Distinctive role of fluG in the adaptation of Beauveria bassiana to insect‐pathogenic lifecycle and environmental stresses

Summary The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly underst...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 23; no. 9; pp. 5184 - 5199
Main Authors Guo, Chong‐Tao, Peng, Han, Tong, Sen‐Miao, Ying, Sheng‐Hua, Feng, Ming‐Guang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1462-2912
1462-2920
1462-2920
DOI10.1111/1462-2920.15500

Cover

Loading…
Abstract Summary The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect‐pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time‐course up‐regulation/down‐regulation of all flb and CDP genes and another fluG‐like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress‐responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle‐degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up‐regulation of the CDP genes brlA and abaA, which was associated with earlier up‐regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect‐pathogenic lifecycle and suggest the other fluG‐like gene to act as an alternative player in the UDA pathway of B. bassiana.
AbstractList The upstream developmental activation (UDA) pathway comprises three fluG-cored cascades (fluG-flbA, fluG-flbE/B/D and fluG-flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect-pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time-course up-regulation/down-regulation of all flb and CDP genes and another fluG-like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress-responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle-degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up-regulation of the CDP genes brlA and abaA, which was associated with earlier up-regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect-pathogenic lifecycle and suggest the other fluG-like gene to act as an alternative player in the UDA pathway of B. bassiana.
Summary The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect‐pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time‐course up‐regulation/down‐regulation of all flb and CDP genes and another fluG‐like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress‐responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle‐degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up‐regulation of the CDP genes brlA and abaA, which was associated with earlier up‐regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect‐pathogenic lifecycle and suggest the other fluG‐like gene to act as an alternative player in the UDA pathway of B. bassiana.
The upstream developmental activation (UDA) pathway comprises three fluG-cored cascades (fluG-flbA, fluG-flbE/B/D and fluG-flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect-pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time-course up-regulation/down-regulation of all flb and CDP genes and another fluG-like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress-responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle-degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up-regulation of the CDP genes brlA and abaA, which was associated with earlier up-regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect-pathogenic lifecycle and suggest the other fluG-like gene to act as an alternative player in the UDA pathway of B. bassiana.The upstream developmental activation (UDA) pathway comprises three fluG-cored cascades (fluG-flbA, fluG-flbE/B/D and fluG-flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect-pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time-course up-regulation/down-regulation of all flb and CDP genes and another fluG-like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress-responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle-degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up-regulation of the CDP genes brlA and abaA, which was associated with earlier up-regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect-pathogenic lifecycle and suggest the other fluG-like gene to act as an alternative player in the UDA pathway of B. bassiana.
The upstream developmental activation (UDA) pathway comprises three fluG ‐cored cascades ( fluG‐flbA , fluG‐flbE/B/D and fluG‐flbC ) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect‐pathogenic lifecycle of Beauveria bassiana . Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time‐course up‐regulation/down‐regulation of all flb and CDP genes and another fluG ‐like gene (BBA_06309). In Δ fluG , increased sensitivities to various stresses correlated with repression of corresponding stress‐responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle‐degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged Δ fluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up‐regulation of the CDP genes brlA and abaA , which was associated with earlier up‐regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect‐pathogenic lifecycle and suggest the other fluG ‐like gene to act as an alternative player in the UDA pathway of B . bassiana .
Author Tong, Sen‐Miao
Guo, Chong‐Tao
Peng, Han
Ying, Sheng‐Hua
Feng, Ming‐Guang
Author_xml – sequence: 1
  givenname: Chong‐Tao
  surname: Guo
  fullname: Guo, Chong‐Tao
  organization: Zhejiang University
– sequence: 2
  givenname: Han
  surname: Peng
  fullname: Peng, Han
  organization: Zhejiang University
– sequence: 3
  givenname: Sen‐Miao
  orcidid: 0000-0002-7029-6084
  surname: Tong
  fullname: Tong, Sen‐Miao
  email: tongsm@zafu.edu.cn
  organization: Zhejiang A & F University
– sequence: 4
  givenname: Sheng‐Hua
  orcidid: 0000-0002-2108-9353
  surname: Ying
  fullname: Ying, Sheng‐Hua
  organization: Zhejiang University
– sequence: 5
  givenname: Ming‐Guang
  orcidid: 0000-0002-2657-0293
  surname: Feng
  fullname: Feng, Ming‐Guang
  email: mgfeng@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33817932$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtuFDEUhi2UiFygpkOWaGg28WU8tksIIYkURAP16Iz3DHE0ay-2Z6OVKHgEnpEnwcsmW6RZN_axv_9YR98JOQgxICFvODvjdZ3zphUzYUUtlWLsBTne3RzszlwckZOc7xnjWmr2khxJabi2UhyTX598Lj644ldIUxyRxoEO43RFfaDlDinMYVmg-Bg2Lx8RphUmD7SHnD0EoCVWNKMrf3__WUK5iz8weEdHP6Bbu9oQwpxiWPkUwwJDgZHmkjBnzK_I4QBjxteP-yn5_vny28X17Pbr1c3Fh9uZa1jDZmC00EYaQDXIeW-Makw7WGtlU2ezvDdO2RYGMG2vZd-CsppzxZQSLW9sL0_J-23fZYo_J8ylW_jscBwhYJxyJ1rZSsulMvtRxYwxVjJd0XfP0Ps4pVAHqZRWjDPRiEq9faSmfoHzbpn8AtK6e1JQgfMt4FLMOeGwQzjrNpK7jcZuo7T7L7km1LOE81tFJYEf9-ce_Ijrfd90l19utrl_STi4YQ
CitedBy_id crossref_primary_10_1128_spectrum_00070_23
crossref_primary_10_3390_jof8030260
crossref_primary_10_3390_pathogens11040405
crossref_primary_10_3390_jof8101110
crossref_primary_10_3390_jof8060606
crossref_primary_10_1007_s11274_024_04045_4
crossref_primary_10_3390_jof7080674
crossref_primary_10_1016_j_jip_2024_108059
crossref_primary_10_3390_jof7110895
crossref_primary_10_1111_1462_2920_16253
crossref_primary_10_1002_ps_6600
crossref_primary_10_3390_ijms25116261
crossref_primary_10_1128_msystems_00318_22
crossref_primary_10_3390_jof8040334
Cites_doi 10.1534/genetics.114.165688
10.1016/j.biocontrol.2007.08.001
10.1128/EC.00198-10
10.1111/1462-2920.13671
10.1128/EC.00207-07
10.1111/1462-2920.13803
10.1111/j.1365-2958.2009.06804.x
10.1038/srep00483
10.1128/AEM.01241-12
10.1111/j.1365-2958.2010.07282.x
10.1111/1744-7917.12325
10.1080/1040841X.2019.1630359
10.1105/tpc.2.8.731
10.1007/s00253-017-8703-9
10.1007/s00253-018-9148-5
10.1111/j.1365-2958.1994.tb01293.x
10.1016/j.tim.2010.09.007
10.1101/gad.9.4.491
10.1111/1462-2920.14066
10.1128/mSystems.00140-19
10.1111/1462-2920.14940
10.1146/annurev-ento-031616-035509
10.1038/srep28874
10.3390/insects4030357
10.1128/mSystems.00677-19
10.1128/MCB.12.9.3827
10.1128/AEM.02459-18
10.1016/j.mib.2012.09.006
10.1128/EC.00101-12
10.1111/j.1365-2958.2008.06520.x
10.1534/genetics.105.052258
10.1111/cmi.12839
10.1111/1462-2920.14100
10.1016/0092-8674(89)90800-3
10.1002/ps.5803
10.1111/1462-2920.13951
10.1007/s00253-015-6823-7
10.1080/21505594.2020.1836903
10.3389/fmicb.2019.00778
10.1007/s00253-020-10659-z
10.3390/cells9030626
10.1186/s13059-017-1151-0
10.1016/j.simyco.2018.10.002
10.1007/s10482-014-0321-2
10.1016/0092-8674(88)90198-5
10.1021/cb200455u
10.1016/j.fgb.2014.06.010
10.1080/21505594.2020.1749487
10.1002/j.1460-2075.1996.tb00360.x
10.1016/j.fgb.2010.08.009
10.1128/EC.00274-12
10.1007/s00253-018-9516-1
10.1128/MCB.11.1.55
10.1093/gbe/evaa107
10.1080/21505594.2018.1518089
10.1007/s00253-018-9033-2
10.1128/AEM.02545-20
10.1111/j.1365-2958.2010.07063.x
10.1101/gad.8.6.641
10.1534/genetics.114.161430
10.1111/1462-2920.13359
ContentType Journal Article
Copyright 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.
2021 Society for Applied Microbiology and John Wiley & Sons Ltd
Copyright_xml – notice: 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2021 Society for Applied Microbiology and John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
DOI 10.1111/1462-2920.15500
DatabaseName CrossRef
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 5199
ExternalDocumentID 33817932
10_1111_1462_2920_15500
EMI15500
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2017YFD0201202
– fundername: National Natural Science Foundation of China
  funderid: 31772218; 31801795
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2017YFD0201202
– fundername: National Natural Science Foundation of China
  grantid: 31801795
– fundername: National Natural Science Foundation of China
  grantid: 31772218
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4040-a8727838ae5f3db885486f9993491291b8c596afa86b73b6a59711505526149b3
IEDL.DBID DR2
ISSN 1462-2912
1462-2920
IngestDate Fri Jul 11 18:37:05 EDT 2025
Fri Jul 11 11:05:13 EDT 2025
Fri Jul 25 12:30:59 EDT 2025
Wed Feb 19 02:28:28 EST 2025
Thu Apr 24 22:51:32 EDT 2025
Tue Jul 01 04:00:47 EDT 2025
Wed Jan 22 16:27:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4040-a8727838ae5f3db885486f9993491291b8c596afa86b73b6a59711505526149b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7029-6084
0000-0002-2657-0293
0000-0002-2108-9353
PMID 33817932
PQID 2575010242
PQPubID 1066360
PageCount 16
ParticipantIDs proquest_miscellaneous_2636391358
proquest_miscellaneous_2508889307
proquest_journals_2575010242
pubmed_primary_33817932
crossref_primary_10_1111_1462_2920_15500
crossref_citationtrail_10_1111_1462_2920_15500
wiley_primary_10_1111_1462_2920_15500_EMI15500
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2014; 70
2013; 4
2010; 18
2018a; 102
2019; 10
2010a; 77
1991; 11
2008; 7
2020; 12
2020; 11
2006; 172
2012; 15
2015; 107
1992; 12
2012; 11
1994b; 14
2020; 5
2018c; 20
2013; 12
2020; 9
2018b; 102
2010b; 47
2010; 9
2017; 62
1995; 9
2010; 75
2021; 87
2019; 4
2018; 102
2015; 99
2017; 24
1988; 54
2020; 104
2019; 103
2018b; 20
2020; 76
2016; 18
2012; 78
2014; 197
1996; 15
2018; 20
1990; 2
2016; 6
2012; 2
2009; 73
2019; 85
2009; 71
2019; 45
2018; 91
2017; 19
2017; 18
2018a; 20
2020; 22
2007; 43
2012; 7
1989; 57
1994a; 8
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 20
  start-page: 1484
  year: 2018a
  end-page: 1497
  article-title: Gcn5‐dependent histone H3 acetylation and gene activity is required for the asexual development and virulence of
  publication-title: Environ Microbiol
– volume: 197
  start-page: 159
  year: 2014
  end-page: 173
  article-title: NsdD is a key repressor of asexual development in
  publication-title: Genetics
– volume: 47
  start-page: 981
  year: 2010b
  end-page: 993
  article-title: Characterization of the developmental regulator FlbE in and
  publication-title: Fungal Genet Biol
– volume: 43
  start-page: 237
  year: 2007
  end-page: 256
  article-title: Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types
  publication-title: Biol Control
– volume: 11
  start-page: 1132
  year: 2012
  end-page: 1142
  article-title: FlbD, a Myb transcription factor of , is uniquely involved in both asexual and sexual differentiation
  publication-title: Eukaryot Cell
– volume: 12
  start-page: 3827
  year: 1992
  end-page: 3833
  article-title: Isolation of a gene required for programmed initiation of development by
  publication-title: Mol Cell Biol
– volume: 77
  start-page: 1203
  year: 2010a
  end-page: 1219
  article-title: FlbC is a putative nuclear C H transcription factor regulating development in
  publication-title: Mol Microbiol
– volume: 103
  start-page: 577
  year: 2019
  end-page: 587
  article-title: Insights into regulatory roles of MAPK‐cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens
  publication-title: Appl Microbiol Biotechnol
– volume: 4
  start-page: e00140
  year: 2019
  end-page: e00119
  article-title: BrlA and AbaA govern virulence‐required dimorphic switch, conidiation and pathogenicity in a fungal insect pathogen
  publication-title: mSystems
– volume: 70
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Three α‐1,2‐mannosyltransferases contribute differentially to conidiation, cell wall integrity, multistress tolerance and virulence of
  publication-title: Fungal Genet Biol
– volume: 9
  start-page: 626
  year: 2020
  article-title: Opposite nuclear dynamics of two FRH‐dominated frequency proteins orchestrate non‐rhythmic conidiation of
  publication-title: Cell
– volume: 11
  start-page: 55
  year: 1991
  end-page: 62
  article-title: activates spore‐specific gene expression
  publication-title: Mol Cell Biol
– volume: 71
  start-page: 172
  year: 2009
  end-page: 184
  article-title: FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB
  publication-title: Mol Microbiol
– volume: 197
  start-page: 1175
  year: 2014
  end-page: 1189
  article-title: The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of asexual development
  publication-title: Genetics
– volume: 12
  start-page: 311
  year: 2013
  end-page: 321
  article-title: Transcriptional changes in the transition from vegetative cells to asexual development in the model fungus
  publication-title: Eukaryot Cell
– volume: 104
  start-page: 5711
  year: 2020
  end-page: 5724
  article-title: Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides
  publication-title: Appl Microbiol Biotechnol
– volume: 78
  start-page: 7557
  year: 2012
  end-page: 7563
  article-title: Deletion of the orthologue of . reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis
  publication-title: Appl Environ Microbiol
– volume: 11
  start-page: 365
  year: 2020
  end-page: 380
  article-title: Subtilisin‐like Pr1 proteases marking evolution of pathogenicity in a wide‐spectrum insect‐pathogenic fungus
  publication-title: Virulence
– volume: 91
  start-page: 37
  year: 2018
  end-page: 59
  article-title: Evolution of asexual and sexual reproduction in the aspergilli
  publication-title: Stud Mycol
– volume: 18
  start-page: 3884
  year: 2016
  end-page: 3895
  article-title: The Na /H antiporter Nhx1 controls vacuolar fusion indispensible for life cycle and in a fungal insect pathogen
  publication-title: Environ Microbiol
– volume: 7
  start-page: 38
  year: 2008
  end-page: 48
  article-title: Basic‐zipper‐type transcription factor FlbB controls asexual development in
  publication-title: Eukaryot Cell
– volume: 5
  start-page: e00677
  year: 2020
  end-page: e00619
  article-title: Nuclear Ssr4 is required for the and asexual cycles and global gene activity of
  publication-title: mSystems
– volume: 19
  start-page: 2806
  year: 2017
  end-page: 2818
  article-title: Discovery of a new intravacuolar protein required for the autophagy, development and virulence of
  publication-title: Environ Microbiol
– volume: 24
  start-page: 342
  year: 2017
  end-page: 357
  article-title: Immunity of the greater wax moth Galleria mellonella
  publication-title: Insect Sci
– volume: 11
  start-page: 1415
  year: 2020
  end-page: 1431
  article-title: P‐type Na /K ATPases essential and nonessential for cellular homeostasis and insect pathogenicity of
  publication-title: Virulence
– volume: 10
  start-page: 429
  year: 2019
  end-page: 437
  article-title: Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes
  publication-title: Virulence
– volume: 99
  start-page: 10069
  year: 2015
  end-page: 10081
  article-title: WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen
  publication-title: Appl Microbiol Biotechnol
– volume: 20
  year: 2018b
  article-title: Pleiotropic effects of the histone deacetylase Hos2 linked to H4‐K16 deacetylation, H3‐K56 acetylation and H2A‐S129 phosphorylation in
  publication-title: Cell Microbiol
– volume: 18
  start-page: 569
  year: 2010
  end-page: 576
  article-title: Aspergillus nidulans asexual development: making the most of cellular modules
  publication-title: Trends Microbiol
– volume: 73
  start-page: 775
  year: 2009
  end-page: 789
  article-title: The bZIP‐type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in
  publication-title: Mol Microbiol
– volume: 75
  start-page: 1314
  year: 2010
  end-page: 1324
  article-title: The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces expression and asexual development in
  publication-title: Mol Microbiol
– volume: 7
  start-page: 599
  year: 2012
  end-page: 606
  article-title: Signaling the induction of sporulation involves the interaction of two secondary metabolites in
  publication-title: ACS Chem Biol
– volume: 57
  start-page: 859
  year: 1989
  end-page: 868
  article-title: Interactions of three sequentially expressed genes control temporal and spatial specificity in development
  publication-title: Cell
– volume: 85
  start-page: e02459‐18
  year: 2019
  article-title: Two photolyases repair distinct DNA lesions and reactivate UVB‐inactivated conidia of an insect mycopathogen under visible light
  publication-title: Appl Environ Microbiol
– volume: 22
  start-page: 2564
  year: 2020
  end-page: 2580
  article-title: Pleiotropic effects of Ubi4, a polyubiquitin precursor required for ubiquitin accumulation, conidiation and pathogenicity of a fungal insect pathogen
  publication-title: Environ Microbiol
– volume: 102
  start-page: 6973
  year: 2018b
  end-page: 6986
  article-title: C‐terminal Ser/Thr residues are vital for the regulatory role of Ste7 in the asexual cycle and virulence of
  publication-title: Appl Microbiol Biotechnol
– volume: 20
  start-page: 1590
  year: 2018c
  end-page: 1606
  article-title: Essential role of Rpd3‐dependent lysine modification in the growth, development and virulence of
  publication-title: Environ Microbiol
– volume: 12
  start-page: 1119
  year: 2020
  end-page: 1130
  article-title: Recurrent loss of , a master regulator of asexual development in filamentous fungi, correlates with changes in genomic and morphological traits
  publication-title: Genome Biol Evol
– volume: 8
  start-page: 641
  year: 1994a
  end-page: 651
  article-title: The gene is required for production of an extracellular developmental signal
  publication-title: Genes Dev
– volume: 62
  start-page: 73
  year: 2017
  end-page: 90
  article-title: Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements
  publication-title: Annu Rev Entomol
– volume: 172
  start-page: 1535
  year: 2006
  end-page: 1544
  article-title: FluG‐dependent asexual development in occurs via derepression
  publication-title: Genetics
– volume: 2
  start-page: 731
  year: 1990
  end-page: 739
  article-title: controls phialide differentiation in
  publication-title: Plant Cell
– volume: 2
  start-page: 483
  year: 2012
  article-title: Genomic perspectives on the evolution of fungal entomopathogenicity in
  publication-title: Sci Rep
– volume: 14
  start-page: 323
  year: 1994b
  end-page: 334
  article-title: Overexpression of , an early regulator of asexual sporulation leads to activation of and premature initiation of development
  publication-title: Mol Microbiol
– volume: 15
  start-page: 299
  year: 1996
  end-page: 309
  article-title: and function interdependently to initiate conidiophore development in through beta activation
  publication-title: EMBO J
– volume: 107
  start-page: 225
  year: 2015
  end-page: 240
  article-title: FluG affects secretion in colonies of
  publication-title: Antonie Van Leeuwenhoek
– volume: 54
  start-page: 353
  year: 1988
  end-page: 362
  article-title: is necessary and sufficient to direct conidiophore development in
  publication-title: Cell
– volume: 9
  start-page: 1711
  year: 2010
  end-page: 1723
  article-title: encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production
  publication-title: Eukaryot Cell
– volume: 76
  start-page: 2627
  year: 2020
  end-page: 2634
  article-title: Colony heating protects honey bee populations from a risk of contact with wide‐spectrum insecticides applied in the field
  publication-title: Pest Manag Sci
– volume: 15
  start-page: 669
  year: 2012
  end-page: 677
  article-title: Genetic control of asexual sporulation in filamentous fungi
  publication-title: Curr Opin Microbiol
– volume: 45
  start-page: 548
  year: 2019
  end-page: 563
  article-title: Rewiring of transcriptional networks as a major event leading to the diversity of asexual multicellularity in fungi
  publication-title: Crit Rev Microbiol
– volume: 6
  start-page: 28874
  year: 2016
  article-title: Negative regulation and developmental competence in
  publication-title: Sci Rep
– volume: 10
  start-page: 778
  year: 2019
  article-title: The early asexual development regulator codes for a putative bifunctional enzyme
  publication-title: Front Microbiol
– volume: 4
  start-page: 357
  year: 2013
  end-page: 374
  article-title: Action on the surface: entomopathogenic fungi versus the insect cuticle
  publication-title: Insects
– volume: 102
  start-page: 1343
  year: 2018a
  end-page: 1355
  article-title: The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation
  publication-title: Appl Microbiol Biotechnol
– volume: 18
  start-page: 28
  year: 2017
  article-title: Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus
  publication-title: Genome Biol
– volume: 19
  start-page: 1808
  year: 2017
  end-page: 1821
  article-title: Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus
  publication-title: Environ Microbiol
– volume: 9
  start-page: 491
  year: 1995
  end-page: 502
  article-title: encodes a myb‐like DNA binding protein that controls initiation of conidiophore development
  publication-title: Genes Dev
– volume: 87
  start-page: e02545
  year: 2021
  end-page: e02520
  article-title: Essential roles of two FRQ proteins (Frq1 and Frq2) in 's virulence, infection cycle and calcofluor‐specific signaling
  publication-title: Appl Environ Microbiol
– volume: 102
  start-page: 4995
  year: 2018
  end-page: 5004
  article-title: Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens
  publication-title: Appl Microbiol Biotechnol
– volume: 20
  start-page: 169
  year: 2018
  end-page: 185
  article-title: Daylight length‐dependent translocation of VIVID photoreceptor in cells and its essential role in conidiation and virulence of
  publication-title: Environ Microbiol
– ident: e_1_2_6_8_1
  doi: 10.1534/genetics.114.165688
– ident: e_1_2_6_15_1
  doi: 10.1016/j.biocontrol.2007.08.001
– ident: e_1_2_6_58_1
  doi: 10.1128/EC.00198-10
– ident: e_1_2_6_29_1
  doi: 10.1111/1462-2920.13671
– ident: e_1_2_6_13_1
  doi: 10.1128/EC.00207-07
– ident: e_1_2_6_10_1
  doi: 10.1111/1462-2920.13803
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1365-2958.2009.06804.x
– ident: e_1_2_6_57_1
  doi: 10.1038/srep00483
– ident: e_1_2_6_9_1
  doi: 10.1128/AEM.01241-12
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-2958.2010.07282.x
– ident: e_1_2_6_56_1
  doi: 10.1111/1744-7917.12325
– ident: e_1_2_6_14_1
  doi: 10.1080/1040841X.2019.1630359
– ident: e_1_2_6_40_1
  doi: 10.1105/tpc.2.8.731
– ident: e_1_2_6_52_1
  doi: 10.1007/s00253-017-8703-9
– ident: e_1_2_6_54_1
  doi: 10.1007/s00253-018-9148-5
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1365-2958.1994.tb01293.x
– ident: e_1_2_6_11_1
  doi: 10.1016/j.tim.2010.09.007
– ident: e_1_2_6_55_1
  doi: 10.1101/gad.9.4.491
– ident: e_1_2_6_6_1
  doi: 10.1111/1462-2920.14066
– ident: e_1_2_6_60_1
  doi: 10.1128/mSystems.00140-19
– ident: e_1_2_6_50_1
  doi: 10.1111/1462-2920.14940
– ident: e_1_2_6_48_1
  doi: 10.1146/annurev-ento-031616-035509
– ident: e_1_2_6_27_1
  doi: 10.1038/srep28874
– ident: e_1_2_6_35_1
  doi: 10.3390/insects4030357
– ident: e_1_2_6_41_1
  doi: 10.1128/mSystems.00677-19
– ident: e_1_2_6_3_1
  doi: 10.1128/MCB.12.9.3827
– ident: e_1_2_6_49_1
  doi: 10.1128/AEM.02459-18
– ident: e_1_2_6_36_1
  doi: 10.1016/j.mib.2012.09.006
– ident: e_1_2_6_4_1
  doi: 10.1128/EC.00101-12
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-2958.2008.06520.x
– ident: e_1_2_6_39_1
  doi: 10.1534/genetics.105.052258
– ident: e_1_2_6_5_1
  doi: 10.1111/cmi.12839
– ident: e_1_2_6_7_1
  doi: 10.1111/1462-2920.14100
– ident: e_1_2_6_32_1
  doi: 10.1016/0092-8674(89)90800-3
– ident: e_1_2_6_37_1
  doi: 10.1002/ps.5803
– ident: e_1_2_6_46_1
  doi: 10.1111/1462-2920.13951
– ident: e_1_2_6_28_1
  doi: 10.1007/s00253-015-6823-7
– ident: e_1_2_6_33_1
  doi: 10.1080/21505594.2020.1836903
– ident: e_1_2_6_20_1
  doi: 10.3389/fmicb.2019.00778
– ident: e_1_2_6_43_1
  doi: 10.1007/s00253-020-10659-z
– ident: e_1_2_6_45_1
  doi: 10.3390/cells9030626
– ident: e_1_2_6_47_1
  doi: 10.1186/s13059-017-1151-0
– ident: e_1_2_6_34_1
  doi: 10.1016/j.simyco.2018.10.002
– ident: e_1_2_6_51_1
  doi: 10.1007/s10482-014-0321-2
– ident: e_1_2_6_2_1
  doi: 10.1016/0092-8674(88)90198-5
– ident: e_1_2_6_38_1
  doi: 10.1021/cb200455u
– ident: e_1_2_6_53_1
  doi: 10.1016/j.fgb.2014.06.010
– ident: e_1_2_6_16_1
  doi: 10.1080/21505594.2020.1749487
– ident: e_1_2_6_25_1
  doi: 10.1002/j.1460-2075.1996.tb00360.x
– ident: e_1_2_6_22_1
  doi: 10.1016/j.fgb.2010.08.009
– ident: e_1_2_6_19_1
  doi: 10.1128/EC.00274-12
– ident: e_1_2_6_42_1
  doi: 10.1007/s00253-018-9516-1
– ident: e_1_2_6_30_1
  doi: 10.1128/MCB.11.1.55
– ident: e_1_2_6_31_1
  doi: 10.1093/gbe/evaa107
– ident: e_1_2_6_59_1
  doi: 10.1080/21505594.2018.1518089
– ident: e_1_2_6_61_1
  doi: 10.1007/s00253-018-9033-2
– ident: e_1_2_6_44_1
  doi: 10.1128/AEM.02545-20
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1365-2958.2010.07063.x
– ident: e_1_2_6_23_1
  doi: 10.1101/gad.8.6.641
– ident: e_1_2_6_26_1
  doi: 10.1534/genetics.114.161430
– ident: e_1_2_6_62_1
  doi: 10.1111/1462-2920.13359
SSID ssj0017370
Score 2.4351437
Snippet Summary The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key...
The upstream developmental activation (UDA) pathway comprises three fluG ‐cored cascades ( fluG‐flbA , fluG‐flbE/B/D and fluG‐flbC ) that activate the key gene...
The upstream developmental activation (UDA) pathway comprises three fluG-cored cascades (fluG-flbA, fluG-flbE/B/D and fluG-flbC) that activate the key gene...
The upstream developmental activation (UDA) pathway comprises three fluG‐cored cascades (fluG‐flbA, fluG‐flbE/B/D and fluG‐flbC) that activate the key gene...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5184
SubjectTerms Adaptation
Aspergillus
Beauveria bassiana
blastospores
conidiation
Cuticles
death
Environmental stress
Epicuticle
Fungi
Gene regulation
Genes
Haemolymph
Hemolymph
hyphae
Incubation period
Insects
Mimicry
Pathogens
Proliferation
Secretion
Stresses
Virulence
Title Distinctive role of fluG in the adaptation of Beauveria bassiana to insect‐pathogenic lifecycle and environmental stresses
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.15500
https://www.ncbi.nlm.nih.gov/pubmed/33817932
https://www.proquest.com/docview/2575010242
https://www.proquest.com/docview/2508889307
https://www.proquest.com/docview/2636391358
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA4iCF52fa7jiwgevPSwM0m600ffIuhBFPbWVNIJDDt0izMtuOxhf8L-Rn-JVekH6qIie2voCp1OV1W-6lR9xdguYNChvJQR2o6NJNX5gPUSrxKQLvcuNVTgfHEZn93I8x-qzSakWpiaH6L74UaWEfw1GTiYyTMjRxMfRtRrqU8om6J2ytgiWHTVEUgNEhHaxTWyg2FD7kO5PK_Gv9yX_gGbL7Fr2HxOvjLTTrvOOfnZr6amb3-9YnT8r_daYF8aaMr3a11aZDOuWGJzdbPKh2X2-4jcQRH8I6ekRF567sfVKR8VHGEkhxxu64N9unPgoLon9ea4UVKlJvBpiaIT9LCPf_5SJ-QSlXdk-XjknX3AR3Iocv6s8g4nU5eyuMkKuzk5vj48i5reDZGVlKQIOqEeHhqc8iI3WmNkFHtEo0LiZ0gHRluVxuBBxyYRJgYMbAicKoUhnUyNWGWzRVm4NcZF6qyJtY5FkksMbzSx9oFQYAzuvibtsX775TLbEJtTf41x1gY4tKQZLWkWlrTH9roBtzWnx9uim60qZI1xTzL0coqo-OSwx3a622iWdNYChSsrkkH3jVjwe_KOTCwQHw6E0j32rVazbj6CmBMRW-PLBWX5aKIZWm24WP_sgA02P6Q8nZA3t8lmp3eV20KgNTXbwZaeACjzG1A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hogoupeXVpQ-MxIFLVuzaTpxj3wt094B2pd4i27GlFaukYjdIRRz4Cf2N_SWdcbLRtggQ4hYpk8Rx5ht_48wD4K1Gp0N6ISLEjo0E5flo6wUeJVq43LvUUILzcBQPJuLjhbxYyYWp60O0G26EjGCvCeC0Ib2CcsR4P6JmS12i2ei2P6S-3gTO489tCalewkPDuEa412_K-1A0z70b3F2ZfqGbd9lrWH5On4BdDryOOvnSrRama7_fq-n4f2-2CRsNO2UHtTptwQNXPIX1ul_l1TP4cUwWoQgmklFcIis987PqjE0LhkyS6Vxf1v_26cyh09U30nCGayUla2q2KFF0jkb25uc1NUMuUX-nls2m3tkrfCTTRc5Wku9wMHU2i5s_h8npyfhoEDXtGyIrKE5Rq4TaeCjtpOe5UQqdo9gjIeUCv0PaM8rKNNZeq9gk3MQafRvip1KiVydSw1_AWlEWbhsYT501sVIxT3KBHo6iwn2aS20MLsAm7UB3-eky29Q2pxYbs2zp49CUZjSlWZjSDrxrL7isy3r8XnR3qQtZg-95hoZOUjU-0e_Am_Y0IpN-t-jClRXJoAVHOvg--YNMzJEi9rhUHXhZ61k7Hk7FE5Fe48sFbfnbQDMEbjh49a8XvIZHg_HwPDv_MPq0A4_7FLYTwuh2YW3xtXJ7yLsWZj8A6xbcpx9p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRUVcCi2PLhQwEgcuWXXXjzhHyrIUKBVCVOIW2Y4trVglK3aDVMSBn9Df2F_SGeehtogixC1SJontzIy_SWa-AXhuMOiQQYgEbcclgup8jAsCj1IjfBF8ZqnA-cOROjgW777ILpuQamEafoj-gxtZRvTXZOCLIlwwcjTxcUK9loaEsjFqvyHUnqb4a_KpZ5AapTz2i2uFR-OW3YeSea7c4PLG9BvavAxe4-4zvQ22G3eTdPJ1WK_s0P24Qun4XxO7A5stNmUvG2XagjVfbsNG063y5C78nJA_KKODZJSVyKrAwrx-w2YlQxzJTGEWzZ99OrPvTf2d9JvhTkmlmoatKhRdoos9-3VKrZAr1N6ZY_NZ8O4EH8lMWbALpXc4mKaWxS_vwfH09edXB0nbvCFxgrIUjU6piYc2XgZeWK0xNFIB4SgX-BqykdVOZsoEo5VNuVUGIxtCp1JiTCcyy-_DelmVfgcYz7yzSmvF00JgfKOJts9waazF7ddmAxh2by53LbM5NdiY512EQ0ua05LmcUkH8KK_YNGQevxZdLdThby17mWObk4SF58YD-BZfxrtkn62mNJXNcmg_0YwuJdeI6M4AsQRl3oADxo168fDiToRwTVOLirL3waao9nGg4f_esFTuPlxMs0P3x69fwS3xpSzE3PodmF99a32jxF0reyTaFbncQ0eIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinctive+role+of+fluG+in+the+adaptation+of+Beauveria+bassiana+to+insect%E2%80%90pathogenic+lifecycle+and+environmental+stresses&rft.jtitle=Environmental+microbiology&rft.au=Guo%2C+Chong%E2%80%90Tao&rft.au=Han%2C+Peng&rft.au=Tong%2C+Sen%E2%80%90Miao&rft.au=Ying%2C+Sheng%E2%80%90Hua&rft.date=2021-09-01&rft.issn=1462-2912&rft.volume=23&rft.issue=9+p.5184-5199&rft.spage=5184&rft.epage=5199&rft_id=info:doi/10.1111%2F1462-2920.15500&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon