Toward a Comprehensive Evaluation of Student Knowledge Assessment for Art Education: A Hybrid Approach by Data Mining and Machine Learning

By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’ learning plans and teachers’ curricula. However, the large amount of data processing consumes a lot of manpower and time resources, which increa...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 12; p. 5020
Main Authors Wang, Shan, Wang, Hongtao, Lu, Yijun, Huang, Jiandong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’ learning plans and teachers’ curricula. However, the large amount of data processing consumes a lot of manpower and time resources, which increases the burden on educators. Therefore, this study aims to use a machine learning model to build a model to evaluate students’ learning levels for art education. To improve the prediction accuracy of the model, SVM was adopted as the basic model in this study, and was combined with SSA, ISSA, and KPCA-ISSA algorithms in turn to form a composite model. Through the experimental analysis of prediction accuracy, we found that the prediction accuracy of the KPCA-ISSA-SVMM model reached the highest, at 96.7213%, while that of the SVM model was only 91.8033%. Moreover, by putting the prediction results of the four models into the confusion matrix, it can be found that with an increase in the complexity of the composite model, the probability of classification errors in model prediction gradually decreases. It can be seen from the importance experiment that the students’ achievements in target subjects (PEG) have the greatest influence on the model prediction effect, and the importance score is 9.5958. Therefore, we should pay more attention to this characteristic value when evaluating students’ learning levels.
AbstractList By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’ learning plans and teachers’ curricula. However, the large amount of data processing consumes a lot of manpower and time resources, which increases the burden on educators. Therefore, this study aims to use a machine learning model to build a model to evaluate students’ learning levels for art education. To improve the prediction accuracy of the model, SVM was adopted as the basic model in this study, and was combined with SSA, ISSA, and KPCA-ISSA algorithms in turn to form a composite model. Through the experimental analysis of prediction accuracy, we found that the prediction accuracy of the KPCA-ISSA-SVMM model reached the highest, at 96.7213%, while that of the SVM model was only 91.8033%. Moreover, by putting the prediction results of the four models into the confusion matrix, it can be found that with an increase in the complexity of the composite model, the probability of classification errors in model prediction gradually decreases. It can be seen from the importance experiment that the students’ achievements in target subjects (PEG) have the greatest influence on the model prediction effect, and the importance score is 9.5958. Therefore, we should pay more attention to this characteristic value when evaluating students’ learning levels.
Audience Academic
Author Wang, Hongtao
Lu, Yijun
Huang, Jiandong
Wang, Shan
Author_xml – sequence: 1
  givenname: Shan
  surname: Wang
  fullname: Wang, Shan
– sequence: 2
  givenname: Hongtao
  surname: Wang
  fullname: Wang, Hongtao
– sequence: 3
  givenname: Yijun
  surname: Lu
  fullname: Lu, Yijun
– sequence: 4
  givenname: Jiandong
  surname: Huang
  fullname: Huang, Jiandong
BookMark eNptkc1uEzEUhUeoSJTSFS9giSVKscf2eIbdKARaNRULytq645_U0cQebE-rvAJPjZOAVFXYC1tH5zu6P2-rMx-8qar3BF9R2uFPME2EkZrjGr-qzmssmgVlRJw9-7-pLlPa4nI6QluCz6vf9-EJokaAlmE3RfNgfHKPBq0eYZwhu-BRsOhHnrXxGd368DQavTGoT8mktDuINkTUx4xWelZH4jPq0fV-iE6jfppiAPWAhj36AhnQnfPObxB4je6K7rxBawPxIL6rXlsYk7n8-15UP7-u7pfXi_X3bzfLfr1QDNO8sELgmgwEMFcYi7YBJurWWGb5wClpKFOYac5bKqhobRkIE6ThWg_aGjCMXlQ3p1wdYCun6HYQ9zKAk0chxI2EmJ0ajWQMm87ULW2hYQTzDlpri9BRNQxY2ZL14ZRV2vw1m5TlNszRl_IlxaKuOWkILa6rk2sDJdR5G3IEVa42O6fKFq0rei-6rmasJbwA5ASoGFKKxkrl8nG2BXSjJFgeVi6frbwwH18w_1r7n_sP_E6tSQ
CitedBy_id crossref_primary_10_3390_app15010250
crossref_primary_10_3390_su162410845
Cites_doi 10.1080/02602938.2021.1888075
10.3390/buildings14020396
10.21125/iceri.2019.0239
10.1007/s12665-022-10523-5
10.1016/j.knosys.2021.106924
10.1007/s43153-021-00125-2
10.3390/su15076229
10.1080/00131880500498396
10.1145/3322134.3322138
10.4018/IRMJ.304454
10.1016/j.sbspro.2013.08.951
10.1016/j.conbuildmat.2024.135133
10.2991/iceemr-18.2018.172
10.1109/72.914517
10.1109/TNNLS.2014.2333664
10.1109/TALE.2017.8252342
10.3390/su15118924
10.1007/s10462-023-10435-1
10.1109/UYMS50627.2020.9247066
10.1007/s10479-022-04575-w
10.1080/14680629.2022.2112061
10.3390/buildings14030591
10.1016/j.stueduc.2016.08.007
10.3390/app13053121
10.1007/s40996-022-00912-y
10.3390/buildings14030615
10.1007/s12205-022-0961-0
10.1016/j.heliyon.2023.e20597
10.1080/10447318.2023.2209986
10.3390/s21041224
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14125020
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Education
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_440e9e2838a641059a8ff9e293cbb0cf
A799244815
10_3390_app14125020
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-f77021b1a05c00786a4728ef4f5b531634c04d55837378f12547165ddbdfeae43
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:32:41 EDT 2025
Mon Jun 30 04:50:55 EDT 2025
Tue Jun 10 21:07:52 EDT 2025
Tue Jul 01 01:31:18 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-f77021b1a05c00786a4728ef4f5b531634c04d55837378f12547165ddbdfeae43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/440e9e2838a641059a8ff9e293cbb0cf
PQID 3072251613
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_440e9e2838a641059a8ff9e293cbb0cf
proquest_journals_3072251613
gale_infotracacademiconefile_A799244815
crossref_citationtrail_10_3390_app14125020
crossref_primary_10_3390_app14125020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_35
ref_12
ref_34
Olague (ref_8) 2023; 9
Yue (ref_28) 2023; 56
Mahmud (ref_13) 2013; 89
Huang (ref_21) 2023; 24
ref_30
Mika (ref_32) 2001; 12
Sun (ref_36) 2024; 416
ref_19
Bakar (ref_14) 2022; 11
ref_17
Zhong (ref_18) 2022; 35
Marks (ref_5) 2006; 48
Leem (ref_2) 2020; 63
Heffernan (ref_10) 2022; 47
Pani (ref_31) 2022; 39
Yin (ref_1) 2012; 403–408
Uttl (ref_11) 2017; 54
Huang (ref_15) 2022; 26
ref_25
ref_24
ref_23
ref_20
ref_3
Huang (ref_16) 2022; 81
Motai (ref_33) 2015; 26
Zhang (ref_29) 2021; 220
ref_27
Huang (ref_22) 2022; 46
ref_26
ref_9
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– volume: 63
  start-page: 55
  year: 2020
  ident: ref_2
  article-title: Using Sentiment Analysis to Analyze the Feedback of Students with Open-ended Questions
  publication-title: Stud. Humanit. Soc. Sci.
– volume: 47
  start-page: 144
  year: 2022
  ident: ref_10
  article-title: Sexism, racism, prejudice, and bias: A literature review and synthesis of research surrounding student evaluations of courses and teaching
  publication-title: Assess. Eval. High. Educ.
  doi: 10.1080/02602938.2021.1888075
– ident: ref_24
  doi: 10.3390/buildings14020396
– ident: ref_17
  doi: 10.21125/iceri.2019.0239
– volume: 81
  start-page: 434
  year: 2022
  ident: ref_16
  article-title: Optimization of SVR functions for flyrock evaluation in mine blasting operations
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-022-10523-5
– volume: 220
  start-page: 106924
  year: 2021
  ident: ref_29
  article-title: A stochastic configuration network based on chaotic sparrow search algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106924
– volume: 403–408
  start-page: 1535
  year: 2012
  ident: ref_1
  article-title: The Application Design of Machine Learning in Intelligent Learning Support System
  publication-title: Adv. Mater. Res.
– volume: 39
  start-page: 327
  year: 2022
  ident: ref_31
  article-title: Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1007/s43153-021-00125-2
– ident: ref_20
  doi: 10.3390/su15076229
– volume: 48
  start-page: 21
  year: 2006
  ident: ref_5
  article-title: Are between- and within-school differences in student performance largely due to socio-economic background? Evidence from 30 countries
  publication-title: Educ. Res.
  doi: 10.1080/00131880500498396
– ident: ref_23
  doi: 10.1145/3322134.3322138
– volume: 35
  start-page: 1
  year: 2022
  ident: ref_18
  article-title: Deep Learning-Assisted Performance Evaluation System for Teaching SCM in the Higher Education System: Performance Evaluation of Teaching Management
  publication-title: Inf. Resour. Manag. J.
  doi: 10.4018/IRMJ.304454
– volume: 89
  start-page: 890
  year: 2013
  ident: ref_13
  article-title: Assessing Students’ Learning Ability in A Postgraduate Statistical Course: A Rasch Analysis
  publication-title: Procedia-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2013.08.951
– volume: 416
  start-page: 135133
  year: 2024
  ident: ref_36
  article-title: Splitting tensile strength of basalt fiber reinforced coral aggregate concrete: Optimized XGBoost models and experimental validation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.135133
– ident: ref_25
  doi: 10.2991/iceemr-18.2018.172
– ident: ref_6
– volume: 12
  start-page: 181
  year: 2001
  ident: ref_32
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.914517
– volume: 26
  start-page: 208
  year: 2015
  ident: ref_33
  article-title: Kernel Association for Classification and Prediction: A Survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2333664
– ident: ref_4
– ident: ref_19
  doi: 10.1109/TALE.2017.8252342
– ident: ref_12
  doi: 10.3390/su15118924
– volume: 56
  start-page: 10867
  year: 2023
  ident: ref_28
  article-title: Review and empirical analysis of sparrow search algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10435-1
– ident: ref_3
  doi: 10.1109/UYMS50627.2020.9247066
– ident: ref_27
  doi: 10.1007/s10479-022-04575-w
– volume: 24
  start-page: 1939
  year: 2023
  ident: ref_21
  article-title: Investigating the effects of ensemble and weight optimization approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete
  publication-title: Road Mater. Pavement Des.
  doi: 10.1080/14680629.2022.2112061
– ident: ref_34
  doi: 10.3390/buildings14030591
– volume: 54
  start-page: 22
  year: 2017
  ident: ref_11
  article-title: Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related
  publication-title: Stud. Educ. Eval.
  doi: 10.1016/j.stueduc.2016.08.007
– ident: ref_9
  doi: 10.3390/app13053121
– volume: 46
  start-page: 4355
  year: 2022
  ident: ref_22
  article-title: Development of a new stacking model to evaluate the strength parameters of concrete samples in laboratory
  publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng.
  doi: 10.1007/s40996-022-00912-y
– ident: ref_35
  doi: 10.3390/buildings14030615
– volume: 26
  start-page: 3918
  year: 2022
  ident: ref_15
  article-title: The use of GA and PSO in evaluating the shear strength of steel fiber reinforced concrete beams
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-022-0961-0
– volume: 11
  start-page: 1942
  year: 2022
  ident: ref_14
  article-title: Adaptive Neuro-Fuzzy Inference System (ANFIS) Formulation to Predict Students’ Neuroscience Mechanistic: A Concept of an Intelligent Model to Enhance Mathematics Learning Ability
  publication-title: TEM J.-Technol. Educ. Manag. Inform.
– volume: 9
  start-page: e20597
  year: 2023
  ident: ref_8
  article-title: Predicting open education competency level: A machine learning approach
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e20597
– ident: ref_26
  doi: 10.1080/10447318.2023.2209986
– ident: ref_30
  doi: 10.3390/s21041224
SSID ssj0000913810
Score 2.2994232
Snippet By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5020
SubjectTerms Algorithms
Artificial intelligence
Data mining
Datasets
Education
Machine learning
Online instruction
sparrow search algorithm
student knowledge
Students
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxRBEK4gXPRABDQugqkDiWIycWa75-XFDLJko1lCEBJunX7iwezi7nrgL_irrZrpHfYgXKc7mZmud3XVVwBH3oUsBC0TYqCQkP-fJXXth4nhaZBBG4qcuXd4cl6Mr-W3m_wmJtwWsaxypRNbRe1mlnPkn4gXifXIPxFf7n4nPDWKb1fjCI1nsEUquKLga-tkdH5x2WdZGPWyytKuMU9QfM_3wpkkq57yhO81U9Qi9j-ml1tjc_YStqOXiE1H1h3Y8NNdeLGGHbgLO1EqF_ghQkcf78Hfq7YKFjWynM_9z648HUc9pjfOAv7o8Czx-yqfhk2Pz4nkxPJ7sa_8-IwNju-5sQubCECO5h5P9VLjpB0vgXrqcNJWZXqMgK23r-D6bHT1dZzEaQuJlalYJqEsyd6bTKe5Zceh0LIcVj7IkBsS1EJIm0qX5xTRirIKdIRk14rcOeOC116K17A5nU39G0CRDTNpC-EccUGgVYawqHRZmiwPXpgBfFwdvLIRipwnYvxSFJIwldQalQZw1G--6xA4_r_thCnYb2HY7PbBbH6rohQqKVNPnFiJShdc31rrKgR6UAtrTGrDAN4z_RULN32Q1bFHgX6LYbJUU9YUrzK-zQAOViyiotQv1AOP7j-9_BaeD8k56krODmBzOf_jD8m5WZp3kYP_ASWD-YQ
  priority: 102
  providerName: ProQuest
Title Toward a Comprehensive Evaluation of Student Knowledge Assessment for Art Education: A Hybrid Approach by Data Mining and Machine Learning
URI https://www.proquest.com/docview/3072251613
https://doaj.org/article/440e9e2838a641059a8ff9e293cbb0cf
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LT-MwEIBHLFzYAwJ20ZZHNQekXVaKSGrnxS1AS8WqCPGQuFl2YsMBFQTlwF_gVzOTuFEOoL1wTV3V9bzb8TcAu7ZykXNaBqRALqD8Pwry3A4Cw9MgnTZUOfPd4clZMr6WpzfxTWfUF_eENXjg5uD2pQwtvTkTmU64JTHXmXP0IBelMWHp2PtSzOsUU7UPziNGVzUX8gTV9fx_cCQpmoc82bsTgmpS_2f-uA4yo1VY8dkhFs2u1mDBTtfhe4cZuA5r3hqf8Y9HRu_9gLeruvsVNbJ9P9m7pi0dhy3LGx8cXjYcS_w3_x0Ni5bLiZS88udi2_FxgAWOX_lCFxYePI7mFY_1TOOkHiuBelrhpO7GtOhBrbc_4Xo0vDoaB37KQlDKUMwCl6YU502kw7jkhCHRMh1k1kkXGzLQRMgylFUcUyUr0szREVI8S-KqMpWz2kqxAYvTh6n9BSiiQSTLRFQVSd_Rq4yuyHSamih2Vpge_J0fvCo9gpwnYdwrKkVYSqojpR7stosfG_LGx8sOWYLtEsZl1w9IiZRXIvU_JerBb5a_YqOmDZXa302gr8V4LFWkOdWpzLXpwfZcRZS39mdFfpLcIuXOYvMrdrMFywNKnZqGtG1YnD292B1KfWamD9-y0Ukflg6HZ-cX_Vrn3wHEKANw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCwXmUMRDikhi54WEUKBdtmy3F7ZSb66d2OWAdsvuIrR_gR_Db2QmccIegFuvsZXXfJ6HPfMNwL6tXeSclgEByAXk_0dBUdg4MNwN0mlDkTPXDk9O0tGp_HSWnG3Br64WhtMqO53YKOp6XvEe-WvCIkGP_BPx7vJbwF2j-HS1a6HRwmJs1z8oZFu-PTog-T6L4-Hh9MMo8F0FgkqGYhW4LCO7ZiIdJhUbyFTLLM6tky4xBMhUyCqUdZJQ5Cay3JEDQPo7Tera1M5qKwXd9xpcl0IUvKLy4cd-T4c5NvMobMsAaTzkU-hI0i1C7ie-Yfia_gD_sgKNaRvegdveJ8WyBdEObNnZLtzaYCrchR2vA5b4whNVv7wLP6dNzi1qZK2ysF_aZHg87BnEce7wc8ueieNu9w7Lng0UyWXm52KfZ_IGSxytuYwMS093jmaNB3qlcdI0s0A9q3HS5IBa9PSwF_fg9EqkcB-2Z_OZfQAoojiSVSrqmjDnaJQJM3KdZSZKnBVmAK-6H68qT3zO_Te-KgqAWEpqQ0oD2O8nX7Z8H3-f9p4l2E9hku7mwnxxofyaV1KGlnCfi1ynnE1b6Nw5ulCIypiwcgN4zvJXrErohSrtKyLos5iUS5VZQdExs-kMYK-DiPI6Zqn-rIiH_x9-CjdG08mxOj46GT-CmzG5ZW2y2x5srxbf7WNyq1bmSYNlhPOrXjy_AVF1M0c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSACBSYQxEPyartXb-QEEpJopSQqIJW6s3dtXfbQ5WUJAjlL_CT-HXM2GuTA3DrdXfl13w7j_XMNwD7prSBtUp6BCDrkf8feFlmQk9zN0irNEXOXDs8mcajU_npLDrbgl9NLQynVTY6sVLU5bzgM_IDwiJBj_wTcWBdWsRxf_jh-pvHHaT4T2vTTqOGyNisf1D4tnx_1CdZvwzD4eDk48hzHQa8Qvpi5dkkIRunA-VHBRvLWMkkTI2VNtIEzljIwpdlFFEUJ5LUkjNAujyOylKX1igjBV33FmwnFBX5Hdg-HEyPv7QnPMy4mQZ-XRQoRObzP-lA0kV87i6-YQarbgH_sgmVoRveh3vOQ8VeDakd2DKzXbi7wVu4CztOIyzxtaOtfvMAfp5UGbiokHXMwlzWqfE4aPnEcW7xa82liePmLA97LTcokgPN98U26-Qd9nC05qIy7Dnyc9Rr7KuVwknV2gLVrMRJlRFq0JHFXjyE0xuRwyPozOYz8xhQBGEgi1iUJSHQ0izTZ6QqSXQQWSN0F942Hz4vHA06d-O4yikcYinlG1Lqwn67-Lpm__j7skOWYLuEKburgfniIncaIJfSN7QLUpGqmHNrM5VaSwOZKLT2C9uFVyz_nBULPVChXH0EvRZTdOW9JKNYmbl1urDXQCR3GmeZ_9kfT_4__QJu08bJPx9Nx0_hTkg-Wp35tged1eK7eUY-1ko_d2BGOL_p_fMbyPs42Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+Comprehensive+Evaluation+of+Student+Knowledge+Assessment+for+Art+Education%3A+A+Hybrid+Approach+by+Data+Mining+and+Machine+Learning&rft.jtitle=Applied+sciences&rft.au=Shan+Wang&rft.au=Hongtao+Wang&rft.au=Yijun+Lu&rft.au=Jiandong+Huang&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=12&rft.spage=5020&rft_id=info:doi/10.3390%2Fapp14125020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_440e9e2838a641059a8ff9e293cbb0cf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon