Influence of data preprocessing on neural network performance for reproducing CFD simulations of non-isothermal indoor airflow distribution

•Fast and accurate prediction of non-isothermal airflow distribution are achieved.•Suitable data preprocessing methods are proposed.•Data preprocessing and training dataset have impact on neural network generality.•The error submergence occurs when neural network output has no preprocessing.•Separat...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 230; p. 110525
Main Authors Zhou, Qi, Ooka, Ryozo
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.01.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Fast and accurate prediction of non-isothermal airflow distribution are achieved.•Suitable data preprocessing methods are proposed.•Data preprocessing and training dataset have impact on neural network generality.•The error submergence occurs when neural network output has no preprocessing.•Separate prediction of multiple variables without data preprocessing is possible. The indoor environment is important to the daily lives of humans. Fast and accurate prediction of indoor environments is desirable with regard to practical applications, such as coupled simulation, inverse design, and system control. Neural network (NN) is a popular machine learning model used to build mappings between target variables with nonlinear relations. To confirm the feasibility of an NN for fast and accurate prediction of indoor environments (including both velocity and temperature distributions), two-dimensional non-isothermal cases are set and an NN model is constructed in this study, where the inputs are boundary conditions (i.e. inlet velocity, temperature and window surface temperature) and outputs are velocity and temperature distributions. Various data preprocessing methods are utilized, and their results are compared to reveal the impact of data preprocessing on NN performance. The results show that, for most cases, different preprocessing methods can lead to similar NN performances with a prediction time of approximately 350 μs for each case and a prediction error of less than 10% for the maximum value and 5% for the mean value. Without data preprocessing, error submergence is likely to occur, and the gradient descent algorithm may fail to reduce errors of variables with smaller orders of magnitude during the training process. Separate prediction of multiple variables without data preprocessing can achieve accurate predictions as simultaneous prediction with data preprocessing; however, the computation cost for training multiple NNs for separate predictions should be considered.
AbstractList •Fast and accurate prediction of non-isothermal airflow distribution are achieved.•Suitable data preprocessing methods are proposed.•Data preprocessing and training dataset have impact on neural network generality.•The error submergence occurs when neural network output has no preprocessing.•Separate prediction of multiple variables without data preprocessing is possible. The indoor environment is important to the daily lives of humans. Fast and accurate prediction of indoor environments is desirable with regard to practical applications, such as coupled simulation, inverse design, and system control. Neural network (NN) is a popular machine learning model used to build mappings between target variables with nonlinear relations. To confirm the feasibility of an NN for fast and accurate prediction of indoor environments (including both velocity and temperature distributions), two-dimensional non-isothermal cases are set and an NN model is constructed in this study, where the inputs are boundary conditions (i.e. inlet velocity, temperature and window surface temperature) and outputs are velocity and temperature distributions. Various data preprocessing methods are utilized, and their results are compared to reveal the impact of data preprocessing on NN performance. The results show that, for most cases, different preprocessing methods can lead to similar NN performances with a prediction time of approximately 350 μs for each case and a prediction error of less than 10% for the maximum value and 5% for the mean value. Without data preprocessing, error submergence is likely to occur, and the gradient descent algorithm may fail to reduce errors of variables with smaller orders of magnitude during the training process. Separate prediction of multiple variables without data preprocessing can achieve accurate predictions as simultaneous prediction with data preprocessing; however, the computation cost for training multiple NNs for separate predictions should be considered.
The indoor environment is important to the daily lives of humans. Fast and accurate prediction of indoor environments is desirable with regard to practical applications, such as coupled simulation, inverse design, and system control. Neural network (NN) is a popular machine learning model used to build mappings between target variables with nonlinear relations. To confirm the feasibility of an NN for fast and accurate prediction of indoor environments (including both velocity and temperature distributions), two-dimensional non-isothermal cases are set and an NN model is constructed in this study, where the inputs are boundary conditions (i.e. inlet velocity, temperature and window surface temperature) and outputs are velocity and temperature distributions. Various data preprocessing methods are utilized, and their results are compared to reveal the impact of data preprocessing on NN performance. The results show that, for most cases, different preprocessing methods can lead to similar NN performances with a prediction time of approximately 350 µs for each case and a prediction error of less than 10% for the maximum value and 5% for the mean value. Without data preprocessing, error submergence is likely to occur, and the gradient descent algorithm may fail to reduce errors of variables with smaller orders of magnitude during the training process. Separate prediction of multiple variables without data preprocessing can achieve accurate predictions as simultaneous prediction with data preprocessing; however, the computation cost for training multiple NNs for separate predictions should be considered.
ArticleNumber 110525
Author Zhou, Qi
Ooka, Ryozo
Author_xml – sequence: 1
  givenname: Qi
  surname: Zhou
  fullname: Zhou, Qi
  email: qizhou@iis.u-tokyo.ac.jp
  organization: Department of Architecture, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
– sequence: 2
  givenname: Ryozo
  surname: Ooka
  fullname: Ooka, Ryozo
  organization: Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
BookMark eNqFkc9uGyEQh1GUSnH-PEIkpJ7XYdhlF6uHqnKSNlKkXtozwjC0uGtwgY3VZ8hLh41z6iWnQej7hpkf5-Q0xICEXANbAoP-ZrvEsJn8aJec8XoHTHBxQhYgB970MMhTsmDtIJthkPKMnOe8ZYz1YoAFeX4IbpwwGKTRUauLpvuE-xQN5uzDLxoDDTglPdZSDjH9oXtMLqadnp16oK-4ncxMr-9vafa7adTFx5DnnnXYxudYfmN1RuqDjVXSPrkxHqj1uSS_mWb8knxwesx49VYvyM_7ux_rb83j968P6y-PjelYWxrHVqzbcNiIYYUcret4a0A4DnWnHtoKWQuiH6xuwTAnLTiwAFL00q2Eay_Ix2PfOvffCXNR2zilUJ9UvJMrBlyIrlKfjpRJMeeEThlfXtcqSftRAVNz-mqr3tJXc_rqmH61xX_2PvmdTv_e9T4fPawBPHlMKhs_f4_1CU1RNvp3OrwAyIamwg
CitedBy_id crossref_primary_10_1016_j_est_2022_105820
crossref_primary_10_1016_j_buildenv_2025_112533
crossref_primary_10_1016_j_heliyon_2022_e11817
crossref_primary_10_1016_j_scitotenv_2023_164968
crossref_primary_10_1177_17442591231219025
crossref_primary_10_1186_s40537_024_00922_9
crossref_primary_10_1016_j_conbuildmat_2023_133330
crossref_primary_10_1080_02286203_2024_2371682
crossref_primary_10_1002_pmic_202200292
crossref_primary_10_1007_s12206_023_0140_3
crossref_primary_10_1016_j_enbuild_2022_112146
crossref_primary_10_1016_j_buildenv_2023_111120
crossref_primary_10_1080_23744731_2024_2444818
crossref_primary_10_1016_j_buildenv_2024_112173
crossref_primary_10_1016_j_enbuild_2021_111645
crossref_primary_10_1051_e3sconf_202339602007
crossref_primary_10_3390_atmos13111860
crossref_primary_10_3390_electronics10111227
crossref_primary_10_1016_j_jobe_2024_110221
crossref_primary_10_1109_ACCESS_2024_3512873
crossref_primary_10_1002_2475_8876_12255
crossref_primary_10_32388_GV07BN_2
crossref_primary_10_1002_2475_8876_12294
crossref_primary_10_3390_a17080332
crossref_primary_10_3390_atmos14091462
crossref_primary_10_1016_j_eswa_2022_119301
crossref_primary_10_1016_j_apenergy_2021_117819
crossref_primary_10_1016_j_buildenv_2024_112229
crossref_primary_10_1016_j_enbuild_2023_113841
crossref_primary_10_1016_j_buildenv_2022_109935
crossref_primary_10_1016_j_buildenv_2024_111171
crossref_primary_10_1016_j_enbuild_2024_115020
Cites_doi 10.1007/s12273-010-0011-6
10.1016/j.buildenv.2008.05.010
10.1016/j.applthermaleng.2006.05.021
10.1016/j.buildenv.2008.05.009
10.1080/10789669.2007.10391460
10.1126/science.1127647
10.1080/17512786.2015.1058180
10.1016/j.apenergy.2013.08.061
10.1080/10407782.2015.1090780
10.1007/s12273-019-0538-0
10.1016/S0378-7788(02)00239-6
10.1177/1420326X13499596
10.1371/journal.pone.0173317
10.1016/j.applthermaleng.2010.12.027
10.1016/j.buildenv.2014.11.033
10.1016/j.buildenv.2013.02.007
10.1177/1420326X07082499
10.1007/s13762-018-1642-x
10.1016/j.buildenv.2015.02.041
10.1111/j.1600-0668.2012.00771.x
10.1016/j.buildenv.2011.11.001
10.1016/j.buildenv.2013.06.005
10.1016/j.buildenv.2014.08.002
10.1016/j.enbuild.2011.11.040
10.1016/j.buildenv.2011.12.008
10.1016/j.buildenv.2009.08.008
10.1080/19401493.2016.1257654
10.1080/19401493.2016.1212933
10.1080/19401493.2015.1062557
10.1111/j.1600-0668.2008.00559.x
10.1016/j.ijheatmasstransfer.2013.04.017
10.1016/j.enbuild.2008.06.013
10.1016/j.enbuild.2017.02.012
10.1007/s12273-020-0664-8
10.1016/j.buildenv.2017.06.013
10.1016/S0360-1323(02)00054-9
10.1016/j.buildenv.2018.08.032
10.1016/j.neunet.2014.09.003
10.1016/j.buildenv.2013.04.002
10.1016/j.enbuild.2018.01.046
10.1080/10789669.2014.960239
10.1016/j.buildenv.2010.07.003
10.1080/10789669.2014.950895
10.1016/j.apm.2011.05.052
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jan 1, 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 1, 2021
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2020.110525
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 10_1016_j_enbuild_2020_110525
S0378778820317783
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c403t-f0904b21b579e2edf423c15f21065613403dd1567da31c0f8d1f1d118568f95f3
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Wed Aug 13 08:00:12 EDT 2025
Tue Jul 01 01:13:02 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords neural network (NN)
Non-isothermal
Data preprocessing
Indoor airflow prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-f0904b21b579e2edf423c15f21065613403dd1567da31c0f8d1f1d118568f95f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2489012554
PQPubID 2045483
ParticipantIDs proquest_journals_2489012554
crossref_citationtrail_10_1016_j_enbuild_2020_110525
crossref_primary_10_1016_j_enbuild_2020_110525
elsevier_sciencedirect_doi_10_1016_j_enbuild_2020_110525
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Song, Murray, Sammakia (b0185) 2013; 64
Zuo, Wetter, Tian, Li, Jin, Chen (b0045) 2016; 9
Yin, Gupta, Zhang, Liu, Chen (b0015) 2011; 46
Liu, Jin, Chen, You, Chen (b0075) 2016; 69
Zhang, Zhang, Zhai, Chen (b0005) 2007; 13
Cao, Meyers (b0030) 2012; 22
Khazaei, Shiehbeigi, Haji Molla Ali Kani (b0115) 2019; 16
Neto, Fiorelli (b0120) 2008; 40
Conceião António, Afonso (b0180) 2011; 31
Gijón-Rivera, Xamán, Álvarez, Serrano-Arellano (b0240) 2013; 68
Kim, Kato, Murakami (b0070) 2007; 16
Zhang, You (b0150) 2014; 23
J. Bjorck, C. Gomes, B. Selman, K.Q. Weinberger, Understanding Batch Normalization, in: Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018.
Qin, Yan, Zhou, Jiang (b0170) 2012; 50
S. Ioffe, Batch Renormalization: Towards reducing minibatch dependence in batch-normalized models, in: Proc. 31st Conf. Neural Inf. Process. Syst., Long Beach, USA, 2017: pp. 1946–1954.
Zhai, Chen, Haves, Klems (b0260) 2002; 37
Zhang, You (b0160) 2014; 82
Allocca, Chen, Glicksman (b0010) 2003; 35
Lim, Hong, Choi, Byun (b0200) 2017; 12
Zuo, Chen (b0095) 2010; 45
Zhang, You (b0155) 2014; 20
V. Nair, G.E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines, in: Proc. 27 Th Int. Conf. Mach. Learn., Haifa, 2010.
Ian, Yoshua, Aaron (b0205) 2017
.
Liu, Zhang, Xue, Zhai, Wang, Wei, Chen (b0055) 2015; 91
Zhang, Hiyama, Kato, Ishida (b0040) 2013; 63
Du, Xu, Jin, Liu (b0255) 2015; 85
Zuo, Chen (b0025) 2009; 19
Jin, Liu, Chen (b0080) 2014; 20
Liu, You, Zhang, Chen (b0050) 2017; 10
Zhang, Lam, Yao, Zhang (b0245) 2013; 68
Afram, Janabi-Sharifi, Fung, Raahemifar (b0145) 2017; 141
Zhou, Haghighat (b0140) 2009; 44
Ayata, Arcaklioglu, Yildiz (b0110) 2007; 27
Li, Dai, Chen, Lin (b0125) 2019; 12
Schmidhuber (b0105) 2015; 61
S. Santurkar, D. Tsipras, A. Ilyas, A. Madry, How does batch normalization help optimization?, in: Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018: pp. 2483–2493.
Huang, Kato, Hu (b0065) 2012; 47
D.P. Kingma, J.L. Ba, Adam: A method for stochasticoptimization, in: Proc. Int. Conf. Learn. Represent. 2015, San Diego, 2015.
Tian, Sevilla, Zuo, Sohn (b0035) 2017; 122
Stavrakakis, Zervas, Sarimveis, Markatos (b0130) 2012; 36
S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: Proc. 32nd Int. Conf. Mach. Learn., Lille, France, 2015. Doi: 10.1080/17512786.2015.1058180.
Nguyen, Reiter, Rigo (b0060) 2014; 113
Holden, Robbins, Stewart, Smith, Schultz, Wegener, Linden, Hormann, Enkrich, Soukoulis, Schurig, Taylor, Highstrete, Lee, Averitt, Markos, Mcpeake, Ramakrishna, Pendry, Shalaev, Maksimchuk, Umstadter, Chen, Shen, Moloney (b0100) 2006; 313
Sasamoto, Kato, Zhang (b0020) 2010; 3
J.L. Ba, J.R. Kiros, G.E. Hinton, Layer Normalization, ArXiv: 1607.06450v1. (2016).
Zhou, Haghighat (b0135) 2009; 44
Tian, Han, Zuo, Sohn (b0085) 2018; 165
Tian, Sevilla, Zuo (b0090) 2017; 10
Zhou, Ooka (b0175) 2020
Fan, Ito (b0250) 2012; 52
Cao, Ren (b0165) 2018; 144
Liu, Zhao, Luo, Jun (b0225) 2020; 46
Tian (10.1016/j.enbuild.2020.110525_b0035) 2017; 122
Zhang (10.1016/j.enbuild.2020.110525_b0160) 2014; 82
Fan (10.1016/j.enbuild.2020.110525_b0250) 2012; 52
Yin (10.1016/j.enbuild.2020.110525_b0015) 2011; 46
Du (10.1016/j.enbuild.2020.110525_b0255) 2015; 85
10.1016/j.enbuild.2020.110525_b0220
Cao (10.1016/j.enbuild.2020.110525_b0030) 2012; 22
Zhou (10.1016/j.enbuild.2020.110525_b0140) 2009; 44
Ayata (10.1016/j.enbuild.2020.110525_b0110) 2007; 27
Zhang (10.1016/j.enbuild.2020.110525_b0150) 2014; 23
Zhang (10.1016/j.enbuild.2020.110525_b0155) 2014; 20
Stavrakakis (10.1016/j.enbuild.2020.110525_b0130) 2012; 36
10.1016/j.enbuild.2020.110525_b0190
Holden (10.1016/j.enbuild.2020.110525_b0100) 2006; 313
Zuo (10.1016/j.enbuild.2020.110525_b0025) 2009; 19
Conceião António (10.1016/j.enbuild.2020.110525_b0180) 2011; 31
Gijón-Rivera (10.1016/j.enbuild.2020.110525_b0240) 2013; 68
Liu (10.1016/j.enbuild.2020.110525_b0050) 2017; 10
Schmidhuber (10.1016/j.enbuild.2020.110525_b0105) 2015; 61
10.1016/j.enbuild.2020.110525_b0235
Jin (10.1016/j.enbuild.2020.110525_b0080) 2014; 20
Zuo (10.1016/j.enbuild.2020.110525_b0095) 2010; 45
Li (10.1016/j.enbuild.2020.110525_b0125) 2019; 12
10.1016/j.enbuild.2020.110525_b0230
Liu (10.1016/j.enbuild.2020.110525_b0075) 2016; 69
Zhang (10.1016/j.enbuild.2020.110525_b0005) 2007; 13
Allocca (10.1016/j.enbuild.2020.110525_b0010) 2003; 35
10.1016/j.enbuild.2020.110525_b0195
Zhang (10.1016/j.enbuild.2020.110525_b0245) 2013; 68
Liu (10.1016/j.enbuild.2020.110525_b0225) 2020; 46
Cao (10.1016/j.enbuild.2020.110525_b0165) 2018; 144
Tian (10.1016/j.enbuild.2020.110525_b0090) 2017; 10
Lim (10.1016/j.enbuild.2020.110525_b0200) 2017; 12
Zuo (10.1016/j.enbuild.2020.110525_b0045) 2016; 9
Song (10.1016/j.enbuild.2020.110525_b0185) 2013; 64
Ian (10.1016/j.enbuild.2020.110525_b0205) 2017
Zhou (10.1016/j.enbuild.2020.110525_b0175) 2020
Liu (10.1016/j.enbuild.2020.110525_b0055) 2015; 91
Tian (10.1016/j.enbuild.2020.110525_b0085) 2018; 165
Qin (10.1016/j.enbuild.2020.110525_b0170) 2012; 50
Nguyen (10.1016/j.enbuild.2020.110525_b0060) 2014; 113
Kim (10.1016/j.enbuild.2020.110525_b0070) 2007; 16
Zhai (10.1016/j.enbuild.2020.110525_b0260) 2002; 37
Zhou (10.1016/j.enbuild.2020.110525_b0135) 2009; 44
10.1016/j.enbuild.2020.110525_b0215
Neto (10.1016/j.enbuild.2020.110525_b0120) 2008; 40
Zhang (10.1016/j.enbuild.2020.110525_b0040) 2013; 63
Huang (10.1016/j.enbuild.2020.110525_b0065) 2012; 47
10.1016/j.enbuild.2020.110525_b0210
Afram (10.1016/j.enbuild.2020.110525_b0145) 2017; 141
Sasamoto (10.1016/j.enbuild.2020.110525_b0020) 2010; 3
Khazaei (10.1016/j.enbuild.2020.110525_b0115) 2019; 16
References_xml – volume: 46
  start-page: 1090
  year: 2020
  end-page: 1120
  ident: b0225
  article-title: Research progress on batch normalization of deep learning and its related algorithms
  publication-title: Acta Autom. Sin.
– volume: 27
  start-page: 12
  year: 2007
  end-page: 20
  ident: b0110
  article-title: Application of ANN to explore the potential use of natural ventilation in buildings in Turkey
  publication-title: Appl. Therm. Eng.
– volume: 37
  start-page: 857
  year: 2002
  end-page: 864
  ident: b0260
  article-title: On approaches to couple energy simulation and computational fluid dynamics programs
  publication-title: Build. Environ.
– volume: 40
  start-page: 2169
  year: 2008
  end-page: 2176
  ident: b0120
  article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
  publication-title: Energy Build.
– volume: 44
  start-page: 657
  year: 2009
  end-page: 665
  ident: b0140
  article-title: Optimization of ventilation systems in office environment, part II: Results and discussions
  publication-title: Build. Environ.
– reference: J.L. Ba, J.R. Kiros, G.E. Hinton, Layer Normalization, ArXiv: 1607.06450v1. (2016).
– volume: 165
  start-page: 184
  year: 2018
  end-page: 199
  ident: b0085
  article-title: Building energy simulation coupled with CFD for indoor environment: A critical review and recent applications
  publication-title: Energy Build.
– volume: 13
  start-page: 871
  year: 2007
  end-page: 886
  ident: b0005
  article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—comparison with experimental data from literature
  publication-title: HVAC&R Res.
– volume: 45
  start-page: 747
  year: 2010
  end-page: 757
  ident: b0095
  article-title: Fast and informative flow simulations in a building by using fast fluid dynamics model on graphics processing unit
  publication-title: Build. Environ.
– year: 2017
  ident: b0205
  article-title: Deep Learning
– volume: 16
  start-page: 729
  year: 2019
  end-page: 736
  ident: b0115
  article-title: Modeling indoor air carbon dioxide concentration using artificial neural network
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 68
  start-page: 22
  year: 2013
  end-page: 34
  ident: b0240
  article-title: Coupling CFD-BES Simulation of a glazed office with different types of windows in Mexico City
  publication-title: Build. Environ.
– volume: 113
  start-page: 1043
  year: 2014
  end-page: 1058
  ident: b0060
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energy.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0100
  article-title: Reducing the Dimensionality of Data with Neural Networks
  publication-title: Science (80-.)
– volume: 35
  start-page: 785
  year: 2003
  end-page: 795
  ident: b0010
  article-title: Design analysis of single-sided natural ventilation
  publication-title: Energy Build.
– volume: 64
  start-page: 80
  year: 2013
  end-page: 90
  ident: b0185
  article-title: Airflow and temperature distribution optimization in data centers using artificial neural networks
  publication-title: Int. J. Heat Mass Transf.
– volume: 47
  start-page: 208
  year: 2012
  end-page: 216
  ident: b0065
  article-title: Optimum design for indoor humidity by coupling Genetic Algorithm with transient simulation based on Contribution Ratio of Indoor Humidity and Climate analysis
  publication-title: Energy Build.
– volume: 91
  start-page: 91
  year: 2015
  end-page: 100
  ident: b0055
  article-title: State-of-the-art methods for inverse design of an enclosed environment
  publication-title: Build. Environ.
– volume: 50
  start-page: 214
  year: 2012
  end-page: 220
  ident: b0170
  article-title: Research on a dynamic simulation method of atrium thermal environment based on neural network
  publication-title: Build. Environ.
– volume: 122
  start-page: 269
  year: 2017
  end-page: 286
  ident: b0035
  article-title: Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems
  publication-title: Build. Environ.
– volume: 16
  start-page: 519
  year: 2007
  end-page: 528
  ident: b0070
  article-title: New scales for assessing contribution ratio of pollutant sources to indoor air quality
  publication-title: Indoor Built Environ.
– volume: 68
  start-page: 100
  year: 2013
  end-page: 113
  ident: b0245
  article-title: Coupled EnergyPlus and computational fluid dynamics simulation for natural ventilation
  publication-title: Build. Environ.
– volume: 10
  start-page: 243
  year: 2017
  end-page: 255
  ident: b0090
  article-title: A systematic evaluation of accelerating indoor airflow simulations using cross-platform parallel computing
  publication-title: J. Build. Perform. Simul.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b0105
  article-title: Deep Learning in neural networks: An overview
  publication-title: Neural Networks.
– reference: S. Ioffe, Batch Renormalization: Towards reducing minibatch dependence in batch-normalized models, in: Proc. 31st Conf. Neural Inf. Process. Syst., Long Beach, USA, 2017: pp. 1946–1954.
– volume: 36
  start-page: 193
  year: 2012
  end-page: 211
  ident: b0130
  article-title: Optimization of window-openings design for thermal comfort in naturally ventilated buildings
  publication-title: Appl. Math. Model.
– volume: 69
  start-page: 748
  year: 2016
  end-page: 762
  ident: b0075
  article-title: Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow
  publication-title: Numer. Heat Transf. Part A Appl.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 22
  ident: b0200
  article-title: Real-time traffic sign recognition based on a general purpose GPU and deep-learning
  publication-title: PLoS One.
– reference: J. Bjorck, C. Gomes, B. Selman, K.Q. Weinberger, Understanding Batch Normalization, in: Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018.
– reference: D.P. Kingma, J.L. Ba, Adam: A method for stochasticoptimization, in: Proc. Int. Conf. Learn. Represent. 2015, San Diego, 2015.
– volume: 20
  start-page: 932
  year: 2014
  end-page: 943
  ident: b0080
  article-title: Accelerating fast fluid dynamics with a coarse-grid projection scheme
  publication-title: HVAC&R Res.
– volume: 20
  start-page: 836
  year: 2014
  end-page: 843
  ident: b0155
  article-title: Inverse design of aircraft cabin environment by coupling artificial neural network and genetic algorithm
  publication-title: HVAC&R Res.
– volume: 12
  start-page: 665
  year: 2019
  end-page: 681
  ident: b0125
  article-title: An ANN-based fast building energy consumption prediction method for complex architectural form at the early design stage
  publication-title: Build. Simul.
– volume: 10
  start-page: 326
  year: 2017
  end-page: 343
  ident: b0050
  article-title: Development of a fast fluid dynamics-based adjoint method for the inverse design of indoor environments
  publication-title: J. Build. Perform. Simul.
– reference: S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: Proc. 32nd Int. Conf. Mach. Learn., Lille, France, 2015. Doi: 10.1080/17512786.2015.1058180.
– volume: 82
  start-page: 20
  year: 2014
  end-page: 26
  ident: b0160
  article-title: A simulation-based inverse design of preset aircraft cabin environment
  publication-title: Build. Environ.
– volume: 22
  start-page: 427
  year: 2012
  end-page: 441
  ident: b0030
  article-title: On the construction and use of linear low-dimensional ventilation models
  publication-title: Indoor Air.
– volume: 85
  start-page: 104
  year: 2015
  end-page: 113
  ident: b0255
  article-title: Temperature sensor placement optimization for VAV control using CFD-BES co-simulation strategy
  publication-title: Build. Environ.
– volume: 44
  start-page: 651
  year: 2009
  end-page: 656
  ident: b0135
  article-title: Optimization of ventilation system design and operation in office environment, Part I: Methodology
  publication-title: Build. Environ.
– volume: 52
  start-page: 57
  year: 2012
  end-page: 67
  ident: b0250
  article-title: Energy consumption analysis intended for real office space with energy recovery ventilator by integrating BES and CFD approaches
  publication-title: Build. Environ.
– volume: 23
  start-page: 1187
  year: 2014
  end-page: 1195
  ident: b0150
  article-title: Applying neural networks to solve the inverse problem of indoor environment
  publication-title: Indoor Built Environ.
– volume: 19
  start-page: 33
  year: 2009
  end-page: 44
  ident: b0025
  article-title: Real-time or faster-than-real-time simulation of airflow in buildings
  publication-title: Indoor Air.
– year: 2020
  ident: b0175
  article-title: Comparison of different deep neural network architectures for isothermal indoor airflow prediction
  publication-title: Build. Simul.
– volume: 144
  start-page: 316
  year: 2018
  end-page: 333
  ident: b0165
  article-title: Ventilation control strategy using low-dimensional linear ventilation models and artificial neural network
  publication-title: Build. Environ.
– reference: S. Santurkar, D. Tsipras, A. Ilyas, A. Madry, How does batch normalization help optimization?, in: Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018: pp. 2483–2493.
– volume: 46
  start-page: 75
  year: 2011
  end-page: 81
  ident: b0015
  article-title: Distributions of respiratory contaminants from a patient with different postures and exhaling modes in a single-bed inpatient room
  publication-title: Build. Environ.
– reference: .
– volume: 63
  start-page: 89
  year: 2013
  end-page: 96
  ident: b0040
  article-title: Building energy simulation considering spatial temperature distribution for nonuniform indoor environment
  publication-title: Build. Environ.
– volume: 31
  start-page: 1244
  year: 2011
  end-page: 1251
  ident: b0180
  article-title: Air temperature fields inside refrigeration cabins: A comparison of results from CFD and ANN modelling
  publication-title: Appl. Therm. Eng.
– reference: V. Nair, G.E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines, in: Proc. 27 Th Int. Conf. Mach. Learn., Haifa, 2010.
– volume: 141
  start-page: 96
  year: 2017
  end-page: 113
  ident: b0145
  article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system
  publication-title: Energy Build.
– volume: 3
  start-page: 263
  year: 2010
  end-page: 278
  ident: b0020
  article-title: Control of indoor thermal environment based on concept of contribution ratio of indoor climate
  publication-title: Build. Simul.
– volume: 9
  start-page: 366
  year: 2016
  end-page: 381
  ident: b0045
  article-title: Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library
  publication-title: J. Build. Perform. Simul.
– volume: 3
  start-page: 263
  year: 2010
  ident: 10.1016/j.enbuild.2020.110525_b0020
  article-title: Control of indoor thermal environment based on concept of contribution ratio of indoor climate
  publication-title: Build. Simul.
  doi: 10.1007/s12273-010-0011-6
– ident: 10.1016/j.enbuild.2020.110525_b0190
– volume: 44
  start-page: 657
  year: 2009
  ident: 10.1016/j.enbuild.2020.110525_b0140
  article-title: Optimization of ventilation systems in office environment, part II: Results and discussions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2008.05.010
– volume: 27
  start-page: 12
  year: 2007
  ident: 10.1016/j.enbuild.2020.110525_b0110
  article-title: Application of ANN to explore the potential use of natural ventilation in buildings in Turkey
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.05.021
– volume: 44
  start-page: 651
  year: 2009
  ident: 10.1016/j.enbuild.2020.110525_b0135
  article-title: Optimization of ventilation system design and operation in office environment, Part I: Methodology
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2008.05.009
– volume: 13
  start-page: 871
  year: 2007
  ident: 10.1016/j.enbuild.2020.110525_b0005
  article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—comparison with experimental data from literature
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2007.10391460
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.enbuild.2020.110525_b0100
  article-title: Reducing the Dimensionality of Data with Neural Networks
  publication-title: Science (80-.)
  doi: 10.1126/science.1127647
– ident: 10.1016/j.enbuild.2020.110525_b0235
– ident: 10.1016/j.enbuild.2020.110525_b0210
  doi: 10.1080/17512786.2015.1058180
– volume: 113
  start-page: 1043
  year: 2014
  ident: 10.1016/j.enbuild.2020.110525_b0060
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2013.08.061
– volume: 69
  start-page: 748
  year: 2016
  ident: 10.1016/j.enbuild.2020.110525_b0075
  article-title: Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/10407782.2015.1090780
– volume: 12
  start-page: 665
  year: 2019
  ident: 10.1016/j.enbuild.2020.110525_b0125
  article-title: An ANN-based fast building energy consumption prediction method for complex architectural form at the early design stage
  publication-title: Build. Simul.
  doi: 10.1007/s12273-019-0538-0
– volume: 35
  start-page: 785
  year: 2003
  ident: 10.1016/j.enbuild.2020.110525_b0010
  article-title: Design analysis of single-sided natural ventilation
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00239-6
– volume: 23
  start-page: 1187
  year: 2014
  ident: 10.1016/j.enbuild.2020.110525_b0150
  article-title: Applying neural networks to solve the inverse problem of indoor environment
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X13499596
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.enbuild.2020.110525_b0200
  article-title: Real-time traffic sign recognition based on a general purpose GPU and deep-learning
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0173317
– volume: 46
  start-page: 1090
  year: 2020
  ident: 10.1016/j.enbuild.2020.110525_b0225
  article-title: Research progress on batch normalization of deep learning and its related algorithms
  publication-title: Acta Autom. Sin.
– volume: 31
  start-page: 1244
  year: 2011
  ident: 10.1016/j.enbuild.2020.110525_b0180
  article-title: Air temperature fields inside refrigeration cabins: A comparison of results from CFD and ANN modelling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.12.027
– volume: 85
  start-page: 104
  year: 2015
  ident: 10.1016/j.enbuild.2020.110525_b0255
  article-title: Temperature sensor placement optimization for VAV control using CFD-BES co-simulation strategy
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.11.033
– volume: 63
  start-page: 89
  year: 2013
  ident: 10.1016/j.enbuild.2020.110525_b0040
  article-title: Building energy simulation considering spatial temperature distribution for nonuniform indoor environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.02.007
– volume: 16
  start-page: 519
  year: 2007
  ident: 10.1016/j.enbuild.2020.110525_b0070
  article-title: New scales for assessing contribution ratio of pollutant sources to indoor air quality
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X07082499
– volume: 16
  start-page: 729
  year: 2019
  ident: 10.1016/j.enbuild.2020.110525_b0115
  article-title: Modeling indoor air carbon dioxide concentration using artificial neural network
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-018-1642-x
– ident: 10.1016/j.enbuild.2020.110525_b0215
– volume: 91
  start-page: 91
  year: 2015
  ident: 10.1016/j.enbuild.2020.110525_b0055
  article-title: State-of-the-art methods for inverse design of an enclosed environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.02.041
– volume: 22
  start-page: 427
  year: 2012
  ident: 10.1016/j.enbuild.2020.110525_b0030
  article-title: On the construction and use of linear low-dimensional ventilation models
  publication-title: Indoor Air.
  doi: 10.1111/j.1600-0668.2012.00771.x
– volume: 50
  start-page: 214
  year: 2012
  ident: 10.1016/j.enbuild.2020.110525_b0170
  article-title: Research on a dynamic simulation method of atrium thermal environment based on neural network
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.11.001
– volume: 68
  start-page: 22
  year: 2013
  ident: 10.1016/j.enbuild.2020.110525_b0240
  article-title: Coupling CFD-BES Simulation of a glazed office with different types of windows in Mexico City
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.06.005
– volume: 82
  start-page: 20
  year: 2014
  ident: 10.1016/j.enbuild.2020.110525_b0160
  article-title: A simulation-based inverse design of preset aircraft cabin environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.08.002
– volume: 47
  start-page: 208
  year: 2012
  ident: 10.1016/j.enbuild.2020.110525_b0065
  article-title: Optimum design for indoor humidity by coupling Genetic Algorithm with transient simulation based on Contribution Ratio of Indoor Humidity and Climate analysis
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.11.040
– ident: 10.1016/j.enbuild.2020.110525_b0230
– volume: 52
  start-page: 57
  year: 2012
  ident: 10.1016/j.enbuild.2020.110525_b0250
  article-title: Energy consumption analysis intended for real office space with energy recovery ventilator by integrating BES and CFD approaches
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.12.008
– volume: 45
  start-page: 747
  year: 2010
  ident: 10.1016/j.enbuild.2020.110525_b0095
  article-title: Fast and informative flow simulations in a building by using fast fluid dynamics model on graphics processing unit
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.08.008
– volume: 10
  start-page: 326
  year: 2017
  ident: 10.1016/j.enbuild.2020.110525_b0050
  article-title: Development of a fast fluid dynamics-based adjoint method for the inverse design of indoor environments
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2016.1257654
– volume: 10
  start-page: 243
  year: 2017
  ident: 10.1016/j.enbuild.2020.110525_b0090
  article-title: A systematic evaluation of accelerating indoor airflow simulations using cross-platform parallel computing
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2016.1212933
– volume: 9
  start-page: 366
  year: 2016
  ident: 10.1016/j.enbuild.2020.110525_b0045
  article-title: Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2015.1062557
– volume: 19
  start-page: 33
  year: 2009
  ident: 10.1016/j.enbuild.2020.110525_b0025
  article-title: Real-time or faster-than-real-time simulation of airflow in buildings
  publication-title: Indoor Air.
  doi: 10.1111/j.1600-0668.2008.00559.x
– volume: 64
  start-page: 80
  year: 2013
  ident: 10.1016/j.enbuild.2020.110525_b0185
  article-title: Airflow and temperature distribution optimization in data centers using artificial neural networks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.04.017
– volume: 40
  start-page: 2169
  year: 2008
  ident: 10.1016/j.enbuild.2020.110525_b0120
  article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.06.013
– volume: 141
  start-page: 96
  year: 2017
  ident: 10.1016/j.enbuild.2020.110525_b0145
  article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.02.012
– year: 2020
  ident: 10.1016/j.enbuild.2020.110525_b0175
  article-title: Comparison of different deep neural network architectures for isothermal indoor airflow prediction
  publication-title: Build. Simul.
  doi: 10.1007/s12273-020-0664-8
– volume: 122
  start-page: 269
  year: 2017
  ident: 10.1016/j.enbuild.2020.110525_b0035
  article-title: Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.06.013
– volume: 37
  start-page: 857
  year: 2002
  ident: 10.1016/j.enbuild.2020.110525_b0260
  article-title: On approaches to couple energy simulation and computational fluid dynamics programs
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(02)00054-9
– volume: 144
  start-page: 316
  year: 2018
  ident: 10.1016/j.enbuild.2020.110525_b0165
  article-title: Ventilation control strategy using low-dimensional linear ventilation models and artificial neural network
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.08.032
– year: 2017
  ident: 10.1016/j.enbuild.2020.110525_b0205
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.enbuild.2020.110525_b0105
  article-title: Deep Learning in neural networks: An overview
  publication-title: Neural Networks.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 68
  start-page: 100
  year: 2013
  ident: 10.1016/j.enbuild.2020.110525_b0245
  article-title: Coupled EnergyPlus and computational fluid dynamics simulation for natural ventilation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.04.002
– volume: 165
  start-page: 184
  year: 2018
  ident: 10.1016/j.enbuild.2020.110525_b0085
  article-title: Building energy simulation coupled with CFD for indoor environment: A critical review and recent applications
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.01.046
– volume: 20
  start-page: 932
  year: 2014
  ident: 10.1016/j.enbuild.2020.110525_b0080
  article-title: Accelerating fast fluid dynamics with a coarse-grid projection scheme
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2014.960239
– ident: 10.1016/j.enbuild.2020.110525_b0195
– volume: 46
  start-page: 75
  year: 2011
  ident: 10.1016/j.enbuild.2020.110525_b0015
  article-title: Distributions of respiratory contaminants from a patient with different postures and exhaling modes in a single-bed inpatient room
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.07.003
– volume: 20
  start-page: 836
  year: 2014
  ident: 10.1016/j.enbuild.2020.110525_b0155
  article-title: Inverse design of aircraft cabin environment by coupling artificial neural network and genetic algorithm
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2014.950895
– volume: 36
  start-page: 193
  year: 2012
  ident: 10.1016/j.enbuild.2020.110525_b0130
  article-title: Optimization of window-openings design for thermal comfort in naturally ventilated buildings
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.05.052
– ident: 10.1016/j.enbuild.2020.110525_b0220
SSID ssj0006571
Score 2.4940126
Snippet •Fast and accurate prediction of non-isothermal airflow distribution are achieved.•Suitable data preprocessing methods are proposed.•Data preprocessing and...
The indoor environment is important to the daily lives of humans. Fast and accurate prediction of indoor environments is desirable with regard to practical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110525
SubjectTerms Air flow
Algorithms
Boundary conditions
Computer simulation
Data preprocessing
Indoor airflow prediction
Indoor environments
Inverse design
Learning algorithms
Machine learning
neural network (NN)
Neural networks
Non-isothermal
Predictions
Preprocessing
Submergence
Surface temperature
Temperature distribution
Training
Two dimensional models
Velocity
Title Influence of data preprocessing on neural network performance for reproducing CFD simulations of non-isothermal indoor airflow distribution
URI https://dx.doi.org/10.1016/j.enbuild.2020.110525
https://www.proquest.com/docview/2489012554
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXOCAeIq3cuCarU3TLj1Og2k8hYBJ3KK2aaSi0U5sEzf-AH8aO00ZIKRJnFpVthXFrmO39mdCThPOfWN0zGIvk0zkvmCJl8ZMRkEn5TEPUwvXdHMbDYbi8il8WiK9phcGyyqd7699uvXW7knb7WZ7XBTtBy8AY4MMjoNdwhURP4XooJW33udlHlFoky4kZkg97-JpP7cQXqAYIWAotwXxIU7M_vt8-uWp7fHT3yDrLm6k3Xppm2QpL7fI2jc0wW3ycdEMHKGVoVj6SceIWWk7AYCCViVF-EoQU9bF33Q8bxugcEMtuZ5lSN3rn9FJ8eLGe01QZlmVrJjYnq0XkALpfAVMSfFqRtUb1YjB68Zn7ZBh__yxN2Bu1gLLhBdMmfFiT6TcT8NOnPNcGwizMj80kBFGmGMAkdaQ63V0EviZZ6T2ja8hOwkjaeLQBLtkGRaR7xGq8W-OiWSSpIEw3CQxhEi51KkvExkZb5-IZodV5oDIcR7GSDUVZ8_KKUahYlStmH3S-mIb10gcixhkoz71w6QUnBaLWI8adSv3Tk8UFxKCJ0jBxMH_JR-SVY5VMfYjzhFZnr7O8mMIa6bpibXbE7LS7d1f3-H14mpw-wlvO_tD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9wwDLfY8cD2MMHYNDYGedhruDZNeukjOjjd8edeBhJvUds0UtHRnrhDfAi-9Ow0hW2ahMRTq8q2oth17Nb-GeBnLkTsnM14FpWayyqWPI-KjOs0GRUiE6rwcE2X83R6Lc9u1M0GjPteGCqrDL6_8-neW4cnw7Cbw2VdD39FCRobZnAC7RKvyTvYJHQqNYDN49n5dP7skFPl8y6i58Tw0sgzvD0ihIF6QZihwtfEKxqa_f8j6h9n7U-gyTZ8DKEjO-5WtwMbVfMJPvwBKLgLT7N-5ghrHaPqT7Yk2ErfDIAUrG0YIViimKar_2bLl84BhjfMk9uHkqjHkxO2qu_ChK8VyWzahtcr37Z1h1Iwo2-RKa_v3aJ9ZJZgeMMErc9wPTm9Gk95GLfASxkla-6iLJKFiAs1yipRWYeRVhkrh0lhSmkGElmL6d7I5klcRk7b2MUWExSVapcpl3yBAS6i-grM0g8dl-o8LxLphMszjJIqbYtY5zp10R7IfodNGbDIaSTGwvRFZ7cmKMaQYkynmD04emZbdmAcrzHoXn3mL6syeGC8xrrfq9uE13plhNQYP2EWJr-9XfIhbE2vLi_MxWx-_h3eCyqS8d909mGwvn-ofmCUsy4OghX_BiGX_F8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+data+preprocessing+on+neural+network+performance+for+reproducing+CFD+simulations+of+non-isothermal+indoor+airflow+distribution&rft.jtitle=Energy+and+buildings&rft.au=Zhou%2C+Qi&rft.au=Ooka%2C+Ryozo&rft.date=2021-01-01&rft.issn=0378-7788&rft.volume=230&rft.spage=110525&rft_id=info:doi/10.1016%2Fj.enbuild.2020.110525&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2020_110525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon