Roles of insect odorant binding proteins in communication and xenobiotic adaptation

Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are en...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in insect science Vol. 3; p. 1274197
Main Authors Abendroth, James A., Moural, Timothy W., Wei, Hongshuang, Zhu, Fang
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 06.10.2023
Subjects
Online AccessGet full text
ISSN2673-8600
2673-8600
DOI10.3389/finsc.2023.1274197

Cover

Abstract Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.
AbstractList Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.
Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.
Author Abendroth, James A.
Wei, Hongshuang
Zhu, Fang
Moural, Timothy W.
AuthorAffiliation 3 Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, PA , United States
2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
1 Department of Entomology, Pennsylvania State University , University Park, PA , United States
AuthorAffiliation_xml – name: 3 Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, PA , United States
– name: 2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
– name: 1 Department of Entomology, Pennsylvania State University , University Park, PA , United States
Author_xml – sequence: 1
  givenname: James A.
  surname: Abendroth
  fullname: Abendroth, James A.
– sequence: 2
  givenname: Timothy W.
  surname: Moural
  fullname: Moural, Timothy W.
– sequence: 3
  givenname: Hongshuang
  surname: Wei
  fullname: Wei, Hongshuang
– sequence: 4
  givenname: Fang
  surname: Zhu
  fullname: Zhu, Fang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38469469$$D View this record in MEDLINE/PubMed
BookMark eNp9UctKAzEUDVKx9fEDLiRLN615TTKzEim-oCD4WIckk9HITFInqejfG9taqgvhQi6cxw3n7IOBD94CcIzRhNKyOmucj2ZCEKETTATDldgBI8IFHZccocHWPgRHMb4ihEgpGGLFHhjSkvEqzwg83IfWRhgamP2sSTDUoVc-Qe187fwznPch2YxlHJrQdQvvjEoueKh8DT-sD9qF5AxUtZqnJXIIdhvVRnu0fg_A09Xl4_RmPLu7vp1ezMaGIZrGDSMGE4xwwYWhJeKClVpYihESgmpSMyO0aXRlKcFGF4XGChMrsKKc4wbRA3C-8p0vdGdrY33qVSvnvetU_ymDcvI34t2LfA7vEqOKcEaK7HC6dujD28LGJDsXjW1b5W1YREmqguOizHFl6sn2sc2VnygzgawIpg8x9rbZUDCS35XJZWXyuzK5riyLyj8i41Yh5g-79j_pF44bncQ
CitedBy_id crossref_primary_10_3390_ijms25179436
crossref_primary_10_1111_imb_12960
crossref_primary_10_1016_j_cois_2025_101340
crossref_primary_10_1016_j_coesh_2025_100601
crossref_primary_10_1186_s12864_025_11231_7
crossref_primary_10_1111_jen_13272
crossref_primary_10_3390_insects15120918
crossref_primary_10_3390_insects15100795
crossref_primary_10_3390_biom14091074
crossref_primary_10_1016_j_asd_2023_101326
Cites_doi 10.3390/insects12110955
10.1016/j.jmb.2008.04.048
10.1007/s00359-009-0461-4
10.3390/insects13121145
10.3390/insects5020399
10.1042/BJ20110522
10.3390/insects14020190
10.1016/j.ijbiomac.2022.04.100
10.1016/j.pestbp.2020.01.012
10.1111/j.1601-183X.2011.00704.x
10.1371/journal.pone.0153067
10.3389/fphys.2018.00422
10.1371/journal.pbio.0050118
10.1007/s13592-021-00854-w
10.1042/BJ20021877
10.1007/s00018-011-0745-z
10.1146/annurev-ento-120811-153635
10.1038/srep24739
10.1016/j.chembiol.2009.01.005
10.1038/s41598-018-20154-1
10.1016/j.jmb.2011.03.008
10.1038/ng1915
10.1186/s12864-014-1193-6
10.1016/j.tree.2007.02.010
10.1016/j.gene.2016.08.013
10.1093/chemse/bjh229
10.1016/j.jmb.2005.10.015
10.3389/fphys.2020.00819
10.3389/fphys.2021.619816
10.1016/0022-1910(88)90056-X
10.1046/j.1365-2583.2003.00440.x
10.7150/ijbs.12528
10.1016/j.ibmb.2009.03.004
10.1073/pnas.0706229104
10.1016/j.jinsphys.2018.10.004
10.1016/j.ijbiomac.2023.124939
10.1111/jen.12396
10.1016/j.cbd.2015.01.004
10.1017/S0007485316000560
10.1007/s10709-018-0020-4
10.1146/annurev.en.34.010189.002401
10.1073/pnas.0607874103
10.3390/biom11040509
10.1603/ec11109
10.1038/nsb960
10.1016/j.tree.2008.05.010
10.1016/j.ijbiomac.2021.10.059
10.3390/ijms22136828
10.1016/bs.pmbts.2014.11.005
10.1016/j.tplants.2017.11.004
10.1016/j.jprot.2012.11.011
10.1186/s13059-016-1088-8
10.1371/journal.pone.0155096
10.1017/CBO9781139030748
10.1016/j.jmb.2011.10.005
10.1007/s10158-006-0032-0
10.1111/imb.12143
10.1098/rsob.180208
10.1016/0305-0491(95)00019-5
10.1073/pnas.110347210
10.1016/j.jinsphys.2016.09.008
10.1023/A:1005475422978
10.1266/ggs.83.257
10.1016/j.cub.2016.10.013
10.1038/293161a0
10.1093/jisesa/iead004
10.1038/s41598-018-24054-2
10.1186/1471-2164-14-174
10.1007/s13592-022-00988-5
10.1016/j.jinsphys.2017.07.014
10.1016/j.cbpa.2014.11.005
10.3389/fphys.2014.00320
10.1016/j.tig.2015.09.005
10.1016/j.cbd.2020.100654
10.1146/annurev.ento.52.110405.091440
10.1186/s12864-015-2236-3
10.1016/j.cell.2008.04.046
10.1021/acs.jafc.2c04335
10.7717/peerj.6576
10.1073/pnas.101227410
10.3390/insects14020194
10.1016/j.cub.2010.02.052
10.3389/fphys.2018.00984
10.1016/j.bbrc.2008.05.064
10.1016/j.jhazmat.2020.122777
10.1038/srep01456
10.3109/10409239409086801
10.1016/j.cois.2017.04.006
10.1021/acs.jafc.2c08390
10.1371/journal.pone.0008006
10.1016/j.chemosphere.2020.128647
10.3389/fphys.2022.829766
10.3389/fphys.2012.00058
10.7150/ijbs.77141
10.1016/j.ijbiomac.2019.10.182
10.1021/acs.jafc.2c03396
10.1186/s12862-016-0775-0
10.1016/j.jprot.2012.08.002
10.1093/chemse/bjj059
10.1098/rspb.2019.1091
10.1016/j.envpol.2021.117409
10.1017/S0007485317001195
10.1074/jbc.274.43.30950
10.1534/g3.116.034595
10.1002/ps.3822
10.1371/journal.pone.0030040
10.1016/j.bbrc.2010.11.119
10.1371/journal.pbio.1001546
10.1016/j.pestbp.2021.104822
10.1038/31131
10.1016/j.jinsphys.2012.10.020
10.1002/arch.21911
10.3390/s18103248
10.1371/journal.pone.0043034
10.1016/j.ijbiomac.2020.01.309
10.1371/journal.pone.0032759
10.3390/ijms22094988
10.1073/pnas.0501447102
10.1021/pr900969k
10.1016/j.ijbiomac.2015.08.055
10.1093/oso/9780198525943.001.0001
10.1111/brv.12339
10.1073/pnas.251532998
10.1038/srep31848
10.1371/journal.pone.0023608
10.1016/j.tplants.2005.04.003
10.1371/journal.pbio.0060178
10.1002/pmic.200800795
10.1201/b16511-3
10.1038/srep20421
10.1016/s0896-6273(00)81093-4
10.1093/gbe/evr033
10.1016/j.scitotenv.2023.163762
10.1021/jf500521w
10.1016/j.ibmb.2016.11.001
10.1080/00034983.2000.11813554
10.1073/pnas.1213214110
10.1007/BF02066234
10.1074/jbc.M113.505289
10.1016/j.pestbp.2020.104642
10.1021/acs.jafc.2c07355
10.1101/gr.5075706
10.3389/fphys.2017.00734
10.3390/ijms24043464
10.1093/molbev/msab120
10.1111/j.1749-6632.1998.tb10591.x
10.1093/oxfordjournals.molbev.a040454
10.1093/chemse/bjq137
10.1016/j.jinsphys.2020.104012
10.1016/j.pestbp.2019.06.005
10.1186/1471-2164-14-198
10.1016/j.ijbiomac.2014.08.046
10.1021/acs.jafc.0c01572
10.1016/j.jinsphys.2019.04.005
10.1016/s1074-5521(00)00078-8
10.1104/pp.112.4.1411
10.1371/journal.pone.0009471
10.1016/j.jmb.2007.07.078
10.1016/j.neuron.2004.12.031
10.1007/s10886-008-9485-4
10.1021/bi9020132
10.1016/j.jinsphys.2012.01.011
ContentType Journal Article
Copyright Copyright © 2023 Abendroth, Moural, Wei and Zhu.
Copyright © 2023 Abendroth, Moural, Wei and Zhu 2023 Abendroth, Moural, Wei and Zhu
Copyright_xml – notice: Copyright © 2023 Abendroth, Moural, Wei and Zhu.
– notice: Copyright © 2023 Abendroth, Moural, Wei and Zhu 2023 Abendroth, Moural, Wei and Zhu
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3389/finsc.2023.1274197
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2673-8600
ExternalDocumentID PMC10926425
38469469
10_3389_finsc_2023_1274197
Genre Journal Article
Review
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
PGMZT
RPM
ABDBF
NPM
7X8
5PM
ID FETCH-LOGICAL-c403t-f42c12101567c3806748b7e3100773b2d4c7bcfb9e321cb55b1a12e71a3661f03
ISSN 2673-8600
IngestDate Thu Aug 21 18:34:44 EDT 2025
Fri Sep 05 04:50:02 EDT 2025
Thu Jan 02 22:31:09 EST 2025
Tue Jul 01 03:20:30 EDT 2025
Thu Apr 24 22:59:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords pesticide resistance
semiochemicals
adaptation
co-option
xenobiotics
host location
Language English
License Copyright © 2023 Abendroth, Moural, Wei and Zhu.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-f42c12101567c3806748b7e3100773b2d4c7bcfb9e321cb55b1a12e71a3661f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Peter M. Piermarini, The Ohio State University, United States
Reviewed by: Andrew Nuss, University of Nevada, United States; Immacolata Iovinella, Research Centre for Plant Protection and Certification, Italy
OpenAccessLink http://dx.doi.org/10.3389/finsc.2023.1274197
PMID 38469469
PQID 2956158384
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10926425
proquest_miscellaneous_2956158384
pubmed_primary_38469469
crossref_primary_10_3389_finsc_2023_1274197
crossref_citationtrail_10_3389_finsc_2023_1274197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-06
PublicationDateYYYYMMDD 2023-10-06
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-06
  day: 06
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in insect science
PublicationTitleAlternate Front Insect Sci
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Wei (B11) 2021; 270
Findlay (B121) 2008; 6
Foret (B41) 2006; 16
Blackwell (B134) 2000; 94
Zhang (B26) 2020; 11
Forstner (B97) 2006; 6
Andersson (B47) 2013; 14
Swarup (B103) 2011; 10
Sun (B110) 2012; 7
Laughlin (B56) 2008; 133
Li (B142) 2012; 105
Leal (B63) 2005; 102
Horst (B64) 2001; 98
Lin (B25) 2018; 108
Ma (B91) 2022; 70
Li (B119) 2017; 26
Legal (B137) 1994; 20
Liu (B45) 2015; 13
Sun (B125) 2012; 7
Baker (B6) 1998; 393
Li (B163) 2015; 81
Xu (B143) 2018; 23
Xu (B48) 2003; 12
Song (B146) 2018; 9
Qiu (B154) 2023; 885
Carey (B18) 2011; 108
Li (B150) 2023; 242
Wojtasek (B65) 1999; 274
Schuler (B77) 1996; 112
Qin (B93) 2021; 193
Wang (B148) 2020; 121
Kaissling (B14) 2001; 26
Wu (B10) 2020; 149
Zhu (B57) 2021; 22
Dani (B83) 2011; 36
Schoville (B35) 2018; 8
Vieira (B39) 2011; 3
Mao (B72) 2010; 107
Alyokhin (B33) 2017; 21
Kruse (B73) 2003; 10
Zhu (B160) 2013; 3
Baer (B124) 2012; 75
Jiang (B49) 2017; 8
Deisig (B86) 2014; 5
Gong (B17) 2009; 16
Zhu (B90) 2016; 75
Chen (B168) 2016; 593
Xu (B66) 2010; 49
Despres (B34) 2007; 22
Koirala (B12) 2022; 18
Zhang (B79) 2020; 164
Liu (B144) 2015; 180
Liu (B139) 2021; 22
Homberg (B5) 1989; 34
Bautista (B21) 2015; 71
Rihani (B1) 2021; 11
Zhang (B94) 2020; 68
Bernays (B130) 2007
Zhang (B155) 2020; 397
Saitou (B37) 1987; 4
Grosse-Wilde (B95) 2006; 31
Zhang (B157) 2022; 209
Weng (B107) 2015; 72
Liu (B161) 2020; 168
de Bruyne (B8) 2008; 34
Dani (B82) 2010; 9
Zubkov (B67) 2005; 354
Xiong (B27) 2019; 159
Qiao (B113) 2009; 39
Pelosi (B2) 2018; 93
Harada (B138) 2008; 83
Mam (B40) 2023; 54
Leite (B52) 2009; 4
Campanini (B58) 2016; 16
Tamura (B38) 2021; 38
Zhang (B89) 2015; 130
Pesenti (B108) 2008; 380
Bruce (B129) 2005; 10
Xu (B101) 2005; 45
Tricoire-Leignel (B24) 2012; 3
Tang (B116) 2023; 71
Sun (B156) 2021; 285
Qu (B117) 2022; 13
Liu (B81) 2015; 24
Visser (B128) 1988; 34
Zhao (B80) 2021; 12
Xu (B126) 2013; 78
Michel (B98) 2011; 408
Kaissling (B15) 2009; 195
Vogt (B16) 1981; 293
Li (B112) 2018; 111
Guo (B50) 2018; 9
Wei (B69) 2020; 152
Northey (B118) 2016; 6
Sun (B147) 2019; 116
Brito (B9) 2016; 95
Li (B54) 2017; 141
Yi (B140) 2023; 24
Irwin (B32) 2014; 62
Tsitsanou (B70) 2012; 69
Zhang (B42) 2016; 79
Shorter (B104) 2016; 6
Zhang (B115) 2017; 27
Wheat (B78) 2007; 104
Wyatt (B88) 2014
Iovinella (B84) 2011; 10
Xu (B100) 2011; 404
Baldwin (B141) 2010; 20
Vandermoten (B109) 2011; 6
Lagarde (B60) 2011; 414
Yang (B85) 2020; 33
Zhong (B111) 2012; 58
Whiteman (B22) 2008; 23
McAfee (B105) 2018; 8
Biessmann (B136) 2010; 5
Sun (B92) 2013; 59
Leal (B3) 2013; 58
Schoonhoven (B31) 2005
Dermauw (B166) 2013; 110
Song (B120) 2016; 6
Sun (B30) 2018; 8
Li (B46) 2015; 16
Dorus (B127) 2006; 38
Zhou (B36) 2010
Li (B122) 2008; 372
Guarna (B106) 2015; 16
Zhu (B164) 2016; 6
Pelosi (B74) 2018; 18
Steinbrecht (B23) 1998; 855
Gao (B169) 2018; 146
Wu (B159) 2022; 13
Balabanidou (B29) 2019; 286
Damberger (B99) 2007; 373
Pelosi (B53) 1995; 111
Riviere (B61) 2003; 371
Syed (B96) 2006; 103
Yue (B132) 2023; 14
Du (B152) 2021; 52
Li (B131) 2022; 110
McKenna (B44) 2016; 17
Sandler (B62) 2000; 7
Zhu (B76) 2014
Leal (B7) 2005
Vieira (B51) 2012; 7
Sun (B145) 2016; 106
Wu (B43) 2016; 11
Fan (B114) 2017; 101
Yin (B153) 2022; 70
Takemori (B123) 2009; 9
Desneux (B162) 2007; 52
Tsitsanou (B59) 2013; 288
Zhu (B165) 2013; 14
Cruse (B13) 2023; 14
Zhu (B133) 2023; 23
Amezian (B167) 2021; 174
Li (B68) 2015; 11
Renou (B87) 2014
Matsuo (B28) 2007; 5
Clyne (B19) 1999; 22
Joseph (B75) 2015; 31
Meijerink (B135) 2000; 26
Gomez-Diaz (B102) 2013; 11
Li (B158) 2023; 71
Lagarde (B71) 2011; 437
Pelosi (B20) 1994; 29
Pelosi (B4) 2005; 30
Li (B151) 2016; 11
Pelosi (B55) 2014; 5
Li (B149) 2022; 78
References_xml – volume: 12
  year: 2021
  ident: B80
  article-title: Expression profile and ligand screening of a putative odorant-binding protein, AcerOBP6, from the asian honeybee
  publication-title: Insects
  doi: 10.3390/insects12110955
– volume: 380
  year: 2008
  ident: B108
  article-title: Structural basis of the honey bee PBP pheromone and pH-induced conformational change
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2008.04.048
– volume: 195
  start-page: 895
  year: 2009
  ident: B15
  article-title: Olfactory perireceptor and receptor events in moths: a kinetic model revised
  publication-title: J Comp Physiol
  doi: 10.1007/s00359-009-0461-4
– volume: 78
  start-page: 52
  year: 2022
  ident: B149
  article-title: Ligand-binding properties of odorant-binding protein 6 in Athetis lepigone to sex pheromones and maize volatiles
  publication-title: Pest Manag Sci
  doi: 10.3390/insects13121145
– volume: 5
  start-page: 399
  year: 2014
  ident: B86
  article-title: Responses to pheromones in a complex odor world: sensory processing and behavior
  publication-title: Insects
  doi: 10.3390/insects5020399
– volume: 437
  year: 2011
  ident: B71
  article-title: Crystal structure of a novel type of odorant-binding protein from Anopheles gambiae, belonging to the C-plus class
  publication-title: Biochem J
  doi: 10.1042/BJ20110522
– volume: 14
  year: 2023
  ident: B132
  article-title: Characterization and functional analysis of OcomOBP7 in Ophraella communa Lesage
  publication-title: Insects
  doi: 10.3390/insects14020190
– volume: 209
  year: 2022
  ident: B157
  article-title: Odorant binding protein 3 is associated with nitenpyram and sulfoxaflor resistance in Nilaparvata lugens
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2022.04.100
– volume: 164
  year: 2020
  ident: B79
  article-title: Different binding properties of two general-odorant binding proteins in Athetis lepigone with sex pheromones, host plant volatiles and insecticides
  publication-title: Pestic Biochem Phys
  doi: 10.1016/j.pestbp.2020.01.012
– volume: 10
  year: 2011
  ident: B103
  article-title: Functional dissection of odorant binding protein genes in Drosophila melanogaster
  publication-title: Genes Brain Behav
  doi: 10.1111/j.1601-183X.2011.00704.x
– volume: 11
  year: 2016
  ident: B43
  article-title: Differential expression analysis of chemoreception genes in the striped flea beetle Phyllotreta striolata using a transcriptomic approach
  publication-title: PloS One
  doi: 10.1371/journal.pone.0153067
– volume: 9
  year: 2018
  ident: B146
  article-title: Various bee pheromones binding affinity, exclusive chemosensillar localization, and key amino acid sites reveal the distinctive characteristics of odorant-binding protein 11 in the eastern honey bee, Apis cerana
  publication-title: Front Physiol
  doi: 10.3389/fphys.2018.00422
– volume: 5
  year: 2007
  ident: B28
  article-title: Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia
  publication-title: PloS Biol
  doi: 10.1371/journal.pbio.0050118
– volume: 52
  year: 2021
  ident: B152
  article-title: Identification and functional characterization of AcerOBP15 from Apis cerana cerana (Hymenoptera: apidae)
  publication-title: Apidologie
  doi: 10.1007/s13592-021-00854-w
– volume: 26
  year: 2001
  ident: B14
  article-title: Olfactory perireceptor and receptor events in moths: a kinetic model
  publication-title: Chem Senses
  doi: 10.1007/s00359-009-0461-4
– volume: 371
  year: 2003
  ident: B61
  article-title: A pheromone-binding protein from the cockroach Leucophaea maderae: cloning, expression and pheromone binding
  publication-title: Biochem J
  doi: 10.1042/BJ20021877
– volume: 69
  year: 2012
  ident: B70
  article-title: Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-011-0745-z
– volume: 58
  year: 2013
  ident: B3
  article-title: Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-120811-153635
– volume: 6
  year: 2016
  ident: B118
  article-title: Crystal structures and binding dynamics of odorant-binding protein 3 from two aphid species Megoura viciae and Nasonovia ribisnigri
  publication-title: Sci Rep
  doi: 10.1038/srep24739
– volume: 16
  year: 2009
  ident: B17
  article-title: Ligand-interaction kinetics of the pheromone-binding protein from the gypsy moth, L. dispar: insights into the mechanism of binding and release
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2009.01.005
– volume: 8
  year: 2018
  ident: B35
  article-title: A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20154-1
– volume: 408
  year: 2011
  ident: B98
  article-title: Dynamic conformational equilibria in the physiological function of the Bombyx mori pheromone-binding protein
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2011.03.008
– volume: 38
  year: 2006
  ident: B127
  article-title: Genomic and functional evolution of the Drosophila melanogaster sperm proteome
  publication-title: Nat Genet
  doi: 10.1038/ng1915
– volume: 16
  start-page: 63
  year: 2015
  ident: B106
  article-title: A search for protein biomarkers links olfactory signal transduction to social immunity
  publication-title: BMC Genom
  doi: 10.1186/s12864-014-1193-6
– volume: 22
  start-page: 298
  year: 2007
  ident: B34
  article-title: The evolutionary ecology of insect resistance to plant chemicals
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2007.02.010
– volume: 593
  start-page: 13
  year: 2016
  ident: B168
  article-title: Comparative RNA-sequencing profiling reveals novel Delta-class glutathione S-transferases relative genes expression patterns in Tribolium castaneum
  publication-title: Gene
  doi: 10.1016/j.gene.2016.08.013
– volume: 30
  year: 2005
  ident: B4
  article-title: Diversity of odorant-binding proteins and chemosensory proteins in insects
  publication-title: Chem Senses
  doi: 10.1093/chemse/bjh229
– volume: 354
  year: 2005
  ident: B67
  article-title: Structural consequences of the pH-induced conformational switch in A. polyphemus pheromone-binding protein: mechanisms of ligand release
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.10.015
– volume: 11
  year: 2020
  ident: B26
  article-title: Odorant-binding proteins contribute to the defense of the red flour beetle, Tribolium castaneum, against essential oil of Artemisia vulgaris
  publication-title: Front Physiol
  doi: 10.3389/fphys.2020.00819
– volume: 75
  year: 2016
  ident: B90
  article-title: Functional characterization of SlitPBP3 in Spodoptera litura by CRISPR/Cas9 mediated genome editing
  publication-title: Insect Biochem Molec Biol
  doi: 10.3389/fphys.2021.619816
– volume: 34
  year: 1988
  ident: B128
  article-title: Host-plant finding by insects - orientation, sensory input and search patterns
  publication-title: J Insect Physiol
  doi: 10.1016/0022-1910(88)90056-X
– volume: 12
  year: 2003
  ident: B48
  article-title: Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae
  publication-title: Insect Mol Biol
  doi: 10.1046/j.1365-2583.2003.00440.x
– volume: 11
  year: 2015
  ident: B68
  article-title: Structure-based analysis of the ligand-binding mechanism for DhelOBP21, a C-minus odorant binding protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: bothrideridae)
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.12528
– volume: 39
  year: 2009
  ident: B113
  article-title: Discrimination of alarm pheromone (E)-β-farnesene by aphid odorant-binding proteins
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2009.03.004
– volume-title: Host-plant selection by phytophagous insects
  year: 2007
  ident: B130
– volume: 104
  year: 2007
  ident: B78
  article-title: The genetic basis of a plant-insect coevolutionary key innovation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0706229104
– volume: 111
  start-page: 25
  year: 2018
  ident: B112
  article-title: Distinct binding affinities of odorant-binding proteins from the natural predator Chrysoperla sinica suggest different strategies to hunt prey
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2018.10.004
– volume: 13
  year: 2022
  ident: B159
  article-title: Two antenna-enriched odorant binding proteins in Dioryctria abietella tuned to general odorants and insecticides
  publication-title: Insects
  doi: 10.3390/insects13121145
– volume: 242
  year: 2023
  ident: B150
  article-title: Expression and functional analysis of an odorant binding protein PopeOBP16 from Phthorimaea operculella (Zeller)
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.124939
– volume: 141
  year: 2017
  ident: B54
  article-title: Expression pattern and ligand-binding properties of odorant-binding protein 13 from Monochamus alternatus hope
  publication-title: J Appl Entomol
  doi: 10.1111/jen.12396
– volume: 13
  start-page: 44
  year: 2015
  ident: B45
  article-title: Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: tenebrionidae)
  publication-title: Comp Biochem Physiol – D: Genom Proteom
  doi: 10.1016/j.cbd.2015.01.004
– volume: 106
  year: 2016
  ident: B145
  article-title: Functional characterization of a pheromone-binding protein from rice leaffolder Cnaphalocrocis medinalis in detecting pheromones and host plant volatiles
  publication-title: Bull Entomol Res
  doi: 10.1017/S0007485316000560
– volume: 146
  start-page: 287
  year: 2018
  ident: B169
  article-title: Transcriptome profiling analysis reveals the role of latrophilin in controlling development, reproduction and insecticide susceptibility in Tribolium castaneum
  publication-title: Genetica
  doi: 10.1007/s10709-018-0020-4
– volume: 34
  start-page: 477
  year: 1989
  ident: B5
  article-title: Structure and function of the deutocerebrum in insects
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.en.34.010189.002401
– volume: 103
  year: 2006
  ident: B96
  article-title: Pheromone reception in fruit flies expressing a moth’s odorant receptor
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0607874103
– volume: 11
  start-page: 27
  year: 2021
  ident: B1
  article-title: The 40-year mystery of insect odorant-binding proteins
  publication-title: Biomolecules
  doi: 10.3390/biom11040509
– volume: 105
  year: 2012
  ident: B142
  article-title: Enhanced attraction of Plutella xylostella (Lepidoptera: plutellidae) to pheromone-baited traps with the addition of green leaf volatiles
  publication-title: J Econ Entomol
  doi: 10.1603/ec11109
– volume: 10
  start-page: 694
  year: 2003
  ident: B73
  article-title: Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster
  publication-title: Nat Struct Biol
  doi: 10.1038/nsb960
– volume: 23
  year: 2008
  ident: B22
  article-title: Delicious poison: genetics of drosophila host plant preference
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2008.05.010
– volume: 193
  start-page: 8
  year: 2021
  ident: B93
  article-title: Molecular characterization of sex pheromone binding proteins from Holotrichia oblita (Coleoptera: scarabaeida)
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2021.10.059
– volume: 22
  year: 2021
  ident: B57
  article-title: The odorant-binding proteins of the spider mite Tetranychus urticae
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22136828
– volume: 130
  year: 2015
  ident: B89
  article-title: Pheromone reception in moths: from molecules to behaviors
  publication-title: Prog Mol Biol Transl Sci
  doi: 10.1016/bs.pmbts.2014.11.005
– volume: 23
  year: 2018
  ident: B143
  article-title: Plant volatiles as mate-finding cues for insects
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2017.11.004
– volume: 78
  start-page: 83
  year: 2013
  ident: B126
  article-title: Proteomics of Tribolium castaneum seminal fluid proteins: identification of an angiotensin-converting enzyme as a key player in regulation of reproduction
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2012.11.011
– volume: 17
  start-page: 227
  year: 2016
  ident: B44
  article-title: Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1088-8
– volume: 11
  year: 2016
  ident: B151
  article-title: Binding properties of general odorant binding proteins from the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: tortricidae)
  publication-title: PloS One
  doi: 10.1371/journal.pone.0155096
– volume-title: Pheromones and animal behavior: chemical signals and signatures
  year: 2014
  ident: B88
  doi: 10.1017/CBO9781139030748
– volume: 414
  year: 2011
  ident: B60
  article-title: The crystal structure of odorant binding protein 7 from Anopheles gambiae exhibits an outstanding adaptability of its binding site
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2011.10.005
– volume: 6
  year: 2006
  ident: B97
  article-title: Candidate pheromone binding proteins of the silkmoth Bombyx mori
  publication-title: Invert Nuerosci
  doi: 10.1007/s10158-006-0032-0
– volume: 24
  year: 2015
  ident: B81
  article-title: Two subclasses of odorant-binding proteins in Spodoptera exigua display structural conservation and functional divergence
  publication-title: Insect Mol Biol
  doi: 10.1111/imb.12143
– volume: 8
  year: 2018
  ident: B30
  article-title: The diverse small proteins called odorant-binding proteins
  publication-title: Open Biol
  doi: 10.1098/rsob.180208
– volume: 111
  year: 1995
  ident: B53
  article-title: Odorant-binding proteins in insects
  publication-title: Comp Biochem Physiol - B Biochem Mol Biol
  doi: 10.1016/0305-0491(95)00019-5
– volume: 108
  year: 2011
  ident: B18
  article-title: Insect olfaction from model systems to disease control
  publication-title: Proc Natl Acad Sci U.S.A.
  doi: 10.1073/pnas.110347210
– volume: 95
  start-page: 51
  year: 2016
  ident: B9
  article-title: A look inside odorant-binding proteins in insect chemoreception
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2016.09.008
– volume: 26
  year: 2000
  ident: B135
  article-title: Identification of olfactory stimulants for Anopheles gambiae from human sweat samples
  publication-title: J Chem Ecol
  doi: 10.1023/A:1005475422978
– volume: 83
  year: 2008
  ident: B138
  article-title: Behavioral analyses of mutants for two odorant-binding protein genes, OBP57d and OBP57e, in Drosophila melanogaster
  publication-title: Genes Genet Syst
  doi: 10.1266/ggs.83.257
– volume: 27
  start-page: 55
  year: 2017
  ident: B115
  article-title: Molecular basis of alarm pheromone detection in aphids
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2016.10.013
– volume: 293
  year: 1981
  ident: B16
  article-title: Pheromone binding and inactivation by moth antennae
  publication-title: Nature
  doi: 10.1038/293161a0
– volume: 23
  year: 2023
  ident: B133
  article-title: Odorant-binding protein 10 From Bradysia odoriphaga (Diptera: sciaridae) binds volatile host plant compounds
  publication-title: J Insect Sci
  doi: 10.1093/jisesa/iead004
– volume: 8
  start-page: 5719
  year: 2018
  ident: B105
  article-title: A death pheromone, oleic acid, triggers hygienic behavior in honey bees (Apis mellifera L.)
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24054-2
– volume: 14
  year: 2013
  ident: B165
  article-title: Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-14-174
– volume: 54
  start-page: 16
  year: 2023
  ident: B40
  article-title: Minus-C subfamily has diverged from classic odorant-binding proteins in honeybees
  publication-title: Apidologie
  doi: 10.1007/s13592-022-00988-5
– volume: 101
  year: 2017
  ident: B114
  article-title: Identification of an intraspecific alarm pheromone and two conserved odorant-binding proteins associated with (E)-β-farnesene perception in aphid Rhopalosiphum padi
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2017.07.014
– volume: 180
  start-page: 23
  year: 2015
  ident: B144
  article-title: Two general-odorant binding proteins in Spodoptera litura are differentially tuned to sex pheromones and plant odorants
  publication-title: Comp Biochem Physiol Part A Mol Integr Physiol
  doi: 10.1016/j.cbpa.2014.11.005
– volume-title: Vitamins and hormones
  year: 2010
  ident: B36
  article-title: Odorant-binding proteins in insects
– volume: 5
  year: 2014
  ident: B55
  article-title: Soluble proteins of chemical communication: an overview across arthropods
  publication-title: Front Physiol
  doi: 10.3389/fphys.2014.00320
– volume: 31
  year: 2015
  ident: B75
  article-title: Drosophila chemoreceptors: a molecular interface between the chemical world and the brain
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2015.09.005
– volume: 33
  start-page: 13
  year: 2020
  ident: B85
  article-title: Antennal transcriptome analysis and expression profiles of putative chemosensory soluble proteins in Histia rhodope Cramer (Lepidoptera: Zygaenidae)
  publication-title: Comp Biochem Physiol Part D Genomics Proteomics
  doi: 10.1016/j.cbd.2020.100654
– volume: 52
  start-page: 81
  year: 2007
  ident: B162
  article-title: The sublethal effects of pesticides on beneficial arthropods
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.52.110405.091440
– volume: 16
  start-page: 16
  year: 2015
  ident: B46
  article-title: Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis
  publication-title: BMC Genom
  doi: 10.1186/s12864-015-2236-3
– volume: 133
  year: 2008
  ident: B56
  article-title: Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.046
– volume: 70
  year: 2022
  ident: B91
  article-title: Two odorant-binding proteins involved in the recognition of sex pheromones in Spodoptera litura larvae
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.2c04335
– volume: 26
  year: 2017
  ident: B119
  article-title: Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-β-farnesene
  publication-title: Insect Mol Biol
  doi: 10.7717/peerj.6576
– volume: 107
  year: 2010
  ident: B72
  article-title: Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.101227410
– volume: 14
  year: 2023
  ident: B13
  article-title: Dynamic roles of insect carboxyl/cholinesterases in chemical adaptation
  publication-title: Insects
  doi: 10.3390/insects14020194
– volume: 20
  year: 2010
  ident: B141
  article-title: Plant volatiles
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2010.02.052
– volume: 10
  year: 2011
  ident: B84
  article-title: Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age
  publication-title: J Proteome Res
  doi: 10.3389/fphys.2018.00984
– volume: 372
  year: 2008
  ident: B122
  article-title: Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2008.05.064
– volume: 397
  start-page: 11
  year: 2020
  ident: B155
  article-title: Organophosphorus insecticide interacts with the pheromone-binding proteins of Athetis lepigone: implication for olfactory dysfunction
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.122777
– volume: 3
  year: 2013
  ident: B160
  article-title: Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides
  publication-title: Sci Rep
  doi: 10.1038/srep01456
– volume: 29
  start-page: 199
  year: 1994
  ident: B20
  article-title: Odorant-binding proteins
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409239409086801
– volume: 21
  year: 2017
  ident: B33
  article-title: Adaptation to toxic hosts as a factor in the evolution of insecticide resistance
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2017.04.006
– volume: 71
  year: 2023
  ident: B158
  article-title: Odorant-binding protein 6 contributes high binding affinity to insecticides in a parasitic wasp Meteorus pulchricornis (Hymenoptera: braconidae)
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.2c08390
– volume: 4
  year: 2009
  ident: B52
  article-title: Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “lid”
  publication-title: PloS One
  doi: 10.1371/journal.pone.0008006
– volume: 270
  year: 2021
  ident: B11
  article-title: Odorant degrading carboxylesterases modulate foraging and mating behaviors of Grapholita molesta
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128647
– volume: 13
  year: 2022
  ident: B117
  article-title: Binding affinity characterization of four antennae-enriched odorant-binding proteins from Harmonia axyridis (Coleoptera: coccinellidae)
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.829766
– volume: 3
  year: 2012
  ident: B24
  article-title: Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect
  publication-title: Front Physiol
  doi: 10.3389/fphys.2012.00058
– volume: 18
  year: 2022
  ident: B12
  article-title: Functional and structural diversity of insect glutathione S-transferases in xenobiotic adaptation
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.77141
– volume: 152
  year: 2020
  ident: B69
  article-title: The mechanism underlying OBP heterodimer formation and the recognition of odors in Holotrichia oblita faldermann
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.10.182
– volume: 70
  year: 2022
  ident: B153
  article-title: Genome-wide analysis of odorant-binding proteins in Papilio xuthus with focus on the perception of two PxutGOBPs to host odorants and insecticides
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.2c03396
– volume: 16
  year: 2016
  ident: B58
  article-title: Molecular evolution of odorant-binding proteins gene family in two closely related Anastrepha fruit flies
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-016-0775-0
– volume: 75
  year: 2012
  ident: B124
  article-title: Seminal fluid proteins differ in abundance between genetic lineages of honeybees
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2012.08.002
– volume: 31
  year: 2006
  ident: B95
  article-title: A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro
  publication-title: Chem Senses
  doi: 10.1093/chemse/bjj059
– volume: 286
  start-page: 20191091
  year: 2019
  ident: B29
  article-title: Mosquitoes cloak their legs to resist insecticides
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2019.1091
– volume: 285
  year: 2021
  ident: B156
  article-title: Olfactory perception of herbicide butachlor by GOBP2 elicits ecdysone biosynthesis and detoxification enzyme responsible for chlorpyrifos tolerance in Spodoptera litura
  publication-title: Environ pollut
  doi: 10.1016/j.envpol.2021.117409
– volume: 108
  year: 2018
  ident: B25
  article-title: Effects of insecticides chlorpyrifos, emamectin benzoate and fipronil on Spodoptera litura might be mediated by OBPs and CSPs
  publication-title: Bull Entomol Res
  doi: 10.1017/S0007485317001195
– volume: 274
  year: 1999
  ident: B65
  article-title: Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.43.30950
– volume: 6
  year: 2016
  ident: B104
  article-title: Obp56h modulates mating behavior in Drosophila melanogaster
  publication-title: G3-Genes Genom Genet
  doi: 10.1534/g3.116.034595
– volume: 71
  year: 2015
  ident: B21
  article-title: Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.3822
– volume: 7
  start-page: 11
  year: 2012
  ident: B125
  article-title: Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species
  publication-title: PloS One
  doi: 10.1371/journal.pone.0030040
– volume: 404
  year: 2011
  ident: B100
  article-title: Extrusion of the C-terminal helix in navel orangeworm moth pheromone-binding protein (AtraPBP1) controls pheromone binding
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2010.11.119
– volume: 11
  year: 2013
  ident: B102
  article-title: Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins
  publication-title: PloS Biol
  doi: 10.1371/journal.pbio.1001546
– volume: 174
  year: 2021
  ident: B167
  article-title: Transcriptional regulation of xenobiotic detoxification genes in insects - an overview
  publication-title: Pestic Biochem Physiol
  doi: 10.1016/j.pestbp.2021.104822
– volume: 393
  start-page: 530
  year: 1998
  ident: B6
  article-title: Moth uses fine tuning for odour resolution
  publication-title: Nature
  doi: 10.1038/31131
– volume: 59
  start-page: 46
  year: 2013
  ident: B92
  article-title: Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth
  publication-title: Plutella xyllotella. J Insect Physiol
  doi: 10.1016/j.jinsphys.2012.10.020
– volume: 110
  year: 2022
  ident: B131
  article-title: Electroantennographic activity of 21 aliphatic compounds that bind well to a locust odorant-binding protein
  publication-title: Arch Insect Biochem Physiol
  doi: 10.1002/arch.21911
– volume: 18
  year: 2018
  ident: B74
  article-title: Odorant-binding proteins as sensing elements for odour monitoring
  publication-title: Sensors
  doi: 10.3390/s18103248
– volume: 7
  start-page: 11
  year: 2012
  ident: B51
  article-title: Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analyses
  publication-title: PloS One
  doi: 10.1371/journal.pone.0043034
– volume: 149
  year: 2020
  ident: B10
  article-title: Transcriptome analysis of antennal cytochrome P450s and their transcriptional responses to plant and locust volatiles in Locusta migratoria
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.01.309
– volume: 7
  year: 2012
  ident: B110
  article-title: Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (E)-ß-farnesene and structural analogues
  publication-title: PloS One
  doi: 10.1371/journal.pone.0032759
– volume: 22
  start-page: 15
  year: 2021
  ident: B139
  article-title: A salivary odorant-binding protein mediates Nilaparvata lugens feeding and host plant phytohormone suppression
  publication-title: Int J Molec Sci
  doi: 10.3390/ijms22094988
– volume: 102
  year: 2005
  ident: B63
  article-title: Kinetics and molecular properties of pheromone binding and release
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0501447102
– volume: 9
  year: 2010
  ident: B82
  article-title: Mapping the expression of soluble olfactory proteins in the honeybee
  publication-title: J Proteome Res
  doi: 10.1021/pr900969k
– volume: 81
  year: 2015
  ident: B163
  article-title: Neonicotinoid insecticide interact with honeybee odorant-binding protein: implication for olfactory dysfunction
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2015.08.055
– start-page: 1
  volume-title: The chemistry of pheromones and other Semiochemicals II
  year: 2005
  ident: B7
  article-title: Pheromone reception
– volume-title: Insect-plant biology
  year: 2005
  ident: B31
  doi: 10.1093/oso/9780198525943.001.0001
– volume: 93
  start-page: 184
  year: 2018
  ident: B2
  article-title: Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects
  publication-title: Biol Rev
  doi: 10.1111/brv.12339
– volume: 9
  year: 2018
  ident: B50
  article-title: Identification of odorant-binding proteins (OBPs) and functional analysis of phase-related OBPs in the migratory locust
  publication-title: Front Physiol
  doi: 10.3389/fphys.2018.00984
– volume: 98
  year: 2001
  ident: B64
  article-title: NMR structure reveals intramolecular regulation mechanism for pheromone binding and release
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.251532998
– volume: 6
  year: 2016
  ident: B120
  article-title: Male tarsi specific odorant-binding proteins in the diving beetle Cybister japonicus sharp
  publication-title: Sci Rep
  doi: 10.1038/srep31848
– volume: 6
  year: 2011
  ident: B109
  article-title: Conserved odorant-binding proteins from aphids and eavesdropping predators
  publication-title: PloS One
  doi: 10.1371/journal.pone.0023608
– volume: 10
  year: 2005
  ident: B129
  article-title: Insect host location: a volatile situation
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2005.04.003
– volume: 6
  year: 2008
  ident: B121
  article-title: Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating
  publication-title: PloS Biol
  doi: 10.1371/journal.pbio.0060178
– volume: 9
  year: 2009
  ident: B123
  article-title: Proteome mapping of the Drosophila melanogaster male reproductive system
  publication-title: Proteomics
  doi: 10.1002/pmic.200800795
– volume-title: Neurobiology of Chemical Communication
  year: 2014
  ident: B87
  article-title: Pheromones and general odor perception in insects
  doi: 10.1201/b16511-3
– volume: 6
  year: 2016
  ident: B164
  article-title: A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s
  publication-title: Sci Rep
  doi: 10.1038/srep20421
– volume: 22
  year: 1999
  ident: B19
  article-title: A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila
  publication-title: Neuron
  doi: 10.1016/s0896-6273(00)81093-4
– volume: 3
  year: 2011
  ident: B39
  article-title: Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: origin and evolutionary history of the chemosensory system
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evr033
– start-page: 595
  volume-title: Short Views on Insect Biochemistry and Molecular Biology
  year: 2014
  ident: B76
  article-title: Application of RNAi towards insecticide resistance management
– volume: 885
  year: 2023
  ident: B154
  article-title: A sublethal dose of neonicotinoid imidacloprid precisely sensed and detoxified by a C-minus odorant-binding protein 17 highly expressed in the legs of Apis cerana
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.163762
– volume: 62
  year: 2014
  ident: B32
  article-title: Secondary compounds in floral rewards of toxic rangeland plants: impacts on pollinators
  publication-title: J Agric Food Chem
  doi: 10.1021/jf500521w
– volume: 79
  year: 2016
  ident: B42
  article-title: Comparative transcriptome analysis of chemosensory genes in two sister leaf beetles provides insights into chemosensory speciation
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2016.11.001
– volume: 94
  year: 2000
  ident: B134
  article-title: Electrophysiological investigation of larval water and potential oviposition chemo-attractants for Anopheles gambiae s.s
  publication-title: Ann Trop Med Parasitol
  doi: 10.1080/00034983.2000.11813554
– volume: 110
  year: 2013
  ident: B166
  article-title: A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1213214110
– volume: 20
  year: 1994
  ident: B137
  article-title: Molecular basis of Morinda citrifolia (L.): toxicity on drosophila
  publication-title: J Chem Ecol
  doi: 10.1007/BF02066234
– volume: 288
  year: 2013
  ident: B59
  article-title: Crystal and solution studies of the “plus-C” odorant-binding protein 48 from Anopheles gambiae control of binding specificity through three-dimensional domain swapping
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.505289
– volume: 168
  start-page: 7
  year: 2020
  ident: B161
  article-title: Odorant binding protein 2 reduces imidacloprid susceptibility of Diaphorina citri
  publication-title: Pestic Biochem Physiol
  doi: 10.1016/j.pestbp.2020.104642
– volume: 71
  year: 2023
  ident: B116
  article-title: Odorant-binding protein HvarOBP5 in ladybird Hippodamia variegata regulates the perception of semiochemicals from preys and habitat plants
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.2c07355
– volume: 16
  year: 2006
  ident: B41
  article-title: Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera)
  publication-title: Genome Res
  doi: 10.1101/gr.5075706
– volume: 8
  year: 2017
  ident: B49
  article-title: Distinct subfamilies of odorant binding proteins in locust (Orthoptera, acrididae): molecular evolution, structural variation, and sensilla-specific expression
  publication-title: Front Physiol
  doi: 10.3389/fphys.2017.00734
– volume: 24
  start-page: 19
  year: 2023
  ident: B140
  article-title: A highly expressed antennae odorant-binding protein involved in recognition of herbivore-induced plant volatiles in Dastarcus helophoroides
  publication-title: Int J Molec Sci
  doi: 10.3390/ijms24043464
– volume: 38
  year: 2021
  ident: B38
  article-title: MEGA11: molecular evolutionary genetics analysis version 11
  publication-title: Molec Biol Evol
  doi: 10.1093/molbev/msab120
– volume: 855
  year: 1998
  ident: B23
  article-title: Odorant-binding proteins: expression and function
  publication-title: Ann N Y. Acad Sci
  doi: 10.1111/j.1749-6632.1998.tb10591.x
– volume: 4
  year: 1987
  ident: B37
  article-title: The neighbor-joining method: a new method for reconstructing phylogenetic trees
  publication-title: Molec Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a040454
– volume: 36
  year: 2011
  ident: B83
  article-title: Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori
  publication-title: Chem Senses
  doi: 10.1093/chemse/bjq137
– volume: 121
  year: 2020
  ident: B148
  article-title: Sensilla localization and sex pheromone recognition of odorant binding protein OBP4 in the mirid plant bug Adelphocoris lineolatus (Goeze)
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2020.104012
– volume: 159
  year: 2019
  ident: B27
  article-title: Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum
  publication-title: Pestic Biochem Phys
  doi: 10.1016/j.pestbp.2019.06.005
– volume: 14
  year: 2013
  ident: B47
  article-title: Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: curculionidae: scolytinae)
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-14-198
– volume: 72
  year: 2015
  ident: B107
  article-title: Binding interaction between a queen pheromone component HOB and pheromone binding protein ASP1 of Apis cerana
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2014.08.046
– volume: 68
  year: 2020
  ident: B94
  article-title: Key amino acid residues influencing binding affinities of pheromone-binding protein from Athetis lepigone to two sex pheromones
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.0c01572
– volume: 116
  start-page: 17
  year: 2019
  ident: B147
  article-title: The sensilla trichodea-biased EoblPBP1 binds sex pheromones and green leaf volatiles in Ectropis obliqua Prout, a geometrid moth pest that uses type-II sex pheromones
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2019.04.005
– volume: 7
  year: 2000
  ident: B62
  article-title: Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex
  publication-title: Chem Biol
  doi: 10.1016/s1074-5521(00)00078-8
– volume: 112
  year: 1996
  ident: B77
  article-title: The role of cytochrome P450 monooxygenases in plant-insect interactions
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.4.1411
– volume: 5
  start-page: e9471
  year: 2010
  ident: B136
  article-title: The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes
  publication-title: PloS One
  doi: 10.1371/journal.pone.0009471
– volume: 373
  year: 2007
  ident: B99
  article-title: Structural basis of ligand binding and release in insect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1 at pH 4.5
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.07.078
– volume: 45
  start-page: 193
  year: 2005
  ident: B101
  article-title: Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.12.031
– volume: 34
  year: 2008
  ident: B8
  article-title: Odor detection in insects: volatile codes
  publication-title: J Chem Ecol
  doi: 10.1007/s10886-008-9485-4
– volume: 49
  year: 2010
  ident: B66
  article-title: NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection
  publication-title: Biochemistry
  doi: 10.1021/bi9020132
– volume: 58
  year: 2012
  ident: B111
  article-title: Fluorescence competition assay for the assessment of green leaf volatiles and trans-β-farnesene bound to three odorant-binding proteins in the wheat aphid Sitobion avenae (Fabricius)
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2012.01.011
SSID ssj0002874045
Score 2.3493776
SecondaryResourceType review_article
Snippet Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1274197
SubjectTerms Insect Science
Title Roles of insect odorant binding proteins in communication and xenobiotic adaptation
URI https://www.ncbi.nlm.nih.gov/pubmed/38469469
https://www.proquest.com/docview/2956158384
https://pubmed.ncbi.nlm.nih.gov/PMC10926425
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66Ivgi3h0vSwTfho5tkibTx0WURdAH3WUXX0qTJu4s0i5OB8Rf7zlJ2k53R3GFoQxpe6Yz35kk5_YdQl7nrFZKVnVSMGsTwWWVFFqBlVIx6RzXUjqsHf74SR4eiw-n-enoyvbVJZ1emF8760r-B1UYA1yxSvYayA5CYQDeA75wBITh-E8Yf0Y2pkD6sEYOYjAxYenp5noValU8CcMqpIqb7UoQHzL4aRvkYPKMrXV1sRWT79t2IrkBtsrG--NHxBVzjBpZZDwIzhmfcTs_WAwgtsjpsaUR85Ph3IkN7bLb5tv6bFPF9dN7sDd-Q90PRY8EC7ltcpy4mFQ8Wco0xFvsjrE48_JdczjYzEiB6uBrIcUk44sMKXZCFu-UMPvSQjakF4Jhg1JKL6NEGWWUcZPcYkr5eH7v1jn3HkYlUt_QenjOUGCFYt5cfZTpJuaKZXI5wXZrx3J0j9yNpgY9CHpzn9ywzQNy-2vrAykPyRevPbR1NEBLo_bQqD201x44TyfaQ0F76Kg9dNSeR-T4_bujt4dJbLGRGJHyLnGCGaSQAyteGb5MsfWMVhajPkpxzWphlDZOF5azzOg811mVMauyisPGzqX8Mdlr2sY-JTRTmagqIWrnwOq2uqjTzIKxYOtlKpxRM5L1v1lpIv88tkH5Xv4ZrhmZD_dcBPaVv179qoeihEkSI19VY9vNumRYvo0JAmJGngRoBnkwKAt4zchyAtpwARKwT880qzNPxJ6lBdgTLH92rcd8Tu6M_5oXZK_7sbEvYWfb6X3vEdr3uvkbPRimdA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roles+of+insect+odorant+binding+proteins+in+communication+and+xenobiotic+adaptation&rft.jtitle=Frontiers+in+insect+science&rft.au=Abendroth%2C+James+A.&rft.au=Moural%2C+Timothy+W.&rft.au=Wei%2C+Hongshuang&rft.au=Zhu%2C+Fang&rft.date=2023-10-06&rft.issn=2673-8600&rft.eissn=2673-8600&rft.volume=3&rft_id=info:doi/10.3389%2Ffinsc.2023.1274197&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_finsc_2023_1274197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-8600&client=summon