Toward a Comprehensive Evaluation of Student Knowledge Assessment for Art Education: A Hybrid Approach by Data Mining and Machine Learning
By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’ learning plans and teachers’ curricula. However, the large amount of data processing consumes a lot of manpower and time resources, which increa...
Saved in:
Published in | Applied sciences Vol. 14; no. 12; p. 5020 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’ learning plans and teachers’ curricula. However, the large amount of data processing consumes a lot of manpower and time resources, which increases the burden on educators. Therefore, this study aims to use a machine learning model to build a model to evaluate students’ learning levels for art education. To improve the prediction accuracy of the model, SVM was adopted as the basic model in this study, and was combined with SSA, ISSA, and KPCA-ISSA algorithms in turn to form a composite model. Through the experimental analysis of prediction accuracy, we found that the prediction accuracy of the KPCA-ISSA-SVMM model reached the highest, at 96.7213%, while that of the SVM model was only 91.8033%. Moreover, by putting the prediction results of the four models into the confusion matrix, it can be found that with an increase in the complexity of the composite model, the probability of classification errors in model prediction gradually decreases. It can be seen from the importance experiment that the students’ achievements in target subjects (PEG) have the greatest influence on the model prediction effect, and the importance score is 9.5958. Therefore, we should pay more attention to this characteristic value when evaluating students’ learning levels. |
---|---|
AbstractList | By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’ learning plans and teachers’ curricula. However, the large amount of data processing consumes a lot of manpower and time resources, which increases the burden on educators. Therefore, this study aims to use a machine learning model to build a model to evaluate students’ learning levels for art education. To improve the prediction accuracy of the model, SVM was adopted as the basic model in this study, and was combined with SSA, ISSA, and KPCA-ISSA algorithms in turn to form a composite model. Through the experimental analysis of prediction accuracy, we found that the prediction accuracy of the KPCA-ISSA-SVMM model reached the highest, at 96.7213%, while that of the SVM model was only 91.8033%. Moreover, by putting the prediction results of the four models into the confusion matrix, it can be found that with an increase in the complexity of the composite model, the probability of classification errors in model prediction gradually decreases. It can be seen from the importance experiment that the students’ achievements in target subjects (PEG) have the greatest influence on the model prediction effect, and the importance score is 9.5958. Therefore, we should pay more attention to this characteristic value when evaluating students’ learning levels. |
Audience | Academic |
Author | Wang, Hongtao Lu, Yijun Huang, Jiandong Wang, Shan |
Author_xml | – sequence: 1 givenname: Shan surname: Wang fullname: Wang, Shan – sequence: 2 givenname: Hongtao surname: Wang fullname: Wang, Hongtao – sequence: 3 givenname: Yijun surname: Lu fullname: Lu, Yijun – sequence: 4 givenname: Jiandong surname: Huang fullname: Huang, Jiandong |
BookMark | eNptkc1uEzEUhUeoSJTSFS9giSVKscf2eIbdKARaNRULytq645_U0cQebE-rvAJPjZOAVFXYC1tH5zu6P2-rMx-8qar3BF9R2uFPME2EkZrjGr-qzmssmgVlRJw9-7-pLlPa4nI6QluCz6vf9-EJokaAlmE3RfNgfHKPBq0eYZwhu-BRsOhHnrXxGd368DQavTGoT8mktDuINkTUx4xWelZH4jPq0fV-iE6jfppiAPWAhj36AhnQnfPObxB4je6K7rxBawPxIL6rXlsYk7n8-15UP7-u7pfXi_X3bzfLfr1QDNO8sELgmgwEMFcYi7YBJurWWGb5wClpKFOYac5bKqhobRkIE6ThWg_aGjCMXlQ3p1wdYCun6HYQ9zKAk0chxI2EmJ0ajWQMm87ULW2hYQTzDlpri9BRNQxY2ZL14ZRV2vw1m5TlNszRl_IlxaKuOWkILa6rk2sDJdR5G3IEVa42O6fKFq0rei-6rmasJbwA5ASoGFKKxkrl8nG2BXSjJFgeVi6frbwwH18w_1r7n_sP_E6tSQ |
CitedBy_id | crossref_primary_10_3390_app15010250 crossref_primary_10_3390_su162410845 |
Cites_doi | 10.1080/02602938.2021.1888075 10.3390/buildings14020396 10.21125/iceri.2019.0239 10.1007/s12665-022-10523-5 10.1016/j.knosys.2021.106924 10.1007/s43153-021-00125-2 10.3390/su15076229 10.1080/00131880500498396 10.1145/3322134.3322138 10.4018/IRMJ.304454 10.1016/j.sbspro.2013.08.951 10.1016/j.conbuildmat.2024.135133 10.2991/iceemr-18.2018.172 10.1109/72.914517 10.1109/TNNLS.2014.2333664 10.1109/TALE.2017.8252342 10.3390/su15118924 10.1007/s10462-023-10435-1 10.1109/UYMS50627.2020.9247066 10.1007/s10479-022-04575-w 10.1080/14680629.2022.2112061 10.3390/buildings14030591 10.1016/j.stueduc.2016.08.007 10.3390/app13053121 10.1007/s40996-022-00912-y 10.3390/buildings14030615 10.1007/s12205-022-0961-0 10.1016/j.heliyon.2023.e20597 10.1080/10447318.2023.2209986 10.3390/s21041224 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app14125020 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Education |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_440e9e2838a641059a8ff9e293cbb0cf A799244815 10_3390_app14125020 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-f77021b1a05c00786a4728ef4f5b531634c04d55837378f12547165ddbdfeae43 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:32:41 EDT 2025 Mon Jun 30 04:50:55 EDT 2025 Tue Jun 10 21:07:52 EDT 2025 Tue Jul 01 01:31:18 EDT 2025 Thu Apr 24 22:56:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-f77021b1a05c00786a4728ef4f5b531634c04d55837378f12547165ddbdfeae43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/440e9e2838a641059a8ff9e293cbb0cf |
PQID | 3072251613 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_440e9e2838a641059a8ff9e293cbb0cf proquest_journals_3072251613 gale_infotracacademiconefile_A799244815 crossref_citationtrail_10_3390_app14125020 crossref_primary_10_3390_app14125020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_35 ref_12 ref_34 Olague (ref_8) 2023; 9 Yue (ref_28) 2023; 56 Mahmud (ref_13) 2013; 89 Huang (ref_21) 2023; 24 ref_30 Mika (ref_32) 2001; 12 Sun (ref_36) 2024; 416 ref_19 Bakar (ref_14) 2022; 11 ref_17 Zhong (ref_18) 2022; 35 Marks (ref_5) 2006; 48 Leem (ref_2) 2020; 63 Heffernan (ref_10) 2022; 47 Pani (ref_31) 2022; 39 Yin (ref_1) 2012; 403–408 Uttl (ref_11) 2017; 54 Huang (ref_15) 2022; 26 ref_25 ref_24 ref_23 ref_20 ref_3 Huang (ref_16) 2022; 81 Motai (ref_33) 2015; 26 Zhang (ref_29) 2021; 220 ref_27 Huang (ref_22) 2022; 46 ref_26 ref_9 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_7 – volume: 63 start-page: 55 year: 2020 ident: ref_2 article-title: Using Sentiment Analysis to Analyze the Feedback of Students with Open-ended Questions publication-title: Stud. Humanit. Soc. Sci. – volume: 47 start-page: 144 year: 2022 ident: ref_10 article-title: Sexism, racism, prejudice, and bias: A literature review and synthesis of research surrounding student evaluations of courses and teaching publication-title: Assess. Eval. High. Educ. doi: 10.1080/02602938.2021.1888075 – ident: ref_24 doi: 10.3390/buildings14020396 – ident: ref_17 doi: 10.21125/iceri.2019.0239 – volume: 81 start-page: 434 year: 2022 ident: ref_16 article-title: Optimization of SVR functions for flyrock evaluation in mine blasting operations publication-title: Environ. Earth Sci. doi: 10.1007/s12665-022-10523-5 – volume: 220 start-page: 106924 year: 2021 ident: ref_29 article-title: A stochastic configuration network based on chaotic sparrow search algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106924 – volume: 403–408 start-page: 1535 year: 2012 ident: ref_1 article-title: The Application Design of Machine Learning in Intelligent Learning Support System publication-title: Adv. Mater. Res. – volume: 39 start-page: 327 year: 2022 ident: ref_31 article-title: Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications publication-title: Braz. J. Chem. Eng. doi: 10.1007/s43153-021-00125-2 – ident: ref_20 doi: 10.3390/su15076229 – volume: 48 start-page: 21 year: 2006 ident: ref_5 article-title: Are between- and within-school differences in student performance largely due to socio-economic background? Evidence from 30 countries publication-title: Educ. Res. doi: 10.1080/00131880500498396 – ident: ref_23 doi: 10.1145/3322134.3322138 – volume: 35 start-page: 1 year: 2022 ident: ref_18 article-title: Deep Learning-Assisted Performance Evaluation System for Teaching SCM in the Higher Education System: Performance Evaluation of Teaching Management publication-title: Inf. Resour. Manag. J. doi: 10.4018/IRMJ.304454 – volume: 89 start-page: 890 year: 2013 ident: ref_13 article-title: Assessing Students’ Learning Ability in A Postgraduate Statistical Course: A Rasch Analysis publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2013.08.951 – volume: 416 start-page: 135133 year: 2024 ident: ref_36 article-title: Splitting tensile strength of basalt fiber reinforced coral aggregate concrete: Optimized XGBoost models and experimental validation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.135133 – ident: ref_25 doi: 10.2991/iceemr-18.2018.172 – ident: ref_6 – volume: 12 start-page: 181 year: 2001 ident: ref_32 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.914517 – volume: 26 start-page: 208 year: 2015 ident: ref_33 article-title: Kernel Association for Classification and Prediction: A Survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2333664 – ident: ref_4 – ident: ref_19 doi: 10.1109/TALE.2017.8252342 – ident: ref_12 doi: 10.3390/su15118924 – volume: 56 start-page: 10867 year: 2023 ident: ref_28 article-title: Review and empirical analysis of sparrow search algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10435-1 – ident: ref_3 doi: 10.1109/UYMS50627.2020.9247066 – ident: ref_27 doi: 10.1007/s10479-022-04575-w – volume: 24 start-page: 1939 year: 2023 ident: ref_21 article-title: Investigating the effects of ensemble and weight optimization approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete publication-title: Road Mater. Pavement Des. doi: 10.1080/14680629.2022.2112061 – ident: ref_34 doi: 10.3390/buildings14030591 – volume: 54 start-page: 22 year: 2017 ident: ref_11 article-title: Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related publication-title: Stud. Educ. Eval. doi: 10.1016/j.stueduc.2016.08.007 – ident: ref_9 doi: 10.3390/app13053121 – volume: 46 start-page: 4355 year: 2022 ident: ref_22 article-title: Development of a new stacking model to evaluate the strength parameters of concrete samples in laboratory publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng. doi: 10.1007/s40996-022-00912-y – ident: ref_35 doi: 10.3390/buildings14030615 – volume: 26 start-page: 3918 year: 2022 ident: ref_15 article-title: The use of GA and PSO in evaluating the shear strength of steel fiber reinforced concrete beams publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-022-0961-0 – volume: 11 start-page: 1942 year: 2022 ident: ref_14 article-title: Adaptive Neuro-Fuzzy Inference System (ANFIS) Formulation to Predict Students’ Neuroscience Mechanistic: A Concept of an Intelligent Model to Enhance Mathematics Learning Ability publication-title: TEM J.-Technol. Educ. Manag. Inform. – volume: 9 start-page: e20597 year: 2023 ident: ref_8 article-title: Predicting open education competency level: A machine learning approach publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e20597 – ident: ref_26 doi: 10.1080/10447318.2023.2209986 – ident: ref_30 doi: 10.3390/s21041224 |
SSID | ssj0000913810 |
Score | 2.2994232 |
Snippet | By analyzing students’ understanding of a certain subject’s knowledge and learning process, and evaluating their learning level, we can formulate students’... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5020 |
SubjectTerms | Algorithms Artificial intelligence Data mining Datasets Education Machine learning Online instruction sparrow search algorithm student knowledge Students |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxRBEK4gXPRABDQugqkDiWIycWa75-XFDLJko1lCEBJunX7iwezi7nrgL_irrZrpHfYgXKc7mZmud3XVVwBH3oUsBC0TYqCQkP-fJXXth4nhaZBBG4qcuXd4cl6Mr-W3m_wmJtwWsaxypRNbRe1mlnPkn4gXifXIPxFf7n4nPDWKb1fjCI1nsEUquKLga-tkdH5x2WdZGPWyytKuMU9QfM_3wpkkq57yhO81U9Qi9j-ml1tjc_YStqOXiE1H1h3Y8NNdeLGGHbgLO1EqF_ghQkcf78Hfq7YKFjWynM_9z648HUc9pjfOAv7o8Czx-yqfhk2Pz4nkxPJ7sa_8-IwNju-5sQubCECO5h5P9VLjpB0vgXrqcNJWZXqMgK23r-D6bHT1dZzEaQuJlalYJqEsyd6bTKe5Zceh0LIcVj7IkBsS1EJIm0qX5xTRirIKdIRk14rcOeOC116K17A5nU39G0CRDTNpC-EccUGgVYawqHRZmiwPXpgBfFwdvLIRipwnYvxSFJIwldQalQZw1G--6xA4_r_thCnYb2HY7PbBbH6rohQqKVNPnFiJShdc31rrKgR6UAtrTGrDAN4z_RULN32Q1bFHgX6LYbJUU9YUrzK-zQAOViyiotQv1AOP7j-9_BaeD8k56krODmBzOf_jD8m5WZp3kYP_ASWD-YQ priority: 102 providerName: ProQuest |
Title | Toward a Comprehensive Evaluation of Student Knowledge Assessment for Art Education: A Hybrid Approach by Data Mining and Machine Learning |
URI | https://www.proquest.com/docview/3072251613 https://doaj.org/article/440e9e2838a641059a8ff9e293cbb0cf |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LT-MwEIBHLFzYAwJ20ZZHNQekXVaKSGrnxS1AS8WqCPGQuFl2YsMBFQTlwF_gVzOTuFEOoL1wTV3V9bzb8TcAu7ZykXNaBqRALqD8Pwry3A4Cw9MgnTZUOfPd4clZMr6WpzfxTWfUF_eENXjg5uD2pQwtvTkTmU64JTHXmXP0IBelMWHp2PtSzOsUU7UPziNGVzUX8gTV9fx_cCQpmoc82bsTgmpS_2f-uA4yo1VY8dkhFs2u1mDBTtfhe4cZuA5r3hqf8Y9HRu_9gLeruvsVNbJ9P9m7pi0dhy3LGx8cXjYcS_w3_x0Ni5bLiZS88udi2_FxgAWOX_lCFxYePI7mFY_1TOOkHiuBelrhpO7GtOhBrbc_4Xo0vDoaB37KQlDKUMwCl6YU502kw7jkhCHRMh1k1kkXGzLQRMgylFUcUyUr0szREVI8S-KqMpWz2kqxAYvTh6n9BSiiQSTLRFQVSd_Rq4yuyHSamih2Vpge_J0fvCo9gpwnYdwrKkVYSqojpR7stosfG_LGx8sOWYLtEsZl1w9IiZRXIvU_JerBb5a_YqOmDZXa302gr8V4LFWkOdWpzLXpwfZcRZS39mdFfpLcIuXOYvMrdrMFywNKnZqGtG1YnD292B1KfWamD9-y0Ukflg6HZ-cX_Vrn3wHEKANw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCwXmUMRDikhi54WEUKBdtmy3F7ZSb66d2OWAdsvuIrR_gR_Db2QmccIegFuvsZXXfJ6HPfMNwL6tXeSclgEByAXk_0dBUdg4MNwN0mlDkTPXDk9O0tGp_HSWnG3Br64WhtMqO53YKOp6XvEe-WvCIkGP_BPx7vJbwF2j-HS1a6HRwmJs1z8oZFu-PTog-T6L4-Hh9MMo8F0FgkqGYhW4LCO7ZiIdJhUbyFTLLM6tky4xBMhUyCqUdZJQ5Cay3JEDQPo7Tera1M5qKwXd9xpcl0IUvKLy4cd-T4c5NvMobMsAaTzkU-hI0i1C7ie-Yfia_gD_sgKNaRvegdveJ8WyBdEObNnZLtzaYCrchR2vA5b4whNVv7wLP6dNzi1qZK2ysF_aZHg87BnEce7wc8ueieNu9w7Lng0UyWXm52KfZ_IGSxytuYwMS093jmaNB3qlcdI0s0A9q3HS5IBa9PSwF_fg9EqkcB-2Z_OZfQAoojiSVSrqmjDnaJQJM3KdZSZKnBVmAK-6H68qT3zO_Te-KgqAWEpqQ0oD2O8nX7Z8H3-f9p4l2E9hku7mwnxxofyaV1KGlnCfi1ynnE1b6Nw5ulCIypiwcgN4zvJXrErohSrtKyLos5iUS5VZQdExs-kMYK-DiPI6Zqn-rIiH_x9-CjdG08mxOj46GT-CmzG5ZW2y2x5srxbf7WNyq1bmSYNlhPOrXjy_AVF1M0c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSACBSYQxEPyartXb-QEEpJopSQqIJW6s3dtXfbQ5WUJAjlL_CT-HXM2GuTA3DrdXfl13w7j_XMNwD7prSBtUp6BCDrkf8feFlmQk9zN0irNEXOXDs8mcajU_npLDrbgl9NLQynVTY6sVLU5bzgM_IDwiJBj_wTcWBdWsRxf_jh-pvHHaT4T2vTTqOGyNisf1D4tnx_1CdZvwzD4eDk48hzHQa8Qvpi5dkkIRunA-VHBRvLWMkkTI2VNtIEzljIwpdlFFEUJ5LUkjNAujyOylKX1igjBV33FmwnFBX5Hdg-HEyPv7QnPMy4mQZ-XRQoRObzP-lA0kV87i6-YQarbgH_sgmVoRveh3vOQ8VeDakd2DKzXbi7wVu4CztOIyzxtaOtfvMAfp5UGbiokHXMwlzWqfE4aPnEcW7xa82liePmLA97LTcokgPN98U26-Qd9nC05qIy7Dnyc9Rr7KuVwknV2gLVrMRJlRFq0JHFXjyE0xuRwyPozOYz8xhQBGEgi1iUJSHQ0izTZ6QqSXQQWSN0F942Hz4vHA06d-O4yikcYinlG1Lqwn67-Lpm__j7skOWYLuEKburgfniIncaIJfSN7QLUpGqmHNrM5VaSwOZKLT2C9uFVyz_nBULPVChXH0EvRZTdOW9JKNYmbl1urDXQCR3GmeZ_9kfT_4__QJu08bJPx9Nx0_hTkg-Wp35tged1eK7eUY-1ko_d2BGOL_p_fMbyPs42Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+Comprehensive+Evaluation+of+Student+Knowledge+Assessment+for+Art+Education%3A+A+Hybrid+Approach+by+Data+Mining+and+Machine+Learning&rft.jtitle=Applied+sciences&rft.au=Shan+Wang&rft.au=Hongtao+Wang&rft.au=Yijun+Lu&rft.au=Jiandong+Huang&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=12&rft.spage=5020&rft_id=info:doi/10.3390%2Fapp14125020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_440e9e2838a641059a8ff9e293cbb0cf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |