Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-GBSA
Context In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (15...
Saved in:
Published in | Journal of molecular modeling Vol. 29; no. 5; p. 138 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context
In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors.
Methods
In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.
Graphical Abstract |
---|---|
AbstractList | ContextIn the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors.MethodsIn the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory. Context In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. Methods In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory. Graphical Abstract In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory. CONTEXT: In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. METHODS: In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory. In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors.CONTEXTIn the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors.In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.METHODSIn the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory. |
ArticleNumber | 138 |
Author | Ju, Zhuang He, Jiaoyu Shi, Yunfan Cui, Yanru Dong, Liting Ding, Xianping Li, Qiufu Liu, Yiran |
Author_xml | – sequence: 1 givenname: Yunfan surname: Shi fullname: Shi, Yunfan email: shiyunfan2022@163.com organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat – sequence: 2 givenname: Liting surname: Dong fullname: Dong, Liting organization: College of Life Sciences, Sichuan University – sequence: 3 givenname: Zhuang surname: Ju fullname: Ju, Zhuang organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat – sequence: 4 givenname: Qiufu surname: Li fullname: Li, Qiufu organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat – sequence: 5 givenname: Yanru surname: Cui fullname: Cui, Yanru organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat – sequence: 6 givenname: Yiran surname: Liu fullname: Liu, Yiran organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat – sequence: 7 givenname: Jiaoyu surname: He fullname: He, Jiaoyu organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat – sequence: 8 givenname: Xianping surname: Ding fullname: Ding, Xianping email: brainding@scu.edu.cn organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37055578$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFu1DAQhi1URLelL8ABWeLCoYaxHW_i47IqBakrJBa4RhPH27gkdrATRF-kz4u3W0DiAJIlyzPf_89YMyfkyAdvCXnG4RUHKF8ngEoXDIRkoJQsmHxEFqCLiqkcOyILvuTAhC7gmJyldAMAXKilEuIJOZZl1qiyWpC7ix9jH6Lz13QMk_WTw55uVx-3bB2-MEE3Yww0l2YmfMc-56nznWvcFGKiUxfDfN3RNpiv2eGcjh3GAU0YuxAtzdKd6y0dcDLdfX4IvTVzj5G2tx4HZ2hyQ35PLvhzir6lmw27fLNdPSWPd9gne_Zwn5LPby8-rd-xqw-X79erK2YKkBOzmiPaohGwbBvbot1x06oWW5RNU6FdKuSKN6AaC1qjFiXqLMixUmdCyVPy8uCbe_022zTVg0vG9j16G-ZUS67yAQXFf1FRAdcVz94ZffEXehPm6PNH9hSU1RLk3vD5AzU3g23rMboB4239azgZEAfAxJBStLvfCId6vwT1YQnqPPD6fglqmUXyIErjfqo2_qn9D9VPQvm07g |
Cites_doi | 10.1371/journal.pone.0013197 10.1186/s12931-020-01479-w 10.3389/fchem.2021.819165 10.1038/s41598-022-06306-4 10.1038/s41586-020-2223-y 10.1021/acs.jmedchem.1c01475 10.1016/j.apsb.2021.01.018 10.1093/bib/bbaa428 10.1093/nar/gkab255 10.1021/acs.jctc.1c00645 10.1038/s41401-021-00851-w 10.1016/j.antiviral.2014.12.015 10.1074/jbc.M109089200 10.1073/pnas.2101555118 10.1038/s42003-022-03090-9 10.1007/s10930-020-09901-4 10.2210/pdb7TVX/pdb 10.1021/acs.jmedchem.1c01037 10.1074/jbc.AC120.016154 10.1080/22221751.2020.1870414 10.3390/v13020174 10.15252/embj.2020106275 10.3389/fchem.2021.622898 10.1038/s41467-020-16954-7 10.2210/pdb6W79/pdb 10.3390/nu13061924 10.1016/j.ijantimicag.2020.106055 10.1155/2022/7341493 10.1002/wcms.1327 10.1038/s41598-022-15930-z 10.1038/s41392-020-0190-2 10.1126/science.abb4489 10.1093/bioinformatics/btv082 10.1021/acs.jcim.1c00851 10.12688/f1000research.22457.2 10.1038/s41467-020-18096-2 10.1002/jcc.22885 10.1038/s41598-021-86471-0 10.1038/s41564-020-0695-z 10.1021/acs.jmedchem.2c01146 10.1038/s41467-022-29915-z 10.1136/bmj.n73 10.1080/22221751.2020.1719902 10.1021/acs.jmedchem.2c00117 10.1002/jcc.21334 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1007/s00894-023-05534-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 0948-5023 |
EndPage | 138 |
ExternalDocumentID | 37055578 10_1007_s00894_023_05534_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Branch Office of Science and Technology in Sichuan Province grantid: 2020JDS0039 |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RRX RSV RZK S16 S1Z S27 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z83 Z86 Z87 Z8M Z8O Z8P Z8Q Z8S Z8W Z91 ZMTXR ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABQSL ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c403t-e91aae4b206dbedaef1cd5dada3bb8ae65a151b05be099a927a9aae151793bb53 |
IEDL.DBID | U2A |
ISSN | 1610-2940 0948-5023 |
IngestDate | Tue Aug 05 10:59:20 EDT 2025 Thu Jul 10 23:42:29 EDT 2025 Sun Jul 13 05:39:36 EDT 2025 Mon Jul 21 06:05:16 EDT 2025 Tue Jul 01 02:46:02 EDT 2025 Fri Feb 21 02:44:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Virtual screening 3CLpro MM-GBSA MD |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-e91aae4b206dbedaef1cd5dada3bb8ae65a151b05be099a927a9aae151793bb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00894-023-05534-3.pdf |
PMID | 37055578 |
PQID | 2800786034 |
PQPubID | 2043656 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3153150504 proquest_miscellaneous_2801981151 proquest_journals_2800786034 pubmed_primary_37055578 crossref_primary_10_1007_s00894_023_05534_3 springer_journals_10_1007_s00894_023_05534_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Computational Chemistry - Life Science - Advanced Materials - New Methods |
PublicationTitle | Journal of molecular modeling |
PublicationTitleAbbrev | J Mol Model |
PublicationTitleAlternate | J Mol Model |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | DampallaCSZhengJPostinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infectionProc Natl Acad Sci U S A202111829e21015551181:CAS:528:DC%2BB3MXitVyltL%2FN10.1073/pnas.2101555118342107388307543 VuongWKhanMBFeline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replicationNat Commun202011142821:CAS:528:DC%2BB3cXhslWqtbzN10.1038/s41467-020-18096-2328554137453019 Pairwise Structure Alignment(RCSB PDB). Available online: https://www.rcsb.org/alignment. Baez-Santos YM, St John SE, Mesecar (2015) The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res 115: 21–38. https://www.ncbi.nlm.nih.gov/pubmed/25554382 ChanJF-WKokK-HZhuZGenomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting WuhanEmerg Microbes Infect2020912212361:CAS:528:DC%2BB3cXotFOktLg%3D10.1080/22221751.2020.1719902319870017067204 Zhu ZX, Lian XH, Su XS et al (2020) From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 21(1):224. https://doi.org/10.1186/s12931-020-01479-w Mesecar AD, St John S et al (2020) A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). PDB. https://doi.org/10.2210/pdb6W79/pdb Chen B, Tian EK, He B et al (2020) Overview of lethal human coronaviruses. Signal Transduct Target Ther 5(1):89. https://doi.org/10.1038/s41392-020-0190-2 TrottOOlsonAJAutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreadingJ Comput Chem2010314554611:CAS:528:DC%2BD1MXhsFGnur3O10.1002/jcc.21334194995763041641 GreasleySENoellSPlotnikovaOStructural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variantsJ Biol Chem202229861019721:CAS:528:DC%2BB38Xhtl2hsLfF10.1074/jbc.M109089200354618119023115 Kneller DW, Phillips G, Weiss KL et al (2020) Unusual zwitterionic catalytic site of SARS–CoV-2 main protease revealed by neutron crystallography. J Biol Chem 295(50): 17365–17373. https://www.sciencedirect.com/science/article/pii/S0021925817506225 ChuckC-PChongL-TProfiling of substrate specificity of SARS-CoV 3CLproPLoS One2010510e131971:CAS:528:DC%2BC3cXht12lsr7N10.1371/journal.pone.0013197209491312950840 Marzi M, Vakil MK, Bahmanyar M et al (2022) Paxlovid: mechanism of action, synthesis, and in silico study. Biomed Res Int 2022: 7341493. https://www.ncbi.nlm.nih.gov/pubmed/35845944 KnellerDWLiHGalanieSStructural, electronic, and electrostatic determinants for inhibitor binding to subsites S1 and S2 in SARS-CoV-2 main proteaseJ Med Chem2021642317366173831:CAS:528:DC%2BB3MXitlajurfE10.1021/acs.jmedchem.1c0147534705466 MoustaqilMOllivierEChiuH-PSARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across speciesEmerging Microbes & Infections20211011781951:CAS:528:DC%2BB3MXjsVGksbw%3D10.1080/22221751.2020.1870414 GaoSSylvesterKSongLDiscovery and crystallographic studies of trisubstituted piperazine derivatives as non-covalent SARS-CoV-2 main protease inhibitors with high target specificity and low toxicityJ Med Chem2022651913343133641:CAS:528:DC%2BB38XitlygsbfF10.1021/acs.jmedchem.2c0114636107752 Clemente-Suarez VJ, Ramos-Campo DJ, Mielgo-Ayuso J et al (2021) Nutrition in the actual COVID-19 pandemic. A narrative review. Nutrients 13(6):1924. https://doi.org/10.3390/nu13061924 KnellerDWPhillipsGO’NeilHMStructural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallographyNat Commun202011132021:CAS:528:DC%2BB3cXht1OgsrjL10.1038/s41467-020-16954-7325812177314768 Bump JB, Baum F, Sakornsin M et al (2021) Political economy of covid-19: extractive, regressive, competitive. Bmj-Brit Med J 372:n73. https://doi.org/10.1136/bmj.n73 HeJHuLHuangXPotential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: insights from structures of protease and inhibitorsInt J Antimicrob Agents20205621060551:CAS:528:DC%2BB3cXhtlWmsrzJ10.1016/j.ijantimicag.2020.106055325341877286838 ChenYWYiuCPBPrediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidatesF1000Research202091291:CAS:528:DC%2BB3cXit1GmsbbN10.12688/f1000research.22457.2321949447062204 WuC-rYinW-cJiangYStructure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19Acta Pharmacol Sin202210.1038/s41401-021-00851-w3653607610104829 YoshimotoFKThe proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19Protein J20203931982161:CAS:528:DC%2BB3cXpvFCrurg%3D10.1007/s10930-020-09901-4324475717245191 Klemm T, Ebert G, Galleja DJ et al (2020) Mechanism and inhibition of the papain-like protease PLpro of SARS-CoV-2. EMBO J 39(18): e106275. https://www.ncbi.nlm.nih.gov/pubmed/32845033 NarayananANarwalMIdentification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assayCommun Biol2022511691:CAS:528:DC%2BB38Xls12nu7c%3D10.1038/s42003-022-03090-9352177188881501 Mengist HM, Dilnessa T, Jin T et al (2021) Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem 12(9):622898. https://www.frontiersin.org/article/10.3389/fchem.2021.622898 NeeseFSoftware update: the ORCA program system, version 4.0WIREs Comput Mol Sci20188e132710.1002/wcms.1327 ClydeAGalanieSHigh-throughput virtual screening and validation of a SARS-CoV-2 main protease noncovalent inhibitorJ Chem Inf Model20226211161281:CAS:528:DC%2BB3MXisFSgtLjE10.1021/acs.jcim.1c0085134793155 Tan K, Maltseva NI, Endres MJ et al The crystal structure of SARS-CoV-2 Omicron Mpro (P132H) in complex with masitinib. PDB. https://doi.org/10.2210/pdb7TVX/pdb. DaiWZhangBStructure-based design of antiviral drug candidates targeting the SARS-CoV-2 main proteaseScience20203686497133113351:CAS:528:DC%2BB3cXht1alsrzL10.1126/science.abb448932321856 WengYLMolecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinitySci Rep202111174291:CAS:528:DC%2BB3MXot1Gjsb4%3D10.1038/s41598-021-86471-0337957188016996 ZhangLLinDCrystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitorsScience202036864894094121:CAS:528:DC%2BB3MXislalurk%3D10.3390/v13020174321982917164518 DaiQAncPhore: a versatile tool for anchor pharmacophore steered drug discovery with applications in discovery of new inhibitors targeting metallo-beta-lactamases and indoleamine/tryptophan 2,3-dioxygenasesActa Pharm Sin B2021117193119461:CAS:528:DC%2BB3MXhtVOmsbnF10.1016/j.apsb.2021.01.018343863298343198 Valdés-TresancoMSgmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACSJ Chem Theory Comput20211710628162911:CAS:528:DC%2BB3MXitFWrurrJ10.1021/acs.jctc.1c0064534586825 DampallaCSStructure-guided design of potent inhibitors of SARS-CoV-2 3CL protease: structural, biochemical, and cell-based studiesJ Med Chem2021642417846178651:CAS:528:DC%2BB3MXis1GntrrK10.1021/acs.jmedchem.1c0103734865476 SARS-CoV-2 Data(NCBI). Available online: https://www.ncbi.nlm.nih.gov/sars-cov-2 Xiong G, Wu ZX, Yi JC et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1): W5–W14. https://doi.org/10.1093/nar/gkab255 AlhossaryAHandokoSDMuYGFast, accurate, and reliable molecular docking with QuickVina 2Bioinformatics20153113221422161:CAS:528:DC%2BC28XhtlamsrjJ10.1093/bioinformatics/btv08225717194 Lu T, Sobtop, Version 1.0(dev3.0), http://sobereva.com/soft/Sobtop (accessed on 26 Mar 2022 ) Rossetti GG, Ossorio MA, Rempel S et al (2022) Non-covalent SARS-CoV-2 M-pro inhibitors developed from in silico screen hits. Sci Rep 12(1):2505. https://doi.org/10.1038/s41598-022-06306-4 MahmudSVirtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2Brief Bioinform2021222140214141:CAS:528:DC%2BB3MXhsFWht7bM10.1093/bib/bbaa42833517367 Lv Z, Cano KE, Jia L et al (2021) Targeting SARS-CoV-2 proteases for COVID-19 antiviral development. Front Chem 9: 819165. https://www.ncbi.nlm.nih.gov/pubmed/35186898 GorbalenyaAEBakerSCBaricRSThe species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2Nat Microbiol2020545365441:CAS:528:DC%2BB3cXktFemu7Y%3D10.1038/s41564-020-0695-z Jin Z, Du X, Xu Y et al (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293. https://www.ncbi.nlm.nih.gov/pubmed/32272481 Lockbaum GJ, Reyes AC, Lee JM et al (2021) Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188. Viruses-Basel 13(2):174. https://doi.org/10.3390/v13020174 AndiBHepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main proteaseSci Rep2022121121971:CAS:528:DC%2BB38XhvVGktbnN10.1038/s41598-022-15930-z358424589287821 LuTChenFMultiwfn: a multifunctional wavefunction analyzerJ Comput Chem2012335805921:CAS:528:DC%2BC3MXhsFykurjN10.1002/jcc.2288522162017 WHO coronavirus disease (COVID-19) dashboard. Available online: https://covid19.who.int/ (accessed on 19 July 2022) KnellerDWLiHCovalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main proteaseNat Commun202213122681:CAS:528:DC%2BB38XhtFCrsLbN10.1038/s41467-022-29915-z354779359046211 Unoh Y, Uehara S, Nakahara K et al (2022) Discovery of S-217622, a noncovalent oral SARS-CoV-2 3cl protease inhibitor clinical candidate for treating COVID-1 A Clyde (5534_CR42) 2022; 62 W Vuong (5534_CR37) 2020; 11 YL Weng (5534_CR48) 2021; 11 F Neese (5534_CR46) 2018; 8 5534_CR47 DW Kneller (5534_CR44) 2022; 13 A Narayanan (5534_CR41) 2022; 5 T Lu (5534_CR45) 2012; 33 CS Dampalla (5534_CR43) 2021; 64 AE Gorbalenya (5534_CR4) 2020; 5 C-P Chuck (5534_CR17) 2010; 5 C-r Wu (5534_CR8) 2022 B Andi (5534_CR39) 2022; 12 5534_CR5 5534_CR33 5534_CR6 DW Kneller (5534_CR18) 2020; 11 S Gao (5534_CR23) 2022; 65 5534_CR32 Q Dai (5534_CR27) 2021; 11 5534_CR30 SE Greasley (5534_CR29) 2022; 298 5534_CR1 5534_CR2 5534_CR3 A Alhossary (5534_CR34) 2015; 31 JF-W Chan (5534_CR7) 2020; 9 W Dai (5534_CR36) 2020; 368 5534_CR26 5534_CR25 5534_CR28 5534_CR22 5534_CR21 O Trott (5534_CR35) 2010; 31 CS Dampalla (5534_CR40) 2021; 118 5534_CR24 5534_CR20 MS Valdés-Tresanco (5534_CR50) 2021; 17 M Moustaqil (5534_CR19) 2021; 10 J He (5534_CR16) 2020; 56 L Zhang (5534_CR38) 2020; 368 5534_CR14 YW Chen (5534_CR15) 2020; 9 5534_CR11 5534_CR10 5534_CR13 5534_CR12 FK Yoshimoto (5534_CR9) 2020; 39 S Mahmud (5534_CR49) 2021; 22 DW Kneller (5534_CR31) 2021; 64 |
References_xml | – reference: Rossetti GG, Ossorio MA, Rempel S et al (2022) Non-covalent SARS-CoV-2 M-pro inhibitors developed from in silico screen hits. Sci Rep 12(1):2505. https://doi.org/10.1038/s41598-022-06306-4 – reference: ChenYWYiuCPBPrediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidatesF1000Research202091291:CAS:528:DC%2BB3cXit1GmsbbN10.12688/f1000research.22457.2321949447062204 – reference: DampallaCSStructure-guided design of potent inhibitors of SARS-CoV-2 3CL protease: structural, biochemical, and cell-based studiesJ Med Chem2021642417846178651:CAS:528:DC%2BB3MXis1GntrrK10.1021/acs.jmedchem.1c0103734865476 – reference: Bump JB, Baum F, Sakornsin M et al (2021) Political economy of covid-19: extractive, regressive, competitive. Bmj-Brit Med J 372:n73. https://doi.org/10.1136/bmj.n73 – reference: Mengist HM, Dilnessa T, Jin T et al (2021) Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem 12(9):622898. https://www.frontiersin.org/article/10.3389/fchem.2021.622898 – reference: DampallaCSZhengJPostinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infectionProc Natl Acad Sci U S A202111829e21015551181:CAS:528:DC%2BB3MXitVyltL%2FN10.1073/pnas.2101555118342107388307543 – reference: AndiBHepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main proteaseSci Rep2022121121971:CAS:528:DC%2BB38XhvVGktbnN10.1038/s41598-022-15930-z358424589287821 – reference: Tan K, Maltseva NI, Endres MJ et al The crystal structure of SARS-CoV-2 Omicron Mpro (P132H) in complex with masitinib. PDB. https://doi.org/10.2210/pdb7TVX/pdb. – reference: TrottOOlsonAJAutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreadingJ Comput Chem2010314554611:CAS:528:DC%2BD1MXhsFGnur3O10.1002/jcc.21334194995763041641 – reference: Chen B, Tian EK, He B et al (2020) Overview of lethal human coronaviruses. Signal Transduct Target Ther 5(1):89. https://doi.org/10.1038/s41392-020-0190-2 – reference: GreasleySENoellSPlotnikovaOStructural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variantsJ Biol Chem202229861019721:CAS:528:DC%2BB38Xhtl2hsLfF10.1074/jbc.M109089200354618119023115 – reference: AlhossaryAHandokoSDMuYGFast, accurate, and reliable molecular docking with QuickVina 2Bioinformatics20153113221422161:CAS:528:DC%2BC28XhtlamsrjJ10.1093/bioinformatics/btv08225717194 – reference: Marzi M, Vakil MK, Bahmanyar M et al (2022) Paxlovid: mechanism of action, synthesis, and in silico study. Biomed Res Int 2022: 7341493. https://www.ncbi.nlm.nih.gov/pubmed/35845944 – reference: Kneller DW, Phillips G, Weiss KL et al (2020) Unusual zwitterionic catalytic site of SARS–CoV-2 main protease revealed by neutron crystallography. J Biol Chem 295(50): 17365–17373. https://www.sciencedirect.com/science/article/pii/S0021925817506225 – reference: Mesecar AD, St John S et al (2020) A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). PDB. https://doi.org/10.2210/pdb6W79/pdb – reference: Lv Z, Cano KE, Jia L et al (2021) Targeting SARS-CoV-2 proteases for COVID-19 antiviral development. Front Chem 9: 819165. https://www.ncbi.nlm.nih.gov/pubmed/35186898 – reference: DaiQAncPhore: a versatile tool for anchor pharmacophore steered drug discovery with applications in discovery of new inhibitors targeting metallo-beta-lactamases and indoleamine/tryptophan 2,3-dioxygenasesActa Pharm Sin B2021117193119461:CAS:528:DC%2BB3MXhtVOmsbnF10.1016/j.apsb.2021.01.018343863298343198 – reference: ZhangLLinDCrystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitorsScience202036864894094121:CAS:528:DC%2BB3MXislalurk%3D10.3390/v13020174321982917164518 – reference: HeJHuLHuangXPotential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: insights from structures of protease and inhibitorsInt J Antimicrob Agents20205621060551:CAS:528:DC%2BB3cXhtlWmsrzJ10.1016/j.ijantimicag.2020.106055325341877286838 – reference: LuTChenFMultiwfn: a multifunctional wavefunction analyzerJ Comput Chem2012335805921:CAS:528:DC%2BC3MXhsFykurjN10.1002/jcc.2288522162017 – reference: NeeseFSoftware update: the ORCA program system, version 4.0WIREs Comput Mol Sci20188e132710.1002/wcms.1327 – reference: Klemm T, Ebert G, Galleja DJ et al (2020) Mechanism and inhibition of the papain-like protease PLpro of SARS-CoV-2. EMBO J 39(18): e106275. https://www.ncbi.nlm.nih.gov/pubmed/32845033 – reference: ClydeAGalanieSHigh-throughput virtual screening and validation of a SARS-CoV-2 main protease noncovalent inhibitorJ Chem Inf Model20226211161281:CAS:528:DC%2BB3MXisFSgtLjE10.1021/acs.jcim.1c0085134793155 – reference: YoshimotoFKThe proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19Protein J20203931982161:CAS:528:DC%2BB3cXpvFCrurg%3D10.1007/s10930-020-09901-4324475717245191 – reference: Baez-Santos YM, St John SE, Mesecar (2015) The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res 115: 21–38. https://www.ncbi.nlm.nih.gov/pubmed/25554382 – reference: DaiWZhangBStructure-based design of antiviral drug candidates targeting the SARS-CoV-2 main proteaseScience20203686497133113351:CAS:528:DC%2BB3cXht1alsrzL10.1126/science.abb448932321856 – reference: MahmudSVirtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2Brief Bioinform2021222140214141:CAS:528:DC%2BB3MXhsFWht7bM10.1093/bib/bbaa42833517367 – reference: Clemente-Suarez VJ, Ramos-Campo DJ, Mielgo-Ayuso J et al (2021) Nutrition in the actual COVID-19 pandemic. A narrative review. Nutrients 13(6):1924. https://doi.org/10.3390/nu13061924 – reference: VuongWKhanMBFeline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replicationNat Commun202011142821:CAS:528:DC%2BB3cXhslWqtbzN10.1038/s41467-020-18096-2328554137453019 – reference: GaoSSylvesterKSongLDiscovery and crystallographic studies of trisubstituted piperazine derivatives as non-covalent SARS-CoV-2 main protease inhibitors with high target specificity and low toxicityJ Med Chem2022651913343133641:CAS:528:DC%2BB38XitlygsbfF10.1021/acs.jmedchem.2c0114636107752 – reference: KnellerDWLiHGalanieSStructural, electronic, and electrostatic determinants for inhibitor binding to subsites S1 and S2 in SARS-CoV-2 main proteaseJ Med Chem2021642317366173831:CAS:528:DC%2BB3MXitlajurfE10.1021/acs.jmedchem.1c0147534705466 – reference: GorbalenyaAEBakerSCBaricRSThe species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2Nat Microbiol2020545365441:CAS:528:DC%2BB3cXktFemu7Y%3D10.1038/s41564-020-0695-z – reference: MoustaqilMOllivierEChiuH-PSARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across speciesEmerging Microbes & Infections20211011781951:CAS:528:DC%2BB3MXjsVGksbw%3D10.1080/22221751.2020.1870414 – reference: Unoh Y, Uehara S, Nakahara K et al (2022) Discovery of S-217622, a noncovalent oral SARS-CoV-2 3cl protease inhibitor clinical candidate for treating COVID-19. J Med Chem 65(9): 6499–6512. https://www.ncbi.nlm.nih.gov/pubmed/35352927 – reference: Lu T, Sobtop, Version 1.0(dev3.0), http://sobereva.com/soft/Sobtop (accessed on 26 Mar 2022 ) – reference: KnellerDWPhillipsGO’NeilHMStructural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallographyNat Commun202011132021:CAS:528:DC%2BB3cXht1OgsrjL10.1038/s41467-020-16954-7325812177314768 – reference: Zhu ZX, Lian XH, Su XS et al (2020) From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 21(1):224. https://doi.org/10.1186/s12931-020-01479-w – reference: Lockbaum GJ, Reyes AC, Lee JM et al (2021) Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188. Viruses-Basel 13(2):174. https://doi.org/10.3390/v13020174 – reference: WHO coronavirus disease (COVID-19) dashboard. Available online: https://covid19.who.int/ (accessed on 19 July 2022) – reference: ChanJF-WKokK-HZhuZGenomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting WuhanEmerg Microbes Infect2020912212361:CAS:528:DC%2BB3cXotFOktLg%3D10.1080/22221751.2020.1719902319870017067204 – reference: Pairwise Structure Alignment(RCSB PDB). Available online: https://www.rcsb.org/alignment. – reference: Jin Z, Du X, Xu Y et al (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293. https://www.ncbi.nlm.nih.gov/pubmed/32272481 – reference: Xiong G, Wu ZX, Yi JC et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1): W5–W14. https://doi.org/10.1093/nar/gkab255 – reference: ChuckC-PChongL-TProfiling of substrate specificity of SARS-CoV 3CLproPLoS One2010510e131971:CAS:528:DC%2BC3cXht12lsr7N10.1371/journal.pone.0013197209491312950840 – reference: SARS-CoV-2 Data(NCBI). Available online: https://www.ncbi.nlm.nih.gov/sars-cov-2/ – reference: WengYLMolecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinitySci Rep202111174291:CAS:528:DC%2BB3MXot1Gjsb4%3D10.1038/s41598-021-86471-0337957188016996 – reference: NarayananANarwalMIdentification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assayCommun Biol2022511691:CAS:528:DC%2BB38Xls12nu7c%3D10.1038/s42003-022-03090-9352177188881501 – reference: KnellerDWLiHCovalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main proteaseNat Commun202213122681:CAS:528:DC%2BB38XhtFCrsLbN10.1038/s41467-022-29915-z354779359046211 – reference: Valdés-TresancoMSgmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACSJ Chem Theory Comput20211710628162911:CAS:528:DC%2BB3MXitFWrurrJ10.1021/acs.jctc.1c0064534586825 – reference: WuC-rYinW-cJiangYStructure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19Acta Pharmacol Sin202210.1038/s41401-021-00851-w3653607610104829 – volume: 5 start-page: e13197 issue: 10 year: 2010 ident: 5534_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0013197 – ident: 5534_CR2 doi: 10.1186/s12931-020-01479-w – ident: 5534_CR12 doi: 10.3389/fchem.2021.819165 – ident: 5534_CR25 doi: 10.1038/s41598-022-06306-4 – ident: 5534_CR20 doi: 10.1038/s41586-020-2223-y – volume: 64 start-page: 17366 issue: 23 year: 2021 ident: 5534_CR31 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c01475 – volume: 11 start-page: 1931 issue: 7 year: 2021 ident: 5534_CR27 publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.01.018 – volume: 22 start-page: 1402 issue: 2 year: 2021 ident: 5534_CR49 publication-title: Brief Bioinform doi: 10.1093/bib/bbaa428 – ident: 5534_CR33 doi: 10.1093/nar/gkab255 – volume: 17 start-page: 6281 issue: 10 year: 2021 ident: 5534_CR50 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.1c00645 – year: 2022 ident: 5534_CR8 publication-title: Acta Pharmacol Sin doi: 10.1038/s41401-021-00851-w – ident: 5534_CR11 doi: 10.1016/j.antiviral.2014.12.015 – volume: 298 start-page: 101972 issue: 6 year: 2022 ident: 5534_CR29 publication-title: J Biol Chem doi: 10.1074/jbc.M109089200 – volume: 118 start-page: e2101555118 issue: 29 year: 2021 ident: 5534_CR40 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2101555118 – volume: 5 start-page: 169 issue: 1 year: 2022 ident: 5534_CR41 publication-title: Commun Biol doi: 10.1038/s42003-022-03090-9 – ident: 5534_CR47 – volume: 39 start-page: 198 issue: 3 year: 2020 ident: 5534_CR9 publication-title: Protein J doi: 10.1007/s10930-020-09901-4 – ident: 5534_CR30 doi: 10.2210/pdb7TVX/pdb – volume: 64 start-page: 17846 issue: 24 year: 2021 ident: 5534_CR43 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c01037 – ident: 5534_CR13 doi: 10.1074/jbc.AC120.016154 – volume: 10 start-page: 178 issue: 1 year: 2021 ident: 5534_CR19 publication-title: Emerging Microbes & Infections doi: 10.1080/22221751.2020.1870414 – volume: 368 start-page: 409 issue: 6489 year: 2020 ident: 5534_CR38 publication-title: Science doi: 10.3390/v13020174 – ident: 5534_CR10 doi: 10.15252/embj.2020106275 – ident: 5534_CR32 – ident: 5534_CR14 doi: 10.3389/fchem.2021.622898 – ident: 5534_CR24 doi: 10.3390/v13020174 – volume: 11 start-page: 3202 issue: 1 year: 2020 ident: 5534_CR18 publication-title: Nat Commun doi: 10.1038/s41467-020-16954-7 – ident: 5534_CR26 doi: 10.2210/pdb6W79/pdb – ident: 5534_CR6 doi: 10.3390/nu13061924 – volume: 56 start-page: 106055 issue: 2 year: 2020 ident: 5534_CR16 publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2020.106055 – ident: 5534_CR21 doi: 10.1155/2022/7341493 – volume: 8 start-page: e1327 year: 2018 ident: 5534_CR46 publication-title: WIREs Comput Mol Sci doi: 10.1002/wcms.1327 – volume: 12 start-page: 12197 issue: 1 year: 2022 ident: 5534_CR39 publication-title: Sci Rep doi: 10.1038/s41598-022-15930-z – ident: 5534_CR3 doi: 10.1038/s41392-020-0190-2 – volume: 368 start-page: 1331 issue: 6497 year: 2020 ident: 5534_CR36 publication-title: Science doi: 10.1126/science.abb4489 – volume: 31 start-page: 2214 issue: 13 year: 2015 ident: 5534_CR34 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv082 – volume: 62 start-page: 116 issue: 1 year: 2022 ident: 5534_CR42 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.1c00851 – ident: 5534_CR1 – volume: 9 start-page: 129 year: 2020 ident: 5534_CR15 publication-title: F1000Research doi: 10.12688/f1000research.22457.2 – ident: 5534_CR28 – volume: 11 start-page: 4282 issue: 1 year: 2020 ident: 5534_CR37 publication-title: Nat Commun doi: 10.1038/s41467-020-18096-2 – volume: 33 start-page: 580 year: 2012 ident: 5534_CR45 publication-title: J Comput Chem doi: 10.1002/jcc.22885 – volume: 11 start-page: 7429 issue: 1 year: 2021 ident: 5534_CR48 publication-title: Sci Rep doi: 10.1038/s41598-021-86471-0 – volume: 5 start-page: 536 issue: 4 year: 2020 ident: 5534_CR4 publication-title: Nat Microbiol doi: 10.1038/s41564-020-0695-z – volume: 65 start-page: 13343 issue: 19 year: 2022 ident: 5534_CR23 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.2c01146 – volume: 13 start-page: 2268 issue: 1 year: 2022 ident: 5534_CR44 publication-title: Nat Commun doi: 10.1038/s41467-022-29915-z – ident: 5534_CR5 doi: 10.1136/bmj.n73 – volume: 9 start-page: 221 issue: 1 year: 2020 ident: 5534_CR7 publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2020.1719902 – ident: 5534_CR22 doi: 10.1021/acs.jmedchem.2c00117 – volume: 31 start-page: 455 year: 2010 ident: 5534_CR35 publication-title: J Comput Chem doi: 10.1002/jcc.21334 |
SSID | ssj0001256522 |
Score | 2.331263 |
Snippet | Context
In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no... In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known... ContextIn the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no... CONTEXT: In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 138 |
SubjectTerms | Binding Binding energy Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry COVID-19 Endopeptidases Free energy Gibbs free energy Humans Inhibitors Mathematical analysis Molecular docking Molecular Docking Simulation Molecular dynamics Molecular Dynamics Simulation Molecular Medicine Original Paper pharmacology Pharmacophore Protease Inhibitors - pharmacology proteinases SARS-CoV-2 Screening Severe acute respiratory syndrome coronavirus 2 Simulation Theoretical and Computational Chemistry Workflow |
Title | Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-GBSA |
URI | https://link.springer.com/article/10.1007/s00894-023-05534-3 https://www.ncbi.nlm.nih.gov/pubmed/37055578 https://www.proquest.com/docview/2800786034 https://www.proquest.com/docview/2801981151 https://www.proquest.com/docview/3153150504 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9i9LBdEBtsFBgy0m7Ukj_T5phWLdWm9rBSxE6RnbhqDzQVLf_K_t49J04AAYedcvCL4_g9P__s9wXwQ1vnb9cWlLuYUdV1DpeUkxTBHJfaWKOEj3eeTKPxXP2803chKGxbe7vXJslSUzfBbrhb-TS2wvubaamo_AAt7c_uKMVzkTy7WUGQUpoPEM0wKmLFQrTM29283JFewcxXJtJy5xkdwkGAjCSpePwZ9tz6C3wc1JXajuBv40hHNsXOu_8g-Sz5PaOD4pYKMsGvETzm06xAucJ2slovV3blC-2QUKiH5KgYsYcO2YRk1ptl8eBIqOlNENiWXpcdcl8X1CV5Vc2ebFf3oQhYh5h1TiYTet2fJccwHw1vBmMa6i3QTDG5oy7mxjhlBYty63LjFjzLdW5yI63tGRdpg_jAMuQv4koTi66J8QXus3whhZZfYR9_xp0AyUTWtVbFgkcOAVtkWWZMr4s7stcQctGGq3rO002VViNtEiiXHEqRQ2nJoVS24bxmSxqW2DYVPQ9vIiZVGy6bZpx5b_Ewa1c8ljQ87iHo5e_TSNT5iIo1w36-VSxvhiR9riEccRs6tQw8DeD98Z7-H_kZfBKVPFLGz2F_9_DoviPU2dkLaCWjfn_qn9d_fg0vSkn_B_Ka-VU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOMAF7fIssIuRuFFLfiVNjt1qoQuEA6WIW2QnruiBpurjr_B7GSdOFgQcOHviOJ7xzBfPC-AsMNbdro0otzGjqmMtHikrKYI5LgNttBIu3zm5DftDdfUYPPqksHkd7V67JEtN3SS7obVyZWyFizcLpKJyFdYRDEQukGsoum9uVhCklO4DRDOMilgxny3z-TTvLdIHmPnBRVpanosfsOUhI-lWPP4JK3ayDRu9ulPbDrw0gXRkWixc-A-SD7p3A9orHqggCb6N4G8-zQqUKxwn48nT2Ixdox3iG_WQHBUjztAmU1_MevpUzCzxPb0JAtsy6rJNnuuGuiSvutmT-fjZNwFrEz3JSZLQyz-D7i4ML_7e9_rU91ugmWJyQW3MtbbKCBbmxubajniWB7nOtTQm0jYMNOIDw5C_iCt1LDo6xge4q_KFFIHcgzX8GHsAJBNZxxgVCx5a5FFoWKZ11EGL7DSEHLXgvN7zdFqV1UibAsolh1LkUFpyKJUtOK7ZkvojNk9F5OBNyKRqwWkzjDvvPB56YotlScPjCEEv_5pGos5HVBwwnGe_YnmzJOlqDeGKW9CuZeD_Ar5e7-H3yE9go3-f3KQ3_26vj2BTVLJJGT-GtcVsaX8h7FmY36WUvwI7lPk4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkNpeKuiDbqEwlXrrWviV7Oa4bFnoY1HV7VbcIjv2ij2QRLD8FX4v47ygohw4Z-LYnvHMF88L4HNkfbhdWzDhE870wHs6Ul4xAnNCRcYaLUO-8_Q0Ppnr72fR2b0s_iravXVJ1jkNoUpTvjoo3eKgS3wjyxVK2soQexYpzdQz2CB1LIJcz-Xo3i0LAZbKlUDIhjOZaN5kzvx_mH-t0wPI-cBdWlmhySa8auAjjmp-b8Gaz1_Di3Hbte0N3HRBdVgWYUUkXzgb_Z6xcfGXSZzS15B--VlWkIzRc1zm50u7DE13sGnag46UJI3Qx7IpbF2eF5cem_7eSCC3isDs40XbXBdd3dker5YXTUOwPprc4XTKjg9no7cwnxz9GZ-wpvcCyzRXK-YTYYzXVvLYWe-MX4jMRc44o6wdGh9HhrCC5cRrwpgmkQOT0AsiVPwiiki9g3VajH8PmMlsYK1OpIg9gbfY8syY4YCsc9AWatGDL-2ep2VdYiPtiilXHEqJQ2nFoVT1YLdlS9oct6tUDgPUibnSPfjUPaadD94Pk_viuqIRyZAAsHicRpH-J4QccRpnu2Z5NyUV6g7RjHvQb2XgbgKPz_fD08j34fmvr5P057fTHzvwUtaiybjYhfXV5bX_SAhoZfcqIb8Fbzb9dA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+potential+SARS-CoV-2+Mpro+non-covalent+inhibitors+through+docking%2C+pharmacophore+profile+matching%2C+molecular+dynamic+simulation%2C+and+MM-GBSA&rft.jtitle=Journal+of+molecular+modeling&rft.au=Shi+Yunfan&rft.au=Dong+Liting&rft.au=Zhuang%2C+Ju&rft.au=Li%2C+Qiufu&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=29&rft.issue=5&rft_id=info:doi/10.1007%2Fs00894-023-05534-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon |