Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-GBSA

Context In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (15...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular modeling Vol. 29; no. 5; p. 138
Main Authors Shi, Yunfan, Dong, Liting, Ju, Zhuang, Li, Qiufu, Cui, Yanru, Liu, Yiran, He, Jiaoyu, Ding, Xianping
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. Methods In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory. Graphical Abstract
AbstractList ContextIn the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors.MethodsIn the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.
Context In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. Methods In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory. Graphical Abstract
In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.
CONTEXT: In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. METHODS: In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.
In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors.CONTEXTIn the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors.In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.METHODSIn the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.
ArticleNumber 138
Author Ju, Zhuang
He, Jiaoyu
Shi, Yunfan
Cui, Yanru
Dong, Liting
Ding, Xianping
Li, Qiufu
Liu, Yiran
Author_xml – sequence: 1
  givenname: Yunfan
  surname: Shi
  fullname: Shi, Yunfan
  email: shiyunfan2022@163.com
  organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat
– sequence: 2
  givenname: Liting
  surname: Dong
  fullname: Dong, Liting
  organization: College of Life Sciences, Sichuan University
– sequence: 3
  givenname: Zhuang
  surname: Ju
  fullname: Ju, Zhuang
  organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat
– sequence: 4
  givenname: Qiufu
  surname: Li
  fullname: Li, Qiufu
  organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat
– sequence: 5
  givenname: Yanru
  surname: Cui
  fullname: Cui, Yanru
  organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat
– sequence: 6
  givenname: Yiran
  surname: Liu
  fullname: Liu, Yiran
  organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat
– sequence: 7
  givenname: Jiaoyu
  surname: He
  fullname: He, Jiaoyu
  organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat
– sequence: 8
  givenname: Xianping
  surname: Ding
  fullname: Ding, Xianping
  email: brainding@scu.edu.cn
  organization: College of Life Sciences, Sichuan University, Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37055578$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu1DAQhi1URLelL8ABWeLCoYaxHW_i47IqBakrJBa4RhPH27gkdrATRF-kz4u3W0DiAJIlyzPf_89YMyfkyAdvCXnG4RUHKF8ngEoXDIRkoJQsmHxEFqCLiqkcOyILvuTAhC7gmJyldAMAXKilEuIJOZZl1qiyWpC7ix9jH6Lz13QMk_WTw55uVx-3bB2-MEE3Yww0l2YmfMc-56nznWvcFGKiUxfDfN3RNpiv2eGcjh3GAU0YuxAtzdKd6y0dcDLdfX4IvTVzj5G2tx4HZ2hyQ35PLvhzir6lmw27fLNdPSWPd9gne_Zwn5LPby8-rd-xqw-X79erK2YKkBOzmiPaohGwbBvbot1x06oWW5RNU6FdKuSKN6AaC1qjFiXqLMixUmdCyVPy8uCbe_022zTVg0vG9j16G-ZUS67yAQXFf1FRAdcVz94ZffEXehPm6PNH9hSU1RLk3vD5AzU3g23rMboB4239azgZEAfAxJBStLvfCId6vwT1YQnqPPD6fglqmUXyIErjfqo2_qn9D9VPQvm07g
Cites_doi 10.1371/journal.pone.0013197
10.1186/s12931-020-01479-w
10.3389/fchem.2021.819165
10.1038/s41598-022-06306-4
10.1038/s41586-020-2223-y
10.1021/acs.jmedchem.1c01475
10.1016/j.apsb.2021.01.018
10.1093/bib/bbaa428
10.1093/nar/gkab255
10.1021/acs.jctc.1c00645
10.1038/s41401-021-00851-w
10.1016/j.antiviral.2014.12.015
10.1074/jbc.M109089200
10.1073/pnas.2101555118
10.1038/s42003-022-03090-9
10.1007/s10930-020-09901-4
10.2210/pdb7TVX/pdb
10.1021/acs.jmedchem.1c01037
10.1074/jbc.AC120.016154
10.1080/22221751.2020.1870414
10.3390/v13020174
10.15252/embj.2020106275
10.3389/fchem.2021.622898
10.1038/s41467-020-16954-7
10.2210/pdb6W79/pdb
10.3390/nu13061924
10.1016/j.ijantimicag.2020.106055
10.1155/2022/7341493
10.1002/wcms.1327
10.1038/s41598-022-15930-z
10.1038/s41392-020-0190-2
10.1126/science.abb4489
10.1093/bioinformatics/btv082
10.1021/acs.jcim.1c00851
10.12688/f1000research.22457.2
10.1038/s41467-020-18096-2
10.1002/jcc.22885
10.1038/s41598-021-86471-0
10.1038/s41564-020-0695-z
10.1021/acs.jmedchem.2c01146
10.1038/s41467-022-29915-z
10.1136/bmj.n73
10.1080/22221751.2020.1719902
10.1021/acs.jmedchem.2c00117
10.1002/jcc.21334
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1007/s00894-023-05534-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 0948-5023
EndPage 138
ExternalDocumentID 37055578
10_1007_s00894_023_05534_3
Genre Journal Article
GrantInformation_xml – fundername: Branch Office of Science and Technology in Sichuan Province
  grantid: 2020JDS0039
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z86
Z87
Z8M
Z8O
Z8P
Z8Q
Z8S
Z8W
Z91
ZMTXR
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c403t-e91aae4b206dbedaef1cd5dada3bb8ae65a151b05be099a927a9aae151793bb53
IEDL.DBID U2A
ISSN 1610-2940
0948-5023
IngestDate Tue Aug 05 10:59:20 EDT 2025
Thu Jul 10 23:42:29 EDT 2025
Sun Jul 13 05:39:36 EDT 2025
Mon Jul 21 06:05:16 EDT 2025
Tue Jul 01 02:46:02 EDT 2025
Fri Feb 21 02:44:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Virtual screening
3CLpro
MM-GBSA
MD
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-e91aae4b206dbedaef1cd5dada3bb8ae65a151b05be099a927a9aae151793bb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00894-023-05534-3.pdf
PMID 37055578
PQID 2800786034
PQPubID 2043656
PageCount 1
ParticipantIDs proquest_miscellaneous_3153150504
proquest_miscellaneous_2801981151
proquest_journals_2800786034
pubmed_primary_37055578
crossref_primary_10_1007_s00894_023_05534_3
springer_journals_10_1007_s00894_023_05534_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Computational Chemistry - Life Science - Advanced Materials - New Methods
PublicationTitle Journal of molecular modeling
PublicationTitleAbbrev J Mol Model
PublicationTitleAlternate J Mol Model
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References DampallaCSZhengJPostinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infectionProc Natl Acad Sci U S A202111829e21015551181:CAS:528:DC%2BB3MXitVyltL%2FN10.1073/pnas.2101555118342107388307543
VuongWKhanMBFeline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replicationNat Commun202011142821:CAS:528:DC%2BB3cXhslWqtbzN10.1038/s41467-020-18096-2328554137453019
Pairwise Structure Alignment(RCSB PDB). Available online: https://www.rcsb.org/alignment.
Baez-Santos YM, St John SE, Mesecar (2015) The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res 115: 21–38. https://www.ncbi.nlm.nih.gov/pubmed/25554382
ChanJF-WKokK-HZhuZGenomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting WuhanEmerg Microbes Infect2020912212361:CAS:528:DC%2BB3cXotFOktLg%3D10.1080/22221751.2020.1719902319870017067204
Zhu ZX, Lian XH, Su XS et al (2020) From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 21(1):224. https://doi.org/10.1186/s12931-020-01479-w
Mesecar AD, St John S et al (2020) A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). PDB. https://doi.org/10.2210/pdb6W79/pdb
Chen B, Tian EK, He B et al (2020) Overview of lethal human coronaviruses. Signal Transduct Target Ther 5(1):89. https://doi.org/10.1038/s41392-020-0190-2
TrottOOlsonAJAutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreadingJ Comput Chem2010314554611:CAS:528:DC%2BD1MXhsFGnur3O10.1002/jcc.21334194995763041641
GreasleySENoellSPlotnikovaOStructural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variantsJ Biol Chem202229861019721:CAS:528:DC%2BB38Xhtl2hsLfF10.1074/jbc.M109089200354618119023115
Kneller DW, Phillips G, Weiss KL et al (2020) Unusual zwitterionic catalytic site of SARS–CoV-2 main protease revealed by neutron crystallography. J Biol Chem 295(50): 17365–17373. https://www.sciencedirect.com/science/article/pii/S0021925817506225
ChuckC-PChongL-TProfiling of substrate specificity of SARS-CoV 3CLproPLoS One2010510e131971:CAS:528:DC%2BC3cXht12lsr7N10.1371/journal.pone.0013197209491312950840
Marzi M, Vakil MK, Bahmanyar M et al (2022) Paxlovid: mechanism of action, synthesis, and in silico study. Biomed Res Int 2022: 7341493. https://www.ncbi.nlm.nih.gov/pubmed/35845944
KnellerDWLiHGalanieSStructural, electronic, and electrostatic determinants for inhibitor binding to subsites S1 and S2 in SARS-CoV-2 main proteaseJ Med Chem2021642317366173831:CAS:528:DC%2BB3MXitlajurfE10.1021/acs.jmedchem.1c0147534705466
MoustaqilMOllivierEChiuH-PSARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across speciesEmerging Microbes & Infections20211011781951:CAS:528:DC%2BB3MXjsVGksbw%3D10.1080/22221751.2020.1870414
GaoSSylvesterKSongLDiscovery and crystallographic studies of trisubstituted piperazine derivatives as non-covalent SARS-CoV-2 main protease inhibitors with high target specificity and low toxicityJ Med Chem2022651913343133641:CAS:528:DC%2BB38XitlygsbfF10.1021/acs.jmedchem.2c0114636107752
Clemente-Suarez VJ, Ramos-Campo DJ, Mielgo-Ayuso J et al (2021) Nutrition in the actual COVID-19 pandemic. A narrative review. Nutrients 13(6):1924. https://doi.org/10.3390/nu13061924
KnellerDWPhillipsGO’NeilHMStructural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallographyNat Commun202011132021:CAS:528:DC%2BB3cXht1OgsrjL10.1038/s41467-020-16954-7325812177314768
Bump JB, Baum F, Sakornsin M et al (2021) Political economy of covid-19: extractive, regressive, competitive. Bmj-Brit Med J 372:n73. https://doi.org/10.1136/bmj.n73
HeJHuLHuangXPotential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: insights from structures of protease and inhibitorsInt J Antimicrob Agents20205621060551:CAS:528:DC%2BB3cXhtlWmsrzJ10.1016/j.ijantimicag.2020.106055325341877286838
ChenYWYiuCPBPrediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidatesF1000Research202091291:CAS:528:DC%2BB3cXit1GmsbbN10.12688/f1000research.22457.2321949447062204
WuC-rYinW-cJiangYStructure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19Acta Pharmacol Sin202210.1038/s41401-021-00851-w3653607610104829
YoshimotoFKThe proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19Protein J20203931982161:CAS:528:DC%2BB3cXpvFCrurg%3D10.1007/s10930-020-09901-4324475717245191
Klemm T, Ebert G, Galleja DJ et al (2020) Mechanism and inhibition of the papain-like protease PLpro of SARS-CoV-2. EMBO J 39(18): e106275. https://www.ncbi.nlm.nih.gov/pubmed/32845033
NarayananANarwalMIdentification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assayCommun Biol2022511691:CAS:528:DC%2BB38Xls12nu7c%3D10.1038/s42003-022-03090-9352177188881501
Mengist HM, Dilnessa T, Jin T et al (2021) Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem 12(9):622898. https://www.frontiersin.org/article/10.3389/fchem.2021.622898
NeeseFSoftware update: the ORCA program system, version 4.0WIREs Comput Mol Sci20188e132710.1002/wcms.1327
ClydeAGalanieSHigh-throughput virtual screening and validation of a SARS-CoV-2 main protease noncovalent inhibitorJ Chem Inf Model20226211161281:CAS:528:DC%2BB3MXisFSgtLjE10.1021/acs.jcim.1c0085134793155
Tan K, Maltseva NI, Endres MJ et al The crystal structure of SARS-CoV-2 Omicron Mpro (P132H) in complex with masitinib. PDB. https://doi.org/10.2210/pdb7TVX/pdb.
DaiWZhangBStructure-based design of antiviral drug candidates targeting the SARS-CoV-2 main proteaseScience20203686497133113351:CAS:528:DC%2BB3cXht1alsrzL10.1126/science.abb448932321856
WengYLMolecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinitySci Rep202111174291:CAS:528:DC%2BB3MXot1Gjsb4%3D10.1038/s41598-021-86471-0337957188016996
ZhangLLinDCrystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitorsScience202036864894094121:CAS:528:DC%2BB3MXislalurk%3D10.3390/v13020174321982917164518
DaiQAncPhore: a versatile tool for anchor pharmacophore steered drug discovery with applications in discovery of new inhibitors targeting metallo-beta-lactamases and indoleamine/tryptophan 2,3-dioxygenasesActa Pharm Sin B2021117193119461:CAS:528:DC%2BB3MXhtVOmsbnF10.1016/j.apsb.2021.01.018343863298343198
Valdés-TresancoMSgmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACSJ Chem Theory Comput20211710628162911:CAS:528:DC%2BB3MXitFWrurrJ10.1021/acs.jctc.1c0064534586825
DampallaCSStructure-guided design of potent inhibitors of SARS-CoV-2 3CL protease: structural, biochemical, and cell-based studiesJ Med Chem2021642417846178651:CAS:528:DC%2BB3MXis1GntrrK10.1021/acs.jmedchem.1c0103734865476
SARS-CoV-2 Data(NCBI). Available online: https://www.ncbi.nlm.nih.gov/sars-cov-2
Xiong G, Wu ZX, Yi JC et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1): W5–W14. https://doi.org/10.1093/nar/gkab255
AlhossaryAHandokoSDMuYGFast, accurate, and reliable molecular docking with QuickVina 2Bioinformatics20153113221422161:CAS:528:DC%2BC28XhtlamsrjJ10.1093/bioinformatics/btv08225717194
Lu T, Sobtop, Version 1.0(dev3.0), http://sobereva.com/soft/Sobtop (accessed on 26 Mar 2022 )
Rossetti GG, Ossorio MA, Rempel S et al (2022) Non-covalent SARS-CoV-2 M-pro inhibitors developed from in silico screen hits. Sci Rep 12(1):2505. https://doi.org/10.1038/s41598-022-06306-4
MahmudSVirtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2Brief Bioinform2021222140214141:CAS:528:DC%2BB3MXhsFWht7bM10.1093/bib/bbaa42833517367
Lv Z, Cano KE, Jia L et al (2021) Targeting SARS-CoV-2 proteases for COVID-19 antiviral development. Front Chem 9: 819165. https://www.ncbi.nlm.nih.gov/pubmed/35186898
GorbalenyaAEBakerSCBaricRSThe species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2Nat Microbiol2020545365441:CAS:528:DC%2BB3cXktFemu7Y%3D10.1038/s41564-020-0695-z
Jin Z, Du X, Xu Y et al (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293. https://www.ncbi.nlm.nih.gov/pubmed/32272481
Lockbaum GJ, Reyes AC, Lee JM et al (2021) Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188. Viruses-Basel 13(2):174. https://doi.org/10.3390/v13020174
AndiBHepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main proteaseSci Rep2022121121971:CAS:528:DC%2BB38XhvVGktbnN10.1038/s41598-022-15930-z358424589287821
LuTChenFMultiwfn: a multifunctional wavefunction analyzerJ Comput Chem2012335805921:CAS:528:DC%2BC3MXhsFykurjN10.1002/jcc.2288522162017
WHO coronavirus disease (COVID-19) dashboard. Available online: https://covid19.who.int/ (accessed on 19 July 2022)
KnellerDWLiHCovalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main proteaseNat Commun202213122681:CAS:528:DC%2BB38XhtFCrsLbN10.1038/s41467-022-29915-z354779359046211
Unoh Y, Uehara S, Nakahara K et al (2022) Discovery of S-217622, a noncovalent oral SARS-CoV-2 3cl protease inhibitor clinical candidate for treating COVID-1
A Clyde (5534_CR42) 2022; 62
W Vuong (5534_CR37) 2020; 11
YL Weng (5534_CR48) 2021; 11
F Neese (5534_CR46) 2018; 8
5534_CR47
DW Kneller (5534_CR44) 2022; 13
A Narayanan (5534_CR41) 2022; 5
T Lu (5534_CR45) 2012; 33
CS Dampalla (5534_CR43) 2021; 64
AE Gorbalenya (5534_CR4) 2020; 5
C-P Chuck (5534_CR17) 2010; 5
C-r Wu (5534_CR8) 2022
B Andi (5534_CR39) 2022; 12
5534_CR5
5534_CR33
5534_CR6
DW Kneller (5534_CR18) 2020; 11
S Gao (5534_CR23) 2022; 65
5534_CR32
Q Dai (5534_CR27) 2021; 11
5534_CR30
SE Greasley (5534_CR29) 2022; 298
5534_CR1
5534_CR2
5534_CR3
A Alhossary (5534_CR34) 2015; 31
JF-W Chan (5534_CR7) 2020; 9
W Dai (5534_CR36) 2020; 368
5534_CR26
5534_CR25
5534_CR28
5534_CR22
5534_CR21
O Trott (5534_CR35) 2010; 31
CS Dampalla (5534_CR40) 2021; 118
5534_CR24
5534_CR20
MS Valdés-Tresanco (5534_CR50) 2021; 17
M Moustaqil (5534_CR19) 2021; 10
J He (5534_CR16) 2020; 56
L Zhang (5534_CR38) 2020; 368
5534_CR14
YW Chen (5534_CR15) 2020; 9
5534_CR11
5534_CR10
5534_CR13
5534_CR12
FK Yoshimoto (5534_CR9) 2020; 39
S Mahmud (5534_CR49) 2021; 22
DW Kneller (5534_CR31) 2021; 64
References_xml – reference: Rossetti GG, Ossorio MA, Rempel S et al (2022) Non-covalent SARS-CoV-2 M-pro inhibitors developed from in silico screen hits. Sci Rep 12(1):2505. https://doi.org/10.1038/s41598-022-06306-4
– reference: ChenYWYiuCPBPrediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidatesF1000Research202091291:CAS:528:DC%2BB3cXit1GmsbbN10.12688/f1000research.22457.2321949447062204
– reference: DampallaCSStructure-guided design of potent inhibitors of SARS-CoV-2 3CL protease: structural, biochemical, and cell-based studiesJ Med Chem2021642417846178651:CAS:528:DC%2BB3MXis1GntrrK10.1021/acs.jmedchem.1c0103734865476
– reference: Bump JB, Baum F, Sakornsin M et al (2021) Political economy of covid-19: extractive, regressive, competitive. Bmj-Brit Med J 372:n73. https://doi.org/10.1136/bmj.n73
– reference: Mengist HM, Dilnessa T, Jin T et al (2021) Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem 12(9):622898. https://www.frontiersin.org/article/10.3389/fchem.2021.622898
– reference: DampallaCSZhengJPostinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infectionProc Natl Acad Sci U S A202111829e21015551181:CAS:528:DC%2BB3MXitVyltL%2FN10.1073/pnas.2101555118342107388307543
– reference: AndiBHepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main proteaseSci Rep2022121121971:CAS:528:DC%2BB38XhvVGktbnN10.1038/s41598-022-15930-z358424589287821
– reference: Tan K, Maltseva NI, Endres MJ et al The crystal structure of SARS-CoV-2 Omicron Mpro (P132H) in complex with masitinib. PDB. https://doi.org/10.2210/pdb7TVX/pdb.
– reference: TrottOOlsonAJAutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreadingJ Comput Chem2010314554611:CAS:528:DC%2BD1MXhsFGnur3O10.1002/jcc.21334194995763041641
– reference: Chen B, Tian EK, He B et al (2020) Overview of lethal human coronaviruses. Signal Transduct Target Ther 5(1):89. https://doi.org/10.1038/s41392-020-0190-2
– reference: GreasleySENoellSPlotnikovaOStructural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variantsJ Biol Chem202229861019721:CAS:528:DC%2BB38Xhtl2hsLfF10.1074/jbc.M109089200354618119023115
– reference: AlhossaryAHandokoSDMuYGFast, accurate, and reliable molecular docking with QuickVina 2Bioinformatics20153113221422161:CAS:528:DC%2BC28XhtlamsrjJ10.1093/bioinformatics/btv08225717194
– reference: Marzi M, Vakil MK, Bahmanyar M et al (2022) Paxlovid: mechanism of action, synthesis, and in silico study. Biomed Res Int 2022: 7341493. https://www.ncbi.nlm.nih.gov/pubmed/35845944
– reference: Kneller DW, Phillips G, Weiss KL et al (2020) Unusual zwitterionic catalytic site of SARS–CoV-2 main protease revealed by neutron crystallography. J Biol Chem 295(50): 17365–17373. https://www.sciencedirect.com/science/article/pii/S0021925817506225
– reference: Mesecar AD, St John S et al (2020) A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). PDB. https://doi.org/10.2210/pdb6W79/pdb
– reference: Lv Z, Cano KE, Jia L et al (2021) Targeting SARS-CoV-2 proteases for COVID-19 antiviral development. Front Chem 9: 819165. https://www.ncbi.nlm.nih.gov/pubmed/35186898
– reference: DaiQAncPhore: a versatile tool for anchor pharmacophore steered drug discovery with applications in discovery of new inhibitors targeting metallo-beta-lactamases and indoleamine/tryptophan 2,3-dioxygenasesActa Pharm Sin B2021117193119461:CAS:528:DC%2BB3MXhtVOmsbnF10.1016/j.apsb.2021.01.018343863298343198
– reference: ZhangLLinDCrystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitorsScience202036864894094121:CAS:528:DC%2BB3MXislalurk%3D10.3390/v13020174321982917164518
– reference: HeJHuLHuangXPotential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: insights from structures of protease and inhibitorsInt J Antimicrob Agents20205621060551:CAS:528:DC%2BB3cXhtlWmsrzJ10.1016/j.ijantimicag.2020.106055325341877286838
– reference: LuTChenFMultiwfn: a multifunctional wavefunction analyzerJ Comput Chem2012335805921:CAS:528:DC%2BC3MXhsFykurjN10.1002/jcc.2288522162017
– reference: NeeseFSoftware update: the ORCA program system, version 4.0WIREs Comput Mol Sci20188e132710.1002/wcms.1327
– reference: Klemm T, Ebert G, Galleja DJ et al (2020) Mechanism and inhibition of the papain-like protease PLpro of SARS-CoV-2. EMBO J 39(18): e106275. https://www.ncbi.nlm.nih.gov/pubmed/32845033
– reference: ClydeAGalanieSHigh-throughput virtual screening and validation of a SARS-CoV-2 main protease noncovalent inhibitorJ Chem Inf Model20226211161281:CAS:528:DC%2BB3MXisFSgtLjE10.1021/acs.jcim.1c0085134793155
– reference: YoshimotoFKThe proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19Protein J20203931982161:CAS:528:DC%2BB3cXpvFCrurg%3D10.1007/s10930-020-09901-4324475717245191
– reference: Baez-Santos YM, St John SE, Mesecar (2015) The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res 115: 21–38. https://www.ncbi.nlm.nih.gov/pubmed/25554382
– reference: DaiWZhangBStructure-based design of antiviral drug candidates targeting the SARS-CoV-2 main proteaseScience20203686497133113351:CAS:528:DC%2BB3cXht1alsrzL10.1126/science.abb448932321856
– reference: MahmudSVirtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2Brief Bioinform2021222140214141:CAS:528:DC%2BB3MXhsFWht7bM10.1093/bib/bbaa42833517367
– reference: Clemente-Suarez VJ, Ramos-Campo DJ, Mielgo-Ayuso J et al (2021) Nutrition in the actual COVID-19 pandemic. A narrative review. Nutrients 13(6):1924. https://doi.org/10.3390/nu13061924
– reference: VuongWKhanMBFeline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replicationNat Commun202011142821:CAS:528:DC%2BB3cXhslWqtbzN10.1038/s41467-020-18096-2328554137453019
– reference: GaoSSylvesterKSongLDiscovery and crystallographic studies of trisubstituted piperazine derivatives as non-covalent SARS-CoV-2 main protease inhibitors with high target specificity and low toxicityJ Med Chem2022651913343133641:CAS:528:DC%2BB38XitlygsbfF10.1021/acs.jmedchem.2c0114636107752
– reference: KnellerDWLiHGalanieSStructural, electronic, and electrostatic determinants for inhibitor binding to subsites S1 and S2 in SARS-CoV-2 main proteaseJ Med Chem2021642317366173831:CAS:528:DC%2BB3MXitlajurfE10.1021/acs.jmedchem.1c0147534705466
– reference: GorbalenyaAEBakerSCBaricRSThe species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2Nat Microbiol2020545365441:CAS:528:DC%2BB3cXktFemu7Y%3D10.1038/s41564-020-0695-z
– reference: MoustaqilMOllivierEChiuH-PSARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across speciesEmerging Microbes & Infections20211011781951:CAS:528:DC%2BB3MXjsVGksbw%3D10.1080/22221751.2020.1870414
– reference: Unoh Y, Uehara S, Nakahara K et al (2022) Discovery of S-217622, a noncovalent oral SARS-CoV-2 3cl protease inhibitor clinical candidate for treating COVID-19. J Med Chem 65(9): 6499–6512. https://www.ncbi.nlm.nih.gov/pubmed/35352927
– reference: Lu T, Sobtop, Version 1.0(dev3.0), http://sobereva.com/soft/Sobtop (accessed on 26 Mar 2022 )
– reference: KnellerDWPhillipsGO’NeilHMStructural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallographyNat Commun202011132021:CAS:528:DC%2BB3cXht1OgsrjL10.1038/s41467-020-16954-7325812177314768
– reference: Zhu ZX, Lian XH, Su XS et al (2020) From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 21(1):224. https://doi.org/10.1186/s12931-020-01479-w
– reference: Lockbaum GJ, Reyes AC, Lee JM et al (2021) Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188. Viruses-Basel 13(2):174. https://doi.org/10.3390/v13020174
– reference: WHO coronavirus disease (COVID-19) dashboard. Available online: https://covid19.who.int/ (accessed on 19 July 2022)
– reference: ChanJF-WKokK-HZhuZGenomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting WuhanEmerg Microbes Infect2020912212361:CAS:528:DC%2BB3cXotFOktLg%3D10.1080/22221751.2020.1719902319870017067204
– reference: Pairwise Structure Alignment(RCSB PDB). Available online: https://www.rcsb.org/alignment.
– reference: Jin Z, Du X, Xu Y et al (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293. https://www.ncbi.nlm.nih.gov/pubmed/32272481
– reference: Xiong G, Wu ZX, Yi JC et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1): W5–W14. https://doi.org/10.1093/nar/gkab255
– reference: ChuckC-PChongL-TProfiling of substrate specificity of SARS-CoV 3CLproPLoS One2010510e131971:CAS:528:DC%2BC3cXht12lsr7N10.1371/journal.pone.0013197209491312950840
– reference: SARS-CoV-2 Data(NCBI). Available online: https://www.ncbi.nlm.nih.gov/sars-cov-2/
– reference: WengYLMolecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinitySci Rep202111174291:CAS:528:DC%2BB3MXot1Gjsb4%3D10.1038/s41598-021-86471-0337957188016996
– reference: NarayananANarwalMIdentification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assayCommun Biol2022511691:CAS:528:DC%2BB38Xls12nu7c%3D10.1038/s42003-022-03090-9352177188881501
– reference: KnellerDWLiHCovalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main proteaseNat Commun202213122681:CAS:528:DC%2BB38XhtFCrsLbN10.1038/s41467-022-29915-z354779359046211
– reference: Valdés-TresancoMSgmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACSJ Chem Theory Comput20211710628162911:CAS:528:DC%2BB3MXitFWrurrJ10.1021/acs.jctc.1c0064534586825
– reference: WuC-rYinW-cJiangYStructure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19Acta Pharmacol Sin202210.1038/s41401-021-00851-w3653607610104829
– volume: 5
  start-page: e13197
  issue: 10
  year: 2010
  ident: 5534_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013197
– ident: 5534_CR2
  doi: 10.1186/s12931-020-01479-w
– ident: 5534_CR12
  doi: 10.3389/fchem.2021.819165
– ident: 5534_CR25
  doi: 10.1038/s41598-022-06306-4
– ident: 5534_CR20
  doi: 10.1038/s41586-020-2223-y
– volume: 64
  start-page: 17366
  issue: 23
  year: 2021
  ident: 5534_CR31
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.1c01475
– volume: 11
  start-page: 1931
  issue: 7
  year: 2021
  ident: 5534_CR27
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2021.01.018
– volume: 22
  start-page: 1402
  issue: 2
  year: 2021
  ident: 5534_CR49
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa428
– ident: 5534_CR33
  doi: 10.1093/nar/gkab255
– volume: 17
  start-page: 6281
  issue: 10
  year: 2021
  ident: 5534_CR50
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.1c00645
– year: 2022
  ident: 5534_CR8
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-021-00851-w
– ident: 5534_CR11
  doi: 10.1016/j.antiviral.2014.12.015
– volume: 298
  start-page: 101972
  issue: 6
  year: 2022
  ident: 5534_CR29
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109089200
– volume: 118
  start-page: e2101555118
  issue: 29
  year: 2021
  ident: 5534_CR40
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2101555118
– volume: 5
  start-page: 169
  issue: 1
  year: 2022
  ident: 5534_CR41
  publication-title: Commun Biol
  doi: 10.1038/s42003-022-03090-9
– ident: 5534_CR47
– volume: 39
  start-page: 198
  issue: 3
  year: 2020
  ident: 5534_CR9
  publication-title: Protein J
  doi: 10.1007/s10930-020-09901-4
– ident: 5534_CR30
  doi: 10.2210/pdb7TVX/pdb
– volume: 64
  start-page: 17846
  issue: 24
  year: 2021
  ident: 5534_CR43
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.1c01037
– ident: 5534_CR13
  doi: 10.1074/jbc.AC120.016154
– volume: 10
  start-page: 178
  issue: 1
  year: 2021
  ident: 5534_CR19
  publication-title: Emerging Microbes & Infections
  doi: 10.1080/22221751.2020.1870414
– volume: 368
  start-page: 409
  issue: 6489
  year: 2020
  ident: 5534_CR38
  publication-title: Science
  doi: 10.3390/v13020174
– ident: 5534_CR10
  doi: 10.15252/embj.2020106275
– ident: 5534_CR32
– ident: 5534_CR14
  doi: 10.3389/fchem.2021.622898
– ident: 5534_CR24
  doi: 10.3390/v13020174
– volume: 11
  start-page: 3202
  issue: 1
  year: 2020
  ident: 5534_CR18
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16954-7
– ident: 5534_CR26
  doi: 10.2210/pdb6W79/pdb
– ident: 5534_CR6
  doi: 10.3390/nu13061924
– volume: 56
  start-page: 106055
  issue: 2
  year: 2020
  ident: 5534_CR16
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2020.106055
– ident: 5534_CR21
  doi: 10.1155/2022/7341493
– volume: 8
  start-page: e1327
  year: 2018
  ident: 5534_CR46
  publication-title: WIREs Comput Mol Sci
  doi: 10.1002/wcms.1327
– volume: 12
  start-page: 12197
  issue: 1
  year: 2022
  ident: 5534_CR39
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-15930-z
– ident: 5534_CR3
  doi: 10.1038/s41392-020-0190-2
– volume: 368
  start-page: 1331
  issue: 6497
  year: 2020
  ident: 5534_CR36
  publication-title: Science
  doi: 10.1126/science.abb4489
– volume: 31
  start-page: 2214
  issue: 13
  year: 2015
  ident: 5534_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv082
– volume: 62
  start-page: 116
  issue: 1
  year: 2022
  ident: 5534_CR42
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.1c00851
– ident: 5534_CR1
– volume: 9
  start-page: 129
  year: 2020
  ident: 5534_CR15
  publication-title: F1000Research
  doi: 10.12688/f1000research.22457.2
– ident: 5534_CR28
– volume: 11
  start-page: 4282
  issue: 1
  year: 2020
  ident: 5534_CR37
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18096-2
– volume: 33
  start-page: 580
  year: 2012
  ident: 5534_CR45
  publication-title: J Comput Chem
  doi: 10.1002/jcc.22885
– volume: 11
  start-page: 7429
  issue: 1
  year: 2021
  ident: 5534_CR48
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-86471-0
– volume: 5
  start-page: 536
  issue: 4
  year: 2020
  ident: 5534_CR4
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-0695-z
– volume: 65
  start-page: 13343
  issue: 19
  year: 2022
  ident: 5534_CR23
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.2c01146
– volume: 13
  start-page: 2268
  issue: 1
  year: 2022
  ident: 5534_CR44
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29915-z
– ident: 5534_CR5
  doi: 10.1136/bmj.n73
– volume: 9
  start-page: 221
  issue: 1
  year: 2020
  ident: 5534_CR7
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1719902
– ident: 5534_CR22
  doi: 10.1021/acs.jmedchem.2c00117
– volume: 31
  start-page: 455
  year: 2010
  ident: 5534_CR35
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
SSID ssj0001256522
Score 2.331263
Snippet Context In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no...
In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known...
ContextIn the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no...
CONTEXT: In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 138
SubjectTerms Binding
Binding energy
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
COVID-19
Endopeptidases
Free energy
Gibbs free energy
Humans
Inhibitors
Mathematical analysis
Molecular docking
Molecular Docking Simulation
Molecular dynamics
Molecular Dynamics Simulation
Molecular Medicine
Original Paper
pharmacology
Pharmacophore
Protease Inhibitors - pharmacology
proteinases
SARS-CoV-2
Screening
Severe acute respiratory syndrome coronavirus 2
Simulation
Theoretical and Computational Chemistry
Workflow
Title Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-GBSA
URI https://link.springer.com/article/10.1007/s00894-023-05534-3
https://www.ncbi.nlm.nih.gov/pubmed/37055578
https://www.proquest.com/docview/2800786034
https://www.proquest.com/docview/2801981151
https://www.proquest.com/docview/3153150504
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9i9LBdEBtsFBgy0m7Ukj_T5phWLdWm9rBSxE6RnbhqDzQVLf_K_t49J04AAYedcvCL4_g9P__s9wXwQ1vnb9cWlLuYUdV1DpeUkxTBHJfaWKOEj3eeTKPxXP2803chKGxbe7vXJslSUzfBbrhb-TS2wvubaamo_AAt7c_uKMVzkTy7WUGQUpoPEM0wKmLFQrTM29283JFewcxXJtJy5xkdwkGAjCSpePwZ9tz6C3wc1JXajuBv40hHNsXOu_8g-Sz5PaOD4pYKMsGvETzm06xAucJ2slovV3blC-2QUKiH5KgYsYcO2YRk1ptl8eBIqOlNENiWXpcdcl8X1CV5Vc2ebFf3oQhYh5h1TiYTet2fJccwHw1vBmMa6i3QTDG5oy7mxjhlBYty63LjFjzLdW5yI63tGRdpg_jAMuQv4koTi66J8QXus3whhZZfYR9_xp0AyUTWtVbFgkcOAVtkWWZMr4s7stcQctGGq3rO002VViNtEiiXHEqRQ2nJoVS24bxmSxqW2DYVPQ9vIiZVGy6bZpx5b_Ewa1c8ljQ87iHo5e_TSNT5iIo1w36-VSxvhiR9riEccRs6tQw8DeD98Z7-H_kZfBKVPFLGz2F_9_DoviPU2dkLaCWjfn_qn9d_fg0vSkn_B_Ka-VU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOMAF7fIssIuRuFFLfiVNjt1qoQuEA6WIW2QnruiBpurjr_B7GSdOFgQcOHviOJ7xzBfPC-AsMNbdro0otzGjqmMtHikrKYI5LgNttBIu3zm5DftDdfUYPPqksHkd7V67JEtN3SS7obVyZWyFizcLpKJyFdYRDEQukGsoum9uVhCklO4DRDOMilgxny3z-TTvLdIHmPnBRVpanosfsOUhI-lWPP4JK3ayDRu9ulPbDrw0gXRkWixc-A-SD7p3A9orHqggCb6N4G8-zQqUKxwn48nT2Ixdox3iG_WQHBUjztAmU1_MevpUzCzxPb0JAtsy6rJNnuuGuiSvutmT-fjZNwFrEz3JSZLQyz-D7i4ML_7e9_rU91ugmWJyQW3MtbbKCBbmxubajniWB7nOtTQm0jYMNOIDw5C_iCt1LDo6xge4q_KFFIHcgzX8GHsAJBNZxxgVCx5a5FFoWKZ11EGL7DSEHLXgvN7zdFqV1UibAsolh1LkUFpyKJUtOK7ZkvojNk9F5OBNyKRqwWkzjDvvPB56YotlScPjCEEv_5pGos5HVBwwnGe_YnmzJOlqDeGKW9CuZeD_Ar5e7-H3yE9go3-f3KQ3_26vj2BTVLJJGT-GtcVsaX8h7FmY36WUvwI7lPk4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkNpeKuiDbqEwlXrrWviV7Oa4bFnoY1HV7VbcIjv2ij2QRLD8FX4v47ygohw4Z-LYnvHMF88L4HNkfbhdWzDhE870wHs6Ul4xAnNCRcYaLUO-8_Q0Ppnr72fR2b0s_iravXVJ1jkNoUpTvjoo3eKgS3wjyxVK2soQexYpzdQz2CB1LIJcz-Xo3i0LAZbKlUDIhjOZaN5kzvx_mH-t0wPI-cBdWlmhySa8auAjjmp-b8Gaz1_Di3Hbte0N3HRBdVgWYUUkXzgb_Z6xcfGXSZzS15B--VlWkIzRc1zm50u7DE13sGnag46UJI3Qx7IpbF2eF5cem_7eSCC3isDs40XbXBdd3dker5YXTUOwPprc4XTKjg9no7cwnxz9GZ-wpvcCyzRXK-YTYYzXVvLYWe-MX4jMRc44o6wdGh9HhrCC5cRrwpgmkQOT0AsiVPwiiki9g3VajH8PmMlsYK1OpIg9gbfY8syY4YCsc9AWatGDL-2ep2VdYiPtiilXHEqJQ2nFoVT1YLdlS9oct6tUDgPUibnSPfjUPaadD94Pk_viuqIRyZAAsHicRpH-J4QccRpnu2Z5NyUV6g7RjHvQb2XgbgKPz_fD08j34fmvr5P057fTHzvwUtaiybjYhfXV5bX_SAhoZfcqIb8Fbzb9dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+potential+SARS-CoV-2+Mpro+non-covalent+inhibitors+through+docking%2C+pharmacophore+profile+matching%2C+molecular+dynamic+simulation%2C+and+MM-GBSA&rft.jtitle=Journal+of+molecular+modeling&rft.au=Shi+Yunfan&rft.au=Dong+Liting&rft.au=Zhuang%2C+Ju&rft.au=Li%2C+Qiufu&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=29&rft.issue=5&rft_id=info:doi/10.1007%2Fs00894-023-05534-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon