Distinctive role of fluG in the adaptation of Beauveria bassiana to insect‐pathogenic lifecycle and environmental stresses
Summary The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly underst...
Saved in:
Published in | Environmental microbiology Vol. 23; no. 9; pp. 5184 - 5199 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1462-2912 1462-2920 1462-2920 |
DOI | 10.1111/1462-2920.15500 |
Cover
Loading…
Abstract | Summary
The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect‐pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time‐course up‐regulation/down‐regulation of all flb and CDP genes and another fluG‐like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress‐responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle‐degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up‐regulation of the CDP genes brlA and abaA, which was associated with earlier up‐regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect‐pathogenic lifecycle and suggest the other fluG‐like gene to act as an alternative player in the UDA pathway of B. bassiana. |
---|---|
AbstractList | The upstream developmental activation (UDA) pathway comprises three fluG-cored cascades (fluG-flbA, fluG-flbE/B/D and fluG-flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect-pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time-course up-regulation/down-regulation of all flb and CDP genes and another fluG-like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress-responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle-degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up-regulation of the CDP genes brlA and abaA, which was associated with earlier up-regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect-pathogenic lifecycle and suggest the other fluG-like gene to act as an alternative player in the UDA pathway of B. bassiana. Summary The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect‐pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time‐course up‐regulation/down‐regulation of all flb and CDP genes and another fluG‐like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress‐responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle‐degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up‐regulation of the CDP genes brlA and abaA, which was associated with earlier up‐regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect‐pathogenic lifecycle and suggest the other fluG‐like gene to act as an alternative player in the UDA pathway of B. bassiana. The upstream developmental activation (UDA) pathway comprises three fluG-cored cascades (fluG-flbA, fluG-flbE/B/D and fluG-flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect-pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time-course up-regulation/down-regulation of all flb and CDP genes and another fluG-like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress-responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle-degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up-regulation of the CDP genes brlA and abaA, which was associated with earlier up-regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect-pathogenic lifecycle and suggest the other fluG-like gene to act as an alternative player in the UDA pathway of B. bassiana.The upstream developmental activation (UDA) pathway comprises three fluG-cored cascades (fluG-flbA, fluG-flbE/B/D and fluG-flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect-pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time-course up-regulation/down-regulation of all flb and CDP genes and another fluG-like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress-responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle-degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up-regulation of the CDP genes brlA and abaA, which was associated with earlier up-regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect-pathogenic lifecycle and suggest the other fluG-like gene to act as an alternative player in the UDA pathway of B. bassiana. The upstream developmental activation (UDA) pathway comprises three fluG ‐cored cascades ( fluG‐flbA , fluG‐flbE/B/D and fluG‐flbC ) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect‐pathogenic lifecycle of Beauveria bassiana . Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time‐course up‐regulation/down‐regulation of all flb and CDP genes and another fluG ‐like gene (BBA_06309). In Δ fluG , increased sensitivities to various stresses correlated with repression of corresponding stress‐responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle‐degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged Δ fluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up‐regulation of the CDP genes brlA and abaA , which was associated with earlier up‐regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect‐pathogenic lifecycle and suggest the other fluG ‐like gene to act as an alternative player in the UDA pathway of B . bassiana . |
Author | Tong, Sen‐Miao Guo, Chong‐Tao Peng, Han Ying, Sheng‐Hua Feng, Ming‐Guang |
Author_xml | – sequence: 1 givenname: Chong‐Tao surname: Guo fullname: Guo, Chong‐Tao organization: Zhejiang University – sequence: 2 givenname: Han surname: Peng fullname: Peng, Han organization: Zhejiang University – sequence: 3 givenname: Sen‐Miao orcidid: 0000-0002-7029-6084 surname: Tong fullname: Tong, Sen‐Miao email: tongsm@zafu.edu.cn organization: Zhejiang A & F University – sequence: 4 givenname: Sheng‐Hua orcidid: 0000-0002-2108-9353 surname: Ying fullname: Ying, Sheng‐Hua organization: Zhejiang University – sequence: 5 givenname: Ming‐Guang orcidid: 0000-0002-2657-0293 surname: Feng fullname: Feng, Ming‐Guang email: mgfeng@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33817932$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtuFDEUhi2UiFygpkOWaGg28WU8tksIIYkURAP16Iz3DHE0ay-2Z6OVKHgEnpEnwcsmW6RZN_axv_9YR98JOQgxICFvODvjdZ3zphUzYUUtlWLsBTne3RzszlwckZOc7xnjWmr2khxJabi2UhyTX598Lj644ldIUxyRxoEO43RFfaDlDinMYVmg-Bg2Lx8RphUmD7SHnD0EoCVWNKMrf3__WUK5iz8weEdHP6Bbu9oQwpxiWPkUwwJDgZHmkjBnzK_I4QBjxteP-yn5_vny28X17Pbr1c3Fh9uZa1jDZmC00EYaQDXIeW-Makw7WGtlU2ezvDdO2RYGMG2vZd-CsppzxZQSLW9sL0_J-23fZYo_J8ylW_jscBwhYJxyJ1rZSsulMvtRxYwxVjJd0XfP0Ps4pVAHqZRWjDPRiEq9faSmfoHzbpn8AtK6e1JQgfMt4FLMOeGwQzjrNpK7jcZuo7T7L7km1LOE81tFJYEf9-ce_Ijrfd90l19utrl_STi4YQ |
CitedBy_id | crossref_primary_10_1128_spectrum_00070_23 crossref_primary_10_3390_jof8030260 crossref_primary_10_3390_pathogens11040405 crossref_primary_10_3390_jof8101110 crossref_primary_10_3390_jof8060606 crossref_primary_10_1007_s11274_024_04045_4 crossref_primary_10_3390_jof7080674 crossref_primary_10_1016_j_jip_2024_108059 crossref_primary_10_3390_jof7110895 crossref_primary_10_1111_1462_2920_16253 crossref_primary_10_1002_ps_6600 crossref_primary_10_3390_ijms25116261 crossref_primary_10_1128_msystems_00318_22 crossref_primary_10_3390_jof8040334 |
Cites_doi | 10.1534/genetics.114.165688 10.1016/j.biocontrol.2007.08.001 10.1128/EC.00198-10 10.1111/1462-2920.13671 10.1128/EC.00207-07 10.1111/1462-2920.13803 10.1111/j.1365-2958.2009.06804.x 10.1038/srep00483 10.1128/AEM.01241-12 10.1111/j.1365-2958.2010.07282.x 10.1111/1744-7917.12325 10.1080/1040841X.2019.1630359 10.1105/tpc.2.8.731 10.1007/s00253-017-8703-9 10.1007/s00253-018-9148-5 10.1111/j.1365-2958.1994.tb01293.x 10.1016/j.tim.2010.09.007 10.1101/gad.9.4.491 10.1111/1462-2920.14066 10.1128/mSystems.00140-19 10.1111/1462-2920.14940 10.1146/annurev-ento-031616-035509 10.1038/srep28874 10.3390/insects4030357 10.1128/mSystems.00677-19 10.1128/MCB.12.9.3827 10.1128/AEM.02459-18 10.1016/j.mib.2012.09.006 10.1128/EC.00101-12 10.1111/j.1365-2958.2008.06520.x 10.1534/genetics.105.052258 10.1111/cmi.12839 10.1111/1462-2920.14100 10.1016/0092-8674(89)90800-3 10.1002/ps.5803 10.1111/1462-2920.13951 10.1007/s00253-015-6823-7 10.1080/21505594.2020.1836903 10.3389/fmicb.2019.00778 10.1007/s00253-020-10659-z 10.3390/cells9030626 10.1186/s13059-017-1151-0 10.1016/j.simyco.2018.10.002 10.1007/s10482-014-0321-2 10.1016/0092-8674(88)90198-5 10.1021/cb200455u 10.1016/j.fgb.2014.06.010 10.1080/21505594.2020.1749487 10.1002/j.1460-2075.1996.tb00360.x 10.1016/j.fgb.2010.08.009 10.1128/EC.00274-12 10.1007/s00253-018-9516-1 10.1128/MCB.11.1.55 10.1093/gbe/evaa107 10.1080/21505594.2018.1518089 10.1007/s00253-018-9033-2 10.1128/AEM.02545-20 10.1111/j.1365-2958.2010.07063.x 10.1101/gad.8.6.641 10.1534/genetics.114.161430 10.1111/1462-2920.13359 |
ContentType | Journal Article |
Copyright | 2021 Society for Applied Microbiology and John Wiley & Sons Ltd. 2021 Society for Applied Microbiology and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2021 Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2021 Society for Applied Microbiology and John Wiley & Sons Ltd |
DBID | AAYXX CITATION NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
DOI | 10.1111/1462-2920.15500 |
DatabaseName | CrossRef PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 5199 |
ExternalDocumentID | 33817932 10_1111_1462_2920_15500 EMI15500 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2017YFD0201202 – fundername: National Natural Science Foundation of China funderid: 31772218; 31801795 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2017YFD0201202 – fundername: National Natural Science Foundation of China grantid: 31801795 – fundername: National Natural Science Foundation of China grantid: 31772218 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4040-a8727838ae5f3db885486f9993491291b8c596afa86b73b6a59711505526149b3 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 1462-2920 |
IngestDate | Fri Jul 11 18:37:05 EDT 2025 Fri Jul 11 11:05:13 EDT 2025 Fri Jul 25 12:30:59 EDT 2025 Wed Feb 19 02:28:28 EST 2025 Thu Apr 24 22:51:32 EDT 2025 Tue Jul 01 04:00:47 EDT 2025 Wed Jan 22 16:27:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2021 Society for Applied Microbiology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4040-a8727838ae5f3db885486f9993491291b8c596afa86b73b6a59711505526149b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7029-6084 0000-0002-2657-0293 0000-0002-2108-9353 |
PMID | 33817932 |
PQID | 2575010242 |
PQPubID | 1066360 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2636391358 proquest_miscellaneous_2508889307 proquest_journals_2575010242 pubmed_primary_33817932 crossref_primary_10_1111_1462_2920_15500 crossref_citationtrail_10_1111_1462_2920_15500 wiley_primary_10_1111_1462_2920_15500_EMI15500 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Oxford |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2014; 70 2013; 4 2010; 18 2018a; 102 2019; 10 2010a; 77 1991; 11 2008; 7 2020; 12 2020; 11 2006; 172 2012; 15 2015; 107 1992; 12 2012; 11 1994b; 14 2020; 5 2018c; 20 2013; 12 2020; 9 2018b; 102 2010b; 47 2010; 9 2017; 62 1995; 9 2010; 75 2021; 87 2019; 4 2018; 102 2015; 99 2017; 24 1988; 54 2020; 104 2019; 103 2018b; 20 2020; 76 2016; 18 2012; 78 2014; 197 1996; 15 2018; 20 1990; 2 2016; 6 2012; 2 2009; 73 2019; 85 2009; 71 2019; 45 2018; 91 2017; 19 2017; 18 2018a; 20 2020; 22 2007; 43 2012; 7 1989; 57 1994a; 8 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 20 start-page: 1484 year: 2018a end-page: 1497 article-title: Gcn5‐dependent histone H3 acetylation and gene activity is required for the asexual development and virulence of publication-title: Environ Microbiol – volume: 197 start-page: 159 year: 2014 end-page: 173 article-title: NsdD is a key repressor of asexual development in publication-title: Genetics – volume: 47 start-page: 981 year: 2010b end-page: 993 article-title: Characterization of the developmental regulator FlbE in and publication-title: Fungal Genet Biol – volume: 43 start-page: 237 year: 2007 end-page: 256 article-title: Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types publication-title: Biol Control – volume: 11 start-page: 1132 year: 2012 end-page: 1142 article-title: FlbD, a Myb transcription factor of , is uniquely involved in both asexual and sexual differentiation publication-title: Eukaryot Cell – volume: 12 start-page: 3827 year: 1992 end-page: 3833 article-title: Isolation of a gene required for programmed initiation of development by publication-title: Mol Cell Biol – volume: 77 start-page: 1203 year: 2010a end-page: 1219 article-title: FlbC is a putative nuclear C H transcription factor regulating development in publication-title: Mol Microbiol – volume: 103 start-page: 577 year: 2019 end-page: 587 article-title: Insights into regulatory roles of MAPK‐cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens publication-title: Appl Microbiol Biotechnol – volume: 4 start-page: e00140 year: 2019 end-page: e00119 article-title: BrlA and AbaA govern virulence‐required dimorphic switch, conidiation and pathogenicity in a fungal insect pathogen publication-title: mSystems – volume: 70 start-page: 1 year: 2014 end-page: 10 article-title: Three α‐1,2‐mannosyltransferases contribute differentially to conidiation, cell wall integrity, multistress tolerance and virulence of publication-title: Fungal Genet Biol – volume: 9 start-page: 626 year: 2020 article-title: Opposite nuclear dynamics of two FRH‐dominated frequency proteins orchestrate non‐rhythmic conidiation of publication-title: Cell – volume: 11 start-page: 55 year: 1991 end-page: 62 article-title: activates spore‐specific gene expression publication-title: Mol Cell Biol – volume: 71 start-page: 172 year: 2009 end-page: 184 article-title: FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB publication-title: Mol Microbiol – volume: 197 start-page: 1175 year: 2014 end-page: 1189 article-title: The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of asexual development publication-title: Genetics – volume: 12 start-page: 311 year: 2013 end-page: 321 article-title: Transcriptional changes in the transition from vegetative cells to asexual development in the model fungus publication-title: Eukaryot Cell – volume: 104 start-page: 5711 year: 2020 end-page: 5724 article-title: Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides publication-title: Appl Microbiol Biotechnol – volume: 78 start-page: 7557 year: 2012 end-page: 7563 article-title: Deletion of the orthologue of . reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis publication-title: Appl Environ Microbiol – volume: 11 start-page: 365 year: 2020 end-page: 380 article-title: Subtilisin‐like Pr1 proteases marking evolution of pathogenicity in a wide‐spectrum insect‐pathogenic fungus publication-title: Virulence – volume: 91 start-page: 37 year: 2018 end-page: 59 article-title: Evolution of asexual and sexual reproduction in the aspergilli publication-title: Stud Mycol – volume: 18 start-page: 3884 year: 2016 end-page: 3895 article-title: The Na /H antiporter Nhx1 controls vacuolar fusion indispensible for life cycle and in a fungal insect pathogen publication-title: Environ Microbiol – volume: 7 start-page: 38 year: 2008 end-page: 48 article-title: Basic‐zipper‐type transcription factor FlbB controls asexual development in publication-title: Eukaryot Cell – volume: 5 start-page: e00677 year: 2020 end-page: e00619 article-title: Nuclear Ssr4 is required for the and asexual cycles and global gene activity of publication-title: mSystems – volume: 19 start-page: 2806 year: 2017 end-page: 2818 article-title: Discovery of a new intravacuolar protein required for the autophagy, development and virulence of publication-title: Environ Microbiol – volume: 24 start-page: 342 year: 2017 end-page: 357 article-title: Immunity of the greater wax moth Galleria mellonella publication-title: Insect Sci – volume: 11 start-page: 1415 year: 2020 end-page: 1431 article-title: P‐type Na /K ATPases essential and nonessential for cellular homeostasis and insect pathogenicity of publication-title: Virulence – volume: 10 start-page: 429 year: 2019 end-page: 437 article-title: Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes publication-title: Virulence – volume: 99 start-page: 10069 year: 2015 end-page: 10081 article-title: WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen publication-title: Appl Microbiol Biotechnol – volume: 20 year: 2018b article-title: Pleiotropic effects of the histone deacetylase Hos2 linked to H4‐K16 deacetylation, H3‐K56 acetylation and H2A‐S129 phosphorylation in publication-title: Cell Microbiol – volume: 18 start-page: 569 year: 2010 end-page: 576 article-title: Aspergillus nidulans asexual development: making the most of cellular modules publication-title: Trends Microbiol – volume: 73 start-page: 775 year: 2009 end-page: 789 article-title: The bZIP‐type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in publication-title: Mol Microbiol – volume: 75 start-page: 1314 year: 2010 end-page: 1324 article-title: The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces expression and asexual development in publication-title: Mol Microbiol – volume: 7 start-page: 599 year: 2012 end-page: 606 article-title: Signaling the induction of sporulation involves the interaction of two secondary metabolites in publication-title: ACS Chem Biol – volume: 57 start-page: 859 year: 1989 end-page: 868 article-title: Interactions of three sequentially expressed genes control temporal and spatial specificity in development publication-title: Cell – volume: 85 start-page: e02459‐18 year: 2019 article-title: Two photolyases repair distinct DNA lesions and reactivate UVB‐inactivated conidia of an insect mycopathogen under visible light publication-title: Appl Environ Microbiol – volume: 22 start-page: 2564 year: 2020 end-page: 2580 article-title: Pleiotropic effects of Ubi4, a polyubiquitin precursor required for ubiquitin accumulation, conidiation and pathogenicity of a fungal insect pathogen publication-title: Environ Microbiol – volume: 102 start-page: 6973 year: 2018b end-page: 6986 article-title: C‐terminal Ser/Thr residues are vital for the regulatory role of Ste7 in the asexual cycle and virulence of publication-title: Appl Microbiol Biotechnol – volume: 20 start-page: 1590 year: 2018c end-page: 1606 article-title: Essential role of Rpd3‐dependent lysine modification in the growth, development and virulence of publication-title: Environ Microbiol – volume: 12 start-page: 1119 year: 2020 end-page: 1130 article-title: Recurrent loss of , a master regulator of asexual development in filamentous fungi, correlates with changes in genomic and morphological traits publication-title: Genome Biol Evol – volume: 8 start-page: 641 year: 1994a end-page: 651 article-title: The gene is required for production of an extracellular developmental signal publication-title: Genes Dev – volume: 62 start-page: 73 year: 2017 end-page: 90 article-title: Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements publication-title: Annu Rev Entomol – volume: 172 start-page: 1535 year: 2006 end-page: 1544 article-title: FluG‐dependent asexual development in occurs via derepression publication-title: Genetics – volume: 2 start-page: 731 year: 1990 end-page: 739 article-title: controls phialide differentiation in publication-title: Plant Cell – volume: 2 start-page: 483 year: 2012 article-title: Genomic perspectives on the evolution of fungal entomopathogenicity in publication-title: Sci Rep – volume: 14 start-page: 323 year: 1994b end-page: 334 article-title: Overexpression of , an early regulator of asexual sporulation leads to activation of and premature initiation of development publication-title: Mol Microbiol – volume: 15 start-page: 299 year: 1996 end-page: 309 article-title: and function interdependently to initiate conidiophore development in through beta activation publication-title: EMBO J – volume: 107 start-page: 225 year: 2015 end-page: 240 article-title: FluG affects secretion in colonies of publication-title: Antonie Van Leeuwenhoek – volume: 54 start-page: 353 year: 1988 end-page: 362 article-title: is necessary and sufficient to direct conidiophore development in publication-title: Cell – volume: 9 start-page: 1711 year: 2010 end-page: 1723 article-title: encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production publication-title: Eukaryot Cell – volume: 76 start-page: 2627 year: 2020 end-page: 2634 article-title: Colony heating protects honey bee populations from a risk of contact with wide‐spectrum insecticides applied in the field publication-title: Pest Manag Sci – volume: 15 start-page: 669 year: 2012 end-page: 677 article-title: Genetic control of asexual sporulation in filamentous fungi publication-title: Curr Opin Microbiol – volume: 45 start-page: 548 year: 2019 end-page: 563 article-title: Rewiring of transcriptional networks as a major event leading to the diversity of asexual multicellularity in fungi publication-title: Crit Rev Microbiol – volume: 6 start-page: 28874 year: 2016 article-title: Negative regulation and developmental competence in publication-title: Sci Rep – volume: 10 start-page: 778 year: 2019 article-title: The early asexual development regulator codes for a putative bifunctional enzyme publication-title: Front Microbiol – volume: 4 start-page: 357 year: 2013 end-page: 374 article-title: Action on the surface: entomopathogenic fungi versus the insect cuticle publication-title: Insects – volume: 102 start-page: 1343 year: 2018a end-page: 1355 article-title: The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation publication-title: Appl Microbiol Biotechnol – volume: 18 start-page: 28 year: 2017 article-title: Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus publication-title: Genome Biol – volume: 19 start-page: 1808 year: 2017 end-page: 1821 article-title: Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus publication-title: Environ Microbiol – volume: 9 start-page: 491 year: 1995 end-page: 502 article-title: encodes a myb‐like DNA binding protein that controls initiation of conidiophore development publication-title: Genes Dev – volume: 87 start-page: e02545 year: 2021 end-page: e02520 article-title: Essential roles of two FRQ proteins (Frq1 and Frq2) in 's virulence, infection cycle and calcofluor‐specific signaling publication-title: Appl Environ Microbiol – volume: 102 start-page: 4995 year: 2018 end-page: 5004 article-title: Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens publication-title: Appl Microbiol Biotechnol – volume: 20 start-page: 169 year: 2018 end-page: 185 article-title: Daylight length‐dependent translocation of VIVID photoreceptor in cells and its essential role in conidiation and virulence of publication-title: Environ Microbiol – ident: e_1_2_6_8_1 doi: 10.1534/genetics.114.165688 – ident: e_1_2_6_15_1 doi: 10.1016/j.biocontrol.2007.08.001 – ident: e_1_2_6_58_1 doi: 10.1128/EC.00198-10 – ident: e_1_2_6_29_1 doi: 10.1111/1462-2920.13671 – ident: e_1_2_6_13_1 doi: 10.1128/EC.00207-07 – ident: e_1_2_6_10_1 doi: 10.1111/1462-2920.13803 – ident: e_1_2_6_12_1 doi: 10.1111/j.1365-2958.2009.06804.x – ident: e_1_2_6_57_1 doi: 10.1038/srep00483 – ident: e_1_2_6_9_1 doi: 10.1128/AEM.01241-12 – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-2958.2010.07282.x – ident: e_1_2_6_56_1 doi: 10.1111/1744-7917.12325 – ident: e_1_2_6_14_1 doi: 10.1080/1040841X.2019.1630359 – ident: e_1_2_6_40_1 doi: 10.1105/tpc.2.8.731 – ident: e_1_2_6_52_1 doi: 10.1007/s00253-017-8703-9 – ident: e_1_2_6_54_1 doi: 10.1007/s00253-018-9148-5 – ident: e_1_2_6_24_1 doi: 10.1111/j.1365-2958.1994.tb01293.x – ident: e_1_2_6_11_1 doi: 10.1016/j.tim.2010.09.007 – ident: e_1_2_6_55_1 doi: 10.1101/gad.9.4.491 – ident: e_1_2_6_6_1 doi: 10.1111/1462-2920.14066 – ident: e_1_2_6_60_1 doi: 10.1128/mSystems.00140-19 – ident: e_1_2_6_50_1 doi: 10.1111/1462-2920.14940 – ident: e_1_2_6_48_1 doi: 10.1146/annurev-ento-031616-035509 – ident: e_1_2_6_27_1 doi: 10.1038/srep28874 – ident: e_1_2_6_35_1 doi: 10.3390/insects4030357 – ident: e_1_2_6_41_1 doi: 10.1128/mSystems.00677-19 – ident: e_1_2_6_3_1 doi: 10.1128/MCB.12.9.3827 – ident: e_1_2_6_49_1 doi: 10.1128/AEM.02459-18 – ident: e_1_2_6_36_1 doi: 10.1016/j.mib.2012.09.006 – ident: e_1_2_6_4_1 doi: 10.1128/EC.00101-12 – ident: e_1_2_6_17_1 doi: 10.1111/j.1365-2958.2008.06520.x – ident: e_1_2_6_39_1 doi: 10.1534/genetics.105.052258 – ident: e_1_2_6_5_1 doi: 10.1111/cmi.12839 – ident: e_1_2_6_7_1 doi: 10.1111/1462-2920.14100 – ident: e_1_2_6_32_1 doi: 10.1016/0092-8674(89)90800-3 – ident: e_1_2_6_37_1 doi: 10.1002/ps.5803 – ident: e_1_2_6_46_1 doi: 10.1111/1462-2920.13951 – ident: e_1_2_6_28_1 doi: 10.1007/s00253-015-6823-7 – ident: e_1_2_6_33_1 doi: 10.1080/21505594.2020.1836903 – ident: e_1_2_6_20_1 doi: 10.3389/fmicb.2019.00778 – ident: e_1_2_6_43_1 doi: 10.1007/s00253-020-10659-z – ident: e_1_2_6_45_1 doi: 10.3390/cells9030626 – ident: e_1_2_6_47_1 doi: 10.1186/s13059-017-1151-0 – ident: e_1_2_6_34_1 doi: 10.1016/j.simyco.2018.10.002 – ident: e_1_2_6_51_1 doi: 10.1007/s10482-014-0321-2 – ident: e_1_2_6_2_1 doi: 10.1016/0092-8674(88)90198-5 – ident: e_1_2_6_38_1 doi: 10.1021/cb200455u – ident: e_1_2_6_53_1 doi: 10.1016/j.fgb.2014.06.010 – ident: e_1_2_6_16_1 doi: 10.1080/21505594.2020.1749487 – ident: e_1_2_6_25_1 doi: 10.1002/j.1460-2075.1996.tb00360.x – ident: e_1_2_6_22_1 doi: 10.1016/j.fgb.2010.08.009 – ident: e_1_2_6_19_1 doi: 10.1128/EC.00274-12 – ident: e_1_2_6_42_1 doi: 10.1007/s00253-018-9516-1 – ident: e_1_2_6_30_1 doi: 10.1128/MCB.11.1.55 – ident: e_1_2_6_31_1 doi: 10.1093/gbe/evaa107 – ident: e_1_2_6_59_1 doi: 10.1080/21505594.2018.1518089 – ident: e_1_2_6_61_1 doi: 10.1007/s00253-018-9033-2 – ident: e_1_2_6_44_1 doi: 10.1128/AEM.02545-20 – ident: e_1_2_6_18_1 doi: 10.1111/j.1365-2958.2010.07063.x – ident: e_1_2_6_23_1 doi: 10.1101/gad.8.6.641 – ident: e_1_2_6_26_1 doi: 10.1534/genetics.114.161430 – ident: e_1_2_6_62_1 doi: 10.1111/1462-2920.13359 |
SSID | ssj0017370 |
Score | 2.4351437 |
Snippet | Summary
The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key... The upstream developmental activation (UDA) pathway comprises three fluG ‐cored cascades ( fluG‐flbA , fluG‐flbE/B/D and fluG‐flbC ) that activate the key gene... The upstream developmental activation (UDA) pathway comprises three fluG-cored cascades (fluG-flbA, fluG-flbE/B/D and fluG-flbC) that activate the key gene... The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key gene... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5184 |
SubjectTerms | Adaptation Aspergillus Beauveria bassiana blastospores conidiation Cuticles death Environmental stress Epicuticle Fungi Gene regulation Genes Haemolymph Hemolymph hyphae Incubation period Insects Mimicry Pathogens Proliferation Secretion Stresses Virulence |
Title | Distinctive role of fluG in the adaptation of Beauveria bassiana to insect‐pathogenic lifecycle and environmental stresses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.15500 https://www.ncbi.nlm.nih.gov/pubmed/33817932 https://www.proquest.com/docview/2575010242 https://www.proquest.com/docview/2508889307 https://www.proquest.com/docview/2636391358 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA4iCF52fa7jiwgevPSwM0m600ffIuhBFPbWVNIJDDt0izMtuOxhf8L-Rn-JVekH6qIie2voCp1OV1W-6lR9xdguYNChvJQR2o6NJNX5gPUSrxKQLvcuNVTgfHEZn93I8x-qzSakWpiaH6L74UaWEfw1GTiYyTMjRxMfRtRrqU8om6J2ytgiWHTVEUgNEhHaxTWyg2FD7kO5PK_Gv9yX_gGbL7Fr2HxOvjLTTrvOOfnZr6amb3-9YnT8r_daYF8aaMr3a11aZDOuWGJzdbPKh2X2-4jcQRH8I6ekRF567sfVKR8VHGEkhxxu64N9unPgoLon9ea4UVKlJvBpiaIT9LCPf_5SJ-QSlXdk-XjknX3AR3Iocv6s8g4nU5eyuMkKuzk5vj48i5reDZGVlKQIOqEeHhqc8iI3WmNkFHtEo0LiZ0gHRluVxuBBxyYRJgYMbAicKoUhnUyNWGWzRVm4NcZF6qyJtY5FkksMbzSx9oFQYAzuvibtsX775TLbEJtTf41x1gY4tKQZLWkWlrTH9roBtzWnx9uim60qZI1xTzL0coqo-OSwx3a622iWdNYChSsrkkH3jVjwe_KOTCwQHw6E0j32rVazbj6CmBMRW-PLBWX5aKIZWm24WP_sgA02P6Q8nZA3t8lmp3eV20KgNTXbwZaeACjzG1A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hogoupeXVpQ-MxIFLVuzaTpxj3wt094B2pd4i27GlFaukYjdIRRz4Cf2N_SWdcbLRtggQ4hYpk8Rx5ht_48wD4K1Gp0N6ISLEjo0E5flo6wUeJVq43LvUUILzcBQPJuLjhbxYyYWp60O0G26EjGCvCeC0Ib2CcsR4P6JmS12i2ei2P6S-3gTO489tCalewkPDuEa412_K-1A0z70b3F2ZfqGbd9lrWH5On4BdDryOOvnSrRama7_fq-n4f2-2CRsNO2UHtTptwQNXPIX1ul_l1TP4cUwWoQgmklFcIis987PqjE0LhkyS6Vxf1v_26cyh09U30nCGayUla2q2KFF0jkb25uc1NUMuUX-nls2m3tkrfCTTRc5Wku9wMHU2i5s_h8npyfhoEDXtGyIrKE5Rq4TaeCjtpOe5UQqdo9gjIeUCv0PaM8rKNNZeq9gk3MQafRvip1KiVydSw1_AWlEWbhsYT501sVIxT3KBHo6iwn2aS20MLsAm7UB3-eky29Q2pxYbs2zp49CUZjSlWZjSDrxrL7isy3r8XnR3qQtZg-95hoZOUjU-0e_Am_Y0IpN-t-jClRXJoAVHOvg--YNMzJEi9rhUHXhZ61k7Hk7FE5Fe48sFbfnbQDMEbjh49a8XvIZHg_HwPDv_MPq0A4_7FLYTwuh2YW3xtXJ7yLsWZj8A6xbcpx9p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRUVcCi2PLhQwEgcuWXXXjzhHyrIUKBVCVOIW2Y4trVglK3aDVMSBn9Df2F_SGeehtogixC1SJontzIy_SWa-AXhuMOiQQYgEbcclgup8jAsCj1IjfBF8ZqnA-cOROjgW777ILpuQamEafoj-gxtZRvTXZOCLIlwwcjTxcUK9loaEsjFqvyHUnqb4a_KpZ5AapTz2i2uFR-OW3YeSea7c4PLG9BvavAxe4-4zvQ22G3eTdPJ1WK_s0P24Qun4XxO7A5stNmUvG2XagjVfbsNG063y5C78nJA_KKODZJSVyKrAwrx-w2YlQxzJTGEWzZ99OrPvTf2d9JvhTkmlmoatKhRdoos9-3VKrZAr1N6ZY_NZ8O4EH8lMWbALpXc4mKaWxS_vwfH09edXB0nbvCFxgrIUjU6piYc2XgZeWK0xNFIB4SgX-BqykdVOZsoEo5VNuVUGIxtCp1JiTCcyy-_DelmVfgcYz7yzSmvF00JgfKOJts9waazF7ddmAxh2by53LbM5NdiY512EQ0ua05LmcUkH8KK_YNGQevxZdLdThby17mWObk4SF58YD-BZfxrtkn62mNJXNcmg_0YwuJdeI6M4AsQRl3oADxo168fDiToRwTVOLirL3waao9nGg4f_esFTuPlxMs0P3x69fwS3xpSzE3PodmF99a32jxF0reyTaFbncQ0eIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinctive+role+of+fluG+in+the+adaptation+of+Beauveria+bassiana+to+insect%E2%80%90pathogenic+lifecycle+and+environmental+stresses&rft.jtitle=Environmental+microbiology&rft.au=Guo%2C+Chong%E2%80%90Tao&rft.au=Han%2C+Peng&rft.au=Tong%2C+Sen%E2%80%90Miao&rft.au=Ying%2C+Sheng%E2%80%90Hua&rft.date=2021-09-01&rft.issn=1462-2912&rft.volume=23&rft.issue=9+p.5184-5199&rft.spage=5184&rft.epage=5199&rft_id=info:doi/10.1111%2F1462-2920.15500&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |