B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity

Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non–small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this stud...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 24; no. 11; pp. 2653 - 2664
Main Authors Yonesaka, Kimio, Haratani, Koji, Takamura, Shiki, Sakai, Hitomi, Kato, Ryoji, Takegawa, Naoki, Takahama, Takayuki, Tanaka, Kaoru, Hayashi, Hidetoshi, Takeda, Masayuki, Kato, Sigeki, Maenishi, Osamu, Sakai, Kazuko, Chiba, Yasutaka, Okabe, Takafumi, Kudo, Keita, Hasegawa, Yoshikazu, Kaneda, Hiroyasu, Yamato, Michiko, Hirotani, Kenji, Miyazawa, Masaaki, Nishio, Kazuto, Nakagawa, Kazuhiko
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research Inc 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non–small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting. Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC (n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8+ tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry. Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8+ TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8+ TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8+ TILs and recovery of effector function. CD8+ T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8+ T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction. Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8+-T-cell–mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3–expressing NSCLCs. Clin Cancer Res; 24(11); 2653–64. ©2018 AACR.
AbstractList Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting. B7-H3 expression was evaluated immunohistochemically in patients with NSCLC ( = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8 tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry. B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8 TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8 TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8 TILs and recovery of effector function. CD8 T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8 T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction. B7-H3 expressed on tumor cells potentially circumvents CD8 -T-cell-mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3-expressing NSCLCs. .
Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non–small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting. Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC (n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8+ tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry. Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8+ TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8+ TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8+ TILs and recovery of effector function. CD8+ T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8+ T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction. Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8+-T-cell–mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3–expressing NSCLCs. Clin Cancer Res; 24(11); 2653–64. ©2018 AACR.
Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting.Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC (n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8+ tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry.Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8+ TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8+ TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8+ TILs and recovery of effector function. CD8+ T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8+ T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction.Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8+-T-cell-mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3-expressing NSCLCs. Clin Cancer Res; 24(11); 2653-64. ©2018 AACR.Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting.Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC (n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8+ tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry.Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8+ TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8+ TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8+ TILs and recovery of effector function. CD8+ T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8+ T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction.Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8+-T-cell-mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3-expressing NSCLCs. Clin Cancer Res; 24(11); 2653-64. ©2018 AACR.
Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non–small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting.Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC (n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8+ tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry.Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8+ TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8+ TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8+ TILs and recovery of effector function. CD8+ T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8+ T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction.Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8+-T-cell–mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3–expressing NSCLCs. Clin Cancer Res; 24(11); 2653–64. ©2018 AACR.
Author Kato, Ryoji
Chiba, Yasutaka
Yonesaka, Kimio
Takamura, Shiki
Sakai, Kazuko
Miyazawa, Masaaki
Kato, Sigeki
Haratani, Koji
Sakai, Hitomi
Nakagawa, Kazuhiko
Nishio, Kazuto
Kaneda, Hiroyasu
Takahama, Takayuki
Hasegawa, Yoshikazu
Takeda, Masayuki
Maenishi, Osamu
Hayashi, Hidetoshi
Takegawa, Naoki
Hirotani, Kenji
Tanaka, Kaoru
Yamato, Michiko
Okabe, Takafumi
Kudo, Keita
Author_xml – sequence: 1
  givenname: Kimio
  surname: Yonesaka
  fullname: Yonesaka, Kimio
– sequence: 2
  givenname: Koji
  surname: Haratani
  fullname: Haratani, Koji
– sequence: 3
  givenname: Shiki
  surname: Takamura
  fullname: Takamura, Shiki
– sequence: 4
  givenname: Hitomi
  surname: Sakai
  fullname: Sakai, Hitomi
– sequence: 5
  givenname: Ryoji
  surname: Kato
  fullname: Kato, Ryoji
– sequence: 6
  givenname: Naoki
  surname: Takegawa
  fullname: Takegawa, Naoki
– sequence: 7
  givenname: Takayuki
  surname: Takahama
  fullname: Takahama, Takayuki
– sequence: 8
  givenname: Kaoru
  surname: Tanaka
  fullname: Tanaka, Kaoru
– sequence: 9
  givenname: Hidetoshi
  surname: Hayashi
  fullname: Hayashi, Hidetoshi
– sequence: 10
  givenname: Masayuki
  surname: Takeda
  fullname: Takeda, Masayuki
– sequence: 11
  givenname: Sigeki
  surname: Kato
  fullname: Kato, Sigeki
– sequence: 12
  givenname: Osamu
  surname: Maenishi
  fullname: Maenishi, Osamu
– sequence: 13
  givenname: Kazuko
  surname: Sakai
  fullname: Sakai, Kazuko
– sequence: 14
  givenname: Yasutaka
  surname: Chiba
  fullname: Chiba, Yasutaka
– sequence: 15
  givenname: Takafumi
  surname: Okabe
  fullname: Okabe, Takafumi
– sequence: 16
  givenname: Keita
  surname: Kudo
  fullname: Kudo, Keita
– sequence: 17
  givenname: Yoshikazu
  surname: Hasegawa
  fullname: Hasegawa, Yoshikazu
– sequence: 18
  givenname: Hiroyasu
  surname: Kaneda
  fullname: Kaneda, Hiroyasu
– sequence: 19
  givenname: Michiko
  surname: Yamato
  fullname: Yamato, Michiko
– sequence: 20
  givenname: Kenji
  surname: Hirotani
  fullname: Hirotani, Kenji
– sequence: 21
  givenname: Masaaki
  surname: Miyazawa
  fullname: Miyazawa, Masaaki
– sequence: 22
  givenname: Kazuto
  surname: Nishio
  fullname: Nishio, Kazuto
– sequence: 23
  givenname: Kazuhiko
  surname: Nakagawa
  fullname: Nakagawa, Kazuhiko
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29530936$$D View this record in MEDLINE/PubMed
BookMark eNqFkF1LwzAUhoNM3If-BKXgjTeZOUmTtHilRd1gU5B5HdI0k45-zKYV9u9N2ebFbrw658DzHl6eMRpUdWURugYyBeDRPRAZYRIyOk2SDwwS04jTMzQCziVmVPCB34_MEI2d2xACIZDwAg1pzBmJmRgh-STxjAVv9ku3-Y8tdsGyzrpCt9YFyWqBlzbL_ZEFia6MbYJ5WXZV3u4u0flaF85eHeYEfb48r5IZXry_zpPHBTYhYS22EWNaxxByoSNpYmGAQ8rWIpbERELEa8OMTHWUWkNZaowmNKTECBOFTDLLJuhu_3fb1N-dda0qc2dsUejK1p1TlADjIAiAR29P0E3dNZVv56lQ8pj7Fp66OVBdWtpMbZu81M1OHZV4gO8B09TONXb9hwBRvXrVa1W9VuXVK5CqV-9zDyc5k7deal21jc6Lf9K_OyOFZw
CitedBy_id crossref_primary_10_1016_j_jmoldx_2021_06_002
crossref_primary_10_3390_cancers13174469
crossref_primary_10_2147_JHC_S469529
crossref_primary_10_3389_fgene_2022_1017866
crossref_primary_10_1186_s12894_022_01044_1
crossref_primary_10_1038_s41467_021_21615_4
crossref_primary_10_1080_2162402X_2021_1885778
crossref_primary_10_1186_s13578_024_01308_3
crossref_primary_10_1097_CM9_0000000000002772
crossref_primary_10_5858_arpa_2021_0471_OA
crossref_primary_10_1002_kjm2_12891
crossref_primary_10_1038_s41467_023_36881_7
crossref_primary_10_1038_s41379_022_01131_6
crossref_primary_10_1016_j_intimp_2021_108153
crossref_primary_10_1016_j_celrep_2023_113503
crossref_primary_10_3389_fimmu_2021_757047
crossref_primary_10_3390_biomedicines11102621
crossref_primary_10_1080_2162402X_2018_1475873
crossref_primary_10_3390_cancers16112140
crossref_primary_10_36401_JIPO_23_18
crossref_primary_10_3390_ijms232416077
crossref_primary_10_1007_s12026_024_09458_9
crossref_primary_10_3389_fimmu_2021_701006
crossref_primary_10_1007_s11912_020_00983_y
crossref_primary_10_1016_j_ccell_2023_12_018
crossref_primary_10_1016_j_prp_2020_153219
crossref_primary_10_1126_sciadv_aax3160
crossref_primary_10_3390_ijms232315005
crossref_primary_10_3390_ijms241210019
crossref_primary_10_1016_j_heliyon_2023_e14566
crossref_primary_10_1016_j_jbc_2022_101753
crossref_primary_10_1080_21645515_2023_2246498
crossref_primary_10_1016_j_lfs_2023_122024
crossref_primary_10_1136_jitc_2024_009710
crossref_primary_10_1136_jitc_2021_004424
crossref_primary_10_1136_jitc_2020_000588
crossref_primary_10_3390_cancers15072165
crossref_primary_10_1038_s41698_022_00323_2
crossref_primary_10_1111_his_13882
crossref_primary_10_1007_s12033_023_00807_x
crossref_primary_10_1186_s13046_022_02264_x
crossref_primary_10_1136_jitc_2023_008662
crossref_primary_10_1186_s13045_020_01024_8
crossref_primary_10_1016_j_biopha_2022_113906
crossref_primary_10_1038_s41523_024_00618_6
crossref_primary_10_1186_s12885_024_13238_x
crossref_primary_10_2147_OTT_S318082
crossref_primary_10_1016_j_molimm_2023_12_002
crossref_primary_10_1097_CAD_0000000000001577
crossref_primary_10_1038_s41420_021_00527_8
crossref_primary_10_1158_2326_6066_CIR_22_0374
crossref_primary_10_1002_2211_5463_13280
crossref_primary_10_3389_fendo_2021_672319
crossref_primary_10_1016_j_ejphar_2025_177334
crossref_primary_10_1016_j_stem_2021_04_011
crossref_primary_10_3390_jcm7070172
crossref_primary_10_1016_j_molimm_2021_09_002
crossref_primary_10_1186_s12876_023_03045_2
crossref_primary_10_2174_0929867326666190517115515
crossref_primary_10_3390_biology12020218
crossref_primary_10_1080_14728214_2022_2113377
crossref_primary_10_1007_s11060_019_03203_1
crossref_primary_10_1186_s12935_020_01429_y
crossref_primary_10_1002_cncr_34190
crossref_primary_10_3390_biomedicines10081778
crossref_primary_10_3389_fimmu_2020_00681
crossref_primary_10_1186_s13045_022_01364_7
crossref_primary_10_3389_fimmu_2021_799455
crossref_primary_10_1186_s12943_023_01748_4
crossref_primary_10_1016_j_phrs_2022_106512
crossref_primary_10_1097_CM9_0000000000001082
crossref_primary_10_1002_jum_15753
crossref_primary_10_26508_lsa_202302257
crossref_primary_10_1186_s12943_022_01561_5
crossref_primary_10_1016_j_intimp_2024_113004
crossref_primary_10_3389_fimmu_2021_680435
crossref_primary_10_1016_j_ejphar_2023_175746
crossref_primary_10_1016_j_tranon_2023_101801
crossref_primary_10_1136_jitc_2024_010782
crossref_primary_10_3892_mmr_2022_12595
crossref_primary_10_1038_s41591_023_02284_w
crossref_primary_10_1158_1535_7163_MCT_21_0554
crossref_primary_10_1016_j_biopha_2023_115891
crossref_primary_10_1016_j_tranon_2021_101232
crossref_primary_10_1016_j_canlet_2020_04_013
crossref_primary_10_1111_pin_13028
crossref_primary_10_1038_s41379_020_0587_z
crossref_primary_10_1016_j_intimp_2020_106700
crossref_primary_10_1158_2767_9764_CRC_23_0546
crossref_primary_10_1007_s00262_021_03097_x
crossref_primary_10_1126_scitranslmed_adf6724
crossref_primary_10_1016_j_clim_2021_108753
crossref_primary_10_1038_s41392_024_01826_z
crossref_primary_10_1007_s00262_022_03201_9
crossref_primary_10_2967_jnumed_120_248823
crossref_primary_10_3390_cancers12051303
crossref_primary_10_3389_fimmu_2025_1560383
crossref_primary_10_1038_s41598_022_26776_w
crossref_primary_10_1172_jci_insight_128633
crossref_primary_10_1007_s10495_024_02022_8
crossref_primary_10_3390_cells9071578
crossref_primary_10_1016_j_bbrc_2019_04_142
crossref_primary_10_5483_BMBRep_2021_54_8_054
crossref_primary_10_2169_internalmedicine_5648_20
crossref_primary_10_1016_j_ejca_2020_03_033
crossref_primary_10_1016_j_immuni_2022_03_008
crossref_primary_10_1016_j_bbcan_2023_188861
Cites_doi 10.1073/pnas.0915174107
10.1073/pnas.0611533104
10.1084/jem.20100637
10.1126/science.271.5256.1734
10.1371/journal.ppat.1000313
10.1056/NEJMoa1504030
10.1186/2051-1426-3-S2-O8
10.1016/j.lungcan.2006.05.012
10.1038/ncomms10501
10.1056/NEJMoa1501824
10.1038/ni.2762
10.1038/nri3405
10.1038/85339
10.1056/NEJMoa1504627
10.4049/jimmunol.169.5.2756
10.1056/NEJMoa1503093
10.1126/science.aaf0683
10.1084/jem.188.12.2205
10.1084/jem.192.7.1027
10.4049/jimmunol.0804211
10.1038/ni.1679
10.1002/ijc.28474
10.1016/j.cell.2015.08.012
10.1016/j.cell.2015.08.016
10.1016/j.str.2013.03.003
10.1038/ni967
10.4049/jimmunol.173.4.2500
10.4049/jimmunol.168.12.6294
10.1016/j.lungcan.2016.11.013
10.1126/scitranslmed.3003689
10.1038/ni.2035
10.1016/j.cell.2015.03.030
10.1038/nature10673
10.1073/pnas.1009731107
10.1084/jem.20100643
10.1158/0008-5472.CAN-08-4517
10.4049/jimmunol.0903478
10.1073/pnas.231486598
10.1056/NEJMoa1606774
10.18632/oncotarget.3097
10.1158/1078-0432.CCR-06-2746
10.1016/j.ejca.2008.10.026
10.1056/NEJMoa1507643
10.1016/j.yexcr.2012.09.006
10.1038/sj.bjc.6605375
10.1038/nrc3239
10.1126/science.aaf1292
10.1073/pnas.192461099
10.1093/annonc/mdx183
10.1158/1078-0432.CCR-16-3107
ContentType Journal Article
Copyright 2018 American Association for Cancer Research.
Copyright American Association for Cancer Research Inc Jun 1, 2018
Copyright_xml – notice: 2018 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research Inc Jun 1, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
7TO
7U9
8FD
FR3
H94
P64
7X8
DOI 10.1158/1078-0432.CCR-17-2852
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 2664
ExternalDocumentID 29530936
10_1158_1078_0432_CCR_17_2852
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WOQ
YKV
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7QO
7T5
7TO
7U9
8FD
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c403t-e833aa91456a87c96c151b3f6970c8669fc3c7ba8bec23bcca02420c6c84373e3
ISSN 1078-0432
1557-3265
IngestDate Mon Jul 21 11:36:50 EDT 2025
Sat Jul 26 02:18:27 EDT 2025
Wed Feb 19 02:31:46 EST 2025
Tue Jul 01 01:30:15 EDT 2025
Thu Apr 24 23:11:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2018 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-e833aa91456a87c96c151b3f6970c8669fc3c7ba8bec23bcca02420c6c84373e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29530936
PQID 2047595456
PQPubID 2046235
PageCount 12
ParticipantIDs proquest_miscellaneous_2013516011
proquest_journals_2047595456
pubmed_primary_29530936
crossref_primary_10_1158_1078_0432_CCR_17_2852
crossref_citationtrail_10_1158_1078_0432_CCR_17_2852
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2018
Publisher American Association for Cancer Research Inc
Publisher_xml – name: American Association for Cancer Research Inc
References Sun (2022061100520540700_bib35) 2006; 53
Koyama (2022061100520540700_bib46) 2016; 7
Inamura (2022061100520540700_bib34) 2017; 103
Nakamoto (2022061100520540700_bib23) 2009; 5
Vigdorovich (2022061100520540700_bib39) 2013; 21
Xu (2022061100520540700_bib48) 2009; 69
Wang (2022061100520540700_bib31) 2014; 134
Larkin (2022061100520540700_bib26) 2015; 373
Prasad (2022061100520540700_bib38) 2004; 173
Altan (2022061100520540700_bib45) 2017; 23
Curran (2022061100520540700_bib25) 2010; 107
Mao (2022061100520540700_bib36) 2015; 6
Pardoll (2022061100520540700_bib2) 2012; 12
Grosso (2022061100520540700_bib29) 2009; 182
Okazaki (2022061100520540700_bib16) 2013; 14
Chapoval (2022061100520540700_bib32) 2001; 2
Brahmer (2022061100520540700_bib49) 2015; 373
Nomi (2022061100520540700_bib44) 2007; 13
Haratani (2022061100520540700_bib41) 2017; 28
Liyanage (2022061100520540700_bib5) 2002; 169
Zajac (2022061100520540700_bib3) 1998; 188
Ho (2022061100520540700_bib14) 2015; 162
Suh (2022061100520540700_bib37) 2003; 4
Sakuishi (2022061100520540700_bib28) 2010; 207
Eisenhauer (2022061100520540700_bib40) 2009; 45
Sharma (2022061100520540700_bib30) 2015; 161
Robert (2022061100520540700_bib17) 2015; 372
Iwai (2022061100520540700_bib6) 2002; 99
Blackburn (2022061100520540700_bib22) 2009; 10
Okazaki (2022061100520540700_bib11) 2001; 98
Kamphorst (2022061100520540700_bib12) 2017; 355
Taube (2022061100520540700_bib47) 2012; 4
Leach (2022061100520540700_bib7) 1996; 271
Jin (2022061100520540700_bib24) 2010; 107
Fourcade (2022061100520540700_bib27) 2010; 207
Freeman (2022061100520540700_bib9) 2000; 192
Mellman (2022061100520540700_bib1) 2011; 480
Chang (2022061100520540700_bib15) 2015; 162
Garon (2022061100520540700_bib18) 2015; 372
Wherry (2022061100520540700_bib4) 2011; 12
Chen (2022061100520540700_bib43) 2013; 319
Hui (2022061100520540700_bib13) 2017; 355
Hamanishi (2022061100520540700_bib10) 2007; 104
Powderly (2022061100520540700_bib50) 2015; 3
Chen (2022061100520540700_bib21) 2013; 13
Reck (2022061100520540700_bib19) 2016; 375
Borghaei (2022061100520540700_bib20) 2015; 373
Sun (2022061100520540700_bib33) 2002; 168
Takamura (2022061100520540700_bib8) 2010; 184
Yamato (2022061100520540700_bib42) 2009; 101
References_xml – volume: 107
  start-page: 4275
  year: 2010
  ident: 2022061100520540700_bib25
  article-title: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0915174107
– volume: 104
  start-page: 3360
  year: 2007
  ident: 2022061100520540700_bib10
  article-title: Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0611533104
– volume: 207
  start-page: 2175
  year: 2010
  ident: 2022061100520540700_bib27
  article-title: Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen–specific CD8+ T cell dysfunction in melanoma patients
  publication-title: J Exp Med
  doi: 10.1084/jem.20100637
– volume: 271
  start-page: 1734
  year: 1996
  ident: 2022061100520540700_bib7
  article-title: Enhancement of antitumor immunity by CTLA-4 blockade
  publication-title: Science
  doi: 10.1126/science.271.5256.1734
– volume: 5
  start-page: e1000313
  year: 2009
  ident: 2022061100520540700_bib23
  article-title: Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000313
– volume: 373
  start-page: 23
  year: 2015
  ident: 2022061100520540700_bib26
  article-title: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1504030
– volume: 3
  start-page: O8
  year: 2015
  ident: 2022061100520540700_bib50
  article-title: Interim results of an ongoing Phase I, dose escalation study of MGA271 (Fc-optimized humanized anti-B7-H3 monoclonal antibody) in patients with refractory B7-H3-expressing neoplasms or neoplasms whose vasculature expresses B7-H3
  publication-title: J Immunother Cancer
  doi: 10.1186/2051-1426-3-S2-O8
– volume: 53
  start-page: 143
  year: 2006
  ident: 2022061100520540700_bib35
  article-title: B7-H3 and B7-H4 expression in non-small-cell lung cancer
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2006.05.012
– volume: 7
  start-page: 10501
  year: 2016
  ident: 2022061100520540700_bib46
  article-title: Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints
  publication-title: Nat Commun
  doi: 10.1038/ncomms10501
– volume: 372
  start-page: 2018
  year: 2015
  ident: 2022061100520540700_bib18
  article-title: Pembrolizumab for the treatment of non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1501824
– volume: 14
  start-page: 1212
  year: 2013
  ident: 2022061100520540700_bib16
  article-title: A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application
  publication-title: Nat Immunol
  doi: 10.1038/ni.2762
– volume: 13
  start-page: 227
  year: 2013
  ident: 2022061100520540700_bib21
  article-title: Molecular mechanisms of T cell co-stimulation and co-inhibition
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3405
– volume: 2
  start-page: 269
  year: 2001
  ident: 2022061100520540700_bib32
  article-title: B7-H3: A costimulatory molecule for T cell activation and IFN-γ production
  publication-title: Nat Immunol
  doi: 10.1038/85339
– volume: 373
  start-page: 123
  year: 2015
  ident: 2022061100520540700_bib49
  article-title: Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1504627
– volume: 169
  start-page: 2756
  year: 2002
  ident: 2022061100520540700_bib5
  article-title: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.5.2756
– volume: 372
  start-page: 2521
  year: 2015
  ident: 2022061100520540700_bib17
  article-title: Pembrolizumab versus ipilimumab in advanced melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1503093
– volume: 355
  start-page: 1423
  year: 2017
  ident: 2022061100520540700_bib12
  article-title: Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent
  publication-title: Science
  doi: 10.1126/science.aaf0683
– volume: 188
  start-page: 2205
  year: 1998
  ident: 2022061100520540700_bib3
  article-title: Viral immune evasion due to persistence of activated T cells without effector function
  publication-title: J Exp Med
  doi: 10.1084/jem.188.12.2205
– volume: 192
  start-page: 1027
  year: 2000
  ident: 2022061100520540700_bib9
  article-title: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation
  publication-title: J Exp Med
  doi: 10.1084/jem.192.7.1027
– volume: 182
  start-page: 6659
  year: 2009
  ident: 2022061100520540700_bib29
  article-title: Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0804211
– volume: 10
  start-page: 29
  year: 2009
  ident: 2022061100520540700_bib22
  article-title: Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection
  publication-title: Nat Immunol
  doi: 10.1038/ni.1679
– volume: 134
  start-page: 2764
  year: 2014
  ident: 2022061100520540700_bib31
  article-title: B7-H3-mediated tumor immunology: Friend or foe?
  publication-title: Int J Cancer
  doi: 10.1002/ijc.28474
– volume: 162
  start-page: 1217
  year: 2015
  ident: 2022061100520540700_bib14
  article-title: Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.012
– volume: 162
  start-page: 1229
  year: 2015
  ident: 2022061100520540700_bib15
  article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
– volume: 21
  start-page: 707
  year: 2013
  ident: 2022061100520540700_bib39
  article-title: Structure and T cell inhibition properties of B7 family member, B7-H3
  publication-title: Structure
  doi: 10.1016/j.str.2013.03.003
– volume: 4
  start-page: 899
  year: 2003
  ident: 2022061100520540700_bib37
  article-title: The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses
  publication-title: Nat Immunol
  doi: 10.1038/ni967
– volume: 173
  start-page: 2500
  year: 2004
  ident: 2022061100520540700_bib38
  article-title: Murine B7-H3 is a negative regulator of T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.173.4.2500
– volume: 168
  start-page: 6294
  year: 2002
  ident: 2022061100520540700_bib33
  article-title: Characterization of mouse and human B7-H3 genes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.168.12.6294
– volume: 103
  start-page: 44
  year: 2017
  ident: 2022061100520540700_bib34
  article-title: Tumor B7-H3 (CD276) expression and smoking history in relation to lung adenocarcinoma prognosis
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2016.11.013
– volume: 4
  start-page: 127ra37
  year: 2012
  ident: 2022061100520540700_bib47
  article-title: Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3003689
– volume: 12
  start-page: 492
  year: 2011
  ident: 2022061100520540700_bib4
  article-title: T cell exhaustion
  publication-title: Nat Immunol
  doi: 10.1038/ni.2035
– volume: 161
  start-page: 205
  year: 2015
  ident: 2022061100520540700_bib30
  article-title: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.030
– volume: 480
  start-page: 480
  year: 2011
  ident: 2022061100520540700_bib1
  article-title: Cancer immunotherapy comes of age
  publication-title: Nature
  doi: 10.1038/nature10673
– volume: 107
  start-page: 14733
  year: 2010
  ident: 2022061100520540700_bib24
  article-title: Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1009731107
– volume: 207
  start-page: 2187
  year: 2010
  ident: 2022061100520540700_bib28
  article-title: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity
  publication-title: J Exp Med
  doi: 10.1084/jem.20100643
– volume: 69
  start-page: 6275
  year: 2009
  ident: 2022061100520540700_bib48
  article-title: MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-4517
– volume: 184
  start-page: 4696
  year: 2010
  ident: 2022061100520540700_bib8
  article-title: Premature terminal exhaustion of Friend virus-specific effector CD8+ T cells by rapid induction of multiple inhibitory receptors
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0903478
– volume: 98
  start-page: 13866
  year: 2001
  ident: 2022061100520540700_bib11
  article-title: PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.231486598
– volume: 375
  start-page: 1823
  year: 2016
  ident: 2022061100520540700_bib19
  article-title: Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1606774
– volume: 6
  start-page: 3452
  year: 2015
  ident: 2022061100520540700_bib36
  article-title: B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3097
– volume: 13
  start-page: 2151
  year: 2007
  ident: 2022061100520540700_bib44
  article-title: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-2746
– volume: 45
  start-page: 228
  year: 2009
  ident: 2022061100520540700_bib40
  article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2008.10.026
– volume: 373
  start-page: 1627
  year: 2015
  ident: 2022061100520540700_bib20
  article-title: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1507643
– volume: 319
  start-page: 96
  year: 2013
  ident: 2022061100520540700_bib43
  article-title: Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2012.09.006
– volume: 101
  start-page: 1709
  year: 2009
  ident: 2022061100520540700_bib42
  article-title: Clinical importance of B7-H3 expression in human pancreatic cancer
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6605375
– volume: 12
  start-page: 252
  year: 2012
  ident: 2022061100520540700_bib2
  article-title: The blockade of immune checkpoints in cancer immunotherapy
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3239
– volume: 355
  start-page: 1428
  year: 2017
  ident: 2022061100520540700_bib13
  article-title: T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition
  publication-title: Science
  doi: 10.1126/science.aaf1292
– volume: 99
  start-page: 12293
  year: 2002
  ident: 2022061100520540700_bib6
  article-title: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.192461099
– volume: 28
  start-page: 1532
  year: 2017
  ident: 2022061100520540700_bib41
  article-title: Tumor immune microenvironment and nivolumab efficacy in EGFR mutation–positive non–small cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx183
– volume: 23
  start-page: 5202
  year: 2017
  ident: 2022061100520540700_bib45
  article-title: B7-H3 expression in NSCLC and its association with B7-H4, PD-L1 and tumor infiltrating lymphocytes
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-16-3107
SSID ssj0014104
Score 2.5809467
Snippet Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non–small cell lung cancer (NSCLC), but some cases are refractory to treatment,...
Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby...
Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2653
SubjectTerms Aged
Aged, 80 and over
Animals
Anticancer properties
Antineoplastic Agents, Immunological - pharmacology
Antineoplastic Agents, Immunological - therapeutic use
Antineoplastic Combined Chemotherapy Protocols - adverse effects
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Antitumor activity
Apoptosis
B7 antigen
B7 Antigens - metabolism
B7-H1 Antigen - antagonists & inhibitors
B7-H1 Antigen - metabolism
Biomarkers, Tumor
Blocking antibodies
Cancer
CD8 antigen
Cell survival
Cytotoxicity
Disease Models, Animal
Drug Resistance, Neoplasm
Effectiveness
Experimental design
Female
Flow cytometry
Humans
Immune checkpoint
Immunity
Immunomodulation
Immunosurveillance
Immunotherapy
Lung cancer
Lymphocytes
Lymphocytes T
Male
Mice
Middle Aged
Molecular chains
Molecular Targeted Therapy
Mutation
Neoplasms - immunology
Neoplasms - metabolism
Neoplasms - pathology
Neoplasms - therapy
Non-small cell lung carcinoma
PD-1 protein
PD-L1 protein
Prognosis
T-Lymphocytes, Cytotoxic - immunology
T-Lymphocytes, Cytotoxic - metabolism
Therapy
Treatment Outcome
Tumor cells
Tumor-infiltrating lymphocytes
Tumors
Xenograft Model Antitumor Assays
Title B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity
URI https://www.ncbi.nlm.nih.gov/pubmed/29530936
https://www.proquest.com/docview/2047595456
https://www.proquest.com/docview/2013516011
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG-6DRQk3iqXJE4c5wUJok0da4fEUqlvlu04W-naoS19gL-es52PVhQxeIkqO64j38_nO9t3P4TeURUb5scQkzItcKTLEKeilNiXmsJqzIivjaM4OaOjafR5Fs96vQ8bt5bWlRyqnzvjSv5HqlAGcjVRsv8g2fZPoQB-g3zhCRKG551k_CnBIwJ66sJm7776YZjNDB2Xvh1k-RhPLA2H2cI1or0ZnNhYkGrrIDdrIiOVe6dO_nPZaQPQhWLhAsfmS3dry6kswI4jhBqcXn-bd1sAC7FcW_aiwfnlfNFWnEOFo8gGJbKcb243BKy7FtVoyBi0UugIHoZ6R1mtVl1odAOfYFNJUpcf-HftHTO7kWCS_kYkHGbZVwyLaMhcktvtbNlnX_jxdDzm-dEsv4fuh-AmWJf65LQ9RYoCSx_Zfl4dwQXdvN_ZybZt8geHwxoe-WP0qPYYvI9O_E9QT6-eogeT-k7EM5RYFHgdCrwWBd4mCjyHAq9BwXM0PT7KsxGu6TCwinxSYc0IESINwOQVLFEpVWCtSVLSNPEVozQtFVGJFAymZUgkTE1jf_mKKmbyV2nyAu2tADSvkEeVL0QBpmVZFFEhiZQpDQohYhmphER-H0XNQHBV54o3lCVX3PqMMeNm_LgZPw7jx4OEm_Hro2Hb7LtLlvK3BofNKPN6Xt3y0Dc5KI1l30dv22rQeuYoS6z09dq8Y5glKSxOffTSSaftMUxjc7xP9-_Q-gA97EB-iPaqm7V-DVZmJd9YKP0CnBV0JA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B7-H3+Negatively+Modulates+CTL-Mediated+Cancer+Immunity&rft.jtitle=Clinical+cancer+research&rft.au=Yonesaka%2C+Kimio&rft.au=Haratani%2C+Koji&rft.au=Takamura%2C+Shiki&rft.au=Sakai%2C+Hitomi&rft.date=2018-06-01&rft.issn=1557-3265&rft.eissn=1557-3265&rft.volume=24&rft.issue=11&rft.spage=2653&rft_id=info:doi/10.1158%2F1078-0432.CCR-17-2852&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon