Influence of data preprocessing on neural network performance for reproducing CFD simulations of non-isothermal indoor airflow distribution
•Fast and accurate prediction of non-isothermal airflow distribution are achieved.•Suitable data preprocessing methods are proposed.•Data preprocessing and training dataset have impact on neural network generality.•The error submergence occurs when neural network output has no preprocessing.•Separat...
Saved in:
Published in | Energy and buildings Vol. 230; p. 110525 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.01.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Fast and accurate prediction of non-isothermal airflow distribution are achieved.•Suitable data preprocessing methods are proposed.•Data preprocessing and training dataset have impact on neural network generality.•The error submergence occurs when neural network output has no preprocessing.•Separate prediction of multiple variables without data preprocessing is possible.
The indoor environment is important to the daily lives of humans. Fast and accurate prediction of indoor environments is desirable with regard to practical applications, such as coupled simulation, inverse design, and system control. Neural network (NN) is a popular machine learning model used to build mappings between target variables with nonlinear relations. To confirm the feasibility of an NN for fast and accurate prediction of indoor environments (including both velocity and temperature distributions), two-dimensional non-isothermal cases are set and an NN model is constructed in this study, where the inputs are boundary conditions (i.e. inlet velocity, temperature and window surface temperature) and outputs are velocity and temperature distributions. Various data preprocessing methods are utilized, and their results are compared to reveal the impact of data preprocessing on NN performance. The results show that, for most cases, different preprocessing methods can lead to similar NN performances with a prediction time of approximately 350 μs for each case and a prediction error of less than 10% for the maximum value and 5% for the mean value. Without data preprocessing, error submergence is likely to occur, and the gradient descent algorithm may fail to reduce errors of variables with smaller orders of magnitude during the training process. Separate prediction of multiple variables without data preprocessing can achieve accurate predictions as simultaneous prediction with data preprocessing; however, the computation cost for training multiple NNs for separate predictions should be considered. |
---|---|
AbstractList | •Fast and accurate prediction of non-isothermal airflow distribution are achieved.•Suitable data preprocessing methods are proposed.•Data preprocessing and training dataset have impact on neural network generality.•The error submergence occurs when neural network output has no preprocessing.•Separate prediction of multiple variables without data preprocessing is possible.
The indoor environment is important to the daily lives of humans. Fast and accurate prediction of indoor environments is desirable with regard to practical applications, such as coupled simulation, inverse design, and system control. Neural network (NN) is a popular machine learning model used to build mappings between target variables with nonlinear relations. To confirm the feasibility of an NN for fast and accurate prediction of indoor environments (including both velocity and temperature distributions), two-dimensional non-isothermal cases are set and an NN model is constructed in this study, where the inputs are boundary conditions (i.e. inlet velocity, temperature and window surface temperature) and outputs are velocity and temperature distributions. Various data preprocessing methods are utilized, and their results are compared to reveal the impact of data preprocessing on NN performance. The results show that, for most cases, different preprocessing methods can lead to similar NN performances with a prediction time of approximately 350 μs for each case and a prediction error of less than 10% for the maximum value and 5% for the mean value. Without data preprocessing, error submergence is likely to occur, and the gradient descent algorithm may fail to reduce errors of variables with smaller orders of magnitude during the training process. Separate prediction of multiple variables without data preprocessing can achieve accurate predictions as simultaneous prediction with data preprocessing; however, the computation cost for training multiple NNs for separate predictions should be considered. The indoor environment is important to the daily lives of humans. Fast and accurate prediction of indoor environments is desirable with regard to practical applications, such as coupled simulation, inverse design, and system control. Neural network (NN) is a popular machine learning model used to build mappings between target variables with nonlinear relations. To confirm the feasibility of an NN for fast and accurate prediction of indoor environments (including both velocity and temperature distributions), two-dimensional non-isothermal cases are set and an NN model is constructed in this study, where the inputs are boundary conditions (i.e. inlet velocity, temperature and window surface temperature) and outputs are velocity and temperature distributions. Various data preprocessing methods are utilized, and their results are compared to reveal the impact of data preprocessing on NN performance. The results show that, for most cases, different preprocessing methods can lead to similar NN performances with a prediction time of approximately 350 µs for each case and a prediction error of less than 10% for the maximum value and 5% for the mean value. Without data preprocessing, error submergence is likely to occur, and the gradient descent algorithm may fail to reduce errors of variables with smaller orders of magnitude during the training process. Separate prediction of multiple variables without data preprocessing can achieve accurate predictions as simultaneous prediction with data preprocessing; however, the computation cost for training multiple NNs for separate predictions should be considered. |
ArticleNumber | 110525 |
Author | Zhou, Qi Ooka, Ryozo |
Author_xml | – sequence: 1 givenname: Qi surname: Zhou fullname: Zhou, Qi email: qizhou@iis.u-tokyo.ac.jp organization: Department of Architecture, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan – sequence: 2 givenname: Ryozo surname: Ooka fullname: Ooka, Ryozo organization: Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan |
BookMark | eNqFkc9uGyEQh1GUSnH-PEIkpJ7XYdhlF6uHqnKSNlKkXtozwjC0uGtwgY3VZ8hLh41z6iWnQej7hpkf5-Q0xICEXANbAoP-ZrvEsJn8aJec8XoHTHBxQhYgB970MMhTsmDtIJthkPKMnOe8ZYz1YoAFeX4IbpwwGKTRUauLpvuE-xQN5uzDLxoDDTglPdZSDjH9oXtMLqadnp16oK-4ncxMr-9vafa7adTFx5DnnnXYxudYfmN1RuqDjVXSPrkxHqj1uSS_mWb8knxwesx49VYvyM_7ux_rb83j968P6y-PjelYWxrHVqzbcNiIYYUcret4a0A4DnWnHtoKWQuiH6xuwTAnLTiwAFL00q2Eay_Ix2PfOvffCXNR2zilUJ9UvJMrBlyIrlKfjpRJMeeEThlfXtcqSftRAVNz-mqr3tJXc_rqmH61xX_2PvmdTv_e9T4fPawBPHlMKhs_f4_1CU1RNvp3OrwAyIamwg |
CitedBy_id | crossref_primary_10_1016_j_est_2022_105820 crossref_primary_10_1016_j_buildenv_2025_112533 crossref_primary_10_1016_j_heliyon_2022_e11817 crossref_primary_10_1016_j_scitotenv_2023_164968 crossref_primary_10_1177_17442591231219025 crossref_primary_10_1186_s40537_024_00922_9 crossref_primary_10_1016_j_conbuildmat_2023_133330 crossref_primary_10_1080_02286203_2024_2371682 crossref_primary_10_1002_pmic_202200292 crossref_primary_10_1007_s12206_023_0140_3 crossref_primary_10_1016_j_enbuild_2022_112146 crossref_primary_10_1016_j_buildenv_2023_111120 crossref_primary_10_1080_23744731_2024_2444818 crossref_primary_10_1016_j_buildenv_2024_112173 crossref_primary_10_1016_j_enbuild_2021_111645 crossref_primary_10_1051_e3sconf_202339602007 crossref_primary_10_3390_atmos13111860 crossref_primary_10_3390_electronics10111227 crossref_primary_10_1016_j_jobe_2024_110221 crossref_primary_10_1109_ACCESS_2024_3512873 crossref_primary_10_1002_2475_8876_12255 crossref_primary_10_32388_GV07BN_2 crossref_primary_10_1002_2475_8876_12294 crossref_primary_10_3390_a17080332 crossref_primary_10_3390_atmos14091462 crossref_primary_10_1016_j_eswa_2022_119301 crossref_primary_10_1016_j_apenergy_2021_117819 crossref_primary_10_1016_j_buildenv_2024_112229 crossref_primary_10_1016_j_enbuild_2023_113841 crossref_primary_10_1016_j_buildenv_2022_109935 crossref_primary_10_1016_j_buildenv_2024_111171 crossref_primary_10_1016_j_enbuild_2024_115020 |
Cites_doi | 10.1007/s12273-010-0011-6 10.1016/j.buildenv.2008.05.010 10.1016/j.applthermaleng.2006.05.021 10.1016/j.buildenv.2008.05.009 10.1080/10789669.2007.10391460 10.1126/science.1127647 10.1080/17512786.2015.1058180 10.1016/j.apenergy.2013.08.061 10.1080/10407782.2015.1090780 10.1007/s12273-019-0538-0 10.1016/S0378-7788(02)00239-6 10.1177/1420326X13499596 10.1371/journal.pone.0173317 10.1016/j.applthermaleng.2010.12.027 10.1016/j.buildenv.2014.11.033 10.1016/j.buildenv.2013.02.007 10.1177/1420326X07082499 10.1007/s13762-018-1642-x 10.1016/j.buildenv.2015.02.041 10.1111/j.1600-0668.2012.00771.x 10.1016/j.buildenv.2011.11.001 10.1016/j.buildenv.2013.06.005 10.1016/j.buildenv.2014.08.002 10.1016/j.enbuild.2011.11.040 10.1016/j.buildenv.2011.12.008 10.1016/j.buildenv.2009.08.008 10.1080/19401493.2016.1257654 10.1080/19401493.2016.1212933 10.1080/19401493.2015.1062557 10.1111/j.1600-0668.2008.00559.x 10.1016/j.ijheatmasstransfer.2013.04.017 10.1016/j.enbuild.2008.06.013 10.1016/j.enbuild.2017.02.012 10.1007/s12273-020-0664-8 10.1016/j.buildenv.2017.06.013 10.1016/S0360-1323(02)00054-9 10.1016/j.buildenv.2018.08.032 10.1016/j.neunet.2014.09.003 10.1016/j.buildenv.2013.04.002 10.1016/j.enbuild.2018.01.046 10.1080/10789669.2014.960239 10.1016/j.buildenv.2010.07.003 10.1080/10789669.2014.950895 10.1016/j.apm.2011.05.052 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Jan 1, 2021 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Jan 1, 2021 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.enbuild.2020.110525 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
ExternalDocumentID | 10_1016_j_enbuild_2020_110525 S0378778820317783 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG RPZ SAC SET SEW SSH WUQ ZMT ZY4 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c403t-f0904b21b579e2edf423c15f21065613403dd1567da31c0f8d1f1d118568f95f3 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Wed Aug 13 08:00:12 EDT 2025 Tue Jul 01 01:13:02 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Fri Feb 23 02:46:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | neural network (NN) Non-isothermal Data preprocessing Indoor airflow prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-f0904b21b579e2edf423c15f21065613403dd1567da31c0f8d1f1d118568f95f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2489012554 |
PQPubID | 2045483 |
ParticipantIDs | proquest_journals_2489012554 crossref_citationtrail_10_1016_j_enbuild_2020_110525 crossref_primary_10_1016_j_enbuild_2020_110525 elsevier_sciencedirect_doi_10_1016_j_enbuild_2020_110525 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Energy and buildings |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Song, Murray, Sammakia (b0185) 2013; 64 Zuo, Wetter, Tian, Li, Jin, Chen (b0045) 2016; 9 Yin, Gupta, Zhang, Liu, Chen (b0015) 2011; 46 Liu, Jin, Chen, You, Chen (b0075) 2016; 69 Zhang, Zhang, Zhai, Chen (b0005) 2007; 13 Cao, Meyers (b0030) 2012; 22 Khazaei, Shiehbeigi, Haji Molla Ali Kani (b0115) 2019; 16 Neto, Fiorelli (b0120) 2008; 40 Conceião António, Afonso (b0180) 2011; 31 Gijón-Rivera, Xamán, Álvarez, Serrano-Arellano (b0240) 2013; 68 Kim, Kato, Murakami (b0070) 2007; 16 Zhang, You (b0150) 2014; 23 J. Bjorck, C. Gomes, B. Selman, K.Q. Weinberger, Understanding Batch Normalization, in: Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018. Qin, Yan, Zhou, Jiang (b0170) 2012; 50 S. Ioffe, Batch Renormalization: Towards reducing minibatch dependence in batch-normalized models, in: Proc. 31st Conf. Neural Inf. Process. Syst., Long Beach, USA, 2017: pp. 1946–1954. Zhai, Chen, Haves, Klems (b0260) 2002; 37 Zhang, You (b0160) 2014; 82 Allocca, Chen, Glicksman (b0010) 2003; 35 Lim, Hong, Choi, Byun (b0200) 2017; 12 Zuo, Chen (b0095) 2010; 45 Zhang, You (b0155) 2014; 20 V. Nair, G.E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines, in: Proc. 27 Th Int. Conf. Mach. Learn., Haifa, 2010. Ian, Yoshua, Aaron (b0205) 2017 . Liu, Zhang, Xue, Zhai, Wang, Wei, Chen (b0055) 2015; 91 Zhang, Hiyama, Kato, Ishida (b0040) 2013; 63 Du, Xu, Jin, Liu (b0255) 2015; 85 Zuo, Chen (b0025) 2009; 19 Jin, Liu, Chen (b0080) 2014; 20 Liu, You, Zhang, Chen (b0050) 2017; 10 Zhang, Lam, Yao, Zhang (b0245) 2013; 68 Afram, Janabi-Sharifi, Fung, Raahemifar (b0145) 2017; 141 Zhou, Haghighat (b0140) 2009; 44 Ayata, Arcaklioglu, Yildiz (b0110) 2007; 27 Li, Dai, Chen, Lin (b0125) 2019; 12 Schmidhuber (b0105) 2015; 61 S. Santurkar, D. Tsipras, A. Ilyas, A. Madry, How does batch normalization help optimization?, in: Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018: pp. 2483–2493. Huang, Kato, Hu (b0065) 2012; 47 D.P. Kingma, J.L. Ba, Adam: A method for stochasticoptimization, in: Proc. Int. Conf. Learn. Represent. 2015, San Diego, 2015. Tian, Sevilla, Zuo, Sohn (b0035) 2017; 122 Stavrakakis, Zervas, Sarimveis, Markatos (b0130) 2012; 36 S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: Proc. 32nd Int. Conf. Mach. Learn., Lille, France, 2015. Doi: 10.1080/17512786.2015.1058180. Nguyen, Reiter, Rigo (b0060) 2014; 113 Holden, Robbins, Stewart, Smith, Schultz, Wegener, Linden, Hormann, Enkrich, Soukoulis, Schurig, Taylor, Highstrete, Lee, Averitt, Markos, Mcpeake, Ramakrishna, Pendry, Shalaev, Maksimchuk, Umstadter, Chen, Shen, Moloney (b0100) 2006; 313 Sasamoto, Kato, Zhang (b0020) 2010; 3 J.L. Ba, J.R. Kiros, G.E. Hinton, Layer Normalization, ArXiv: 1607.06450v1. (2016). Zhou, Haghighat (b0135) 2009; 44 Tian, Han, Zuo, Sohn (b0085) 2018; 165 Tian, Sevilla, Zuo (b0090) 2017; 10 Zhou, Ooka (b0175) 2020 Fan, Ito (b0250) 2012; 52 Cao, Ren (b0165) 2018; 144 Liu, Zhao, Luo, Jun (b0225) 2020; 46 Tian (10.1016/j.enbuild.2020.110525_b0035) 2017; 122 Zhang (10.1016/j.enbuild.2020.110525_b0160) 2014; 82 Fan (10.1016/j.enbuild.2020.110525_b0250) 2012; 52 Yin (10.1016/j.enbuild.2020.110525_b0015) 2011; 46 Du (10.1016/j.enbuild.2020.110525_b0255) 2015; 85 10.1016/j.enbuild.2020.110525_b0220 Cao (10.1016/j.enbuild.2020.110525_b0030) 2012; 22 Zhou (10.1016/j.enbuild.2020.110525_b0140) 2009; 44 Ayata (10.1016/j.enbuild.2020.110525_b0110) 2007; 27 Zhang (10.1016/j.enbuild.2020.110525_b0150) 2014; 23 Zhang (10.1016/j.enbuild.2020.110525_b0155) 2014; 20 Stavrakakis (10.1016/j.enbuild.2020.110525_b0130) 2012; 36 10.1016/j.enbuild.2020.110525_b0190 Holden (10.1016/j.enbuild.2020.110525_b0100) 2006; 313 Zuo (10.1016/j.enbuild.2020.110525_b0025) 2009; 19 Conceião António (10.1016/j.enbuild.2020.110525_b0180) 2011; 31 Gijón-Rivera (10.1016/j.enbuild.2020.110525_b0240) 2013; 68 Liu (10.1016/j.enbuild.2020.110525_b0050) 2017; 10 Schmidhuber (10.1016/j.enbuild.2020.110525_b0105) 2015; 61 10.1016/j.enbuild.2020.110525_b0235 Jin (10.1016/j.enbuild.2020.110525_b0080) 2014; 20 Zuo (10.1016/j.enbuild.2020.110525_b0095) 2010; 45 Li (10.1016/j.enbuild.2020.110525_b0125) 2019; 12 10.1016/j.enbuild.2020.110525_b0230 Liu (10.1016/j.enbuild.2020.110525_b0075) 2016; 69 Zhang (10.1016/j.enbuild.2020.110525_b0005) 2007; 13 Allocca (10.1016/j.enbuild.2020.110525_b0010) 2003; 35 10.1016/j.enbuild.2020.110525_b0195 Zhang (10.1016/j.enbuild.2020.110525_b0245) 2013; 68 Liu (10.1016/j.enbuild.2020.110525_b0225) 2020; 46 Cao (10.1016/j.enbuild.2020.110525_b0165) 2018; 144 Tian (10.1016/j.enbuild.2020.110525_b0090) 2017; 10 Lim (10.1016/j.enbuild.2020.110525_b0200) 2017; 12 Zuo (10.1016/j.enbuild.2020.110525_b0045) 2016; 9 Song (10.1016/j.enbuild.2020.110525_b0185) 2013; 64 Ian (10.1016/j.enbuild.2020.110525_b0205) 2017 Zhou (10.1016/j.enbuild.2020.110525_b0175) 2020 Liu (10.1016/j.enbuild.2020.110525_b0055) 2015; 91 Tian (10.1016/j.enbuild.2020.110525_b0085) 2018; 165 Qin (10.1016/j.enbuild.2020.110525_b0170) 2012; 50 Nguyen (10.1016/j.enbuild.2020.110525_b0060) 2014; 113 Kim (10.1016/j.enbuild.2020.110525_b0070) 2007; 16 Zhai (10.1016/j.enbuild.2020.110525_b0260) 2002; 37 Zhou (10.1016/j.enbuild.2020.110525_b0135) 2009; 44 10.1016/j.enbuild.2020.110525_b0215 Neto (10.1016/j.enbuild.2020.110525_b0120) 2008; 40 Zhang (10.1016/j.enbuild.2020.110525_b0040) 2013; 63 Huang (10.1016/j.enbuild.2020.110525_b0065) 2012; 47 10.1016/j.enbuild.2020.110525_b0210 Afram (10.1016/j.enbuild.2020.110525_b0145) 2017; 141 Sasamoto (10.1016/j.enbuild.2020.110525_b0020) 2010; 3 Khazaei (10.1016/j.enbuild.2020.110525_b0115) 2019; 16 |
References_xml | – volume: 46 start-page: 1090 year: 2020 end-page: 1120 ident: b0225 article-title: Research progress on batch normalization of deep learning and its related algorithms publication-title: Acta Autom. Sin. – volume: 27 start-page: 12 year: 2007 end-page: 20 ident: b0110 article-title: Application of ANN to explore the potential use of natural ventilation in buildings in Turkey publication-title: Appl. Therm. Eng. – volume: 37 start-page: 857 year: 2002 end-page: 864 ident: b0260 article-title: On approaches to couple energy simulation and computational fluid dynamics programs publication-title: Build. Environ. – volume: 40 start-page: 2169 year: 2008 end-page: 2176 ident: b0120 article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption publication-title: Energy Build. – volume: 44 start-page: 657 year: 2009 end-page: 665 ident: b0140 article-title: Optimization of ventilation systems in office environment, part II: Results and discussions publication-title: Build. Environ. – reference: J.L. Ba, J.R. Kiros, G.E. Hinton, Layer Normalization, ArXiv: 1607.06450v1. (2016). – volume: 165 start-page: 184 year: 2018 end-page: 199 ident: b0085 article-title: Building energy simulation coupled with CFD for indoor environment: A critical review and recent applications publication-title: Energy Build. – volume: 13 start-page: 871 year: 2007 end-page: 886 ident: b0005 article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—comparison with experimental data from literature publication-title: HVAC&R Res. – volume: 45 start-page: 747 year: 2010 end-page: 757 ident: b0095 article-title: Fast and informative flow simulations in a building by using fast fluid dynamics model on graphics processing unit publication-title: Build. Environ. – year: 2017 ident: b0205 article-title: Deep Learning – volume: 16 start-page: 729 year: 2019 end-page: 736 ident: b0115 article-title: Modeling indoor air carbon dioxide concentration using artificial neural network publication-title: Int. J. Environ. Sci. Technol. – volume: 68 start-page: 22 year: 2013 end-page: 34 ident: b0240 article-title: Coupling CFD-BES Simulation of a glazed office with different types of windows in Mexico City publication-title: Build. Environ. – volume: 113 start-page: 1043 year: 2014 end-page: 1058 ident: b0060 article-title: A review on simulation-based optimization methods applied to building performance analysis publication-title: Appl. Energy. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0100 article-title: Reducing the Dimensionality of Data with Neural Networks publication-title: Science (80-.) – volume: 35 start-page: 785 year: 2003 end-page: 795 ident: b0010 article-title: Design analysis of single-sided natural ventilation publication-title: Energy Build. – volume: 64 start-page: 80 year: 2013 end-page: 90 ident: b0185 article-title: Airflow and temperature distribution optimization in data centers using artificial neural networks publication-title: Int. J. Heat Mass Transf. – volume: 47 start-page: 208 year: 2012 end-page: 216 ident: b0065 article-title: Optimum design for indoor humidity by coupling Genetic Algorithm with transient simulation based on Contribution Ratio of Indoor Humidity and Climate analysis publication-title: Energy Build. – volume: 91 start-page: 91 year: 2015 end-page: 100 ident: b0055 article-title: State-of-the-art methods for inverse design of an enclosed environment publication-title: Build. Environ. – volume: 50 start-page: 214 year: 2012 end-page: 220 ident: b0170 article-title: Research on a dynamic simulation method of atrium thermal environment based on neural network publication-title: Build. Environ. – volume: 122 start-page: 269 year: 2017 end-page: 286 ident: b0035 article-title: Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems publication-title: Build. Environ. – volume: 16 start-page: 519 year: 2007 end-page: 528 ident: b0070 article-title: New scales for assessing contribution ratio of pollutant sources to indoor air quality publication-title: Indoor Built Environ. – volume: 68 start-page: 100 year: 2013 end-page: 113 ident: b0245 article-title: Coupled EnergyPlus and computational fluid dynamics simulation for natural ventilation publication-title: Build. Environ. – volume: 10 start-page: 243 year: 2017 end-page: 255 ident: b0090 article-title: A systematic evaluation of accelerating indoor airflow simulations using cross-platform parallel computing publication-title: J. Build. Perform. Simul. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b0105 article-title: Deep Learning in neural networks: An overview publication-title: Neural Networks. – reference: S. Ioffe, Batch Renormalization: Towards reducing minibatch dependence in batch-normalized models, in: Proc. 31st Conf. Neural Inf. Process. Syst., Long Beach, USA, 2017: pp. 1946–1954. – volume: 36 start-page: 193 year: 2012 end-page: 211 ident: b0130 article-title: Optimization of window-openings design for thermal comfort in naturally ventilated buildings publication-title: Appl. Math. Model. – volume: 69 start-page: 748 year: 2016 end-page: 762 ident: b0075 article-title: Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow publication-title: Numer. Heat Transf. Part A Appl. – volume: 12 start-page: 1 year: 2017 end-page: 22 ident: b0200 article-title: Real-time traffic sign recognition based on a general purpose GPU and deep-learning publication-title: PLoS One. – reference: J. Bjorck, C. Gomes, B. Selman, K.Q. Weinberger, Understanding Batch Normalization, in: Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018. – reference: D.P. Kingma, J.L. Ba, Adam: A method for stochasticoptimization, in: Proc. Int. Conf. Learn. Represent. 2015, San Diego, 2015. – volume: 20 start-page: 932 year: 2014 end-page: 943 ident: b0080 article-title: Accelerating fast fluid dynamics with a coarse-grid projection scheme publication-title: HVAC&R Res. – volume: 20 start-page: 836 year: 2014 end-page: 843 ident: b0155 article-title: Inverse design of aircraft cabin environment by coupling artificial neural network and genetic algorithm publication-title: HVAC&R Res. – volume: 12 start-page: 665 year: 2019 end-page: 681 ident: b0125 article-title: An ANN-based fast building energy consumption prediction method for complex architectural form at the early design stage publication-title: Build. Simul. – volume: 10 start-page: 326 year: 2017 end-page: 343 ident: b0050 article-title: Development of a fast fluid dynamics-based adjoint method for the inverse design of indoor environments publication-title: J. Build. Perform. Simul. – reference: S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: Proc. 32nd Int. Conf. Mach. Learn., Lille, France, 2015. Doi: 10.1080/17512786.2015.1058180. – volume: 82 start-page: 20 year: 2014 end-page: 26 ident: b0160 article-title: A simulation-based inverse design of preset aircraft cabin environment publication-title: Build. Environ. – volume: 22 start-page: 427 year: 2012 end-page: 441 ident: b0030 article-title: On the construction and use of linear low-dimensional ventilation models publication-title: Indoor Air. – volume: 85 start-page: 104 year: 2015 end-page: 113 ident: b0255 article-title: Temperature sensor placement optimization for VAV control using CFD-BES co-simulation strategy publication-title: Build. Environ. – volume: 44 start-page: 651 year: 2009 end-page: 656 ident: b0135 article-title: Optimization of ventilation system design and operation in office environment, Part I: Methodology publication-title: Build. Environ. – volume: 52 start-page: 57 year: 2012 end-page: 67 ident: b0250 article-title: Energy consumption analysis intended for real office space with energy recovery ventilator by integrating BES and CFD approaches publication-title: Build. Environ. – volume: 23 start-page: 1187 year: 2014 end-page: 1195 ident: b0150 article-title: Applying neural networks to solve the inverse problem of indoor environment publication-title: Indoor Built Environ. – volume: 19 start-page: 33 year: 2009 end-page: 44 ident: b0025 article-title: Real-time or faster-than-real-time simulation of airflow in buildings publication-title: Indoor Air. – year: 2020 ident: b0175 article-title: Comparison of different deep neural network architectures for isothermal indoor airflow prediction publication-title: Build. Simul. – volume: 144 start-page: 316 year: 2018 end-page: 333 ident: b0165 article-title: Ventilation control strategy using low-dimensional linear ventilation models and artificial neural network publication-title: Build. Environ. – reference: S. Santurkar, D. Tsipras, A. Ilyas, A. Madry, How does batch normalization help optimization?, in: Proc. 32nd Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018: pp. 2483–2493. – volume: 46 start-page: 75 year: 2011 end-page: 81 ident: b0015 article-title: Distributions of respiratory contaminants from a patient with different postures and exhaling modes in a single-bed inpatient room publication-title: Build. Environ. – reference: . – volume: 63 start-page: 89 year: 2013 end-page: 96 ident: b0040 article-title: Building energy simulation considering spatial temperature distribution for nonuniform indoor environment publication-title: Build. Environ. – volume: 31 start-page: 1244 year: 2011 end-page: 1251 ident: b0180 article-title: Air temperature fields inside refrigeration cabins: A comparison of results from CFD and ANN modelling publication-title: Appl. Therm. Eng. – reference: V. Nair, G.E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines, in: Proc. 27 Th Int. Conf. Mach. Learn., Haifa, 2010. – volume: 141 start-page: 96 year: 2017 end-page: 113 ident: b0145 article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system publication-title: Energy Build. – volume: 3 start-page: 263 year: 2010 end-page: 278 ident: b0020 article-title: Control of indoor thermal environment based on concept of contribution ratio of indoor climate publication-title: Build. Simul. – volume: 9 start-page: 366 year: 2016 end-page: 381 ident: b0045 article-title: Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library publication-title: J. Build. Perform. Simul. – volume: 3 start-page: 263 year: 2010 ident: 10.1016/j.enbuild.2020.110525_b0020 article-title: Control of indoor thermal environment based on concept of contribution ratio of indoor climate publication-title: Build. Simul. doi: 10.1007/s12273-010-0011-6 – ident: 10.1016/j.enbuild.2020.110525_b0190 – volume: 44 start-page: 657 year: 2009 ident: 10.1016/j.enbuild.2020.110525_b0140 article-title: Optimization of ventilation systems in office environment, part II: Results and discussions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2008.05.010 – volume: 27 start-page: 12 year: 2007 ident: 10.1016/j.enbuild.2020.110525_b0110 article-title: Application of ANN to explore the potential use of natural ventilation in buildings in Turkey publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.05.021 – volume: 44 start-page: 651 year: 2009 ident: 10.1016/j.enbuild.2020.110525_b0135 article-title: Optimization of ventilation system design and operation in office environment, Part I: Methodology publication-title: Build. Environ. doi: 10.1016/j.buildenv.2008.05.009 – volume: 13 start-page: 871 year: 2007 ident: 10.1016/j.enbuild.2020.110525_b0005 article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—comparison with experimental data from literature publication-title: HVAC&R Res. doi: 10.1080/10789669.2007.10391460 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.enbuild.2020.110525_b0100 article-title: Reducing the Dimensionality of Data with Neural Networks publication-title: Science (80-.) doi: 10.1126/science.1127647 – ident: 10.1016/j.enbuild.2020.110525_b0235 – ident: 10.1016/j.enbuild.2020.110525_b0210 doi: 10.1080/17512786.2015.1058180 – volume: 113 start-page: 1043 year: 2014 ident: 10.1016/j.enbuild.2020.110525_b0060 article-title: A review on simulation-based optimization methods applied to building performance analysis publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2013.08.061 – volume: 69 start-page: 748 year: 2016 ident: 10.1016/j.enbuild.2020.110525_b0075 article-title: Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/10407782.2015.1090780 – volume: 12 start-page: 665 year: 2019 ident: 10.1016/j.enbuild.2020.110525_b0125 article-title: An ANN-based fast building energy consumption prediction method for complex architectural form at the early design stage publication-title: Build. Simul. doi: 10.1007/s12273-019-0538-0 – volume: 35 start-page: 785 year: 2003 ident: 10.1016/j.enbuild.2020.110525_b0010 article-title: Design analysis of single-sided natural ventilation publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00239-6 – volume: 23 start-page: 1187 year: 2014 ident: 10.1016/j.enbuild.2020.110525_b0150 article-title: Applying neural networks to solve the inverse problem of indoor environment publication-title: Indoor Built Environ. doi: 10.1177/1420326X13499596 – volume: 12 start-page: 1 year: 2017 ident: 10.1016/j.enbuild.2020.110525_b0200 article-title: Real-time traffic sign recognition based on a general purpose GPU and deep-learning publication-title: PLoS One. doi: 10.1371/journal.pone.0173317 – volume: 46 start-page: 1090 year: 2020 ident: 10.1016/j.enbuild.2020.110525_b0225 article-title: Research progress on batch normalization of deep learning and its related algorithms publication-title: Acta Autom. Sin. – volume: 31 start-page: 1244 year: 2011 ident: 10.1016/j.enbuild.2020.110525_b0180 article-title: Air temperature fields inside refrigeration cabins: A comparison of results from CFD and ANN modelling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.12.027 – volume: 85 start-page: 104 year: 2015 ident: 10.1016/j.enbuild.2020.110525_b0255 article-title: Temperature sensor placement optimization for VAV control using CFD-BES co-simulation strategy publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.11.033 – volume: 63 start-page: 89 year: 2013 ident: 10.1016/j.enbuild.2020.110525_b0040 article-title: Building energy simulation considering spatial temperature distribution for nonuniform indoor environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.02.007 – volume: 16 start-page: 519 year: 2007 ident: 10.1016/j.enbuild.2020.110525_b0070 article-title: New scales for assessing contribution ratio of pollutant sources to indoor air quality publication-title: Indoor Built Environ. doi: 10.1177/1420326X07082499 – volume: 16 start-page: 729 year: 2019 ident: 10.1016/j.enbuild.2020.110525_b0115 article-title: Modeling indoor air carbon dioxide concentration using artificial neural network publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-018-1642-x – ident: 10.1016/j.enbuild.2020.110525_b0215 – volume: 91 start-page: 91 year: 2015 ident: 10.1016/j.enbuild.2020.110525_b0055 article-title: State-of-the-art methods for inverse design of an enclosed environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.02.041 – volume: 22 start-page: 427 year: 2012 ident: 10.1016/j.enbuild.2020.110525_b0030 article-title: On the construction and use of linear low-dimensional ventilation models publication-title: Indoor Air. doi: 10.1111/j.1600-0668.2012.00771.x – volume: 50 start-page: 214 year: 2012 ident: 10.1016/j.enbuild.2020.110525_b0170 article-title: Research on a dynamic simulation method of atrium thermal environment based on neural network publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.11.001 – volume: 68 start-page: 22 year: 2013 ident: 10.1016/j.enbuild.2020.110525_b0240 article-title: Coupling CFD-BES Simulation of a glazed office with different types of windows in Mexico City publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.06.005 – volume: 82 start-page: 20 year: 2014 ident: 10.1016/j.enbuild.2020.110525_b0160 article-title: A simulation-based inverse design of preset aircraft cabin environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.08.002 – volume: 47 start-page: 208 year: 2012 ident: 10.1016/j.enbuild.2020.110525_b0065 article-title: Optimum design for indoor humidity by coupling Genetic Algorithm with transient simulation based on Contribution Ratio of Indoor Humidity and Climate analysis publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.11.040 – ident: 10.1016/j.enbuild.2020.110525_b0230 – volume: 52 start-page: 57 year: 2012 ident: 10.1016/j.enbuild.2020.110525_b0250 article-title: Energy consumption analysis intended for real office space with energy recovery ventilator by integrating BES and CFD approaches publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.12.008 – volume: 45 start-page: 747 year: 2010 ident: 10.1016/j.enbuild.2020.110525_b0095 article-title: Fast and informative flow simulations in a building by using fast fluid dynamics model on graphics processing unit publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.08.008 – volume: 10 start-page: 326 year: 2017 ident: 10.1016/j.enbuild.2020.110525_b0050 article-title: Development of a fast fluid dynamics-based adjoint method for the inverse design of indoor environments publication-title: J. Build. Perform. Simul. doi: 10.1080/19401493.2016.1257654 – volume: 10 start-page: 243 year: 2017 ident: 10.1016/j.enbuild.2020.110525_b0090 article-title: A systematic evaluation of accelerating indoor airflow simulations using cross-platform parallel computing publication-title: J. Build. Perform. Simul. doi: 10.1080/19401493.2016.1212933 – volume: 9 start-page: 366 year: 2016 ident: 10.1016/j.enbuild.2020.110525_b0045 article-title: Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library publication-title: J. Build. Perform. Simul. doi: 10.1080/19401493.2015.1062557 – volume: 19 start-page: 33 year: 2009 ident: 10.1016/j.enbuild.2020.110525_b0025 article-title: Real-time or faster-than-real-time simulation of airflow in buildings publication-title: Indoor Air. doi: 10.1111/j.1600-0668.2008.00559.x – volume: 64 start-page: 80 year: 2013 ident: 10.1016/j.enbuild.2020.110525_b0185 article-title: Airflow and temperature distribution optimization in data centers using artificial neural networks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.04.017 – volume: 40 start-page: 2169 year: 2008 ident: 10.1016/j.enbuild.2020.110525_b0120 article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption publication-title: Energy Build. doi: 10.1016/j.enbuild.2008.06.013 – volume: 141 start-page: 96 year: 2017 ident: 10.1016/j.enbuild.2020.110525_b0145 article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.02.012 – year: 2020 ident: 10.1016/j.enbuild.2020.110525_b0175 article-title: Comparison of different deep neural network architectures for isothermal indoor airflow prediction publication-title: Build. Simul. doi: 10.1007/s12273-020-0664-8 – volume: 122 start-page: 269 year: 2017 ident: 10.1016/j.enbuild.2020.110525_b0035 article-title: Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.06.013 – volume: 37 start-page: 857 year: 2002 ident: 10.1016/j.enbuild.2020.110525_b0260 article-title: On approaches to couple energy simulation and computational fluid dynamics programs publication-title: Build. Environ. doi: 10.1016/S0360-1323(02)00054-9 – volume: 144 start-page: 316 year: 2018 ident: 10.1016/j.enbuild.2020.110525_b0165 article-title: Ventilation control strategy using low-dimensional linear ventilation models and artificial neural network publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.08.032 – year: 2017 ident: 10.1016/j.enbuild.2020.110525_b0205 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.enbuild.2020.110525_b0105 article-title: Deep Learning in neural networks: An overview publication-title: Neural Networks. doi: 10.1016/j.neunet.2014.09.003 – volume: 68 start-page: 100 year: 2013 ident: 10.1016/j.enbuild.2020.110525_b0245 article-title: Coupled EnergyPlus and computational fluid dynamics simulation for natural ventilation publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.04.002 – volume: 165 start-page: 184 year: 2018 ident: 10.1016/j.enbuild.2020.110525_b0085 article-title: Building energy simulation coupled with CFD for indoor environment: A critical review and recent applications publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.01.046 – volume: 20 start-page: 932 year: 2014 ident: 10.1016/j.enbuild.2020.110525_b0080 article-title: Accelerating fast fluid dynamics with a coarse-grid projection scheme publication-title: HVAC&R Res. doi: 10.1080/10789669.2014.960239 – ident: 10.1016/j.enbuild.2020.110525_b0195 – volume: 46 start-page: 75 year: 2011 ident: 10.1016/j.enbuild.2020.110525_b0015 article-title: Distributions of respiratory contaminants from a patient with different postures and exhaling modes in a single-bed inpatient room publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.07.003 – volume: 20 start-page: 836 year: 2014 ident: 10.1016/j.enbuild.2020.110525_b0155 article-title: Inverse design of aircraft cabin environment by coupling artificial neural network and genetic algorithm publication-title: HVAC&R Res. doi: 10.1080/10789669.2014.950895 – volume: 36 start-page: 193 year: 2012 ident: 10.1016/j.enbuild.2020.110525_b0130 article-title: Optimization of window-openings design for thermal comfort in naturally ventilated buildings publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.05.052 – ident: 10.1016/j.enbuild.2020.110525_b0220 |
SSID | ssj0006571 |
Score | 2.4940126 |
Snippet | •Fast and accurate prediction of non-isothermal airflow distribution are achieved.•Suitable data preprocessing methods are proposed.•Data preprocessing and... The indoor environment is important to the daily lives of humans. Fast and accurate prediction of indoor environments is desirable with regard to practical... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110525 |
SubjectTerms | Air flow Algorithms Boundary conditions Computer simulation Data preprocessing Indoor airflow prediction Indoor environments Inverse design Learning algorithms Machine learning neural network (NN) Neural networks Non-isothermal Predictions Preprocessing Submergence Surface temperature Temperature distribution Training Two dimensional models Velocity |
Title | Influence of data preprocessing on neural network performance for reproducing CFD simulations of non-isothermal indoor airflow distribution |
URI | https://dx.doi.org/10.1016/j.enbuild.2020.110525 https://www.proquest.com/docview/2489012554 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXOCAeIq3cuCarU3TLj1Og2k8hYBJ3KK2aaSi0U5sEzf-AH8aO00ZIKRJnFpVthXFrmO39mdCThPOfWN0zGIvk0zkvmCJl8ZMRkEn5TEPUwvXdHMbDYbi8il8WiK9phcGyyqd7699uvXW7knb7WZ7XBTtBy8AY4MMjoNdwhURP4XooJW33udlHlFoky4kZkg97-JpP7cQXqAYIWAotwXxIU7M_vt8-uWp7fHT3yDrLm6k3Xppm2QpL7fI2jc0wW3ycdEMHKGVoVj6SceIWWk7AYCCViVF-EoQU9bF33Q8bxugcEMtuZ5lSN3rn9FJ8eLGe01QZlmVrJjYnq0XkALpfAVMSfFqRtUb1YjB68Zn7ZBh__yxN2Bu1gLLhBdMmfFiT6TcT8NOnPNcGwizMj80kBFGmGMAkdaQ63V0EviZZ6T2ja8hOwkjaeLQBLtkGRaR7xGq8W-OiWSSpIEw3CQxhEi51KkvExkZb5-IZodV5oDIcR7GSDUVZ8_KKUahYlStmH3S-mIb10gcixhkoz71w6QUnBaLWI8adSv3Tk8UFxKCJ0jBxMH_JR-SVY5VMfYjzhFZnr7O8mMIa6bpibXbE7LS7d1f3-H14mpw-wlvO_tD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9wwDLfY8cD2MMHYNDYGedhruDZNeukjOjjd8edeBhJvUds0UtHRnrhDfAi-9Ow0hW2ahMRTq8q2oth17Nb-GeBnLkTsnM14FpWayyqWPI-KjOs0GRUiE6rwcE2X83R6Lc9u1M0GjPteGCqrDL6_8-neW4cnw7Cbw2VdD39FCRobZnAC7RKvyTvYJHQqNYDN49n5dP7skFPl8y6i58Tw0sgzvD0ihIF6QZihwtfEKxqa_f8j6h9n7U-gyTZ8DKEjO-5WtwMbVfMJPvwBKLgLT7N-5ghrHaPqT7Yk2ErfDIAUrG0YIViimKar_2bLl84BhjfMk9uHkqjHkxO2qu_ChK8VyWzahtcr37Z1h1Iwo2-RKa_v3aJ9ZJZgeMMErc9wPTm9Gk95GLfASxkla-6iLJKFiAs1yipRWYeRVhkrh0lhSmkGElmL6d7I5klcRk7b2MUWExSVapcpl3yBAS6i-grM0g8dl-o8LxLphMszjJIqbYtY5zp10R7IfodNGbDIaSTGwvRFZ7cmKMaQYkynmD04emZbdmAcrzHoXn3mL6syeGC8xrrfq9uE13plhNQYP2EWJr-9XfIhbE2vLi_MxWx-_h3eCyqS8d909mGwvn-ofmCUsy4OghX_BiGX_F8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+data+preprocessing+on+neural+network+performance+for+reproducing+CFD+simulations+of+non-isothermal+indoor+airflow+distribution&rft.jtitle=Energy+and+buildings&rft.au=Zhou%2C+Qi&rft.au=Ooka%2C+Ryozo&rft.date=2021-01-01&rft.issn=0378-7788&rft.volume=230&rft.spage=110525&rft_id=info:doi/10.1016%2Fj.enbuild.2020.110525&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2020_110525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |