4rlaZGqAieN785v6g4PPKKrTnNcaTzMNIR7DYCkNdqvMiJ3a-fISjKInjWXsahoVUVVbhyRW3QBefEWxfBTiUv7Vv20VmjFfMIxJoktQ2I3Hv9SjGdBJJvotBIEbtH8CpIyt97ng8PR-Hk8b83fQK3U0RrVVbiLmwu5yv3FNHVUnfgRspP8ZiNsw7cPDw6OT3rhEhFJyjYL4voLBk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrQRcaGl5pBQwCCEu2W5S78aWuJRHtUC3B2ilXlDkp3ZFN6m2uxVw6o0rv5FfwozzKEuFhLhFip04zoznm_H4G4CnSV8YQTXChLEu5s6rWGqHisdFXzstXRZqAw4P-oMj_u64d7wEL5qzMBU_RBtwI80I6zUpOAWkty9ZQ0d60kFznqLDvkIVvYk5__WHljyKoE5wt9DIxhLX4IZXqJtut10XrdEViHk1U_J3BBtM0N4qfGoGX2WefO7MZ7pjvv3B6_i_X7cGN2tsynYrYboFS65Yh43dAv3yyVf2jIVs0RCGX4drw3pTfgO-f0Tzd-J-Xvw4m2sK67C6tg4tGqcj1bBis8llPJKVnhFTxTTUmyNqg7FhswCi3ZRRwXuGaJohOsVm-OTz8XnJiBCkOmlJ3dUXciLYpERJCYO6DUd7bw5fDeK6vkNsOCUyaq0S3evaRNk001xqi-6V9byveoklHGK55B69d2sUzwT3wntPu_eOQg5W79yB5aIs3D1g0irrdVd2jTFc2kRq4REaOq5UmhqhInjS_Of8tKLxyCvC5jTHmc7DTEew1UhAXmvyWU4Ef70McVEWweP2Nk4NbayowpVzaoNeOCfqugjuVgLTvmUH_TXaNI9ALIhS24D4vRfvFONR4PkmFo0U4XsEz4Oo_H3k-eDlMFxs_nvTR3B9cDjcz_ffHry_DzdSBG9VkuIWLM-mc_cAwdZMPww69QuS1Cvo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB5CAqGX0jzaqk3TTSilFzWWsrZ26SltY9yHQ6AN5Cb2iQ21ZBw7tLfccu1v7C_JzOqRmFDITaBZSWg0mm8e-w3Am6QnjKAZYcJYF3PnVSy1Q8Pjoqedli4LswGHJ73BGf963j1fgQ_NXpiKH6JNuJFlhP81GfjU-oNb0tCRnrxHb55ivL5GxT7q50r5aVtCQKQToi30sbHEX3BDK9RJD9qly87oHsK83yh5F8AGD9R_Ao9r6MiOKl1vwIorNmHrqMCwefKHvWWhmTNkyTdhfVjXzLfg-gd6p1_u39Xfi4WmrAurR9-QTU9HqiGtZpPbdCErPSMiiVkYB0fMA2PD5gHjuhmjefQMwS5D8IhieOXL8WXJiK-j2ghJy9VvwvhsUqIiw0Ntw1n_-OenQVyPX4gNpz5DrVWiux2bKJtmmkttMfqxnvdUN7EEEyyX3GNwbY3imeBeeO-puO4oI2D14VNYLcrCPQcmrbJed2THGMOlTaQWHpGb40qlqREqgv1GD_m0YtnIKz7lNEdl5UFZEew0GsprQ7vIiX-vmyFsySLYa0_jq6G6hypcuSAZDJI5MctF8KxSaHuXQwynqKYdgVhSdStA9NvLZ4rxKNBwE8lFiug6gnfhq_j_k-eDj8Nw8OLhoq9h_fRzP__-5eTbS3hEQ-6rFsIdWJ3PFu4VQqG53g2f_A2CGApx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-subject+electroencephalography+measurement+of+interhemispheric+transfer+time+for+the+in-vivo+estimation+of+axonal+morphology&rft.jtitle=Human+brain+mapping&rft.au=Oliveira%2C+Rita&rft.au=De+Lucia%2C+Marzia&rft.au=Lutti%2C+Antoine&rft.date=2023-10-01&rft.eissn=1097-0193&rft_id=info:doi/10.1002%2Fhbm.26420&rft_id=info%3Apmid%2F37470446&rft.externalDocID=37470446
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon