Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging

Despite the growing research interest in highly bio-compatible carbon quantum dots (CQDs) for bioimaging, the synthesis of red-emitting CQDs with high photoluminescence efficiency and a sharp emission spectrum remains a formidable challenge in this field. Herein, we established a rational strategy f...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 3; pp. 1589 - 161
Main Authors Liu, Yanfeng, Gou, Huilin, Huang, Xin, Zhang, Guiyang, Xi, Kai, Jia, Xudong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 23.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the growing research interest in highly bio-compatible carbon quantum dots (CQDs) for bioimaging, the synthesis of red-emitting CQDs with high photoluminescence efficiency and a sharp emission spectrum remains a formidable challenge in this field. Herein, we established a rational strategy for the synthesis of highly efficient ultra-narrow red-emitting CQDs by adopting a conjugated aromatic amine precursor (tris(4-aminophenyl)amine, TAPA) and introducing oxidative radical reagents. The resultant CQDs, T-CQDs featured red PL (615 ± 2 nm) with a high photoluminescence quantum yield (84 ± 5%) and a narrow emission linewidth (FWHM = 27 ± 1 nm), which together represented one of the highest levels in the field of CQDs so far. The T-CQDs were then further analyzed from the spectral and structural aspects, and the repeatability and universality of this strategy have also been discussed. Finally, the T-CQDs were successfully applied for both one-photon imaging and two-photon imaging with various bio-samples, both in vitro and in vivo . Ultra-narrow red-emitting carbon quantum dots with a high PLQY are rationally synthesized for NIR-II triggered two-photon bioimaging.
AbstractList Despite the growing research interest in highly bio-compatible carbon quantum dots (CQDs) for bioimaging, the synthesis of red-emitting CQDs with high photoluminescence efficiency and a sharp emission spectrum remains a formidable challenge in this field. Herein, we established a rational strategy for the synthesis of highly efficient ultra-narrow red-emitting CQDs by adopting a conjugated aromatic amine precursor (tris(4-aminophenyl)amine, TAPA) and introducing oxidative radical reagents. The resultant CQDs, T-CQDs featured red PL (615 ± 2 nm) with a high photoluminescence quantum yield (84 ± 5%) and a narrow emission linewidth (FWHM = 27 ± 1 nm), which together represented one of the highest levels in the field of CQDs so far. The T-CQDs were then further analyzed from the spectral and structural aspects, and the repeatability and universality of this strategy have also been discussed. Finally, the T-CQDs were successfully applied for both one-photon imaging and two-photon imaging with various bio-samples, both in vitro and in vivo.
Despite the growing research interest in highly bio-compatible carbon quantum dots (CQDs) for bioimaging, the synthesis of red-emitting CQDs with high photoluminescence efficiency and a sharp emission spectrum remains a formidable challenge in this field. Herein, we established a rational strategy for the synthesis of highly efficient ultra-narrow red-emitting CQDs by adopting a conjugated aromatic amine precursor (tris(4-aminophenyl)amine, TAPA) and introducing oxidative radical reagents. The resultant CQDs, T-CQDs featured red PL (615 ± 2 nm) with a high photoluminescence quantum yield (84 ± 5%) and a narrow emission linewidth (FWHM = 27 ± 1 nm), which together represented one of the highest levels in the field of CQDs so far. The T-CQDs were then further analyzed from the spectral and structural aspects, and the repeatability and universality of this strategy have also been discussed. Finally, the T-CQDs were successfully applied for both one-photon imaging and two-photon imaging with various bio-samples, both in vitro and in vivo . Ultra-narrow red-emitting carbon quantum dots with a high PLQY are rationally synthesized for NIR-II triggered two-photon bioimaging.
Despite the growing research interest in highly bio-compatible carbon quantum dots (CQDs) for bioimaging, the synthesis of red-emitting CQDs with high photoluminescence efficiency and a sharp emission spectrum remains a formidable challenge in this field. Herein, we established a rational strategy for the synthesis of highly efficient ultra-narrow red-emitting CQDs by adopting a conjugated aromatic amine precursor (tris(4-aminophenyl)amine, TAPA) and introducing oxidative radical reagents. The resultant CQDs, T-CQDs featured red PL (615 ± 2 nm) with a high photoluminescence quantum yield (84 ± 5%) and a narrow emission linewidth (FWHM = 27 ± 1 nm), which together represented one of the highest levels in the field of CQDs so far. The T-CQDs were then further analyzed from the spectral and structural aspects, and the repeatability and universality of this strategy have also been discussed. Finally, the T-CQDs were successfully applied for both one-photon imaging and two-photon imaging with various bio-samples, both in vitro and in vivo.Despite the growing research interest in highly bio-compatible carbon quantum dots (CQDs) for bioimaging, the synthesis of red-emitting CQDs with high photoluminescence efficiency and a sharp emission spectrum remains a formidable challenge in this field. Herein, we established a rational strategy for the synthesis of highly efficient ultra-narrow red-emitting CQDs by adopting a conjugated aromatic amine precursor (tris(4-aminophenyl)amine, TAPA) and introducing oxidative radical reagents. The resultant CQDs, T-CQDs featured red PL (615 ± 2 nm) with a high photoluminescence quantum yield (84 ± 5%) and a narrow emission linewidth (FWHM = 27 ± 1 nm), which together represented one of the highest levels in the field of CQDs so far. The T-CQDs were then further analyzed from the spectral and structural aspects, and the repeatability and universality of this strategy have also been discussed. Finally, the T-CQDs were successfully applied for both one-photon imaging and two-photon imaging with various bio-samples, both in vitro and in vivo.
Despite the growing research interest in highly bio-compatible carbon quantum dots (CQDs) for bioimaging, the synthesis of red-emitting CQDs with high photoluminescence efficiency and a sharp emission spectrum remains a formidable challenge in this field. Herein, we established a rational strategy for the synthesis of highly efficient ultra-narrow red-emitting CQDs by adopting a conjugated aromatic amine precursor (tris(4-aminophenyl)amine, TAPA) and introducing oxidative radical reagents. The resultant CQDs, T-CQDs featured red PL (615 ± 2 nm) with a high photoluminescence quantum yield (84 ± 5%) and a narrow emission linewidth (FWHM = 27 ± 1 nm), which together represented one of the highest levels in the field of CQDs so far. The T-CQDs were then further analyzed from the spectral and structural aspects, and the repeatability and universality of this strategy have also been discussed. Finally, the T-CQDs were successfully applied for both one-photon imaging and two-photon imaging with various bio-samples, both in vitro and in vivo .
Author Liu, Yanfeng
Gou, Huilin
Huang, Xin
Jia, Xudong
Zhang, Guiyang
Xi, Kai
AuthorAffiliation School of Chemistry & Chemical Engineering
State Key Laboratory of Coordination Chemistry. Nanjing National Laboratory of Microstructures
Nanjing University
China
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Coordination Chemistry. Nanjing National Laboratory of Microstructures
– sequence: 0
  name: China
– sequence: 0
  name: School of Chemistry & Chemical Engineering
– sequence: 0
  name: Nanjing University
Author_xml – sequence: 1
  givenname: Yanfeng
  surname: Liu
  fullname: Liu, Yanfeng
– sequence: 2
  givenname: Huilin
  surname: Gou
  fullname: Gou, Huilin
– sequence: 3
  givenname: Xin
  surname: Huang
  fullname: Huang, Xin
– sequence: 4
  givenname: Guiyang
  surname: Zhang
  fullname: Zhang, Guiyang
– sequence: 5
  givenname: Kai
  surname: Xi
  fullname: Xi, Kai
– sequence: 6
  givenname: Xudong
  surname: Jia
  fullname: Jia, Xudong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31859306$$D View this record in MEDLINE/PubMed
BookMark eNpt0s1LIzEYBvAgyvqxe_G-S8CLCOMm86bJ5ChlVwuiUNzzkGaSNjKT1CSD9L83WreCeEoOv_eFPE-O0b4P3iB0SsklJSB_a-kjkZOaqT10VBNGKgBR7-_unB2i45QeCeESOHxDh0CbiQTCj9A4V9kFr3qcNj6vTHIJB4tXbrnqN9hY67QzPuOxz1FVXsUYnnE0XWUGl7PzS6xVXASPn0bl8zjgLuSEbYj4bjavZjOcn0O1XoVcyMIFN6hlGfqODqzqk_nxfp6gf3__PExvqtv769n06rbSjECuLLOi0ZyJTlDGiZRKAG8siIZyIriVSja2ASWpILVqFFsIWSsJFDrLOyHgBJ1v965jeBpNyu3gkjZ9r7wJY2prqKUAMSGTQs8-0ccwxhLMq2LAGgqUF_XrXY2LwXTtOpYXxU37P9ACLrZAx5BSNHZHKGlf22qn8m7-1tZVweQT1i6_9VHCdv3XIz-3IzHp3eqPDwAv1oefxA
CitedBy_id crossref_primary_10_1021_acs_accounts_2c00533
crossref_primary_10_1016_j_cclet_2021_06_020
crossref_primary_10_1016_j_jclepro_2020_124319
crossref_primary_10_1002_smll_202304066
crossref_primary_10_1016_j_chempr_2023_09_020
crossref_primary_10_1016_j_carbon_2024_118838
crossref_primary_10_1016_j_microc_2024_111749
crossref_primary_10_1021_acs_langmuir_4c02413
crossref_primary_10_1039_D3NA00447C
crossref_primary_10_2139_ssrn_4052473
crossref_primary_10_1016_j_carbpol_2022_119429
crossref_primary_10_1039_D4CE00663A
crossref_primary_10_1007_s12274_022_4829_x
crossref_primary_10_1016_j_isci_2021_102189
crossref_primary_10_1038_s41377_022_00778_9
crossref_primary_10_3390_nano13101635
crossref_primary_10_3390_electronics13224481
crossref_primary_10_1016_j_dyepig_2020_108849
crossref_primary_10_1021_acsami_1c13943
crossref_primary_10_1002_adfm_202420587
crossref_primary_10_1016_j_dyepig_2025_112659
crossref_primary_10_3390_nano11082089
crossref_primary_10_1088_1402_4896_ad8707
crossref_primary_10_1002_adhm_202401513
crossref_primary_10_1016_j_cej_2022_139231
crossref_primary_10_1007_s40034_020_00188_9
crossref_primary_10_1016_j_jcis_2021_07_004
crossref_primary_10_1039_D0TC02597F
crossref_primary_10_1002_smll_202206180
crossref_primary_10_1021_acsanm_1c01960
crossref_primary_10_1007_s12274_022_4836_y
crossref_primary_10_1016_j_jhazmat_2021_125091
crossref_primary_10_1039_D2TC02044K
crossref_primary_10_1016_j_dyepig_2023_111201
crossref_primary_10_1016_j_actbio_2023_05_049
crossref_primary_10_1002_ppsc_202100170
crossref_primary_10_2147_IJN_S298606
crossref_primary_10_1039_D1TC04271H
crossref_primary_10_1039_D3TC00419H
crossref_primary_10_1007_s00894_021_04758_5
crossref_primary_10_1016_j_cej_2022_136928
crossref_primary_10_1016_j_materresbull_2022_112092
crossref_primary_10_1002_asia_202200046
crossref_primary_10_1016_j_jlumin_2020_117850
crossref_primary_10_1016_j_matt_2021_10_016
crossref_primary_10_1016_j_aca_2022_339478
crossref_primary_10_1002_jccs_202200538
crossref_primary_10_1016_j_mtcomm_2020_101762
crossref_primary_10_1039_D0NR00272K
crossref_primary_10_1039_D4TC00983E
crossref_primary_10_1002_admt_202301324
crossref_primary_10_1021_acssuschemeng_2c06892
crossref_primary_10_1039_D3NA00469D
crossref_primary_10_1002_adma_202208864
crossref_primary_10_2139_ssrn_4188577
crossref_primary_10_1002_cey2_175
crossref_primary_10_1016_j_microc_2022_108123
crossref_primary_10_1016_j_apmt_2021_101331
crossref_primary_10_1021_jacsau_1c00055
crossref_primary_10_1039_D3TB01378B
crossref_primary_10_1016_j_arabjc_2023_104576
crossref_primary_10_1021_acs_jpclett_1c02116
crossref_primary_10_1039_D1BM01184G
crossref_primary_10_1039_D2NR04642C
crossref_primary_10_1038_s41377_022_00798_5
crossref_primary_10_1016_j_talanta_2022_123461
crossref_primary_10_1002_adom_202100283
crossref_primary_10_1039_D1CC01129D
crossref_primary_10_1039_D0TB01881C
crossref_primary_10_1016_j_carbon_2020_06_024
crossref_primary_10_1039_D1NJ01655E
crossref_primary_10_1016_j_jiec_2023_05_035
crossref_primary_10_1002_chem_202302383
crossref_primary_10_1016_j_mseb_2023_116540
crossref_primary_10_1039_D4TA03218G
crossref_primary_10_1016_j_jlumin_2022_118811
crossref_primary_10_1016_j_apsusc_2025_163019
crossref_primary_10_1016_j_mtsust_2022_100137
crossref_primary_10_29026_oea_2023_220105
crossref_primary_10_1002_advs_202001977
crossref_primary_10_1039_D1TC05782K
crossref_primary_10_1021_acsanm_4c01194
crossref_primary_10_1039_D2AY01182D
crossref_primary_10_1002_smll_202102272
crossref_primary_10_1002_adma_202201031
crossref_primary_10_1021_acsabm_1c00121
crossref_primary_10_1016_j_microc_2024_111667
crossref_primary_10_1002_ppsc_202100076
crossref_primary_10_1016_j_seppur_2024_126893
crossref_primary_10_2139_ssrn_4181115
crossref_primary_10_1021_acsabm_1c00404
crossref_primary_10_1021_acs_analchem_0c03912
crossref_primary_10_3389_fchem_2020_580033
Cites_doi 10.1038/ncomms5596
10.1002/smll.201800612
10.1002/adma.201202599
10.1002/adma.201704740
10.1002/adma.201702910
10.1002/adma.201705913
10.1016/j.carbon.2016.09.038
10.1038/nprot.2008.226
10.1039/B404828H
10.1126/science.2321027
10.1002/adma.201503821
10.1007/s12274-019-2420-x
10.1039/C4RA07467J
10.1364/OE.23.023680
10.1016/j.bbrc.2004.06.045
10.1039/C6CC06673A
10.1002/anie.201501193
10.1002/adma.201604436
10.1039/C5NH00073D
10.1038/s41467-018-04635-5
10.1021/acs.chemmater.7b05178
10.1039/b209651j
10.1016/S0006-291X(03)00211-0
10.1021/acsnano.8b02452
10.1289/ehp.8284
10.1002/adma.201405070
10.1007/s12274-019-2293-z
10.1039/C4NR01970A
10.1038/nbt1340
10.1039/C8NR08208A
10.1016/j.carbon.2017.10.041
10.1021/acsami.8b02379
10.1021/ja074481z
10.1021/acs.nanolett.5b03915
10.1021/acs.langmuir.7b02385
10.1039/C8QM00151K
10.1002/adma.200902825
10.1039/C8NR00381E
10.1016/1010-6030(94)01050-1
10.1039/C4CS00269E
10.1016/j.apsusc.2011.05.131
10.1002/anie.200701271
10.1021/ja073527l
10.1002/anie.201204381
10.1038/ncomms2635
10.1021/acsnano.7b06399
10.1021/cm403518a
10.1016/j.carbon.2013.04.055
10.1039/C9NR03448J
10.1021/ja062677d
10.1039/c3tb00018d
10.1016/j.carbon.2011.03.041
10.1039/C6NR05878G
10.1021/acsami.7b16991
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/c9nr09524a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 161
ExternalDocumentID 31859306
10_1039_C9NR09524A
c9nr09524a
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c403t-f4f78c647d7146099a7368f37816076f9a98f83a91702a8a4b792a9313df6d773
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 04:02:37 EDT 2025
Sun Jun 29 16:39:30 EDT 2025
Wed Feb 19 02:31:24 EST 2025
Tue Jul 01 01:13:49 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Tue Dec 17 20:58:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-f4f78c647d7146099a7368f37816076f9a98f83a91702a8a4b792a9313df6d773
Notes 10.1039/c9nr09524a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8770-5956
PMID 31859306
PQID 2343481316
PQPubID 2047485
PageCount 13
ParticipantIDs proquest_miscellaneous_2329737505
proquest_journals_2343481316
rsc_primary_c9nr09524a
pubmed_primary_31859306
crossref_primary_10_1039_C9NR09524A
crossref_citationtrail_10_1039_C9NR09524A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200123
PublicationDateYYYYMMDD 2020-01-23
PublicationDate_xml – month: 1
  year: 2020
  text: 20200123
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Friedrich (C9NR09524A-(cit57)/*[position()=1]) 2009; 4
Sun (C9NR09524A-(cit5)/*[position()=1]) 2006; 128
Lu (C9NR09524A-(cit21)/*[position()=1]) 2017; 29
Yuan (C9NR09524A-(cit44)/*[position()=1]) 2018; 10
Kolega (C9NR09524A-(cit14)/*[position()=1]) 2004; 320
Różalska (C9NR09524A-(cit56)/*[position()=1]) 2004; 28
Pan (C9NR09524A-(cit37)/*[position()=1]) 2016; 8
Cirillo (C9NR09524A-(cit36)/*[position()=1]) 2014; 26
Holá (C9NR09524A-(cit40)/*[position()=1]) 2017; 11
Han (C9NR09524A-(cit33)/*[position()=1]) 2019; 11
Lim (C9NR09524A-(cit7)/*[position()=1]) 2015; 44
Bao (C9NR09524A-(cit17)/*[position()=1]) 2015; 27
Gao (C9NR09524A-(cit42)/*[position()=1]) 2018; 10
Wang (C9NR09524A-(cit8)/*[position()=1]) 2012; 51
Zhang (C9NR09524A-(cit46)/*[position()=1]) 2019; 12
Hu (C9NR09524A-(cit51)/*[position()=1]) 2017; 111
Wang (C9NR09524A-(cit41)/*[position()=1]) 2018; 126
Khan (C9NR09524A-(cit48)/*[position()=1]) 2015; 15
Xia (C9NR09524A-(cit32)/*[position()=1]) 2018; 10
Yang (C9NR09524A-(cit27)/*[position()=1]) 2016; 52
Leménager (C9NR09524A-(cit53)/*[position()=1]) 2014; 6
Taroni (C9NR09524A-(cit13)/*[position()=1]) 2003; 2
Qi (C9NR09524A-(cit24)/*[position()=1]) 2018; 12
Miao (C9NR09524A-(cit38)/*[position()=1]) 2018; 30
Li (C9NR09524A-(cit25)/*[position()=1]) 2018; 2
Liu (C9NR09524A-(cit9)/*[position()=1]) 2007; 46
Kovalenko (C9NR09524A-(cit35)/*[position()=1]) 2007; 129
Kong (C9NR09524A-(cit22)/*[position()=1]) 2012; 24
Herbich (C9NR09524A-(cit50)/*[position()=1]) 1994; 80
Cao (C9NR09524A-(cit19)/*[position()=1]) 2007; 129
Hemmer (C9NR09524A-(cit23)/*[position()=1]) 2016; 1
Zhu (C9NR09524A-(cit1)/*[position()=1]) 2015; 23
Wang (C9NR09524A-(cit11)/*[position()=1]) 2011; 49
Liu (C9NR09524A-(cit31)/*[position()=1]) 2018; 10
Hanaki (C9NR09524A-(cit54)/*[position()=1]) 2003; 302
Liang (C9NR09524A-(cit12)/*[position()=1]) 2013; 60
Hardman (C9NR09524A-(cit4)/*[position()=1]) 2006; 114
Yuan (C9NR09524A-(cit30)/*[position()=1]) 2017; 29
Sciortino (C9NR09524A-(cit49)/*[position()=1]) 2018; 30
Denk (C9NR09524A-(cit18)/*[position()=1]) 1990; 248
Zrazhevskiy (C9NR09524A-(cit2)/*[position()=1]) 2013; 4
Qi (C9NR09524A-(cit55)/*[position()=1]) 2018; 12
Ding (C9NR09524A-(cit16)/*[position()=1]) 2017; 33
Pan (C9NR09524A-(cit10)/*[position()=1]) 2010; 22
Ge (C9NR09524A-(cit15)/*[position()=1]) 2014; 5
Pan (C9NR09524A-(cit47)/*[position()=1]) 2015; 27
Luo (C9NR09524A-(cit6)/*[position()=1]) 2013; 1
Jiang (C9NR09524A-(cit34)/*[position()=1]) 2015; 54
Choi (C9NR09524A-(cit3)/*[position()=1]) 2007; 25
Ding (C9NR09524A-(cit45)/*[position()=1]) 2018; 14
Yuan (C9NR09524A-(cit29)/*[position()=1]) 2019; 12
Wang (C9NR09524A-(cit20)/*[position()=1]) 2014; 4
Geng (C9NR09524A-(cit52)/*[position()=1]) 2011; 257
Yuan (C9NR09524A-(cit28)/*[position()=1]) 2018; 9
Liu (C9NR09524A-(cit43)/*[position()=1]) 2018; 14
Li (C9NR09524A-(cit26)/*[position()=1]) 2018; 30
Wang (C9NR09524A-(cit39)/*[position()=1]) 2017; 29
References_xml – volume: 14
  start-page: 1
  year: 2018
  ident: C9NR09524A-(cit43)/*[position()=1]
  publication-title: Small
– volume: 5
  start-page: 4596
  year: 2014
  ident: C9NR09524A-(cit15)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5596
– volume: 14
  start-page: 1800612
  year: 2018
  ident: C9NR09524A-(cit45)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201800612
– volume: 24
  start-page: 5844
  year: 2012
  ident: C9NR09524A-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202599
– volume: 30
  start-page: 1704740
  year: 2018
  ident: C9NR09524A-(cit38)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704740
– volume: 29
  start-page: 1702910
  year: 2017
  ident: C9NR09524A-(cit39)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702910
– volume: 30
  start-page: 1705913
  year: 2018
  ident: C9NR09524A-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705913
– volume: 111
  start-page: 133
  year: 2017
  ident: C9NR09524A-(cit51)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.09.038
– volume: 4
  start-page: 309
  year: 2009
  ident: C9NR09524A-(cit57)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.226
– volume: 28
  start-page: 1235
  year: 2004
  ident: C9NR09524A-(cit56)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/B404828H
– volume: 248
  start-page: 73
  year: 1990
  ident: C9NR09524A-(cit18)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.2321027
– volume: 27
  start-page: 7782
  year: 2015
  ident: C9NR09524A-(cit47)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503821
– volume: 12
  start-page: 1669
  year: 2019
  ident: C9NR09524A-(cit29)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2420-x
– volume: 4
  start-page: 49960
  year: 2014
  ident: C9NR09524A-(cit20)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA07467J
– volume: 23
  start-page: 23680
  year: 2015
  ident: C9NR09524A-(cit1)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.23.023680
– volume: 320
  start-page: 1020
  year: 2004
  ident: C9NR09524A-(cit14)/*[position()=1]
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.06.045
– volume: 52
  start-page: 11912
  year: 2016
  ident: C9NR09524A-(cit27)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06673A
– volume: 54
  start-page: 5360
  year: 2015
  ident: C9NR09524A-(cit34)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501193
– volume: 29
  start-page: 1604436
  year: 2017
  ident: C9NR09524A-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604436
– volume: 1
  start-page: 168
  year: 2016
  ident: C9NR09524A-(cit23)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C5NH00073D
– volume: 9
  start-page: 2249
  year: 2018
  ident: C9NR09524A-(cit28)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04635-5
– volume: 30
  start-page: 1695
  year: 2018
  ident: C9NR09524A-(cit49)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b05178
– volume: 2
  start-page: 124
  year: 2003
  ident: C9NR09524A-(cit13)/*[position()=1]
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b209651j
– volume: 302
  start-page: 496
  year: 2003
  ident: C9NR09524A-(cit54)/*[position()=1]
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(03)00211-0
– volume: 12
  start-page: 7936
  year: 2018
  ident: C9NR09524A-(cit55)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02452
– volume: 114
  start-page: 165
  year: 2006
  ident: C9NR09524A-(cit4)/*[position()=1]
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.8284
– volume: 27
  start-page: 1663
  year: 2015
  ident: C9NR09524A-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405070
– volume: 12
  start-page: 815
  year: 2019
  ident: C9NR09524A-(cit46)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2293-z
– volume: 6
  start-page: 8617
  year: 2014
  ident: C9NR09524A-(cit53)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR01970A
– volume: 25
  start-page: 1165
  year: 2007
  ident: C9NR09524A-(cit3)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1340
– volume: 10
  start-page: 22484
  year: 2018
  ident: C9NR09524A-(cit32)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR08208A
– volume: 126
  start-page: 426
  year: 2018
  ident: C9NR09524A-(cit41)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.10.041
– volume: 10
  start-page: 16005
  year: 2018
  ident: C9NR09524A-(cit44)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02379
– volume: 29
  start-page: 1
  year: 2017
  ident: C9NR09524A-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 129
  start-page: 11354
  year: 2007
  ident: C9NR09524A-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074481z
– volume: 15
  start-page: 8300
  year: 2015
  ident: C9NR09524A-(cit48)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03915
– volume: 33
  start-page: 12635
  year: 2017
  ident: C9NR09524A-(cit16)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02385
– volume: 2
  start-page: 1343
  year: 2018
  ident: C9NR09524A-(cit25)/*[position()=1]
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00151K
– volume: 22
  start-page: 734
  year: 2010
  ident: C9NR09524A-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902825
– volume: 10
  start-page: 6660
  year: 2018
  ident: C9NR09524A-(cit31)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR00381E
– volume: 80
  start-page: 157
  year: 1994
  ident: C9NR09524A-(cit50)/*[position()=1]
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/1010-6030(94)01050-1
– volume: 44
  start-page: 362
  year: 2015
  ident: C9NR09524A-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00269E
– volume: 257
  start-page: 9193
  year: 2011
  ident: C9NR09524A-(cit52)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.05.131
– volume: 46
  start-page: 6473
  year: 2007
  ident: C9NR09524A-(cit9)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701271
– volume: 129
  start-page: 11318
  year: 2007
  ident: C9NR09524A-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073527l
– volume: 51
  start-page: 9297
  year: 2012
  ident: C9NR09524A-(cit8)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204381
– volume: 4
  start-page: 1612
  year: 2013
  ident: C9NR09524A-(cit2)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2635
– volume: 11
  start-page: 12402
  year: 2017
  ident: C9NR09524A-(cit40)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06399
– volume: 12
  start-page: 7936
  year: 2018
  ident: C9NR09524A-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02452
– volume: 26
  start-page: 1154
  year: 2014
  ident: C9NR09524A-(cit36)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm403518a
– volume: 60
  start-page: 421
  year: 2013
  ident: C9NR09524A-(cit12)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.04.055
– volume: 11
  start-page: 11577
  year: 2019
  ident: C9NR09524A-(cit33)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR03448J
– volume: 128
  start-page: 7756
  year: 2006
  ident: C9NR09524A-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062677d
– volume: 1
  start-page: 2116
  year: 2013
  ident: C9NR09524A-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb00018d
– volume: 49
  start-page: 3134
  year: 2011
  ident: C9NR09524A-(cit11)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.03.041
– volume: 8
  start-page: 17350
  year: 2016
  ident: C9NR09524A-(cit37)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR05878G
– volume: 10
  start-page: 1147
  year: 2018
  ident: C9NR09524A-(cit42)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16991
SSID ssj0069363
Score 2.5795424
Snippet Despite the growing research interest in highly bio-compatible carbon quantum dots (CQDs) for bioimaging, the synthesis of red-emitting CQDs with high...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1589
SubjectTerms Carbon
Emission
Medical imaging
Photoluminescence
Photons
Quantum dots
Reagents
Synthesis
Title Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging
URI https://www.ncbi.nlm.nih.gov/pubmed/31859306
https://www.proquest.com/docview/2343481316
https://www.proquest.com/docview/2329737505
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgV0LLAfFaKCzICC6oypLEThwfywq25dFDtSv2VtmJIyK1SUkTofLrGTvOYx9IwCWqHCep8n2ZzDgz3yD0JkxkRCSNnSQOpEN57DpcZ-4QFTMaKi9IjVj113k4PaefLoKLK9UllTyOf91YV_I_qMIY4KqrZP8B2e6kMAC_AV_YAsKw_SuMF-1K3naXgyNntUW0AvFqpzM1MlPtOK5XVSmc3MgtjkuVOGqdNenOsSglwP-jhvtbr8cQoRp5hvF8tnBms3H1s3A23wutvCGzIlubjkZDdxZsc7EFlDt2fMlqY9RFnio71Yjvm9Fpna2yvCeSXaq-6Me65evTOtsJewK7JuHr1DanKRs-VsZ2-TpRkRB22dD6A0KRgdX0gqaN0DVz7hKthhrzvARP0KdiOAmg2KwNsLoAnBP3iqJ28462u26jfR_iCDCE-5PP70-_tS_rkJOQtKq1hL_rL3WA7rQHX3ZZrsUh4JWUbbcY45Wc3Uf3bDiBJw03HqBbKn-I7g5EJh-humUJ7liCixQ3LMEdS_CQJXjIEtywBFuWYM0SDCzBDUtwzxLcs-QxOv_44exk6thmG05MXVI5KU1ZFIeUJQxenhA3CEbCKCUs0hKEYcoFj9KICAjvXV9EgkrGfcGJR5I0TBgjh2gvL3L1FGEVSY_KJJBu4FIIZ4UnI54kkVSMUOEFI_S2vZ_L2CrR64Yoq6XJiCB8ecLnCwPDZIRed3M3jf7KjbOOWliW9vncLn1CdZU58cIRetXtBuupP4mJXBW1nqN7t4HXDH_qSQNnd5kW_hE6BHy74Z4iz_54yHN00D8WR2ivKmv1ApzXSr60BPwNdWebyg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+synthesis+of+highly+efficient+ultra-narrow+red-emitting+carbon+quantum+dots+for+NIR-II+two-photon+bioimaging&rft.jtitle=Nanoscale&rft.au=Liu%2C+Yanfeng&rft.au=Gou%2C+Huilin&rft.au=Huang%2C+Xin&rft.au=Zhang%2C+Guiyang&rft.date=2020-01-23&rft.eissn=2040-3372&rft.volume=12&rft.issue=3&rft.spage=1589&rft_id=info:doi/10.1039%2Fc9nr09524a&rft_id=info%3Apmid%2F31859306&rft.externalDocID=31859306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon