Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress
Temperature monitoring plays an important role in ensuring product quality, saving energy, promoting the development of national economy and providing basic diagnostic criteria in the field of biomedicine. Due to the importance and universality of temperature measurement, the study of temperature se...
Saved in:
Published in | Journal of alloys and compounds Vol. 817; p. 152691 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Temperature monitoring plays an important role in ensuring product quality, saving energy, promoting the development of national economy and providing basic diagnostic criteria in the field of biomedicine. Due to the importance and universality of temperature measurement, the study of temperature sensing property and the pursuit of high sensitivity have become an important research field of rare-earth luminescent materials in recent years, and have received extensive attention. In this paper, different optical temperature sensing methods and principles, the application of rare-earth luminescent materials in optical temperature sensing, and the types of up-conversion luminescent thermometry materials are reviewed. First, we introduce that optical thermometry can realize non-contact temperature measurement, large-scale imaging, wide dynamic range and rapid response in biological fluorescent tag, accurate measurement of local temperature in medical treatment, and direct temperature measurement of an inaccessible object, which has a very broad application prospect. Meanwhile, we emphasize that the fluorescence intensity ratio technique based on the thermally coupled levels of rare-earth ions has been considered as a reliable and promising non-contact optical temperature sensing method due to its high accuracy and reliability. In the later sections, we review the fundamentals and research progress of rare-earth luminescent materials in optical temperature sensing. Double-doped up-conversion thermometry materials with diverse activators and Yb3+ as sensitizers are mainly introduced, as well as tri-doped multi-color optical thermometry materials. Finally, we summarize the current research results and discuss further research directions on the basis of their current developments. It is hoped that this review could provide new inspiration for the subsequent novel temperature sensors in the future.
•Optical thermometry of up-conversion luminescent material is reviewed emphatically.•Optical thermometry focuses on the fluorescence intensity ratio method.•The main challenges that we need to overcome are discussed. |
---|---|
AbstractList | Temperature monitoring plays an important role in ensuring product quality, saving energy, promoting the development of national economy and providing basic diagnostic criteria in the field of biomedicine. Due to the importance and universality of temperature measurement, the study of temperature sensing property and the pursuit of high sensitivity have become an important research field of rare-earth luminescent materials in recent years, and have received extensive attention. In this paper, different optical temperature sensing methods and principles, the application of rare-earth luminescent materials in optical temperature sensing, and the types of up-conversion luminescent thermometry materials are reviewed. First, we introduce that optical thermometry can realize non-contact temperature measurement, large-scale imaging, wide dynamic range and rapid response in biological fluorescent tag, accurate measurement of local temperature in medical treatment, and direct temperature measurement of an inaccessible object, which has a very broad application prospect. Meanwhile, we emphasize that the fluorescence intensity ratio technique based on the thermally coupled levels of rare-earth ions has been considered as a reliable and promising non-contact optical temperature sensing method due to its high accuracy and reliability. In the later sections, we review the fundamentals and research progress of rare-earth luminescent materials in optical temperature sensing. Double-doped up-conversion thermometry materials with diverse activators and Yb3+ as sensitizers are mainly introduced, as well as tri-doped multi-color optical thermometry materials. Finally, we summarize the current research results and discuss further research directions on the basis of their current developments. It is hoped that this review could provide new inspiration for the subsequent novel temperature sensors in the future.
•Optical thermometry of up-conversion luminescent material is reviewed emphatically.•Optical thermometry focuses on the fluorescence intensity ratio method.•The main challenges that we need to overcome are discussed. Temperature monitoring plays an important role in ensuring product quality, saving energy, promoting the development of national economy and providing basic diagnostic criteria in the field of biomedicine. Due to the importance and universality of temperature measurement, the study of temperature sensing property and the pursuit of high sensitivity have become an important research field of rare-earth luminescent materials in recent years, and have received extensive attention. In this paper, different optical temperature sensing methods and principles, the application of rare-earth luminescent materials in optical temperature sensing, and the types of up-conversion luminescent thermometry materials are reviewed. First, we introduce that optical thermometry can realize non-contact temperature measurement, large-scale imaging, wide dynamic range and rapid response in biological fluorescent tag, accurate measurement of local temperature in medical treatment, and direct temperature measurement of an inaccessible object, which has a very broad application prospect. Meanwhile, we emphasize that the fluorescence intensity ratio technique based on the thermally coupled levels of rare-earth ions has been considered as a reliable and promising non-contact optical temperature sensing method due to its high accuracy and reliability. In the later sections, we review the fundamentals and research progress of rare-earth luminescent materials in optical temperature sensing. Double-doped up-conversion thermometry materials with diverse activators and Yb3+ as sensitizers are mainly introduced, as well as tri-doped multi-color optical thermometry materials. Finally, we summarize the current research results and discuss further research directions on the basis of their current developments. It is hoped that this review could provide new inspiration for the subsequent novel temperature sensors in the future. |
ArticleNumber | 152691 |
Author | Zhang, Ying Wang, Xusheng Zhao, Yan Yao, Xi Li, Yanxia |
Author_xml | – sequence: 1 givenname: Yan surname: Zhao fullname: Zhao, Yan organization: Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai, 201804, China – sequence: 2 givenname: Xusheng surname: Wang fullname: Wang, Xusheng email: xs-wang@tongji.edu.cn organization: Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai, 201804, China – sequence: 3 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China – sequence: 4 givenname: Yanxia surname: Li fullname: Li, Yanxia organization: Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai, 201804, China – sequence: 5 givenname: Xi surname: Yao fullname: Yao, Xi organization: Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai, 201804, China |
BookMark | eNqFkE1rGzEQhkVxoHaSn1AQ9LyutNqVpfZQiknaQMCX5BiELI2Cll1pK2kN_feRcU695DTM8H4wzwatQgyA0BdKtpRQ_m3YDnocTZy2LaFyS_uWS_oJranYsabjXK7Qmsi2bwQT4jPa5DwQUpWMrtHLYS7e6BEXmGZIuiwJcIaQfXjF0eFlbkwMJ0jZx4DHZfIBsoFQ8KQLJK_H_B3fL8HqqR7rhnWweE7xNUHON-jK1Rvcvs9r9Hx_97T_0zwefj_sfz02piOsNGD749Fq0HZnpeCCdtDTznDpDBedkS2VsHPkSDrnhKRd67jWesdbJy0zvWbX6Osltxb_XSAXNcQlhVqpWtYz0vWEiar6cVGZFHNO4JTxRZf6WEnaj4oSdeapBvXOU515qgvP6u7_c8_JTzr9-9D38-KDCuDkIalsPAQD1icwRdnoP0h4A6qllz0 |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2022_11_290 crossref_primary_10_1016_j_ceramint_2024_06_027 crossref_primary_10_1039_D1TC03330A crossref_primary_10_1364_OE_521217 crossref_primary_10_1007_s12034_024_03350_w crossref_primary_10_3390_ma16062139 crossref_primary_10_1016_j_eng_2025_02_008 crossref_primary_10_1016_j_jnoncrysol_2021_121267 crossref_primary_10_1016_j_foodres_2023_113464 crossref_primary_10_1021_acs_jpcc_1c08372 crossref_primary_10_1016_j_optmat_2024_115675 crossref_primary_10_1134_S0036024423030202 crossref_primary_10_1016_j_jnoncrysol_2021_121142 crossref_primary_10_1016_j_jallcom_2020_157078 crossref_primary_10_1016_j_jallcom_2024_177365 crossref_primary_10_1016_j_jphotochem_2024_115858 crossref_primary_10_1039_D4RA08569H crossref_primary_10_1016_j_ceramint_2020_09_106 crossref_primary_10_1002_lpor_202400245 crossref_primary_10_1016_j_ceramint_2023_01_036 crossref_primary_10_1016_j_ceramint_2024_08_425 crossref_primary_10_1016_j_jeurceramsoc_2021_01_039 crossref_primary_10_1007_s11082_022_03885_4 crossref_primary_10_1007_s13538_024_01665_x crossref_primary_10_1016_j_jallcom_2021_162494 crossref_primary_10_1016_j_jlumin_2022_119283 crossref_primary_10_1016_j_jlumin_2024_120863 crossref_primary_10_1016_j_jlumin_2020_117418 crossref_primary_10_1016_j_jlumin_2025_121096 crossref_primary_10_1016_j_jre_2024_06_036 crossref_primary_10_1016_j_mtcomm_2024_111374 crossref_primary_10_1016_j_polymer_2021_123796 crossref_primary_10_1016_j_jmat_2023_10_011 crossref_primary_10_1016_j_mtchem_2022_101352 crossref_primary_10_3390_ma15155263 crossref_primary_10_1016_j_optmat_2022_112862 crossref_primary_10_1021_acs_inorgchem_4c02561 crossref_primary_10_1016_j_jlumin_2022_119275 crossref_primary_10_1111_jace_18989 crossref_primary_10_1007_s11082_020_02348_y crossref_primary_10_1021_acsaelm_0c00628 crossref_primary_10_1007_s12200_023_00083_2 crossref_primary_10_1016_j_jallcom_2020_157410 crossref_primary_10_55959_MSU0579_9392_79_2440402 crossref_primary_10_1016_j_ijleo_2023_171276 crossref_primary_10_1016_j_jre_2024_06_043 crossref_primary_10_1016_j_infrared_2022_104151 crossref_primary_10_1038_s41377_023_01365_2 crossref_primary_10_1109_TIM_2023_3334331 crossref_primary_10_1016_j_materresbull_2023_112445 crossref_primary_10_1016_j_ijleo_2022_169446 crossref_primary_10_1016_j_saa_2024_125176 crossref_primary_10_3390_photonics11080694 crossref_primary_10_1016_j_molstruc_2024_139511 crossref_primary_10_1016_j_jlumin_2024_121016 crossref_primary_10_1016_j_optmat_2021_110833 crossref_primary_10_1007_s00339_024_08128_9 crossref_primary_10_1016_j_optmat_2025_116813 crossref_primary_10_1021_acs_nanolett_1c04768 crossref_primary_10_1016_j_jallcom_2024_178101 crossref_primary_10_3103_S106833722103004X crossref_primary_10_1016_j_sna_2020_112083 crossref_primary_10_1016_j_jlumin_2020_117873 crossref_primary_10_1016_j_jallcom_2023_168725 crossref_primary_10_1088_1402_4896_ad2a2c crossref_primary_10_3390_agronomy12010108 crossref_primary_10_1016_j_jre_2023_07_019 crossref_primary_10_1007_s11664_020_08239_y crossref_primary_10_1007_s11220_024_00520_2 crossref_primary_10_1039_D2CS01030E crossref_primary_10_1149_2162_8777_ace5da crossref_primary_10_1016_j_ceramint_2023_04_212 crossref_primary_10_1016_j_jlumin_2023_120377 crossref_primary_10_1126_sciadv_ado6268 crossref_primary_10_1016_j_optlastec_2021_107535 crossref_primary_10_1007_s00339_024_07966_x crossref_primary_10_1016_j_ceramint_2024_07_025 crossref_primary_10_1021_jacs_1c11076 crossref_primary_10_1039_D1RA06745A crossref_primary_10_1002_adom_202401559 crossref_primary_10_1016_j_materresbull_2021_111495 crossref_primary_10_1016_j_optmat_2024_116582 crossref_primary_10_1039_D3RA02759G crossref_primary_10_1016_j_jallcom_2022_165180 crossref_primary_10_1016_j_mtcomm_2022_104589 crossref_primary_10_1016_j_ceramint_2023_05_144 crossref_primary_10_3390_nano13172482 crossref_primary_10_1021_acsnanoscienceau_3c00051 crossref_primary_10_1016_j_jssc_2021_122063 crossref_primary_10_1364_OME_445603 crossref_primary_10_1016_j_jlumin_2020_117656 crossref_primary_10_1016_j_jlumin_2022_119637 crossref_primary_10_1016_j_ceramint_2024_09_219 crossref_primary_10_1016_j_jlumin_2023_120347 crossref_primary_10_1109_JPHOT_2024_3392566 crossref_primary_10_1063_1_5145339 crossref_primary_10_1016_j_ceramint_2021_03_308 crossref_primary_10_1016_j_mtchem_2022_100903 crossref_primary_10_1039_D1CE01651B crossref_primary_10_1002_bio_4400 crossref_primary_10_1002_anbr_202000042 crossref_primary_10_1016_j_pmatsci_2022_100998 crossref_primary_10_1016_j_jlumin_2020_117529 crossref_primary_10_1016_j_jpcs_2021_110515 crossref_primary_10_1016_j_optmat_2024_116309 crossref_primary_10_1109_TMTT_2023_3288640 crossref_primary_10_1016_j_infrared_2023_105100 crossref_primary_10_1039_D2TC00891B crossref_primary_10_1016_j_jallcom_2022_167107 crossref_primary_10_1002_lpor_202402245 crossref_primary_10_1016_j_vacuum_2024_113297 crossref_primary_10_1016_j_cej_2022_135573 crossref_primary_10_1364_OE_518016 crossref_primary_10_1016_j_jallcom_2024_174902 crossref_primary_10_1016_j_jnoncrysol_2021_121379 crossref_primary_10_3390_ma14092370 crossref_primary_10_1007_s10854_022_08238_1 crossref_primary_10_1016_j_jallcom_2024_173493 crossref_primary_10_1109_TIM_2022_3192274 crossref_primary_10_1002_app_52422 crossref_primary_10_1016_j_ceramint_2023_09_269 crossref_primary_10_1111_jace_20109 crossref_primary_10_1016_j_optmat_2024_115900 crossref_primary_10_1016_j_ceramint_2022_07_010 crossref_primary_10_1016_j_jallcom_2020_154233 crossref_primary_10_1039_D4TC02959C crossref_primary_10_1002_adom_202200702 crossref_primary_10_1039_D4TC02102A crossref_primary_10_1002_asia_202401328 crossref_primary_10_1021_acs_jpcb_0c03362 crossref_primary_10_1016_j_ceramint_2024_06_426 crossref_primary_10_1007_s42461_023_00904_0 crossref_primary_10_1016_j_ceramint_2024_03_217 crossref_primary_10_1039_D3TC02980H crossref_primary_10_1063_5_0020200 crossref_primary_10_1016_j_ceramint_2025_02_371 crossref_primary_10_1016_j_jlumin_2021_118080 crossref_primary_10_1016_j_jlumin_2023_120053 crossref_primary_10_1016_j_jre_2025_02_002 crossref_primary_10_1016_j_jnoncrysol_2022_122114 crossref_primary_10_1364_BOE_512053 crossref_primary_10_1039_D4CE00262H crossref_primary_10_1016_j_jssc_2023_124218 crossref_primary_10_1016_j_sna_2024_115969 crossref_primary_10_1002_cptc_202000226 crossref_primary_10_1016_j_ceramint_2022_08_029 crossref_primary_10_3103_S0027134924700620 crossref_primary_10_1016_j_jssc_2022_123789 crossref_primary_10_1016_j_jlumin_2023_119861 crossref_primary_10_1016_j_jiec_2023_12_046 crossref_primary_10_1021_acsanm_3c02228 crossref_primary_10_1016_j_ceramint_2024_07_119 crossref_primary_10_1016_j_jallcom_2021_159922 crossref_primary_10_1007_s40843_021_1801_8 crossref_primary_10_1016_j_jnoncrysol_2020_120287 crossref_primary_10_1016_j_optmat_2024_115607 crossref_primary_10_3390_cryst13030460 crossref_primary_10_1088_1402_4896_ad369a crossref_primary_10_1016_j_materresbull_2021_111264 crossref_primary_10_1142_S1793292023500960 crossref_primary_10_1021_acsaom_4c00306 crossref_primary_10_1016_j_ceramint_2022_06_086 crossref_primary_10_1016_j_ceramint_2024_12_038 crossref_primary_10_1007_s10853_021_06078_8 crossref_primary_10_1039_D3NR00893B crossref_primary_10_3390_molecules26247583 crossref_primary_10_1016_j_materresbull_2022_111909 crossref_primary_10_1016_j_jlumin_2024_120556 crossref_primary_10_1039_D3DT03537A crossref_primary_10_1016_j_jallcom_2024_177425 crossref_primary_10_1590_1980_5373_mr_2020_0568 crossref_primary_10_1039_D0CE00953A crossref_primary_10_1016_j_apmt_2023_101931 crossref_primary_10_1002_jrs_6525 crossref_primary_10_1364_OL_419557 crossref_primary_10_34133_adi_0046 crossref_primary_10_1039_D1DT02185K crossref_primary_10_1364_AO_412313 crossref_primary_10_1016_j_matpr_2021_05_520 crossref_primary_10_1016_j_ceramint_2024_12_168 crossref_primary_10_1016_j_mtcomm_2024_108806 crossref_primary_10_1039_D5NR00438A crossref_primary_10_1016_j_molstruc_2025_141605 crossref_primary_10_1016_j_ceramint_2022_08_110 crossref_primary_10_1016_j_jallcom_2021_161018 crossref_primary_10_1007_s13538_024_01486_y crossref_primary_10_1016_j_ceramint_2024_08_471 crossref_primary_10_3390_photonics10040375 crossref_primary_10_1016_j_ceramint_2020_10_202 crossref_primary_10_1080_21870764_2021_1915632 crossref_primary_10_1016_j_ceramint_2023_10_297 crossref_primary_10_1016_j_ceramint_2024_10_176 crossref_primary_10_1016_j_jlumin_2025_121189 crossref_primary_10_1016_j_materresbull_2020_110959 crossref_primary_10_1007_s41779_023_00904_9 crossref_primary_10_1088_2053_1591_ac29f4 crossref_primary_10_1016_j_ceramint_2024_11_403 crossref_primary_10_1016_j_jnoncrysol_2021_121183 crossref_primary_10_1016_j_optmat_2021_111719 crossref_primary_10_1016_j_mtcomm_2024_111382 crossref_primary_10_1002_bio_4907 crossref_primary_10_1016_j_optmat_2020_110114 crossref_primary_10_1111_jace_19547 crossref_primary_10_1016_j_jlumin_2021_118294 crossref_primary_10_1016_j_jlumin_2022_119126 crossref_primary_10_1016_j_ceramint_2021_08_123 crossref_primary_10_1016_j_jlumin_2022_119121 crossref_primary_10_1016_j_optlastec_2022_108990 crossref_primary_10_1016_j_optmat_2024_115095 crossref_primary_10_1111_jace_19786 crossref_primary_10_1039_D2CE00748G crossref_primary_10_1016_j_optcom_2021_126942 crossref_primary_10_1016_j_ceramint_2024_06_406 crossref_primary_10_1016_j_jallcom_2021_162686 crossref_primary_10_1016_j_ijleo_2021_166929 crossref_primary_10_1016_j_optlastec_2022_107997 crossref_primary_10_1016_j_ceramint_2024_11_194 crossref_primary_10_1051_bioconf_20235706004 crossref_primary_10_1016_j_jlumin_2022_119476 crossref_primary_10_1016_j_mtphys_2023_101079 crossref_primary_10_1016_j_jallcom_2023_171046 crossref_primary_10_1002_adom_202300412 crossref_primary_10_1016_j_ceramint_2023_10_198 crossref_primary_10_1016_j_ceramint_2023_09_092 crossref_primary_10_3788_LOP231041 crossref_primary_10_1080_09500340_2024_2400201 crossref_primary_10_1016_j_jallcom_2021_162673 crossref_primary_10_1016_j_jallcom_2021_162794 crossref_primary_10_1016_j_saa_2023_123333 crossref_primary_10_1007_s11468_024_02314_4 crossref_primary_10_1021_acs_jafc_2c06838 crossref_primary_10_1016_j_heliyon_2024_e39081 crossref_primary_10_1016_j_optmat_2024_116163 crossref_primary_10_1088_1361_6501_ac5c93 crossref_primary_10_1016_j_jallcom_2024_175715 crossref_primary_10_1080_21870764_2021_1989750 crossref_primary_10_1049_ell2_12579 crossref_primary_10_1016_j_mtcomm_2023_106522 crossref_primary_10_1007_s11082_024_07182_0 crossref_primary_10_1039_D2CE00831A crossref_primary_10_2109_jcersj2_24103 crossref_primary_10_1007_s10854_020_04416_1 crossref_primary_10_1016_j_jlumin_2022_118807 crossref_primary_10_1016_j_saa_2024_124959 |
Cites_doi | 10.1016/j.jallcom.2018.08.309 10.1039/C8NJ05079A 10.1016/j.jallcom.2018.12.281 10.1016/j.jallcom.2017.08.007 10.1063/1.4886575 10.1021/acs.iecr.6b03748 10.1364/OE.24.022438 10.1002/adma.200803228 10.1007/s10854-016-6186-6 10.1039/C6DT01424K 10.1016/j.snb.2013.05.081 10.1016/j.jlumin.2016.08.066 10.1016/j.jallcom.2019.07.036 10.1021/acs.jpcc.6b08271 10.1016/j.optcom.2010.12.030 10.1039/c3ra47264g 10.1038/nnano.2015.251 10.1021/jacs.8b06021 10.1111/jace.13624 10.1021/acs.inorgchem.8b03225 10.1039/c3tc30763h 10.1016/j.optcom.2012.11.005 10.1016/j.jallcom.2015.01.296 10.1039/C4CS00177J 10.1063/1.1589582 10.1111/jace.13804 10.1364/OL.40.005678 10.1016/j.jlumin.2017.03.035 10.1021/jp307308z 10.1360/N092014-00201 10.1016/j.jallcom.2018.09.070 10.1016/j.jallcom.2015.10.101 10.1021/nn304373q 10.1021/cr4001594 10.1063/1.4871378 10.1016/j.ceramint.2016.05.092 10.1016/j.jlumin.2019.01.005 10.1016/j.jlumin.2013.03.011 10.1016/j.jallcom.2015.02.170 10.1016/j.materresbull.2018.09.032 10.1021/acs.jpcc.8b04180 10.1016/j.ceramint.2018.05.125 10.1016/j.cap.2016.12.002 10.1021/jacs.7b13677 10.1016/j.jpcs.2016.06.002 10.1016/j.saa.2015.05.081 10.1039/C4CP02949F 10.1016/j.snb.2012.01.068 10.1016/j.jallcom.2018.08.019 10.1063/1.4978380 10.1016/j.snb.2011.06.005 10.1021/acsami.8b02853 10.1016/j.snb.2012.01.070 10.1364/OE.20.018127 10.1016/j.jeurceramsoc.2015.08.005 10.1016/j.snb.2013.07.094 10.3390/s151229839 10.1007/s10854-015-3244-4 10.1039/C2DT32054A 10.1038/srep04209 10.1016/j.jlumin.2017.05.015 10.1016/j.jlumin.2013.10.027 10.1016/j.sna.2006.10.045 10.1016/j.pecs.2012.06.001 10.1016/j.cap.2015.09.013 10.1039/C6TC01812B 10.1039/c4ra02779e 10.1016/j.jlumin.2018.10.034 10.1039/c3dt32964j 10.1016/j.jlumin.2019.01.065 10.1364/OE.21.021596 10.1016/j.jlumin.2011.08.011 10.1016/j.jallcom.2018.12.147 10.1016/j.optmat.2010.03.023 10.1111/jace.14606 10.1039/C4RA15891A 10.1039/c3dt50592h 10.1016/j.optmat.2004.10.021 10.1016/j.jallcom.2013.11.132 10.1021/acs.analchem.6b00434 10.1088/2053-1591/aaa683 10.1039/C7TB02527K 10.1021/nl300389y 10.1016/j.ceramint.2015.01.113 10.1016/j.jallcom.2016.08.262 10.1016/j.jallcom.2017.11.085 10.1038/s41467-018-04571-4 10.1039/C5RA05986K 10.1016/j.jqsrt.2012.04.001 10.1039/C7RA05846B 10.1111/jace.13511 10.1080/00150193.2015.1071601 10.1016/j.jallcom.2019.02.047 10.1016/j.snb.2012.09.067 10.1021/jp307192y 10.1039/C4CS00188E 10.1016/j.materresbull.2019.03.003 10.1364/OE.20.00A722 10.1103/PhysRevB.81.035107 10.1016/j.jallcom.2018.10.125 10.1007/s10854-019-00748-9 10.1080/00150193.2015.1072024 10.1039/C7TC02182H 10.1016/j.jallcom.2018.05.348 10.1002/adma.201200431 10.1039/C5CP01874A 10.1016/j.ceramint.2019.01.070 10.1007/s11664-015-4247-x 10.1002/advs.201802282 10.1021/jp5103548 10.1364/OL.39.003767 10.1007/s11664-016-4483-8 10.1016/j.jallcom.2018.12.271 10.1038/ncomms1714 10.1007/s00340-006-2505-6 10.1063/1.1150067 10.3389/fchem.2018.00416 10.1007/s003480050260 10.1016/j.jlumin.2009.04.039 10.1016/j.snb.2008.05.003 10.1007/s10854-016-4794-9 10.1364/OE.26.021950 10.1016/j.jallcom.2015.01.130 10.1016/j.jlumin.2010.10.017 10.1016/j.physb.2019.02.051 10.1007/s10854-017-8435-8 10.1016/j.snb.2017.02.159 10.1063/1.455853 10.1016/j.jallcom.2016.09.163 10.1038/nnano.2009.326 10.1016/j.ceramint.2014.02.081 10.1016/j.snb.2015.04.017 10.1016/j.jallcom.2018.09.022 10.1039/c3tc31100g 10.1039/C5NR08477F 10.1039/C6CP06608A 10.1166/mex.2013.1121 10.1016/j.jpcs.2018.09.013 10.1039/C5RA16986K 10.1016/j.actamat.2010.01.035 10.1016/j.jpcs.2018.11.009 10.1016/j.matlet.2010.10.080 10.1016/j.jnoncrysol.2018.01.027 10.1039/C6CP02746F 10.1016/j.ceramint.2014.04.102 10.1016/j.snb.2014.01.037 10.1039/C6TC05449H 10.1109/JDT.2016.2602503 10.1021/acs.nanolett.5b04611 10.1016/j.mseb.2015.06.011 10.1039/C8SC00927A 10.1016/j.snb.2017.02.070 10.1016/j.cplett.2016.12.002 10.1103/PhysRevB.87.205113 10.1007/s00340-012-5224-1 10.1063/1.1578706 10.1016/j.matchemphys.2013.02.065 10.1016/j.porgcoat.2009.08.021 10.1016/j.snb.2012.08.019 10.1016/j.optcom.2011.12.075 10.1007/s10854-018-0112-z 10.1080/00150193.2015.1072685 10.1021/acs.accounts.6b00382 10.1063/1.4979096 10.1016/j.snb.2015.01.136 10.1016/j.jlumin.2018.10.091 10.1016/j.cej.2017.06.166 10.1021/acs.inorgchem.7b02634 10.1039/C4RA11771A 10.1364/OL.39.006687 10.1002/ejic.201701201 10.1016/j.jlumin.2018.09.029 10.1016/j.materresbull.2012.06.033 10.1039/c3cs60102a 10.1016/j.ceramint.2012.07.036 10.1146/annurev-matsci-112408-125237 10.1016/j.matchemphys.2017.12.007 10.1039/C6RA09656E 10.1038/nmat3149 10.1016/j.snb.2012.07.009 10.1016/j.sna.2015.12.018 10.1016/j.snb.2014.06.074 10.1016/j.jlumin.2018.10.058 10.1016/j.snb.2014.11.126 10.1039/C9TC01351B 10.1007/s10854-018-0328-y 10.1016/j.cplett.2016.03.006 10.1021/acsnano.6b06670 10.1063/1.4793265 10.1016/j.snb.2012.12.050 10.1016/S1540-7489(02)80323-6 10.1016/j.sna.2005.12.030 10.1016/j.optmat.2006.09.021 10.1016/j.matlet.2014.12.123 10.1007/s10854-018-0347-8 10.1016/j.snb.2011.05.018 10.1364/OME.8.000012 10.1039/c1nr10752f 10.1016/j.ica.2017.10.014 10.1016/j.snb.2015.01.007 10.1016/j.snb.2015.06.132 10.1021/es7029637 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 15, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 15, 2020 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2019.152691 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2019_152691 S0925838819339374 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c403t-ed5bbdaead7d986814e514c69fc684c9219e7f0b04ff89142f6aaa762f9d3c5a3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Sun Jul 13 05:32:53 EDT 2025 Tue Jul 01 03:58:18 EDT 2025 Thu Apr 24 22:56:49 EDT 2025 Fri Feb 23 02:49:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optical temperature sensing Up-conversion luminescence Rare-earth luminescence Fluorescence intensity ratio technique |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-ed5bbdaead7d986814e514c69fc684c9219e7f0b04ff89142f6aaa762f9d3c5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2353045038 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2353045038 crossref_citationtrail_10_1016_j_jallcom_2019_152691 crossref_primary_10_1016_j_jallcom_2019_152691 elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_152691 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-15 |
PublicationDateYYYYMMDD | 2020-03-15 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhang, Wang, Ye, Gong, Li, Yao (bib102) 2018; 29 Wang, Liu, Yan (bib135) 2014; 4 Du, Luo, Yue, Li (bib113) 2015; 143 Wang, Zhou, Wang, Pan (bib112) 2016; 98 Zhou, Chen, Feng, Jiang, Lin, Pang, Li, Xiang (bib66) 2018; 469 Lei, Li, Tu, Shang, Liu, You, Sun, Zhang, Chen (bib203) 2018; 9 Omrane, Ossler, Aldén (bib22) 2002; 29 León-Luis, Rodríguez-Mendoza, Lalla, Lavín (bib61) 2011; 158 Liu, Li, Li, Chai, Zhao, Wang, Yao (bib157) 2016; 45 Cao, Wang, Li, Yao (bib172) 2014; 44 Bu, Yan (bib39) 2017; 190 Uchiyama, Aizawa, Katsumata, Komuro, Morikawa (bib25) 2003; 74 Loos, Steudel, Ahrens, Schweizer (bib68) 2017; 181 Cao, Hu, Chen, Guo, Duan, Yin (bib116) 2017; 100 Brübach, Kissel, Frotscher, Euler, Albert, Dreizler (bib29) 2011; 131 Xu, Gao, Zheng, Zhang, Cao (bib169) 2012; 20 Dawson, Romanowski (bib90) 2018; 140 Wang, Chen, Zhang, Zhao, Qin (bib75) 2011; 65 Chen, Xu, Liu, Li (bib1) 2017; 246 Lai, Feng, Wang, Su (bib144) 2010; 32 Zhang, Xu, Guo, Gong (bib33) 2017; 56 Du, Luo, Yu (bib48) 2015; 632 Li, Li, Dong, Liu, Song, Yu (bib196) 2008; 134 Smith, Mancini, Nie (bib176) 2009; 4 Du, Luo, Li, Yue (bib129) 2014; 116 Liu, Lei, Huang, Deng, Wang, Zhao, Xu (bib151) 2019; 210 Soni, Dey, Rai (bib187) 2015; 5 Li, Chai, Wang, Xu, Gu, Zhao, Yao (bib159) 2016; 45 Vijaya, Babu, Venkatramu, Jayasankar, León-Luis, Rodríguez-Mendoza, Martín, Lavín (bib59) 2013; 186 Chen, Wan, Zhou, Huang, Zhong, Ding, Xiang, Liang, Ji (bib94) 2015; 638 Zhang, Wang, Li, Li, Yao (bib103) 2018; 8 Duan, Liang, Li, Zhang, Xu (bib14) 2018; 6 Grzyb, Gruszeczka, Wiglusz, Lis (bib77) 2013; 1 Lu, Yang, Huang, Zou, Yang, Zhang, Wang, Zhu (bib194) 2019; 206 Tripathi, Rai, Rai (bib98) 2007; 30 Shi, Feng, Lu, Lu, Shen, Xue, Du, Fu, Hao, Li (bib50) 2019; 30 Ximendes, Santos, Rocha, Kagola, Sanz-Rodríguez, Fernández, Gouveia-Neto, Bravo, Domingo, Rosal, Brites, Carlos, Jaque, Jacinto (bib177) 2016; 16 Singh, Singh, Gupta, Prakash, Rai (bib78) 2013; 42 Zhou, Wei, Li, Chen, Duan, Yin (bib20) 2017; 246 Zhou, Deng, Wei, Jiang, Duan, Chen, Yin (bib91) 2013; 291 Qiao, Ning, Molokeev, Chuang, Liu, Xia (bib38) 2018; 140 Xu, Qi, Zheng, Zhang, Cao (bib182) 2015; 40 Zhu, Li, Qiu, Feng, Li (bib13) 2018; 9 Tiwari, Mahata, Kumar, Rai (bib126) 2015; 150 Nadort, Zhao, Goldys (bib206) 2016; 8 Mukhopadhyay, Rai, Bokolia, Sreenivas (bib115) 2017; 187 Chai, Li, Zhang, Wang, Li, Yao (bib82) 2016; 6 Zhai, Feng, Du, Xue, Shen, Lu, Lu, Fu, Li, Hao, Xu (bib86) 2019; 30 Wang, Deng, Wang, Wang, Han, Zhu, Chen, Liu (bib16) 2011; 10 Yang, Mi (bib139) 2013; 9044 Singh, Rai (bib161) 2007; 86 Zuo, Luo, Yao (bib114) 2015; 632 Chai, Li, Wang, Li, Yao (bib45) 2016; 24 Shi, Yang, Zhao, Huang, Li, Zhou, Li, Li, Liu, Wei (bib183) 2019; 124 Li, Cao, Wei, Yang, Guo (bib128) 2015; 98 Suo, Hu, Zhao, Zhang, Li, Duan, Yin, Guo (bib191) 2017; 5 Zhao, Lou, Mao, Jiang, Wei, Chen, Yin (bib42) 2019; 109 Cai, Xiao, Xu, Mortier (bib35) 2009; 129 Gai, Li, Yang, Lin (bib70) 2013; 114 Green, Kai, Pan, Gang, Lim (bib41) 2018; 6 Li, Guo, Jiang, Agrawal, Li (bib133) 2014; 4 Chen, Chen, Liu, Xu, Yang, Yuan, Zhou (bib67) 2018; 484 Xu, Cui, Hu, Zheng, Zhang, Cao (bib6) 2017; 726 Pandey, Rai, Kumar, Kumar, Swart (bib120) 2015; 209 Mondal, Rai, Srivastava (bib145) 2017; 327 Singh (bib160) 2007; 136 Wang, Wolfbeis, Meier (bib71) 2013; 42 Zhang, Xu, Li, Zhang, Sun, Xia, Hua, Chen (bib8) 2019; 114 Chen, Yu, Huang, Lin, Shan, Wang (bib52) 2010; 58 Soni, Kumari, Rai (bib123) 2015; 216 Dong, Cao, He, Liu, Li, Feng (bib140) 2012; 24 Xu, Hu, Zheng, Zhang, Cao, Liu (bib7) 2019; 208 Du, Luo, Yu (bib121) 2015; 15 Gavrilović, Jovanović, Lojpur, Dramićanin (bib132) 2014; 4 Zhou, Chen, Lei, Wang, Zhu, Wang, Wu, Yang, Xu (bib164) 2019; 45 Gnach, Lipinski, Bednarkiewicz, Rybka, Capobianco (bib205) 2015; 44 Zhang, Li, Chai, Wang, Li, Yao (bib101) 2017; 121 Eckert, Pflitsch, Atakan (bib28) 2010; 68 León-Luis, Rodríguez-Mendoza, Haro-González, Martín, Lavín (bib60) 2012; 174 Meijer, Aarts, van der Ende, Vlugt, Meijerink (bib56) 2010; 81 Brübach, Pflitsch, Dreizler, Atakan (bib27) 2013; 39 Chai, Li, Wang, Zhao, Li, Yao (bib81) 2015; 201 Donner, Thompson, Kreuzer, Baffou, Quidant (bib88) 2012; 12 Hui, Li, Wang, Peng, Zou, Li, Cao, Liu, Yao (bib171) 2015; 487 Yu, Wen, Toh, Tang (bib37) 2012; 116 Suyver, Aebischer, Biner, Gerner, Grimm, Heer, Krämer, Reinhard, Güdel (bib97) 2005; 27 Verma, Rai (bib162) 2012; 113 Kitaoka, Nakamura, Akiyama, Ito, Weinert, Freeman (bib26) 2013; 87 Okabe, Inada, Gota, Harada, Funatsu, Uchiyama (bib36) 2012; 3 Zhai, Du, Chen, Hao, Fu, Li, Xu (bib87) 2019 Tian, Chen, Tian, Li, Zhang, Sun, Fu, Zhong, Zhang, Yu, Hua (bib138) 2013; 3 Yang, Mi, Yu, Su, Guo, Li, Zhang, Liu, Liu, Li (bib131) 2014; 40 Chen, Liu, Xu, Yang, Li, Chen (bib199) 2019; 30 Zhao, Yue, Jiang, Zhang, Li, Qian (bib46) 2019; 58 Park, Lee, Unithrattil, Yoon, Jang, Im (bib53) 2012; 116 Zhang, Guo, Suo, Zhao, Zhang, Li (bib110) 2016; 18 Pang, Wan, Qian, Liu (bib150) 2019; 771 Kalytchuk, Poláková, Wang, Froning, Cepe, Rogach, Zbořil (bib23) 2017; 11 Zhang, Wang, Ye, Li, Yao (bib106) 2019; 770 Rai, Rai, Rai (bib178) 2006; 128 Yao, Chen, Yang, Cui, Li, Yang (bib65) 2016; 42 Zuo, Luo, Yao (bib166) 2016; 45 Huang, Zheng, Tu, Shang, Zhang, Li, Xu, Liu, Chen (bib89) 2019; 6 Zhang, Chen, Zhai, Chen, Zhang (bib156) 2019; 771 Chai, Li, Zhao, Liu, Wang, Yao (bib80) 2015; 488 Jia, Liu, Sun, Fu, Xu (bib40) 2018; 57 Pereira, Kumar, Silva, Santos, Jaque, Jacinto (bib190) 2015; 213 Zhang, Yang, Liu, Mi, Li, Han, Zhang, Seo (bib54) 2015; 98 Xia, Luo, Guan, Liao (bib69) 2012; 20 Singh, Parchur, Ningthoujam, Ramakrishna, Singh, Singh, Rai, Maalej (bib130) 2014; 16 Liu, Wang, Zhang, Yang, Bai, Huang, Song (bib142) 2011; 284 Zhang, Li, Chen (bib34) 2018; 206 Rakov, Maciel (bib143) 2012; 164 Yao, Shen, Tang, Feng, Li (bib147) 2019; 126 Pandey, Rai (bib167) 2013; 42 Li, Wei, Qin, Chen, Duan, Yin (bib5) 2016; 657 Cao, He, Feng, Li, Dong (bib107) 2011; 159 Rakov, Maciel (bib64) 2017; 121 Soni, Rai (bib117) 2017; 667 Rakov, Maciel (bib175) 2014; 39 Du, Wang, Qiang, Ma, Tang, Wang (bib84) 2016; 4 Cao, Hu, Chen, Guo, Duan, Yin (bib118) 2017; 693 Liu, Ming, Cui, Liu, You, Ye, Yang, Nie, Wang (bib153) 2018; 122 Wang, Fu, Wei, Sheng (bib193) 2019; 772 Zheng, Li, Chai, Liu, Wang, Li, Yao (bib100) 2016; 27 Du, Luo, Li, Yue, Chen (bib137) 2014; 104 Du, Yu (bib125) 2015; 41 Dong, Sun, Yan (bib15) 2015; 44 He, Guo, Jiang, Zhang, Duan, Yin, Li (bib124) 2015; 5 Cao, Wu, Wang, He, Feng, Dong (bib154) 2015; 15 Han, Hao, Yang, Sun, Sun, Song, Wang, Zhang (bib202) 2019; 786 Chen, Xu, Yuan, Li, Zhong (bib2) 2017; 5 Sakakibara, Adrian (bib18) 1999; 26 Xu, Liu, Pei, Xu, Xia (bib148) 2019; 7 Wang, Wang, Yu, Bu, Yan (bib108) 2018; 26 Liu, Ai, Lu (bib74) 2011; 3 Wang, Zheng, Xuan, Yan (bib189) 2013; 21 Sidiroglou, Wade, Dragomir, Baxter, Collins (bib10) 2003; 74 Pérez-Rodríguez, Martín, León-Luis, Martín, Kumar, Jayasankar (bib63) 2014; 195 Xu, Zhao, Zhang, Cao (bib181) 2013; 178 Zhao, Du, Niu, Hao, Li, Fu, Xu (bib184) 2018; 29 Sun, Liu, Fu, Zhang, Wu, Wei (bib49) 2017; 17 Li, Peng, Li (bib73) 2009; 21 Zou, Wang, Hu, Zhu, Sui, Shen, Song (bib105) 2015; 26 Chen, Liu, Wan, Ji (bib3) 2016; 120 Chen, Wan, Zhou, Ji (bib24) 2015; 35 Xing, Yang, Ma, Wang (bib192) 2015; 221 Pal, Penhouët, D’Anna, Hagemann (bib32) 2013; 142 Runowski, Shyichuk, Tymiński, Grzyb, Lavín, Lis (bib12) 2018; 10 Du, Xu, Chu, Hao, Li, Jiang, Zheng (bib55) 2017; 28 Carnall, Goodman, Rajnak, Rana (bib17) 1989; 90 Zhou, Jiang, Wei, Chen, Duan, Yin (bib170) 2014; 588 Wang, Jiao, Fu (bib173) 2019; 206 Chai, Li, Wang, Li (bib83) 2016 Qiang, Wang (bib163) 2019; 43 Lojpur, Nikolic, Mancic, Milosevic, Dramicanin (bib165) 2013; 39 Pandey, Rai (bib197) 2012; 109 Lei, Luo, Yuan, Wang, Huang, Deng, Xu (bib43) 2019; 205 Wang, Xu, Cai, Vu, Seo (bib51) 2017; 691 Wei, Zheng, Zhu, Guo (bib111) 2016; 651 Zhang, Jin (bib146) 2019; 783 Chai, Li, Wang, Li, Yao (bib158) 2017; 7 Dong, Cao, Feng, Wang, He (bib141) 2012; 165 Zhang, Tong, Ma, Wang, Xia, Han (bib155) 2019; 781 Wu, Xu, Lai, Liu, Huang, Ye, You (bib195) 2019; 804 Li, Pan, Wang, Jiang, Tian, Zhou, Qu, Liu, Feng, Fu (bib79) 2013; 42 Mueller, Nowack (bib204) 2008; 42 Rocha, da Silva, Silva, Guedes, Benayas, Maestro, Elias, Bovero, van Veggel, Solé, Jaque (bib188) 2013; 7 Li, Chai, Hui, Wang, Zou, Zhao, Yao (bib99) 2016; 490 Xu, Gao, Zheng, Zhang, Cao (bib180) 2012; 173 Liu, Fu, Gao, Yang, Fu, Wang, Yang (bib127) 2015; 5 Zhong, Chen, Peng, Lu, Chen, Li, Ji (bib4) 2018; 763 Zheng, Liu, Lv, Qin (bib92) 2013; 1 Chambers, Clarke (bib21) 2009; 39 Bünzli (bib72) 2017; 2017 Sun, Fu, Liu (bib201) 2019; 206 Xu, Zhao, Li, Zheng, Zhang, Cao (bib47) 2013; 188 Li, Wang, Zhang, Yang, Liu, Song (bib185) 2012; 285 Kissel, Brübach, Euler, Frotscher, Litterscheid, Albert, Dreizler (bib30) 2013; 140 Chen, Wan, Liu (bib11) 2016; 88 Su, Feng, Yang, Li (bib95) 2016; 50 He, Xi, Li, Long, Fang, Zhang (bib152) 2019; 782 Jiang, Wei, Zhou, Chen, Duan, Yin (bib62) 2014; 152 Kumar Rai, Pandey, Dey (bib198) 2013; 113 Zhou, Shi, Jin, Liu (bib96) 2015; 10 Sakirzanovas, Katelnikovas, Dutczak, Kareiva, Jüstel (bib31) 2012; 132 Pandey, Som, Kumar, Kumar, Kumar, Rai, Swart (bib134) 2014; 202 Dey, Kumari, Soni, Rai (bib168) 2015; 210 Mahata, Koppe, Mondal, Brüsewitz, Kumar, Rai, Hofsässa, Vetter (bib119) 2015; 17 Zhou, Song, Yao, Han, Song, Wu, Ming, Ju, Khan (bib85) 2019; 775 Hui, Peng, Zou, Li, Cao, Li, Wang, Yao (bib136) 2014; 40 Klier, Kumke (bib93) 2015; 119 Lin, Huang, Wu, Li (bib19) 2016; 45 Zhou, Jiang, Li, Jiang, Wei, Chen, Yin, Duan (bib186) 2014; 39 Wang, Liu, Bu, Liu, Liu, Yan (bib9) 2015; 5 Pang, Wang (bib200) 2018; 5 Wu, Cheng, Jiang, Feng, Huang, Lin (bib149) 2019; 561 Wade, Muscat, Collins, Baxter (bib174) 1999; 70 Verma, Kaur, Rai, Rai (bib76) 2012; 47 Liang, Qin, Zheng, Zhang, Cao (bib44) 2016; 238 León-Luis, Rodríguez-Mendoza, Martín, Lalla, Lavín (bib58) 2013; 176 Senapati, Nanda (bib57) 2017; 19 Yang, Fu, Yang, Zhang, Wu, Sheng (bib122) 2015; 98 Rai, Pandey (bib109) 2016; 12 Zhang, Chai, Li, Wang, Li, Yao (bib104) 2018; 735 Ding, Shen, Yuan, Bai, Lu, Ji (bib179) 2018; 44 Du (10.1016/j.jallcom.2019.152691_bib137) 2014; 104 Du (10.1016/j.jallcom.2019.152691_bib55) 2017; 28 Li (10.1016/j.jallcom.2019.152691_bib79) 2013; 42 Eckert (10.1016/j.jallcom.2019.152691_bib28) 2010; 68 Pandey (10.1016/j.jallcom.2019.152691_bib134) 2014; 202 Pereira (10.1016/j.jallcom.2019.152691_bib190) 2015; 213 Xu (10.1016/j.jallcom.2019.152691_bib169) 2012; 20 Sun (10.1016/j.jallcom.2019.152691_bib49) 2017; 17 Brübach (10.1016/j.jallcom.2019.152691_bib29) 2011; 131 Zhao (10.1016/j.jallcom.2019.152691_bib42) 2019; 109 Du (10.1016/j.jallcom.2019.152691_bib48) 2015; 632 Li (10.1016/j.jallcom.2019.152691_bib196) 2008; 134 Zuo (10.1016/j.jallcom.2019.152691_bib166) 2016; 45 Kitaoka (10.1016/j.jallcom.2019.152691_bib26) 2013; 87 Chen (10.1016/j.jallcom.2019.152691_bib94) 2015; 638 Yu (10.1016/j.jallcom.2019.152691_bib37) 2012; 116 Yang (10.1016/j.jallcom.2019.152691_bib131) 2014; 40 Ding (10.1016/j.jallcom.2019.152691_bib179) 2018; 44 Xing (10.1016/j.jallcom.2019.152691_bib192) 2015; 221 Rakov (10.1016/j.jallcom.2019.152691_bib175) 2014; 39 Wei (10.1016/j.jallcom.2019.152691_bib111) 2016; 651 Yang (10.1016/j.jallcom.2019.152691_bib139) 2013; 9044 Zhang (10.1016/j.jallcom.2019.152691_bib8) 2019; 114 Sakakibara (10.1016/j.jallcom.2019.152691_bib18) 1999; 26 Dong (10.1016/j.jallcom.2019.152691_bib15) 2015; 44 Gai (10.1016/j.jallcom.2019.152691_bib70) 2013; 114 Kalytchuk (10.1016/j.jallcom.2019.152691_bib23) 2017; 11 Wang (10.1016/j.jallcom.2019.152691_bib75) 2011; 65 Xia (10.1016/j.jallcom.2019.152691_bib69) 2012; 20 Liu (10.1016/j.jallcom.2019.152691_bib127) 2015; 5 Runowski (10.1016/j.jallcom.2019.152691_bib12) 2018; 10 Singh (10.1016/j.jallcom.2019.152691_bib161) 2007; 86 Wang (10.1016/j.jallcom.2019.152691_bib189) 2013; 21 Liu (10.1016/j.jallcom.2019.152691_bib151) 2019; 210 Liu (10.1016/j.jallcom.2019.152691_bib157) 2016; 45 Zuo (10.1016/j.jallcom.2019.152691_bib114) 2015; 632 Zhang (10.1016/j.jallcom.2019.152691_bib110) 2016; 18 Sidiroglou (10.1016/j.jallcom.2019.152691_bib10) 2003; 74 Chambers (10.1016/j.jallcom.2019.152691_bib21) 2009; 39 Bu (10.1016/j.jallcom.2019.152691_bib39) 2017; 190 Wang (10.1016/j.jallcom.2019.152691_bib51) 2017; 691 Suyver (10.1016/j.jallcom.2019.152691_bib97) 2005; 27 Cao (10.1016/j.jallcom.2019.152691_bib107) 2011; 159 Chai (10.1016/j.jallcom.2019.152691_bib82) 2016; 6 Wu (10.1016/j.jallcom.2019.152691_bib195) 2019; 804 Shi (10.1016/j.jallcom.2019.152691_bib50) 2019; 30 Qiang (10.1016/j.jallcom.2019.152691_bib163) 2019; 43 León-Luis (10.1016/j.jallcom.2019.152691_bib60) 2012; 174 Xu (10.1016/j.jallcom.2019.152691_bib180) 2012; 173 Wang (10.1016/j.jallcom.2019.152691_bib9) 2015; 5 Rakov (10.1016/j.jallcom.2019.152691_bib143) 2012; 164 Singh (10.1016/j.jallcom.2019.152691_bib160) 2007; 136 Soni (10.1016/j.jallcom.2019.152691_bib187) 2015; 5 Zhang (10.1016/j.jallcom.2019.152691_bib156) 2019; 771 Nadort (10.1016/j.jallcom.2019.152691_bib206) 2016; 8 Li (10.1016/j.jallcom.2019.152691_bib73) 2009; 21 Chai (10.1016/j.jallcom.2019.152691_bib83) 2016 Zhou (10.1016/j.jallcom.2019.152691_bib20) 2017; 246 Zhang (10.1016/j.jallcom.2019.152691_bib104) 2018; 735 Pandey (10.1016/j.jallcom.2019.152691_bib167) 2013; 42 Green (10.1016/j.jallcom.2019.152691_bib41) 2018; 6 Mukhopadhyay (10.1016/j.jallcom.2019.152691_bib115) 2017; 187 Gnach (10.1016/j.jallcom.2019.152691_bib205) 2015; 44 Liu (10.1016/j.jallcom.2019.152691_bib142) 2011; 284 Sakirzanovas (10.1016/j.jallcom.2019.152691_bib31) 2012; 132 Jia (10.1016/j.jallcom.2019.152691_bib40) 2018; 57 Zhang (10.1016/j.jallcom.2019.152691_bib33) 2017; 56 Du (10.1016/j.jallcom.2019.152691_bib125) 2015; 41 Chen (10.1016/j.jallcom.2019.152691_bib11) 2016; 88 Chen (10.1016/j.jallcom.2019.152691_bib52) 2010; 58 Chen (10.1016/j.jallcom.2019.152691_bib2) 2017; 5 Zhou (10.1016/j.jallcom.2019.152691_bib164) 2019; 45 Dawson (10.1016/j.jallcom.2019.152691_bib90) 2018; 140 Liang (10.1016/j.jallcom.2019.152691_bib44) 2016; 238 Cao (10.1016/j.jallcom.2019.152691_bib172) 2014; 44 Chen (10.1016/j.jallcom.2019.152691_bib3) 2016; 120 Gavrilović (10.1016/j.jallcom.2019.152691_bib132) 2014; 4 Li (10.1016/j.jallcom.2019.152691_bib185) 2012; 285 Shi (10.1016/j.jallcom.2019.152691_bib183) 2019; 124 Li (10.1016/j.jallcom.2019.152691_bib133) 2014; 4 Chai (10.1016/j.jallcom.2019.152691_bib158) 2017; 7 Hui (10.1016/j.jallcom.2019.152691_bib171) 2015; 487 Zhai (10.1016/j.jallcom.2019.152691_bib87) 2019 Li (10.1016/j.jallcom.2019.152691_bib5) 2016; 657 Grzyb (10.1016/j.jallcom.2019.152691_bib77) 2013; 1 Wang (10.1016/j.jallcom.2019.152691_bib112) 2016; 98 Loos (10.1016/j.jallcom.2019.152691_bib68) 2017; 181 Xu (10.1016/j.jallcom.2019.152691_bib7) 2019; 208 Su (10.1016/j.jallcom.2019.152691_bib95) 2016; 50 Zhao (10.1016/j.jallcom.2019.152691_bib184) 2018; 29 Chen (10.1016/j.jallcom.2019.152691_bib67) 2018; 484 Yang (10.1016/j.jallcom.2019.152691_bib122) 2015; 98 Zhang (10.1016/j.jallcom.2019.152691_bib101) 2017; 121 Dong (10.1016/j.jallcom.2019.152691_bib141) 2012; 165 Verma (10.1016/j.jallcom.2019.152691_bib162) 2012; 113 Okabe (10.1016/j.jallcom.2019.152691_bib36) 2012; 3 Jiang (10.1016/j.jallcom.2019.152691_bib62) 2014; 152 Mondal (10.1016/j.jallcom.2019.152691_bib145) 2017; 327 León-Luis (10.1016/j.jallcom.2019.152691_bib61) 2011; 158 Brübach (10.1016/j.jallcom.2019.152691_bib27) 2013; 39 Lin (10.1016/j.jallcom.2019.152691_bib19) 2016; 45 Chen (10.1016/j.jallcom.2019.152691_bib24) 2015; 35 Zhai (10.1016/j.jallcom.2019.152691_bib86) 2019; 30 Zhou (10.1016/j.jallcom.2019.152691_bib66) 2018; 469 Kissel (10.1016/j.jallcom.2019.152691_bib30) 2013; 140 Dey (10.1016/j.jallcom.2019.152691_bib168) 2015; 210 Du (10.1016/j.jallcom.2019.152691_bib84) 2016; 4 Zhou (10.1016/j.jallcom.2019.152691_bib91) 2013; 291 Zheng (10.1016/j.jallcom.2019.152691_bib100) 2016; 27 Liu (10.1016/j.jallcom.2019.152691_bib153) 2018; 122 He (10.1016/j.jallcom.2019.152691_bib152) 2019; 782 Donner (10.1016/j.jallcom.2019.152691_bib88) 2012; 12 Huang (10.1016/j.jallcom.2019.152691_bib89) 2019; 6 Lai (10.1016/j.jallcom.2019.152691_bib144) 2010; 32 Chen (10.1016/j.jallcom.2019.152691_bib1) 2017; 246 Lojpur (10.1016/j.jallcom.2019.152691_bib165) 2013; 39 Rai (10.1016/j.jallcom.2019.152691_bib178) 2006; 128 Omrane (10.1016/j.jallcom.2019.152691_bib22) 2002; 29 León-Luis (10.1016/j.jallcom.2019.152691_bib58) 2013; 176 Tiwari (10.1016/j.jallcom.2019.152691_bib126) 2015; 150 Zhang (10.1016/j.jallcom.2019.152691_bib155) 2019; 781 Tripathi (10.1016/j.jallcom.2019.152691_bib98) 2007; 30 Kumar Rai (10.1016/j.jallcom.2019.152691_bib198) 2013; 113 Wade (10.1016/j.jallcom.2019.152691_bib174) 1999; 70 Singh (10.1016/j.jallcom.2019.152691_bib78) 2013; 42 Zhu (10.1016/j.jallcom.2019.152691_bib13) 2018; 9 Lei (10.1016/j.jallcom.2019.152691_bib203) 2018; 9 Smith (10.1016/j.jallcom.2019.152691_bib176) 2009; 4 Du (10.1016/j.jallcom.2019.152691_bib113) 2015; 143 Wang (10.1016/j.jallcom.2019.152691_bib135) 2014; 4 Cao (10.1016/j.jallcom.2019.152691_bib154) 2015; 15 Soni (10.1016/j.jallcom.2019.152691_bib117) 2017; 667 Pal (10.1016/j.jallcom.2019.152691_bib32) 2013; 142 Wang (10.1016/j.jallcom.2019.152691_bib173) 2019; 206 Cai (10.1016/j.jallcom.2019.152691_bib35) 2009; 129 Chai (10.1016/j.jallcom.2019.152691_bib45) 2016; 24 Sun (10.1016/j.jallcom.2019.152691_bib201) 2019; 206 Mueller (10.1016/j.jallcom.2019.152691_bib204) 2008; 42 Lu (10.1016/j.jallcom.2019.152691_bib194) 2019; 206 Zhang (10.1016/j.jallcom.2019.152691_bib34) 2018; 206 Bünzli (10.1016/j.jallcom.2019.152691_bib72) 2017; 2017 Tian (10.1016/j.jallcom.2019.152691_bib138) 2013; 3 Chen (10.1016/j.jallcom.2019.152691_bib199) 2019; 30 Singh (10.1016/j.jallcom.2019.152691_bib130) 2014; 16 Du (10.1016/j.jallcom.2019.152691_bib129) 2014; 116 Pang (10.1016/j.jallcom.2019.152691_bib150) 2019; 771 Rocha (10.1016/j.jallcom.2019.152691_bib188) 2013; 7 Dong (10.1016/j.jallcom.2019.152691_bib140) 2012; 24 Li (10.1016/j.jallcom.2019.152691_bib128) 2015; 98 Zhang (10.1016/j.jallcom.2019.152691_bib146) 2019; 783 Xu (10.1016/j.jallcom.2019.152691_bib6) 2017; 726 Soni (10.1016/j.jallcom.2019.152691_bib123) 2015; 216 Wang (10.1016/j.jallcom.2019.152691_bib16) 2011; 10 Meijer (10.1016/j.jallcom.2019.152691_bib56) 2010; 81 Mahata (10.1016/j.jallcom.2019.152691_bib119) 2015; 17 Uchiyama (10.1016/j.jallcom.2019.152691_bib25) 2003; 74 Chai (10.1016/j.jallcom.2019.152691_bib81) 2015; 201 Wang (10.1016/j.jallcom.2019.152691_bib108) 2018; 26 Xu (10.1016/j.jallcom.2019.152691_bib148) 2019; 7 Zhang (10.1016/j.jallcom.2019.152691_bib106) 2019; 770 Pérez-Rodríguez (10.1016/j.jallcom.2019.152691_bib63) 2014; 195 Du (10.1016/j.jallcom.2019.152691_bib121) 2015; 15 Zhou (10.1016/j.jallcom.2019.152691_bib186) 2014; 39 Duan (10.1016/j.jallcom.2019.152691_bib14) 2018; 6 Chai (10.1016/j.jallcom.2019.152691_bib80) 2015; 488 Hui (10.1016/j.jallcom.2019.152691_bib136) 2014; 40 Cao (10.1016/j.jallcom.2019.152691_bib116) 2017; 100 Zhou (10.1016/j.jallcom.2019.152691_bib170) 2014; 588 Xu (10.1016/j.jallcom.2019.152691_bib47) 2013; 188 Wang (10.1016/j.jallcom.2019.152691_bib71) 2013; 42 Suo (10.1016/j.jallcom.2019.152691_bib191) 2017; 5 Pang (10.1016/j.jallcom.2019.152691_bib200) 2018; 5 Ximendes (10.1016/j.jallcom.2019.152691_bib177) 2016; 16 Yao (10.1016/j.jallcom.2019.152691_bib65) 2016; 42 Li (10.1016/j.jallcom.2019.152691_bib159) 2016; 45 Rakov (10.1016/j.jallcom.2019.152691_bib64) 2017; 121 He (10.1016/j.jallcom.2019.152691_bib124) 2015; 5 Cao (10.1016/j.jallcom.2019.152691_bib118) 2017; 693 Zhang (10.1016/j.jallcom.2019.152691_bib54) 2015; 98 Carnall (10.1016/j.jallcom.2019.152691_bib17) 1989; 90 Senapati (10.1016/j.jallcom.2019.152691_bib57) 2017; 19 Vijaya (10.1016/j.jallcom.2019.152691_bib59) 2013; 186 Pandey (10.1016/j.jallcom.2019.152691_bib120) 2015; 209 Han (10.1016/j.jallcom.2019.152691_bib202) 2019; 786 Li (10.1016/j.jallcom.2019.152691_bib99) 2016; 490 Zheng (10.1016/j.jallcom.2019.152691_bib92) 2013; 1 Zhou (10.1016/j.jallcom.2019.152691_bib85) 2019; 775 Park (10.1016/j.jallcom.2019.152691_bib53) 2012; 116 Rai (10.1016/j.jallcom.2019.152691_bib109) 2016; 12 Zhao (10.1016/j.jallcom.2019.152691_bib46) 2019; 58 Klier (10.1016/j.jallcom.2019.152691_bib93) 2015; 119 Zhang (10.1016/j.jallcom.2019 |
References_xml | – volume: 771 start-page: 838 year: 2019 end-page: 846 ident: bib156 article-title: Optical temperature sensing using upconversion luminescence in rare-earth ions doped Ca publication-title: J. Alloy. Comp. – volume: 140 start-page: 5714 year: 2018 end-page: 5718 ident: bib90 article-title: Excitation modulation of upconversion nanoparticles for switch-like control of ultraviolet luminescence publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 26850 year: 2012 end-page: 26856 ident: bib53 article-title: Melilite-structure CaYAl publication-title: J. Phys. Chem. C – volume: 27 start-page: 1111 year: 2005 end-page: 1130 ident: bib97 article-title: Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion publication-title: Opt. Mater. – volume: 45 start-page: 3473 year: 2016 end-page: 3478 ident: bib157 article-title: Effect of the Yb publication-title: J. Electron. Mater. – volume: 20 start-page: 18127 year: 2012 end-page: 18137 ident: bib169 article-title: Short-wavelength upconversion emissions in Ho publication-title: Opt. Express – volume: 140 start-page: 9730 year: 2018 end-page: 9736 ident: bib38 article-title: Eu publication-title: J. Am. Chem. Soc. – volume: 206 start-page: 273 year: 2019 end-page: 277 ident: bib173 article-title: Investigation on the up-conversion luminescence and temperature sensing properties based on non-thermally coupled levels of rare earth ions doped Ba publication-title: J. Lumin. – volume: 181 start-page: 31 year: 2017 end-page: 35 ident: bib68 article-title: Temperature-dependent luminescence and energy transfer properties of Tb publication-title: J. Lumin. – volume: 16 start-page: 1695 year: 2016 end-page: 1703 ident: bib177 article-title: Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers publication-title: Nano Lett. – volume: 8 start-page: 12 year: 2018 end-page: 23 ident: bib103 article-title: Excellent up-conversion temperature sensing sensitivity and broad temperature range of Er-doped strontium tungstate multiphase phosphors publication-title: Opt. Mater. Express – volume: 26 start-page: 21950 year: 2018 end-page: 21959 ident: bib108 article-title: Modifying phase, shape and optical thermometry of NaGdF publication-title: Opt. Express – start-page: 1 year: 2016 end-page: 4 ident: bib83 publication-title: Improved Electrical Properties and Dual-Mode Photoluminescence in (1- – volume: 47 start-page: 3726 year: 2012 end-page: 3731 ident: bib76 article-title: Dual mode green fluorescence from Tb publication-title: Mater. Res. Bull. – volume: 12 start-page: 1472 year: 2016 end-page: 1477 ident: bib109 article-title: Efficient color tunable ZnWO publication-title: J. Disp. Technol. – volume: 45 start-page: 970 year: 2016 end-page: 975 ident: bib166 article-title: High dielectric, piezoelectric, upconversion photoluminescence and low-temperature sensing properties in Ba publication-title: J. Electron. Mater. – volume: 43 start-page: 5011 year: 2019 end-page: 5019 ident: bib163 article-title: Enhanced optical temperature sensing and upconversion emissions based on the Mn publication-title: New J. Chem. – volume: 469 start-page: 576 year: 2018 end-page: 582 ident: bib66 article-title: Color tunable emission and low-temperature luminescent sensing of europium and terbium carboxylic acid complexes publication-title: Inorg. Chim. Acta – volume: 45 start-page: 11733 year: 2016 end-page: 11741 ident: bib159 article-title: Large electrostrain and high optical temperature sensitivity in BaTiO publication-title: Dalton Trans. – volume: 28 start-page: 5288 year: 2017 end-page: 5294 ident: bib55 article-title: Rare-earth doped (K publication-title: J. Mater. Sci. Mater. Electron. – volume: 735 start-page: 473 year: 2018 end-page: 479 ident: bib104 article-title: Enhanced up-conversion luminescence and excellent temperature sensing properties in Yb publication-title: J. Alloy. Comp. – volume: 11 start-page: 1432 year: 2017 end-page: 1442 ident: bib23 article-title: Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing publication-title: ACS Nano – volume: 30 start-page: 778 year: 2019 end-page: 785 ident: bib199 article-title: Yb publication-title: J. Mater. Sci. Mater. Electron. – volume: 26 start-page: 6502 year: 2015 end-page: 6505 ident: bib105 article-title: Optical thermometry based on the upconversion luminescence from Er doped Bi publication-title: J. Mater. Sci. Mater. Electron. – volume: 42 start-page: 11005 year: 2013 end-page: 11011 ident: bib167 article-title: Improved luminescence and temperature sensing performance of Ho publication-title: Dalton Trans. – volume: 42 start-page: 7834 year: 2013 end-page: 7869 ident: bib71 article-title: Luminescent probes and sensors for temperature publication-title: Chem. Soc. Rev. – volume: 487 start-page: 133 year: 2015 end-page: 141 ident: bib171 article-title: Bright green emission in Ho publication-title: Ferroelectrics – volume: 124 start-page: 130 year: 2019 end-page: 136 ident: bib183 article-title: Highly sensitive up-conversion thermometric performance in Nd publication-title: J. Phys. Chem. Solids – volume: 488 start-page: 54 year: 2015 end-page: 61 ident: bib80 article-title: Dual-mode luminescence, temperature sensing and dielectric performance in Pr publication-title: Ferroelectrics – volume: 90 start-page: 3443 year: 1989 end-page: 3457 ident: bib17 article-title: A systematic analysis of the spectra of the lanthanides doped into single crystal LaF publication-title: J. Chem. Phys. – volume: 114 start-page: 148 year: 2019 end-page: 155 ident: bib8 article-title: Fabrication, photothermal conversion and temperature sensing of novel nanoplatform-hybrid nanocomposite of NaYF publication-title: Mater. Res. Bull. – volume: 4 start-page: 710 year: 2009 ident: bib176 article-title: Bioimaging: second window for in vivo imaging publication-title: Nat. Nanotechnol. – volume: 210 start-page: 119 year: 2019 end-page: 127 ident: bib151 article-title: Dependence of upconversion emission and optical temperature sensing behavior on excitation power in Er publication-title: J. Lumin. – volume: 246 start-page: 756 year: 2017 end-page: 760 ident: bib1 article-title: Eu publication-title: Sens. Actuators B Chem. – volume: 30 start-page: 201 year: 2007 end-page: 206 ident: bib98 article-title: Upconversion and temperature sensing behavior of Er publication-title: Opt. Mater. – volume: 291 start-page: 138 year: 2013 end-page: 142 ident: bib91 article-title: Upconversion luminescence of NaYF publication-title: Opt. Commun. – volume: 284 start-page: 1876 year: 2011 end-page: 1879 ident: bib142 article-title: Optical thermometry through green and red upconversion emissions in Er publication-title: Opt. Commun. – volume: 201 start-page: 23 year: 2015 end-page: 28 ident: bib81 article-title: Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba publication-title: Mat. Sci. Eng. B-Adv. – volume: 136 start-page: 173 year: 2007 end-page: 177 ident: bib160 article-title: Ho publication-title: Sens. Actuators A Phys. – volume: 42 start-page: 4447 year: 2008 end-page: 4453 ident: bib204 article-title: Exposure modeling of engineered nanoparticles in the environment publication-title: Environ. Sci. Technol. – volume: 490 start-page: 118 year: 2016 end-page: 126 ident: bib99 article-title: Broadband near-infrared photoluminescence and strong visible up-conversion emission in BaTiO publication-title: Ferroelectrics – volume: 58 start-page: 2637 year: 2019 end-page: 2644 ident: bib46 article-title: Isostructural Tb publication-title: Inorg. Chem. – volume: 632 start-page: 711 year: 2015 end-page: 716 ident: bib114 article-title: The electrical, upconversion emission, and temperature sensing properties of Er publication-title: J. Alloy. Comp. – volume: 39 start-page: 37 year: 2013 end-page: 60 ident: bib27 article-title: On surface temperature measurements with thermographic phosphors: a review publication-title: Prog. Energy Combust. Sci. – volume: 9 start-page: 4682 year: 2018 end-page: 4688 ident: bib203 article-title: Intense near-infrared-II luminescence from NaCeF publication-title: Chem. Sci. – volume: 20 start-page: A722 year: 2012 end-page: A728 ident: bib69 article-title: Near-infrared luminescence and energy transfer studies of LaOBr:Nd publication-title: Opt. Express – volume: 18 start-page: 18828 year: 2016 end-page: 18834 ident: bib110 article-title: Thermometry and up-conversion luminescence of Yb publication-title: Phys. Chem. Chem. Phys. – volume: 210 start-page: 581 year: 2015 end-page: 588 ident: bib168 article-title: CaMoO publication-title: Sens. Actuators B Chem. – volume: 120 start-page: 21858 year: 2016 end-page: 21865 ident: bib3 article-title: EuF publication-title: J. Phys. Chem. C – volume: 202 start-page: 1305 year: 2014 end-page: 1312 ident: bib134 article-title: Enhanced upconversion and temperature sensing study of Er publication-title: Sens. Actuators B Chem. – volume: 173 start-page: 250 year: 2012 end-page: 253 ident: bib180 article-title: An optical temperature sensor based on the upconversion luminescence from Tm publication-title: Sens. Actuators B Chem. – volume: 24 start-page: 22438 year: 2016 end-page: 22447 ident: bib45 article-title: Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er publication-title: Opt. Express – volume: 143 start-page: 209 year: 2015 end-page: 211 ident: bib113 article-title: The simultaneous realization of high-and low-temperature thermometry in Er publication-title: Mater. Lett. – volume: 98 start-page: 28 year: 2016 end-page: 31 ident: bib112 article-title: Up-conversion luminescence and optical temperature-sensing properties of Er publication-title: J. Phys. Chem. Solids – volume: 39 start-page: 6687 year: 2014 end-page: 6690 ident: bib186 article-title: Strategy for thermometry via Tm publication-title: Opt. Lett. – volume: 21 start-page: 21596 year: 2013 end-page: 21606 ident: bib189 article-title: Optical temperature sensing of NaYbF publication-title: Opt. Express – volume: 134 start-page: 313 year: 2008 end-page: 316 ident: bib196 article-title: Significant temperature effects on up-conversion emissions of Nd publication-title: Sens. Actuators B Chem. – volume: 140 start-page: 435 year: 2013 end-page: 440 ident: bib30 article-title: Phosphor thermometry: on the synthesis and characterisation of Y publication-title: Mater. Chem. Phys. – volume: 50 start-page: 32 year: 2016 end-page: 40 ident: bib95 article-title: Resonance energy transfer in upconversion nanoplatforms for selective biodetection publication-title: Accounts Chem. Res. – volume: 159 start-page: 8 year: 2011 end-page: 11 ident: bib107 article-title: Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo:Yb publication-title: Sens. Actuators B Chem. – volume: 58 start-page: 3035 year: 2010 end-page: 3041 ident: bib52 article-title: Color-tunable luminescence of Eu publication-title: Acta Mater. – volume: 15 start-page: 30981 year: 2015 end-page: 30990 ident: bib154 article-title: Multiple temperature-sensing behavior of green and red upconversion emissions from Stark sublevels of Er publication-title: Sensors – volume: 7 start-page: 1188 year: 2013 end-page: 1199 ident: bib188 article-title: Subtissue thermal sensing based on neodymium-doped LaF publication-title: ACS Nano – volume: 5 start-page: 1385 year: 2015 end-page: 1390 ident: bib124 article-title: Optical temperature sensing properties of Yb publication-title: RSC Adv. – volume: 122 start-page: 16289 year: 2018 end-page: 16303 ident: bib153 article-title: Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba publication-title: J. Phys. Chem. C – volume: 32 start-page: 1154 year: 2010 end-page: 1160 ident: bib144 article-title: Optical transition and upconversion luminescence in Er publication-title: Opt. Mater. – volume: 5 start-page: 86219 year: 2015 end-page: 86236 ident: bib9 article-title: Optical temperature sensing of rare-earth ion doped phosphors publication-title: RSC Adv. – volume: 74 start-page: 3524 year: 2003 end-page: 3530 ident: bib10 article-title: Effects of high-temperature heat treatment on Nd publication-title: Rev. Sci. Instrum. – volume: 109 start-page: 103 year: 2019 end-page: 107 ident: bib42 article-title: Optical temperature sensing properties of a phosphor mixture of Sr publication-title: Mater. Res. Bull. – volume: 10 start-page: 968 year: 2011 ident: bib16 article-title: Tuning upconversion through energy migration in core-shell nanoparticles publication-title: Nat. Mater. – volume: 15 start-page: 1576 year: 2015 end-page: 1579 ident: bib121 article-title: Infrared-to-visible upconversion emission of Er publication-title: Curr. Appl. Phys. – volume: 100 start-page: 2108 year: 2017 end-page: 2115 ident: bib116 article-title: Wide-range thermometry based on green up-conversion luminescence of K publication-title: J. Am. Ceram. Soc. – volume: 216 start-page: 64 year: 2015 end-page: 71 ident: bib123 article-title: Optical investigation in shuttle like BaMoO publication-title: Sens. Actuators B Chem. – volume: 775 start-page: 457 year: 2019 end-page: 465 ident: bib85 article-title: Efficient solid-state and dual-mode photoluminescence of carbon-dots/NaLuF publication-title: J. Alloy. Comp. – volume: 178 start-page: 520 year: 2013 end-page: 524 ident: bib181 article-title: Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd publication-title: Sens. Actuators B Chem. – volume: 88 start-page: 4099 year: 2016 end-page: 4106 ident: bib11 article-title: Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer publication-title: Anal. Chem. – volume: 2017 start-page: 5058 year: 2017 end-page: 5063 ident: bib72 article-title: Rising stars in science and technology: luminescent lanthanide materials publication-title: Eur. J. Inorg. Chem. – volume: 40 start-page: 5678 year: 2015 end-page: 5681 ident: bib182 article-title: Multifunctional nanoparticles based on the Nd publication-title: Opt. Lett. – volume: 116 start-page: 014102 year: 2014 ident: bib129 article-title: Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na publication-title: J. Appl. Phys. – volume: 4 start-page: 4209 year: 2014 ident: bib132 article-title: Multifunctional Eu publication-title: Sci. Rep. – volume: 3 start-page: 241 year: 2013 end-page: 246 ident: bib138 article-title: Intense red upconversion emission and temperature sensing in Er publication-title: Mater. Express – volume: 1 start-page: 5410 year: 2013 end-page: 5418 ident: bib77 article-title: The effects of down-and up-conversion on dual-mode green luminescence from Yb publication-title: J. Mater. Chem. C – volume: 21 start-page: 1945 year: 2009 end-page: 1948 ident: bib73 article-title: Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals publication-title: Adv. Mater. – volume: 121 start-page: 124102 year: 2017 ident: bib101 article-title: Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi publication-title: J. Appl. Phys. – volume: 129 start-page: 1994 year: 2009 end-page: 1996 ident: bib35 article-title: Point temperature sensor based on green decay in an Er:ZBLALiP microsphere publication-title: J. Lumin. – volume: 10 start-page: 17269 year: 2018 end-page: 17279 ident: bib12 article-title: Multifunctional optical sensors for nanomanometry and nanothermometry: high-pressure and high-temperature upconversion luminescence of lanthanide-doped phosphates--LaPO publication-title: ACS Appl. Mater. Interfaces – volume: 205 start-page: 440 year: 2019 end-page: 445 ident: bib43 article-title: Ultrahigh-sensitive optical temperature sensing in Pr publication-title: J. Lumin. – volume: 42 start-page: 7971 year: 2013 end-page: 7979 ident: bib79 article-title: Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF publication-title: Dalton Trans. – volume: 98 start-page: 1567 year: 2015 end-page: 1573 ident: bib54 article-title: Photoluminescence properties of heavily Eu publication-title: J. Am. Ceram. Soc. – volume: 114 start-page: 2343 year: 2013 end-page: 2389 ident: bib70 article-title: Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications publication-title: Chem. Rev. – volume: 6 year: 2018 ident: bib41 article-title: Optical temperature sensing with infrared excited upconversion nanoparticles publication-title: Front. Chem. – volume: 195 start-page: 324 year: 2014 end-page: 331 ident: bib63 article-title: Relevance of radiative transfer processes on Nd publication-title: Sens. Actuators B Chem. – volume: 39 start-page: 325 year: 2009 end-page: 359 ident: bib21 article-title: Doped oxides for high-temperature luminescence and lifetime thermometry publication-title: Annu. Rev. Mater. Res. – volume: 150 start-page: 623 year: 2015 end-page: 630 ident: bib126 article-title: Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO publication-title: Spectrochim. Acta A – volume: 209 start-page: 352 year: 2015 end-page: 358 ident: bib120 article-title: Upconversion based temperature sensing ability of Er publication-title: Sens. Actuators B Chem. – volume: 128 start-page: 14 year: 2006 end-page: 17 ident: bib178 article-title: Pr publication-title: Sens. Actuators B Chem. – volume: 81 start-page: 035107 year: 2010 ident: bib56 article-title: Downconversion for solar cells in YF publication-title: Phys. Rev. B – volume: 6 start-page: 64072 year: 2016 end-page: 64078 ident: bib82 article-title: Bright dual-mode green emission and temperature sensing properties in Er publication-title: RSC Adv. – volume: 45 start-page: 127 year: 2016 end-page: 132 ident: bib19 article-title: Relationship between rare earth fluorescence characteristic and temperature publication-title: Acta Photonica Sin. – volume: 208 start-page: 415 year: 2019 end-page: 423 ident: bib7 article-title: Enhanced NIR-NIR luminescence from CaWO publication-title: J. Lumin. – volume: 98 start-page: 2595 year: 2015 end-page: 2600 ident: bib122 article-title: Optical temperature sensing behavior of high-efficiency upconversion: Er publication-title: J. Am. Ceram. Soc. – volume: 651 start-page: 46 year: 2016 end-page: 49 ident: bib111 article-title: Upconversion of SrWO publication-title: Chem. Phys. Lett. – volume: 87 start-page: 205113 year: 2013 ident: bib26 article-title: Excited Cr impurity states in Al publication-title: Phys. Rev. B – volume: 7 start-page: 40046 year: 2017 end-page: 40052 ident: bib158 article-title: Upconversion luminescence and temperature-sensing properties of Ho publication-title: RSC Adv. – volume: 238 start-page: 215 year: 2016 end-page: 219 ident: bib44 article-title: Noncontact thermometry based on downconversion luminescence from Eu publication-title: Sens. Actuators A Phys. – volume: 74 start-page: 3883 year: 2003 end-page: 3885 ident: bib25 article-title: Fiber-optic thermometer using Cr-doped YAlO publication-title: Rev. Sci. Instrum. – volume: 42 start-page: 1065 year: 2013 end-page: 1072 ident: bib78 article-title: Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors publication-title: Dalton Trans. – volume: 206 start-page: 176 year: 2019 end-page: 184 ident: bib201 article-title: Designing down-and up-conversion dual-mode luminescence of lanthanide-doped phosphors for temperature sensing publication-title: J. Lumin. – volume: 41 start-page: 6710 year: 2015 end-page: 6714 ident: bib125 article-title: Effect of molybdenum on upconversion emission and temperature sensing properties in Na publication-title: Ceram. Int. – volume: 44 start-page: 1561 year: 2015 end-page: 1584 ident: bib205 article-title: Upconverting nanoparticles: assessing the toxicity publication-title: Chem. Soc. Rev. – volume: 174 start-page: 176 year: 2012 end-page: 186 ident: bib60 article-title: Role of the host matrix on the thermal sensitivity of Er publication-title: Sens. Actuators B Chem. – volume: 45 start-page: 7696 year: 2019 end-page: 7702 ident: bib164 article-title: Excellent photoluminescence and temperature sensing properties in Ho publication-title: Ceram. Int. – volume: 65 start-page: 504 year: 2011 end-page: 506 ident: bib75 article-title: Dual-mode luminescence from lanthanide tri-doped NaYF publication-title: Mater. Lett. – volume: 285 start-page: 1925 year: 2012 end-page: 1928 ident: bib185 article-title: Optical temperature sensor through infrared excited blue upconversion emission in Tm publication-title: Opt. Commun. – volume: 693 start-page: 326 year: 2017 end-page: 331 ident: bib118 article-title: Optical thermometry based on up-conversion luminescence behavior of Er publication-title: J. Alloy. Comp. – volume: 24 start-page: 1987 year: 2012 end-page: 1993 ident: bib140 article-title: Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides publication-title: Adv. Mater. – volume: 44 start-page: 1608 year: 2015 end-page: 1634 ident: bib15 article-title: Energy transfer in lanthanide upconversion studies for extended optical applications publication-title: Chem. Soc. Rev. – volume: 104 start-page: 152902 year: 2014 ident: bib137 article-title: Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr publication-title: Appl. Phys. Lett. – volume: 772 start-page: 371 year: 2019 end-page: 380 ident: bib193 article-title: Investigation for the upconversion luminescence and temperature sensing mechanism based on BiPO publication-title: J. Alloy. Comp. – volume: 726 start-page: 547 year: 2017 end-page: 555 ident: bib6 article-title: Optical temperature sensing in Er publication-title: J. Alloy. Comp. – volume: 17 start-page: 255 year: 2017 end-page: 261 ident: bib49 article-title: High sensitivity thermometry and optical heating Bi-function of Yb publication-title: Curr. Appl. Phys. – volume: 588 start-page: 654 year: 2014 end-page: 657 ident: bib170 article-title: Optical thermometry based on upconversion luminescence in Yb publication-title: J. Alloy. Comp. – volume: 39 start-page: 3767 year: 2014 end-page: 3769 ident: bib175 article-title: Nd publication-title: Opt. Lett. – volume: 98 start-page: 3824 year: 2015 end-page: 3830 ident: bib128 article-title: Optical thermometry based on up-conversion luminescence behavior of Er publication-title: J. Am. Ceram. Soc. – volume: 9044 start-page: 904408 year: 2013 ident: bib139 article-title: Highly sensitive optical thermometry based on the upconversion fluorescence from Yb publication-title: Int. Soc. Opt. Photon. – volume: 176 start-page: 1167 year: 2013 end-page: 1175 ident: bib58 article-title: Effects of Er publication-title: Sens. Actuators B Chem. – volume: 561 start-page: 97 year: 2019 end-page: 102 ident: bib149 article-title: Optical temperature sensing properties of Er publication-title: Physica B – volume: 70 start-page: 4279 year: 1999 end-page: 4282 ident: bib174 article-title: Nd publication-title: Rev. Sci. Instrum. – volume: 142 start-page: 66 year: 2013 end-page: 74 ident: bib32 article-title: Effect of temperature and pressure on emission lifetime of Sm publication-title: J. Lumin. – start-page: 1 year: 2019 end-page: 10 ident: bib87 article-title: Temperature stability and electrical properties of Tm publication-title: J. Mater. Sci. Mater. Electron. – volume: 113 start-page: 1594 year: 2012 end-page: 1600 ident: bib162 article-title: Laser induced optical heating from Yb publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 29 start-page: 2653 year: 2002 end-page: 2659 ident: bib22 article-title: Two-dimensional surface temperature measurements of burning materials publication-title: Proc. Combust. Inst. – volume: 158 start-page: 208 year: 2011 end-page: 213 ident: bib61 article-title: Temperature sensor based on the Er publication-title: Sens. Actuators B Chem. – volume: 30 start-page: 4352 year: 2019 end-page: 4358 ident: bib86 article-title: The impedance, dielectric and piezoelectric properties of Tb publication-title: J. Mater. Sci.-Mater. El. – volume: 132 start-page: 141 year: 2012 end-page: 146 ident: bib31 article-title: Concentration influence on temperature-dependent luminescence properties of samarium substituted strontium tetraborate publication-title: J. Lumin. – volume: 26 start-page: 7 year: 1999 end-page: 15 ident: bib18 article-title: Whole field measurement of temperature in water using two-color laser induced fluorescence publication-title: Exp. Fluid – volume: 29 start-page: 4791 year: 2018 end-page: 4800 ident: bib184 article-title: Lead-free rare earth-modified (K publication-title: J. Mater. Sci. Mater. Electron. – volume: 5 start-page: 1501 year: 2017 end-page: 1507 ident: bib191 article-title: All-in-one thermometer-heater up-converting platform YF publication-title: J. Mater. Chem. C – volume: 68 start-page: 126 year: 2010 end-page: 129 ident: bib28 article-title: Sol-gel deposition of multiply doped thermographic phosphor coatings Al publication-title: Prog. Org. Coat. – volume: 17 start-page: 20741 year: 2015 end-page: 20753 ident: bib119 article-title: Incorporation of Zn publication-title: Phys. Chem. Chem. Phys. – volume: 121 start-page: 113103 year: 2017 ident: bib64 article-title: Near-infrared emission and optical temperature sensing performance of Nd publication-title: J. Appl. Phys. – volume: 188 start-page: 1096 year: 2013 end-page: 1100 ident: bib47 article-title: Optical temperature sensing through the upconversion luminescence from Ho publication-title: Sens. Actuators B Chem. – volume: 35 start-page: 4211 year: 2015 end-page: 4216 ident: bib24 article-title: Cr publication-title: J. Eur. Ceram. Soc. – volume: 109 start-page: 611 year: 2012 end-page: 616 ident: bib197 article-title: Colour emission tunability in Ho publication-title: Appl. Phys. B – volume: 632 start-page: 73 year: 2015 end-page: 77 ident: bib48 article-title: Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba publication-title: J. Alloy. Comp. – volume: 126 start-page: 189 year: 2019 end-page: 195 ident: bib147 article-title: Effect of Li co-doping with Er on up-conversion luminescence property and its temperature dependence of NaY(WO publication-title: J. Phys. Chem. Solids – volume: 484 start-page: 111 year: 2018 end-page: 117 ident: bib67 article-title: Down-conversion luminescence and optical thermometric performance of Tb publication-title: J. Non-Cryst. Solids – volume: 4 start-page: 7148 year: 2016 end-page: 7155 ident: bib84 article-title: The dual-model up/down-conversion green luminescence of Gd publication-title: J. Mater. Chem. C – volume: 5 start-page: 9619 year: 2017 end-page: 9628 ident: bib2 article-title: Ln publication-title: J. Mater. Chem. C – volume: 113 start-page: 083104 year: 2013 ident: bib198 article-title: Photoluminescence study of Y publication-title: J. Appl. Phys. – volume: 804 start-page: 486 year: 2019 end-page: 493 ident: bib195 article-title: Intense near-infrared emission, upconversion processes and temperature sensing properties of Tm publication-title: J. Alloy. Comp. – volume: 29 start-page: 19840 year: 2018 end-page: 19845 ident: bib102 article-title: Simultaneously excellent upconversion luminescence and temperature sensing properties in tungstate multiphase phosphors publication-title: J. Mater. Sci. Mater. Electron. – volume: 5 start-page: 34999 year: 2015 end-page: 35009 ident: bib187 article-title: Stark sublevels in Tm publication-title: RSC Adv. – volume: 770 start-page: 214 year: 2019 end-page: 221 ident: bib106 article-title: LiNbO publication-title: J. Alloy. Comp. – volume: 164 start-page: 96 year: 2012 end-page: 100 ident: bib143 article-title: Three-photon upconversion and optical thermometry characterization of Er publication-title: Sens. Actuators B Chem. – volume: 5 start-page: 51820 year: 2015 end-page: 51827 ident: bib127 article-title: Investigation into the temperature sensing behavior of Yb publication-title: RSC Adv. – volume: 327 start-page: 838 year: 2017 end-page: 848 ident: bib145 article-title: Influence of silica surface coating on optical properties of Er publication-title: Chem. Eng. J. – volume: 40 start-page: 9875 year: 2014 end-page: 9880 ident: bib131 article-title: Optical thermometry based on the upconversion fluorescence from Yb publication-title: Ceram. Int. – volume: 9 start-page: 2176 year: 2018 ident: bib13 article-title: Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature publication-title: Nat. Commun. – volume: 56 start-page: 890 year: 2017 end-page: 898 ident: bib33 article-title: Luminescence and energy transfer of dual-emitting solid solution phosphors (Ca,Sr) publication-title: Ind. Eng. Chem. Res. – volume: 782 start-page: 936 year: 2019 end-page: 942 ident: bib152 article-title: The upconversion photoluminescence and temperature sensing abilities of Pb(Zn publication-title: J. Alloy. Comp. – volume: 19 start-page: 2346 year: 2017 end-page: 2352 ident: bib57 article-title: Ultrahigh-sensitive optical temperature sensing based on quasi-thermalized green emissions from Er:ZnO publication-title: Phys. Chem. Chem. Phys. – volume: 39 start-page: 1129 year: 2013 end-page: 1134 ident: bib165 article-title: Y publication-title: Ceram. Int. – volume: 8 start-page: 13099 year: 2016 end-page: 13130 ident: bib206 article-title: Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties publication-title: Nanoscale – volume: 786 start-page: 770 year: 2019 end-page: 778 ident: bib202 article-title: Optical temperature sensing based on thermal, non-thermal coupled levels and tunable luminescent emission colors of Er publication-title: J. Alloy. Comp. – volume: 42 start-page: 13086 year: 2016 end-page: 13090 ident: bib65 article-title: Energy transfer, tunable emission and optical thermometry in Tb publication-title: Ceram. Int. – volume: 152 start-page: 156 year: 2014 end-page: 159 ident: bib62 article-title: Neodymium doped lanthanum oxysulfide as optical temperature sensors publication-title: J. Lumin. – volume: 5 start-page: 015049 year: 2018 ident: bib200 article-title: Controllable upconversion luminescence and temperature sensing behavior in NaGdF publication-title: Mater. Res. Express – volume: 116 start-page: 25552 year: 2012 end-page: 25557 ident: bib37 article-title: Temperature-dependent fluorescence in carbon dots publication-title: J. Phys. Chem. C – volume: 30 start-page: 9 year: 2019 end-page: 16 ident: bib50 article-title: Photoluminescence and impedance properties of rare-earth doped (K publication-title: J. Mater. Sci. Mater. Electron. – volume: 4 start-page: 24170 year: 2014 end-page: 24175 ident: bib135 article-title: Optical temperature sensing of hexagonal Na publication-title: RSC Adv. – volume: 86 start-page: 661 year: 2007 end-page: 666 ident: bib161 article-title: Upconversion and optical thermometry in Ho publication-title: Appl. Phys. B – volume: 3 start-page: 705 year: 2012 ident: bib36 article-title: Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy publication-title: Nat. Commun. – volume: 6 start-page: 1802282 year: 2019 ident: bib89 article-title: Unraveling the electronic structures of neodymium in LiLuF publication-title: Adv. Sci. – volume: 40 start-page: 12477 year: 2014 end-page: 12483 ident: bib136 article-title: A new multifunctional Aurivillius oxide Na publication-title: Ceram. Int. – volume: 638 start-page: 21 year: 2015 end-page: 28 ident: bib94 article-title: Bulk glass ceramics containing Yb publication-title: J. Alloy. Comp. – volume: 3 start-page: 4804 year: 2011 end-page: 4810 ident: bib74 article-title: Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting publication-title: Nanoscale – volume: 187 start-page: 368 year: 2017 end-page: 377 ident: bib115 article-title: 980 nm excited Er publication-title: J. Lumin. – volume: 667 start-page: 226 year: 2017 end-page: 232 ident: bib117 article-title: Thermal and pump power effect in SrMoO publication-title: Chem. Phys. Lett. – volume: 119 start-page: 3363 year: 2015 end-page: 3373 ident: bib93 article-title: Upconversion luminescence properties of NaYF publication-title: J. Phys. Chem. C – volume: 44 start-page: 1254 year: 2014 end-page: 1260 ident: bib172 article-title: Up-conversion luminescence and optical thermometry characterization of Ho publication-title: SCIENTIA SINICA Technologica – volume: 190 start-page: 50 year: 2017 end-page: 55 ident: bib39 article-title: Temperature dependent photoluminescence of Eu publication-title: J. Lumin. – volume: 4 start-page: 6391 year: 2014 end-page: 6396 ident: bib133 article-title: Green up-conversion luminescence of Yb publication-title: RSC Adv. – volume: 44 start-page: 14884 year: 2018 end-page: 14890 ident: bib179 article-title: β-NaYF publication-title: Ceram. Int. – volume: 27 start-page: 7994 year: 2016 end-page: 8000 ident: bib100 article-title: Temperature sensing based on up-conversion luminescence of (1- publication-title: J. Mater. Sci. Mater. Electron. – volume: 763 start-page: 34 year: 2018 end-page: 48 ident: bib4 article-title: A review on nanostructured glass ceramics for promising application in optical thermometry publication-title: J. Alloy. Comp. – volume: 783 start-page: 84 year: 2019 end-page: 94 ident: bib146 article-title: Electronic structure, upconversion luminescence and optical temperature sensing behavior of Yb publication-title: J. Alloy. Comp. – volume: 206 start-page: 40 year: 2018 end-page: 47 ident: bib34 article-title: Upconversion luminescence of Ba publication-title: Mater. Chem. Phys. – volume: 7 start-page: 6112 year: 2019 end-page: 6119 ident: bib148 article-title: Enhanced up-conversion luminescence and optical temperature sensing in graphitic C publication-title: J. Mater. Chem. C – volume: 12 start-page: 2107 year: 2012 end-page: 2111 ident: bib88 article-title: Mapping intracellular temperature using green fluorescent protein publication-title: Nano Lett. – volume: 206 start-page: 613 year: 2019 end-page: 617 ident: bib194 article-title: Ultranarrow NIR bandwidth and temperature sensing of YOF:Yb publication-title: J. Lumin. – volume: 10 start-page: 924 year: 2015 ident: bib96 article-title: Controlling upconversion nanocrystals for emerging applications publication-title: Nat. Nanotechnol. – volume: 657 start-page: 353 year: 2016 end-page: 357 ident: bib5 article-title: The emission rise time of BaY publication-title: J. Alloy. Comp. – volume: 186 start-page: 156 year: 2013 end-page: 164 ident: bib59 article-title: Optical characterization of Er publication-title: Sens. Actuators B Chem. – volume: 6 start-page: 192 year: 2018 end-page: 209 ident: bib14 article-title: Recent progress in upconversion luminescence nanomaterials for biomedical applications publication-title: J. Mater. Chem. B – volume: 165 start-page: 34 year: 2012 end-page: 37 ident: bib141 article-title: Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er-Yb-Mo: Al publication-title: Sens. Actuators B Chem. – volume: 781 start-page: 467 year: 2019 end-page: 472 ident: bib155 article-title: Modulated up-conversion luminescence and low-temperature sensing of Gd publication-title: J. Alloy. Comp. – volume: 16 start-page: 22665 year: 2014 end-page: 22676 ident: bib130 article-title: Enhanced up-conversion and temperature-sensing behaviour of Er publication-title: Phys. Chem. Chem. Phys. – volume: 213 start-page: 65 year: 2015 end-page: 71 ident: bib190 article-title: Yb publication-title: Sens. Actuators B Chem. – volume: 691 start-page: 530 year: 2017 end-page: 536 ident: bib51 article-title: Controlled synthesis, multicolor luminescence, and optical thermometer of bifunctional NaYbF publication-title: J. Alloy. Comp. – volume: 131 start-page: 559 year: 2011 end-page: 564 ident: bib29 article-title: A survey of phosphors novel for thermography publication-title: J. Lumin. – volume: 1 start-page: 5502 year: 2013 end-page: 5507 ident: bib92 article-title: Temperature sensor based on the UV upconversion luminescence of Gd publication-title: J. Mater. Chem. C – volume: 771 start-page: 571 year: 2019 end-page: 577 ident: bib150 article-title: Calibration of optical temperature sensing of Ca publication-title: J. Alloy. Comp. – volume: 246 start-page: 352 year: 2017 end-page: 357 ident: bib20 article-title: Temperature sensing based on the cooperation of Eu publication-title: Sens. Actuators B Chem. – volume: 57 start-page: 1213 year: 2018 end-page: 1219 ident: bib40 article-title: Investigation on two forms of temperature-sensing parameters for fluorescence intensity ratio thermometry based on thermal coupled theory publication-title: Inorg. Chem. – volume: 221 start-page: 458 year: 2015 end-page: 462 ident: bib192 article-title: Effect of crystallinity on the optical thermometry sensitivity of Tm publication-title: Sens. Actuators B Chem. – volume: 771 start-page: 571 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib150 article-title: Calibration of optical temperature sensing of Ca1-xNaxMoO4:Yb3+,Er3+ with intense green up-conversion luminescence publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.08.309 – volume: 43 start-page: 5011 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib163 article-title: Enhanced optical temperature sensing and upconversion emissions based on the Mn2+ codoped NaGdF4:Yb3+,Ho3+ nanophosphor publication-title: New J. Chem. doi: 10.1039/C8NJ05079A – volume: 783 start-page: 84 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib146 article-title: Electronic structure, upconversion luminescence and optical temperature sensing behavior of Yb3+-Er3+/Ho3+ doped NaLaMgWO6 publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.12.281 – volume: 726 start-page: 547 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib6 article-title: Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.08.007 – volume: 116 start-page: 014102 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib129 article-title: Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application publication-title: J. Appl. Phys. doi: 10.1063/1.4886575 – volume: 56 start-page: 890 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib33 article-title: Luminescence and energy transfer of dual-emitting solid solution phosphors (Ca,Sr)10Li(PO4)7:Ce3+,Mn2+ for ratiometric temperature sensing publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b03748 – volume: 24 start-page: 22438 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib45 article-title: Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4 publication-title: Opt. Express doi: 10.1364/OE.24.022438 – volume: 21 start-page: 1945 year: 2009 ident: 10.1016/j.jallcom.2019.152691_bib73 article-title: Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals publication-title: Adv. Mater. doi: 10.1002/adma.200803228 – volume: 28 start-page: 5288 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib55 article-title: Rare-earth doped (K0.5Na0.5)NbO3 multifunctional ceramics publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-016-6186-6 – volume: 45 start-page: 11733 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib159 article-title: Large electrostrain and high optical temperature sensitivity in BaTiO3-(Na0.5Ho0.5)TiO3 multifunctional ferroelectric ceramics publication-title: Dalton Trans. doi: 10.1039/C6DT01424K – volume: 186 start-page: 156 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib59 article-title: Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.05.081 – start-page: 1 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib87 article-title: Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics publication-title: J. Mater. Sci. Mater. Electron. – volume: 181 start-page: 31 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib68 article-title: Temperature-dependent luminescence and energy transfer properties of Tb3+ and Eu3+ doped barium borate glasses publication-title: J. Lumin. doi: 10.1016/j.jlumin.2016.08.066 – volume: 804 start-page: 486 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib195 article-title: Intense near-infrared emission, upconversion processes and temperature sensing properties of Tm3+ and Yb3+ co-doped double perovskite Gd2ZnTiO6 phosphors publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.07.036 – volume: 120 start-page: 21858 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib3 article-title: EuF3/Ga2O3 dual-phase nanostructural glass ceramics with Eu2+/Cr3+ dual-activator luminescence for self-calibrated optical thermometry publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b08271 – volume: 284 start-page: 1876 year: 2011 ident: 10.1016/j.jallcom.2019.152691_bib142 article-title: Optical thermometry through green and red upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals publication-title: Opt. Commun. doi: 10.1016/j.optcom.2010.12.030 – volume: 4 start-page: 6391 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib133 article-title: Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing publication-title: RSC Adv. doi: 10.1039/c3ra47264g – volume: 10 start-page: 924 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib96 article-title: Controlling upconversion nanocrystals for emerging applications publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.251 – volume: 140 start-page: 9730 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib38 article-title: Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06021 – volume: 98 start-page: 2595 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib122 article-title: Optical temperature sensing behavior of high-efficiency upconversion: Er3+-Yb3+ Co-doped NaY(MoO4)2 phosphor publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13624 – volume: 58 start-page: 2637 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib46 article-title: Isostructural Tb3+/Eu3+ Co-doped metal-organic framework based on pyridine-containing dicarboxylate ligands for ratiometric luminescence temperature sensing publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b03225 – volume: 1 start-page: 5502 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib92 article-title: Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals publication-title: J. Mater. Chem. C doi: 10.1039/c3tc30763h – volume: 291 start-page: 138 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib91 article-title: Upconversion luminescence of NaYF4:Yb3+,Er3+ for temperature sensing publication-title: Opt. Commun. doi: 10.1016/j.optcom.2012.11.005 – volume: 632 start-page: 711 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib114 article-title: The electrical, upconversion emission, and temperature sensing properties of Er3+/Yb3+-codoped Ba (Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ferroelectric ceramics publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.01.296 – volume: 44 start-page: 1561 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib205 article-title: Upconverting nanoparticles: assessing the toxicity publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00177J – volume: 74 start-page: 3883 year: 2003 ident: 10.1016/j.jallcom.2019.152691_bib25 article-title: Fiber-optic thermometer using Cr-doped YAlO3 sensor head publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1589582 – volume: 98 start-page: 3824 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib128 article-title: Optical thermometry based on up-conversion luminescence behavior of Er3+-doped transparent Sr2YbF7 glass-ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13804 – volume: 40 start-page: 5678 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib182 article-title: Multifunctional nanoparticles based on the Nd3+/Yb3+ codoped NaYF4 publication-title: Opt. Lett. doi: 10.1364/OL.40.005678 – volume: 187 start-page: 368 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib115 article-title: 980 nm excited Er3+/Yb3+/Li+/Ba2+:NaZnPO4 upconverting phosphors in optical thermometry publication-title: J. Lumin. doi: 10.1016/j.jlumin.2017.03.035 – volume: 116 start-page: 25552 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib37 article-title: Temperature-dependent fluorescence in carbon dots publication-title: J. Phys. Chem. C doi: 10.1021/jp307308z – volume: 44 start-page: 1254 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib172 article-title: Up-conversion luminescence and optical thermometry characterization of Ho3+/Yb3+ co-doped SrBi4Ti4O15 ferroelectric ceramics publication-title: SCIENTIA SINICA Technologica doi: 10.1360/N092014-00201 – volume: 772 start-page: 371 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib193 article-title: Investigation for the upconversion luminescence and temperature sensing mechanism based on BiPO4:Yb3+,RE3+ (RE3+ = Ho3+, Er3+ and Tm3+) publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.09.070 – volume: 657 start-page: 353 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib5 article-title: The emission rise time of BaY2ZnO5:Eu3+ for non-contact luminescence thermometry publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.10.101 – volume: 7 start-page: 1188 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib188 article-title: Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles publication-title: ACS Nano doi: 10.1021/nn304373q – volume: 114 start-page: 2343 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib70 article-title: Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications publication-title: Chem. Rev. doi: 10.1021/cr4001594 – volume: 104 start-page: 152902 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib137 article-title: Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic publication-title: Appl. Phys. Lett. doi: 10.1063/1.4871378 – volume: 42 start-page: 13086 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib65 article-title: Energy transfer, tunable emission and optical thermometry in Tb3+/Eu3+ co-doped transparent NaCaPO4 glass ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.05.092 – volume: 208 start-page: 415 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib7 article-title: Enhanced NIR-NIR luminescence from CaWO4:Nd3+/Yb3+ phosphors by Li+ codoping for thermometry and optical heating publication-title: J. Lumin. doi: 10.1016/j.jlumin.2019.01.005 – volume: 142 start-page: 66 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib32 article-title: Effect of temperature and pressure on emission lifetime of Sm2+ ion doped in MFX (M = Sr, Ba; X = Br, I) crystals publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.03.011 – volume: 638 start-page: 21 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib94 article-title: Bulk glass ceramics containing Yb3+/Er3+:β-NaGdF4 nanocrystals: phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.02.170 – volume: 109 start-page: 103 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib42 article-title: Optical temperature sensing properties of a phosphor mixture of Sr2Mg3P4O15:Eu2+ and SrB4O7:Sm2+ publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2018.09.032 – volume: 122 start-page: 16289 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib153 article-title: Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b04180 – volume: 44 start-page: 14884 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib179 article-title: β-NaYF4:Yb3+/Er3+ nanocrystals embedded sol-gel glass ceramics for self-calibrated optical thermometry publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.05.125 – volume: 17 start-page: 255 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib49 article-title: High sensitivity thermometry and optical heating Bi-function of Yb3+/Tm3+ Co-doped BaGd2ZnO5 phosphors publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2016.12.002 – volume: 140 start-page: 5714 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib90 article-title: Excitation modulation of upconversion nanoparticles for switch-like control of ultraviolet luminescence publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13677 – volume: 98 start-page: 28 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib112 article-title: Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2016.06.002 – volume: 150 start-page: 623 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib126 article-title: Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3:Er3+/Yb3+ nano-composite phosphor publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2015.05.081 – volume: 16 start-page: 22665 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib130 article-title: Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02949F – volume: 165 start-page: 34 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib141 article-title: Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er-Yb-Mo: Al2O3 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.01.068 – volume: 770 start-page: 214 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib106 article-title: xLiNbO3-(1-x)(K,Na)NbO3 ceramics: a new class of phosphors with tunable upconversion luminescence by external electric field and excellent optical temperature sensing property publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.08.019 – volume: 121 start-page: 113103 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib64 article-title: Near-infrared emission and optical temperature sensing performance of Nd3+:SrF2 crystal powder prepared by combustion synthesis publication-title: J. Appl. Phys. doi: 10.1063/1.4978380 – volume: 158 start-page: 208 year: 2011 ident: 10.1016/j.jallcom.2019.152691_bib61 article-title: Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.06.005 – volume: 10 start-page: 17269 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib12 article-title: Multifunctional optical sensors for nanomanometry and nanothermometry: high-pressure and high-temperature upconversion luminescence of lanthanide-doped phosphates--LaPO4/YPO4:Yb3+-Tm3+ publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02853 – volume: 164 start-page: 96 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib143 article-title: Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.01.070 – volume: 20 start-page: 18127 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib169 article-title: Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior publication-title: Opt. Express doi: 10.1364/OE.20.018127 – volume: 35 start-page: 4211 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib24 article-title: Cr3+-doped gallium-based transparent bulk glass ceramics for optical temperature sensing publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2015.08.005 – volume: 188 start-page: 1096 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib47 article-title: Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.07.094 – volume: 15 start-page: 30981 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib154 article-title: Multiple temperature-sensing behavior of green and red upconversion emissions from Stark sublevels of Er3+ publication-title: Sensors doi: 10.3390/s151229839 – volume: 26 start-page: 6502 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib105 article-title: Optical thermometry based on the upconversion luminescence from Er doped Bi7Ti4TaO21 ferroelectric ceramics publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-015-3244-4 – volume: 42 start-page: 1065 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib78 article-title: Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors publication-title: Dalton Trans. doi: 10.1039/C2DT32054A – volume: 4 start-page: 4209 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib132 article-title: Multifunctional Eu3+-and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method publication-title: Sci. Rep. doi: 10.1038/srep04209 – volume: 190 start-page: 50 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib39 article-title: Temperature dependent photoluminescence of Eu3+-doped Ca7V4O17 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2017.05.015 – volume: 152 start-page: 156 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib62 article-title: Neodymium doped lanthanum oxysulfide as optical temperature sensors publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.10.027 – volume: 136 start-page: 173 year: 2007 ident: 10.1016/j.jallcom.2019.152691_bib160 article-title: Ho3+:TeO2 glass, a probe for temperature measurements publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2006.10.045 – volume: 39 start-page: 37 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib27 article-title: On surface temperature measurements with thermographic phosphors: a review publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2012.06.001 – volume: 15 start-page: 1576 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib121 article-title: Infrared-to-visible upconversion emission of Er3+/Yb3+-codoped SrMoO4 phosphors as wide-range temperature sensor publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2015.09.013 – volume: 4 start-page: 7148 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib84 article-title: The dual-model up/down-conversion green luminescence of Gd6O5F8:Yb3+,Ho3+,Li+ and its application for temperature sensing publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01812B – volume: 4 start-page: 24170 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib135 article-title: Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor publication-title: RSC Adv. doi: 10.1039/c4ra02779e – volume: 206 start-page: 273 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib173 article-title: Investigation on the up-conversion luminescence and temperature sensing properties based on non-thermally coupled levels of rare earth ions doped Ba2In2O5 phosphor publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.10.034 – volume: 42 start-page: 7971 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib79 article-title: Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+ publication-title: Dalton Trans. doi: 10.1039/c3dt32964j – volume: 210 start-page: 119 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib151 article-title: Dependence of upconversion emission and optical temperature sensing behavior on excitation power in Er3+/Yb3+ co-doped BaMoO4 phosphors publication-title: J. Lumin. doi: 10.1016/j.jlumin.2019.01.065 – volume: 21 start-page: 21596 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib189 article-title: Optical temperature sensing of NaYbF4:Tm3+@SiO2 core-shell micro-particles induced by infrared excitation publication-title: Opt. Express doi: 10.1364/OE.21.021596 – volume: 132 start-page: 141 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib31 article-title: Concentration influence on temperature-dependent luminescence properties of samarium substituted strontium tetraborate publication-title: J. Lumin. doi: 10.1016/j.jlumin.2011.08.011 – volume: 781 start-page: 467 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib155 article-title: Modulated up-conversion luminescence and low-temperature sensing of Gd3Ga5O12:Yb3+/Er3+ by incorporation of Fe3+ ions publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.12.147 – volume: 32 start-page: 1154 year: 2010 ident: 10.1016/j.jallcom.2019.152691_bib144 article-title: Optical transition and upconversion luminescence in Er3+ doped and Er3+-Yb3+ co-doped fluorophosphate glasses publication-title: Opt. Mater. doi: 10.1016/j.optmat.2010.03.023 – volume: 100 start-page: 2108 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib116 article-title: Wide-range thermometry based on green up-conversion luminescence of K3LuF6:Yb3+/Er3+ bulk oxyfluoride glass ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14606 – volume: 5 start-page: 34999 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib187 article-title: Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications publication-title: RSC Adv. doi: 10.1039/C4RA15891A – volume: 42 start-page: 11005 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib167 article-title: Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor publication-title: Dalton Trans. doi: 10.1039/c3dt50592h – volume: 27 start-page: 1111 year: 2005 ident: 10.1016/j.jallcom.2019.152691_bib97 article-title: Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion publication-title: Opt. Mater. doi: 10.1016/j.optmat.2004.10.021 – volume: 588 start-page: 654 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib170 article-title: Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4 publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2013.11.132 – volume: 88 start-page: 4099 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib11 article-title: Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b00434 – volume: 5 start-page: 015049 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib200 article-title: Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaa683 – volume: 6 start-page: 192 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib14 article-title: Recent progress in upconversion luminescence nanomaterials for biomedical applications publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02527K – volume: 12 start-page: 2107 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib88 article-title: Mapping intracellular temperature using green fluorescent protein publication-title: Nano Lett. doi: 10.1021/nl300389y – volume: 41 start-page: 6710 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib125 article-title: Effect of molybdenum on upconversion emission and temperature sensing properties in Na0.5Bi0.5TiO3:Er/Yb ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.01.113 – volume: 691 start-page: 530 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib51 article-title: Controlled synthesis, multicolor luminescence, and optical thermometer of bifunctional NaYbF4:Nd3+@NaYF4:Yb3+ active-core/active-shell colloidal nanoparticles publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.08.262 – start-page: 1 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib83 – volume: 735 start-page: 473 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib104 article-title: Enhanced up-conversion luminescence and excellent temperature sensing properties in Yb3+ sensitized Er3+-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.11.085 – volume: 9 start-page: 2176 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib13 article-title: Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature publication-title: Nat. Commun. doi: 10.1038/s41467-018-04571-4 – volume: 5 start-page: 51820 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib127 article-title: Investigation into the temperature sensing behavior of Yb3+ sensitized Er3+ doped Y2O3, YAG and LaAlO3 phosphors publication-title: RSC Adv. doi: 10.1039/C5RA05986K – volume: 113 start-page: 1594 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib162 article-title: Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2012.04.001 – volume: 7 start-page: 40046 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib158 article-title: Upconversion luminescence and temperature-sensing properties of Ho3+/Yb3+-codoped ZnWO4 phosphors based on fluorescence intensity ratios publication-title: RSC Adv. doi: 10.1039/C7RA05846B – volume: 98 start-page: 1567 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib54 article-title: Photoluminescence properties of heavily Eu3+-doped BaCa2In6O12 phosphor for white-light-emitting diodes publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13511 – volume: 487 start-page: 133 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib171 article-title: Bright green emission in Ho3+-Yb3+ Co-doped Bi1/2Na1/2TiO3 ferroelectric ceramics and the optical thermometry behavior publication-title: Ferroelectrics doi: 10.1080/00150193.2015.1071601 – volume: 786 start-page: 770 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib202 article-title: Optical temperature sensing based on thermal, non-thermal coupled levels and tunable luminescent emission colors of Er3+/Tm3+/Yb3+ tri-doped Y7O6F9 phosphor publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.02.047 – volume: 176 start-page: 1167 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib58 article-title: Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.09.067 – volume: 116 start-page: 26850 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib53 article-title: Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light publication-title: J. Phys. Chem. C doi: 10.1021/jp307192y – volume: 44 start-page: 1608 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib15 article-title: Energy transfer in lanthanide upconversion studies for extended optical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00188E – volume: 114 start-page: 148 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib8 article-title: Fabrication, photothermal conversion and temperature sensing of novel nanoplatform-hybrid nanocomposite of NaYF4:Er3+,Yb3+@NaYF4 and Au nanorods for photothermal therapy publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2019.03.003 – volume: 20 start-page: A722 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib69 article-title: Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+ publication-title: Opt. Express doi: 10.1364/OE.20.00A722 – volume: 81 start-page: 035107 year: 2010 ident: 10.1016/j.jallcom.2019.152691_bib56 article-title: Downconversion for solar cells in YF3:Nd3+,Yb3+ publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.035107 – volume: 775 start-page: 457 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib85 article-title: Efficient solid-state and dual-mode photoluminescence of carbon-dots/NaLuF4 microcrystals for multifunctional applications publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.10.125 – volume: 30 start-page: 4352 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib86 article-title: The impedance, dielectric and piezoelectric properties of Tb4O7 and Tm2O3 doped KNN ceramics publication-title: J. Mater. Sci.-Mater. El. doi: 10.1007/s10854-019-00748-9 – volume: 488 start-page: 54 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib80 article-title: Dual-mode luminescence, temperature sensing and dielectric performance in Pr3+/Er3+ Co-doped BaTiO3-CaTiO3 diphase ferroelectric oxides publication-title: Ferroelectrics doi: 10.1080/00150193.2015.1072024 – volume: 5 start-page: 9619 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib2 article-title: Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02182H – volume: 763 start-page: 34 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib4 article-title: A review on nanostructured glass ceramics for promising application in optical thermometry publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.05.348 – volume: 24 start-page: 1987 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib140 article-title: Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides publication-title: Adv. Mater. doi: 10.1002/adma.201200431 – volume: 17 start-page: 20741 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib119 article-title: Incorporation of Zn2+ ions into BaTiO3:Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01874A – volume: 45 start-page: 7696 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib164 article-title: Excellent photoluminescence and temperature sensing properties in Ho3+/Yb3+ codoped (Y0.88La0.09Zr0.03)2O3 transparent ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.01.070 – volume: 45 start-page: 970 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib166 article-title: High dielectric, piezoelectric, upconversion photoluminescence and low-temperature sensing properties in Ba0.7Sr0.3TiO3-BaZr0.2Ti0.8O3:Ho/Yb ceramics publication-title: J. Electron. Mater. doi: 10.1007/s11664-015-4247-x – volume: 6 start-page: 1802282 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib89 article-title: Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing publication-title: Adv. Sci. doi: 10.1002/advs.201802282 – volume: 119 start-page: 3363 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib93 article-title: Upconversion luminescence properties of NaYF4:Yb:Er nanoparticles codoped with Gd3+ publication-title: J. Phys. Chem. C doi: 10.1021/jp5103548 – volume: 39 start-page: 3767 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib175 article-title: Nd3+-Yb3+ doped powder for near-infrared optical temperature sensing publication-title: Opt. Lett. doi: 10.1364/OL.39.003767 – volume: 45 start-page: 3473 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib157 article-title: Effect of the Yb3+ concentration in up-conversion and electrical properties of Ho3+/Yb3+ Co-doped (0.94Na0.5Bi0.5TiO3-0.06BaTiO3) ceramics publication-title: J. Electron. Mater. doi: 10.1007/s11664-016-4483-8 – volume: 782 start-page: 936 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib152 article-title: The upconversion photoluminescence and temperature sensing abilities of Pb(Zn1/3Nb2/3)O3-9PbTiO3 crystals induced by Er3+/Yb3+ doping publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.12.271 – volume: 3 start-page: 705 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib36 article-title: Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy publication-title: Nat. Commun. doi: 10.1038/ncomms1714 – volume: 86 start-page: 661 year: 2007 ident: 10.1016/j.jallcom.2019.152691_bib161 article-title: Upconversion and optical thermometry in Ho3+:TeO2 glass, effect of addition of PbO2 and BaCO3 publication-title: Appl. Phys. B doi: 10.1007/s00340-006-2505-6 – volume: 70 start-page: 4279 year: 1999 ident: 10.1016/j.jallcom.2019.152691_bib174 article-title: Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1150067 – volume: 6 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib41 article-title: Optical temperature sensing with infrared excited upconversion nanoparticles publication-title: Front. Chem. doi: 10.3389/fchem.2018.00416 – volume: 26 start-page: 7 year: 1999 ident: 10.1016/j.jallcom.2019.152691_bib18 article-title: Whole field measurement of temperature in water using two-color laser induced fluorescence publication-title: Exp. Fluid doi: 10.1007/s003480050260 – volume: 129 start-page: 1994 year: 2009 ident: 10.1016/j.jallcom.2019.152691_bib35 article-title: Point temperature sensor based on green decay in an Er:ZBLALiP microsphere publication-title: J. Lumin. doi: 10.1016/j.jlumin.2009.04.039 – volume: 134 start-page: 313 year: 2008 ident: 10.1016/j.jallcom.2019.152691_bib196 article-title: Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2008.05.003 – volume: 27 start-page: 7994 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib100 article-title: Temperature sensing based on up-conversion luminescence of (1-x)Na0.5Bi2.5Ta2O9+xNa0.5Er0.5TiO3 ceramics publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-016-4794-9 – volume: 26 start-page: 21950 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib108 article-title: Modifying phase, shape and optical thermometry of NaGdF4:2% Er3+ phosphors through Ca2+ doping publication-title: Opt. Express doi: 10.1364/OE.26.021950 – volume: 632 start-page: 73 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib48 article-title: Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.01.130 – volume: 131 start-page: 559 year: 2011 ident: 10.1016/j.jallcom.2019.152691_bib29 article-title: A survey of phosphors novel for thermography publication-title: J. Lumin. doi: 10.1016/j.jlumin.2010.10.017 – volume: 561 start-page: 97 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib149 article-title: Optical temperature sensing properties of Er3+/Yb3+ co-doped LuVO4 up-conversion phosphors publication-title: Physica B doi: 10.1016/j.physb.2019.02.051 – volume: 29 start-page: 4791 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib184 article-title: Lead-free rare earth-modified (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics: phase structure, electrical and photoluminescence properties publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-017-8435-8 – volume: 246 start-page: 756 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib1 article-title: Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.02.159 – volume: 90 start-page: 3443 year: 1989 ident: 10.1016/j.jallcom.2019.152691_bib17 article-title: A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 publication-title: J. Chem. Phys. doi: 10.1063/1.455853 – volume: 693 start-page: 326 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib118 article-title: Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.09.163 – volume: 4 start-page: 710 year: 2009 ident: 10.1016/j.jallcom.2019.152691_bib176 article-title: Bioimaging: second window for in vivo imaging publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.326 – volume: 40 start-page: 9875 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib131 article-title: Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.02.081 – volume: 216 start-page: 64 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib123 article-title: Optical investigation in shuttle like BaMoO4:Er3+-Yb3+ phosphor in display and temperature sensing publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.04.017 – volume: 9044 start-page: 904408 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib139 article-title: Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2(WO4)3:Yb3+,Er3+ phosphor//2013 International Conference on optical instruments and technology: optical sensors and applications publication-title: Int. Soc. Opt. Photon. – volume: 771 start-page: 838 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib156 article-title: Optical temperature sensing using upconversion luminescence in rare-earth ions doped Ca2Gd8(SiO4)6O2 phosphors publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.09.022 – volume: 1 start-page: 5410 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib77 article-title: The effects of down-and up-conversion on dual-mode green luminescence from Yb3+-and Tb3+-doped LaPO4 nanocrystals publication-title: J. Mater. Chem. C doi: 10.1039/c3tc31100g – volume: 8 start-page: 13099 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib206 article-title: Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties publication-title: Nanoscale doi: 10.1039/C5NR08477F – volume: 19 start-page: 2346 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib57 article-title: Ultrahigh-sensitive optical temperature sensing based on quasi-thermalized green emissions from Er:ZnO publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP06608A – volume: 3 start-page: 241 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib138 article-title: Intense red upconversion emission and temperature sensing in Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor publication-title: Mater. Express doi: 10.1166/mex.2013.1121 – volume: 124 start-page: 130 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib183 article-title: Highly sensitive up-conversion thermometric performance in Nd3+ and Yb3+ sensitized Ba4La2Ti4Nb6O30 based on near-infrared emissions publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2018.09.013 – volume: 5 start-page: 86219 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib9 article-title: Optical temperature sensing of rare-earth ion doped phosphors publication-title: RSC Adv. doi: 10.1039/C5RA16986K – volume: 58 start-page: 3035 year: 2010 ident: 10.1016/j.jallcom.2019.152691_bib52 article-title: Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.01.035 – volume: 126 start-page: 189 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib147 article-title: Effect of Li co-doping with Er on up-conversion luminescence property and its temperature dependence of NaY(WO4)2 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2018.11.009 – volume: 65 start-page: 504 year: 2011 ident: 10.1016/j.jallcom.2019.152691_bib75 article-title: Dual-mode luminescence from lanthanide tri-doped NaYF4 nanocrystals publication-title: Mater. Lett. doi: 10.1016/j.matlet.2010.10.080 – volume: 484 start-page: 111 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib67 article-title: Down-conversion luminescence and optical thermometric performance of Tb3+/Eu3+ doped phosphate glass publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2018.01.027 – volume: 18 start-page: 18828 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib110 article-title: Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP02746F – volume: 40 start-page: 12477 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib136 article-title: A new multifunctional Aurivillius oxide Na0.5Er0.5Bi4Ti4O15: up-conversion luminescent, dielectric, and piezoelectric properties publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.04.102 – volume: 195 start-page: 324 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib63 article-title: Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.01.037 – volume: 5 start-page: 1501 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib191 article-title: All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05449H – volume: 12 start-page: 1472 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib109 article-title: Efficient color tunable ZnWO4:Er3+-Yb3+ phosphor for high temperature sensing publication-title: J. Disp. Technol. doi: 10.1109/JDT.2016.2602503 – volume: 16 start-page: 1695 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib177 article-title: Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04611 – volume: 201 start-page: 23 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib81 article-title: Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics publication-title: Mat. Sci. Eng. B-Adv. doi: 10.1016/j.mseb.2015.06.011 – volume: 9 start-page: 4682 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib203 article-title: Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging publication-title: Chem. Sci. doi: 10.1039/C8SC00927A – volume: 45 start-page: 127 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib19 article-title: Relationship between rare earth fluorescence characteristic and temperature publication-title: Acta Photonica Sin. – volume: 246 start-page: 352 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib20 article-title: Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.02.070 – volume: 667 start-page: 226 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib117 article-title: Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.12.002 – volume: 87 start-page: 205113 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib26 article-title: Excited Cr impurity states in Al2O3 from constraint density functional theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.205113 – volume: 109 start-page: 611 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib197 article-title: Colour emission tunability in Ho3+-Tm3+-Yb3+ co-doped Y2O3 upconverted phosphor publication-title: Appl. Phys. B doi: 10.1007/s00340-012-5224-1 – volume: 74 start-page: 3524 year: 2003 ident: 10.1016/j.jallcom.2019.152691_bib10 article-title: Effects of high-temperature heat treatment on Nd3+-doped optical fibers for use in fluorescence intensity ratio based temperature sensing publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1578706 – volume: 140 start-page: 435 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib30 article-title: Phosphor thermometry: on the synthesis and characterisation of Y3Al5O12:Eu (YAG:Eu) and YAlO3:Eu (YAP:Eu) publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.02.065 – volume: 68 start-page: 126 year: 2010 ident: 10.1016/j.jallcom.2019.152691_bib28 article-title: Sol-gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+,M3+)(M = Dy,Tm) for wide range surface temperature measurement application publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2009.08.021 – volume: 174 start-page: 176 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib60 article-title: Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.08.019 – volume: 285 start-page: 1925 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib185 article-title: Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.12.075 – volume: 29 start-page: 19840 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib102 article-title: Simultaneously excellent upconversion luminescence and temperature sensing properties in tungstate multiphase phosphors publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-018-0112-z – volume: 490 start-page: 118 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib99 article-title: Broadband near-infrared photoluminescence and strong visible up-conversion emission in BaTiO3-(Na0.5Er0.5)TiO3 lead-free piezoelectric ceramics publication-title: Ferroelectrics doi: 10.1080/00150193.2015.1072685 – volume: 50 start-page: 32 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib95 article-title: Resonance energy transfer in upconversion nanoplatforms for selective biodetection publication-title: Accounts Chem. Res. doi: 10.1021/acs.accounts.6b00382 – volume: 121 start-page: 124102 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib101 article-title: Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics publication-title: J. Appl. Phys. doi: 10.1063/1.4979096 – volume: 213 start-page: 65 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib190 article-title: Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.01.136 – volume: 206 start-page: 613 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib194 article-title: Ultranarrow NIR bandwidth and temperature sensing of YOF:Yb3+/Tm3+ phosphor in low temperature range publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.10.091 – volume: 327 start-page: 838 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib145 article-title: Influence of silica surface coating on optical properties of Er3+-Yb3+:YMoO4 upconverting nanoparticles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.166 – volume: 57 start-page: 1213 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib40 article-title: Investigation on two forms of temperature-sensing parameters for fluorescence intensity ratio thermometry based on thermal coupled theory publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b02634 – volume: 5 start-page: 1385 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib124 article-title: Optical temperature sensing properties of Yb3+-Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors publication-title: RSC Adv. doi: 10.1039/C4RA11771A – volume: 39 start-page: 6687 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib186 article-title: Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles publication-title: Opt. Lett. doi: 10.1364/OL.39.006687 – volume: 2017 start-page: 5058 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib72 article-title: Rising stars in science and technology: luminescent lanthanide materials publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201701201 – volume: 205 start-page: 440 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib43 article-title: Ultrahigh-sensitive optical temperature sensing in Pr3+:Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.09.029 – volume: 47 start-page: 3726 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib76 article-title: Dual mode green fluorescence from Tb3+:Ca12Al14O33 and its applicability as delayed fluorescence publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2012.06.033 – volume: 42 start-page: 7834 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib71 article-title: Luminescent probes and sensors for temperature publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60102a – volume: 39 start-page: 1129 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib165 article-title: Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.07.036 – volume: 39 start-page: 325 year: 2009 ident: 10.1016/j.jallcom.2019.152691_bib21 article-title: Doped oxides for high-temperature luminescence and lifetime thermometry publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-112408-125237 – volume: 206 start-page: 40 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib34 article-title: Upconversion luminescence of Ba9Y2Si6O24:Yb3+-Ln3+ (Ln = Er, Ho, and Tm) phosphors for temperature sensing publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.12.007 – volume: 6 start-page: 64072 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib82 article-title: Bright dual-mode green emission and temperature sensing properties in Er3+/Yb3+ co-doped MgWO4 phosphor publication-title: RSC Adv. doi: 10.1039/C6RA09656E – volume: 10 start-page: 968 year: 2011 ident: 10.1016/j.jallcom.2019.152691_bib16 article-title: Tuning upconversion through energy migration in core-shell nanoparticles publication-title: Nat. Mater. doi: 10.1038/nmat3149 – volume: 173 start-page: 250 year: 2012 ident: 10.1016/j.jallcom.2019.152691_bib180 article-title: An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.07.009 – volume: 238 start-page: 215 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib44 article-title: Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2015.12.018 – volume: 202 start-page: 1305 year: 2014 ident: 10.1016/j.jallcom.2019.152691_bib134 article-title: Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.06.074 – volume: 206 start-page: 176 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib201 article-title: Designing down-and up-conversion dual-mode luminescence of lanthanide-doped phosphors for temperature sensing publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.10.058 – volume: 209 start-page: 352 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib120 article-title: Upconversion based temperature sensing ability of Er3+-Yb3+ codoped SrWO4: an optical heating phosphor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.11.126 – volume: 7 start-page: 6112 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib148 article-title: Enhanced up-conversion luminescence and optical temperature sensing in graphitic C3N4 quantum dots grafted with BaWO4:Yb3+,Er3+ phosphors publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01351B – volume: 30 start-page: 9 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib50 article-title: Photoluminescence and impedance properties of rare-earth doped (K0.5Na0.5)NbO3 lead-free ceramics publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-018-0328-y – volume: 651 start-page: 46 year: 2016 ident: 10.1016/j.jallcom.2019.152691_bib111 article-title: Upconversion of SrWO4: Er3+/Yb3+: improvement by Yb3+ codoping and temperature sensitivity for optical temperature sensors publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.03.006 – volume: 11 start-page: 1432 year: 2017 ident: 10.1016/j.jallcom.2019.152691_bib23 article-title: Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing publication-title: ACS Nano doi: 10.1021/acsnano.6b06670 – volume: 113 start-page: 083104 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib198 article-title: Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications publication-title: J. Appl. Phys. doi: 10.1063/1.4793265 – volume: 178 start-page: 520 year: 2013 ident: 10.1016/j.jallcom.2019.152691_bib181 article-title: Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.12.050 – volume: 29 start-page: 2653 year: 2002 ident: 10.1016/j.jallcom.2019.152691_bib22 article-title: Two-dimensional surface temperature measurements of burning materials publication-title: Proc. Combust. Inst. doi: 10.1016/S1540-7489(02)80323-6 – volume: 128 start-page: 14 year: 2006 ident: 10.1016/j.jallcom.2019.152691_bib178 article-title: Pr3+ doped lithium tellurite glass as a temperature sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.sna.2005.12.030 – volume: 30 start-page: 201 year: 2007 ident: 10.1016/j.jallcom.2019.152691_bib98 article-title: Upconversion and temperature sensing behavior of Er3+ doped Bi2O3-Li2O-BaO-PbO tertiary glass publication-title: Opt. Mater. doi: 10.1016/j.optmat.2006.09.021 – volume: 143 start-page: 209 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib113 article-title: The simultaneous realization of high-and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.12.123 – volume: 30 start-page: 778 year: 2019 ident: 10.1016/j.jallcom.2019.152691_bib199 article-title: Yb3+/Tb3+/Ho3+: phosphate nanophase embedded glass ceramics: enhanced upconversion emission and temperature sensing behavior publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-018-0347-8 – volume: 159 start-page: 8 year: 2011 ident: 10.1016/j.jallcom.2019.152691_bib107 article-title: Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo:Yb2Ti2O7 nanophosphor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.05.018 – volume: 8 start-page: 12 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib103 article-title: Excellent up-conversion temperature sensing sensitivity and broad temperature range of Er-doped strontium tungstate multiphase phosphors publication-title: Opt. Mater. Express doi: 10.1364/OME.8.000012 – volume: 3 start-page: 4804 year: 2011 ident: 10.1016/j.jallcom.2019.152691_bib74 article-title: Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting publication-title: Nanoscale doi: 10.1039/c1nr10752f – volume: 469 start-page: 576 year: 2018 ident: 10.1016/j.jallcom.2019.152691_bib66 article-title: Color tunable emission and low-temperature luminescent sensing of europium and terbium carboxylic acid complexes publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2017.10.014 – volume: 210 start-page: 581 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib168 article-title: CaMoO4:Ho3+-Yb3+-Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.01.007 – volume: 221 start-page: 458 year: 2015 ident: 10.1016/j.jallcom.2019.152691_bib192 article-title: Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ codoped LiNbO3 crystal publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.06.132 – volume: 42 start-page: 4447 year: 2008 ident: 10.1016/j.jallcom.2019.152691_bib204 article-title: Exposure modeling of engineered nanoparticles in the environment publication-title: Environ. Sci. Technol. doi: 10.1021/es7029637 |
SSID | ssj0001931 |
Score | 2.6667504 |
SecondaryResourceType | review_article |
Snippet | Temperature monitoring plays an important role in ensuring product quality, saving energy, promoting the development of national economy and providing basic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 152691 |
SubjectTerms | Detection Diagnostic systems Energy conservation Fluorescence Fluorescence intensity ratio technique Health services Metal ions Optical temperature sensing Rare earth elements Rare-earth luminescence Temperature measurement Temperature sensors Up-conversion luminescence Upconversion |
Title | Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress |
URI | https://dx.doi.org/10.1016/j.jallcom.2019.152691 https://www.proquest.com/docview/2353045038 |
Volume | 817 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hUAUcULsFAaXIB67eTWInsXtDq662rUoPgMSlshx_IFarsGKXK78dj-PwUalC4prYUeQZvxnbz28ATlxdW2d5QwtmJOWuyqmuM0cb7XNZNraUGvc7fp9V00v-86q8WoNxfxcGaZUJ-ztMj2idnozSaI4WNzej80wWeOYXQhpDVTfUBOW8Ri8fPjzTPMLbWDUvNKbY-vkWz2g2nOn5HEkjIQpKrARUyfx_8ekfpI7hZ_IRdlLeSE67X_sEa64dwOa4L9c2gO0XyoID-BCZnWb5Gf7-WcTtaoIiVElBmSyRtt5ek1tP7hc0Ms_jthkJUIU8eKRskpDLdu75jUzwvkhXBmBJdGtJpHUFkNyFy8n3i_GUppoK1PCMraizZdNYHfyntlJUIucupEymkt5UghsZAMzVPmsy7r2QOS98pbUOiOmlZabUbA_W29vW7QPhmZO81kVhrOBh2Se5F1VYbmqRG2YNOwDej6QySXAc617MVc8sm6lkAIUGUJ0BDmD41G3RKW681UH0ZlKvXEeFqPBW16PerCrN3aUqWInHxxkTh-__8hfYKnBljsy_8gjWV3f37mtIX1bNcfTPY9g4_fFrevYIF0HxTg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PaxQxFH7UilQPoqtia9Uc9Di7M0lmJhE8SHXZ2h8ebKEXiZn8kC7LdOlsES_-U_6DvmQyVgUpCL0OZAjvJd97efnyPoAXrq6ts7zJKDMy464qMl3nLmu0L2TZ2FLqUO84OKxmx_z9SXmyBj-GtzCBVpmwv8f0iNbpyyRZc7I8PZ18zCUNd34Y0ljo6sYTs3LPffuK57bu9e5bdPJLSqfvjnZmWZIWyAzP2Spztmwaq9GMtZWiEgV3mDmYSnpTCW4k7mNX-7zJufdCFpz6SmuNwOGlZabUDP97A25yhIsgmzD-fskrwelEmT6cXRamd_lsaDIfz_ViEVgqGHZlkB6qZPGvgPhXaIjxbnoP7qZElbzpbXEf1lw7go2dQR9uBHd-a2U4gluRSmq6B_DpwzLWx0noepVaNpMu8OTbL-TMk4tlFqnusU5HEBsD8T5wRAkmz_1-eEWm4YFKrzvQEd1aEnlkiMoP4fhaLP0I1tuz1j0GwnMnea0pNVZwPGdK7kWF51stCsOsYZvAB0sqkzqcB6GNhRqobHOVHKCCA1TvgE0Y_xq27Ft8XDVADG5Sf6xVhWHoqqHbg1tVAotOUVaG--qcia3___Nz2JgdHeyr_d3DvSdwm4ayQKAdltuwvjq_cE8xd1o1z-JaJfD5ujfHT3uWLmk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+temperature+sensing+of+up-conversion+luminescent+materials%3A+Fundamentals+and+progress&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Zhao%2C+Yan&rft.au=Wang%2C+Xusheng&rft.au=Zhang%2C+Ying&rft.au=Li%2C+Yanxia&rft.date=2020-03-15&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=817&rft_id=info:doi/10.1016%2Fj.jallcom.2019.152691&rft.externalDocID=S0925838819339374 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |