The p53 network: cellular and systemic DNA damage responses in cancer and aging
The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a...
Saved in:
Published in | Trends in genetics Vol. 38; no. 6; pp. 598 - 612 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.
The tumor protein TP53 is the single most frequently mutated gene in human cancer.p53 is a central regulator of the DNA damage response that impacts cancer and aging.p53 is regulated by non-cell-autonomous mechanisms and exerts systemic consequences.Therapeutic strategies targeting p53 in cancer have recently made significant progress. |
---|---|
AbstractList | The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.
The tumor protein TP53 is the single most frequently mutated gene in human cancer.p53 is a central regulator of the DNA damage response that impacts cancer and aging.p53 is regulated by non-cell-autonomous mechanisms and exerts systemic consequences.Therapeutic strategies targeting p53 in cancer have recently made significant progress. The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated. The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated. |
Author | Schumacher, Björn Vaddavalli, Pavana Lakshmi |
Author_xml | – sequence: 1 givenname: Pavana Lakshmi surname: Vaddavalli fullname: Vaddavalli, Pavana Lakshmi organization: Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany – sequence: 2 givenname: Björn orcidid: 0000-0001-6097-5238 surname: Schumacher fullname: Schumacher, Björn email: bjoern.schumacher@uni-koeln.de organization: Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35346511$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOwzAUQD0U8Sh8AAvyyNLiRxwnMFXlKSG6dLdc5ya4JE6xXVD_HleBhQGkK1myzrm6Oido5HoHCJ1TMqWE5lfrabTNlBHGpiQNJSN0nP6LSSmYOEInIawJIUJycYiOuOBZLig9RovlK-CN4NhB_Oz92zU20LbbVnusXYXDLkTorMG3LzNc6U43gD2ETe8CBGwdNtoZGFjdWNecooNatwHOvt8xWt7fLeePk-fFw9N89jwxGeFxAqyoc23KdEXGZC1LzgXlZGU0UCOkhEroTNcyz7kkUBsuZFGyjDNKRbYCPkaXw9qN79-3EKLqbNhfrh3026BYnmUll5IUCb34RrerDiq18bbTfqd-GiRADoDxfQgeamVs1NH2LnptW0WJ2hdWa5UKq31hRdJQkkz6y_xZ_pdzMziQ6nxY8CoYCyliZT2YqKre_mmXv2zTWmeNbt9g94_7BSqIpic |
CitedBy_id | crossref_primary_10_1007_s00210_025_03805_9 crossref_primary_10_1007_s11033_024_09425_5 crossref_primary_10_1016_j_lfs_2024_123334 crossref_primary_10_3390_molecules29245893 crossref_primary_10_1016_j_tice_2024_102561 crossref_primary_10_7717_peerj_17532 crossref_primary_10_1016_j_ncrna_2025_03_003 crossref_primary_10_1016_j_ijbiomac_2024_137137 crossref_primary_10_1051_bioconf_20237201009 crossref_primary_10_23946_2500_0764_2023_8_4_115_123 crossref_primary_10_1016_j_phrs_2023_106835 crossref_primary_10_1038_s41419_023_05761_9 crossref_primary_10_1097_CAD_0000000000001711 crossref_primary_10_1016_S1875_5364_25_60847_8 crossref_primary_10_1007_s10528_024_10704_w crossref_primary_10_3389_fonc_2023_1179947 crossref_primary_10_7759_cureus_51090 crossref_primary_10_3389_fphar_2024_1490878 crossref_primary_10_3390_ijms252312928 crossref_primary_10_1016_j_chemosphere_2024_143217 crossref_primary_10_3390_molecules28093912 crossref_primary_10_1016_j_intimp_2024_112475 crossref_primary_10_1038_s41598_025_87545_z crossref_primary_10_3389_fphar_2024_1409210 crossref_primary_10_1016_j_jep_2024_118293 crossref_primary_10_3390_biom14111354 crossref_primary_10_1038_s41392_023_01347_1 crossref_primary_10_1016_j_tig_2024_08_007 crossref_primary_10_1016_j_psj_2023_103231 crossref_primary_10_3390_cancers17061008 crossref_primary_10_1126_sciadv_adp2229 crossref_primary_10_1097_MD_0000000000036598 crossref_primary_10_1016_j_jbc_2023_104800 crossref_primary_10_1073_pnas_2419196122 crossref_primary_10_3389_fgene_2024_1441189 crossref_primary_10_3724_abbs_2025008 crossref_primary_10_1080_07391102_2024_2429181 crossref_primary_10_1038_s41420_023_01730_5 crossref_primary_10_1186_s12894_023_01334_2 crossref_primary_10_1038_s41418_023_01170_9 crossref_primary_10_1093_stmcls_sxae056 crossref_primary_10_1016_j_trecan_2024_08_001 crossref_primary_10_1007_s00467_023_06162_y crossref_primary_10_1016_j_jinorgbio_2023_112125 crossref_primary_10_1002_mco2_288 crossref_primary_10_1016_j_jbc_2025_108418 crossref_primary_10_1111_jog_15766 crossref_primary_10_3390_ijms241310812 crossref_primary_10_1016_j_aca_2024_343048 crossref_primary_10_1186_s13073_024_01318_3 crossref_primary_10_1155_2022_6948367 crossref_primary_10_4240_wjgs_v16_i2_276 crossref_primary_10_34133_bmr_0170 crossref_primary_10_1038_s41419_022_05408_1 crossref_primary_10_1007_s13205_024_04166_5 crossref_primary_10_3390_ijms24043589 crossref_primary_10_1038_s41598_024_65221_y crossref_primary_10_1016_j_bbamcr_2025_119908 crossref_primary_10_1039_D3SC06222H crossref_primary_10_1615_CritRevEukaryotGeneExpr_2023050271 crossref_primary_10_3390_biology11091325 crossref_primary_10_1002_jat_4520 crossref_primary_10_1186_s12935_025_03717_x crossref_primary_10_1016_j_isci_2023_107601 crossref_primary_10_1007_s44297_024_00029_w crossref_primary_10_1002_tox_24219 crossref_primary_10_1186_s12920_023_01727_0 crossref_primary_10_1016_j_biopha_2024_116917 crossref_primary_10_1002_mco2_782 crossref_primary_10_1038_s41419_024_06586_w crossref_primary_10_1002_jbt_23504 crossref_primary_10_1016_j_biochi_2023_09_026 crossref_primary_10_3390_ijms24108499 crossref_primary_10_1038_s41419_024_06702_w crossref_primary_10_1016_j_heliyon_2024_e40096 crossref_primary_10_3390_epigenomes7040032 crossref_primary_10_1002_bab_2521 crossref_primary_10_3892_mmr_2025_13445 crossref_primary_10_1016_j_biopha_2023_116114 crossref_primary_10_3389_fimmu_2024_1429523 crossref_primary_10_3892_mmr_2025_13446 crossref_primary_10_1002_smtd_202400757 crossref_primary_10_1073_pnas_2303698120 crossref_primary_10_3389_fphar_2023_1215995 crossref_primary_10_1093_labmed_lmae048 crossref_primary_10_1038_s41598_024_58424_w crossref_primary_10_54817_IC_v63n4a05 crossref_primary_10_1111_bph_15978 crossref_primary_10_3390_gidisord4030016 crossref_primary_10_1038_s41598_025_91700_x crossref_primary_10_1111_acel_14335 crossref_primary_10_3892_ol_2022_13504 crossref_primary_10_1016_j_jbc_2024_108050 crossref_primary_10_1080_15257770_2024_2428436 crossref_primary_10_1177_15330338231178403 crossref_primary_10_3390_antiox11061121 crossref_primary_10_1016_j_bneo_2024_100004 crossref_primary_10_1016_j_esmoop_2025_104136 crossref_primary_10_1021_acs_jmedchem_3c02347 crossref_primary_10_3389_fgene_2022_944681 crossref_primary_10_3389_fonc_2023_1229696 crossref_primary_10_1016_j_bbcan_2024_189206 crossref_primary_10_3390_ijms252312647 crossref_primary_10_1007_s43440_024_00685_3 crossref_primary_10_1186_s12885_023_11758_6 crossref_primary_10_3389_fgene_2022_949989 crossref_primary_10_1016_j_jep_2023_116996 crossref_primary_10_1096_fj_202402479RRR crossref_primary_10_18632_aging_205619 crossref_primary_10_1111_acel_13869 crossref_primary_10_1016_j_toxlet_2023_06_005 crossref_primary_10_1021_acsami_3c03181 crossref_primary_10_3390_cells13050441 crossref_primary_10_1139_cjpp_2023_0192 crossref_primary_10_1007_s00432_024_05989_8 crossref_primary_10_1007_s11033_024_10051_4 crossref_primary_10_1093_genetics_iyae128 crossref_primary_10_3390_molecules29174275 crossref_primary_10_1002_mco2_352 |
Cites_doi | 10.1038/46311 10.1016/j.celrep.2018.09.079 10.1182/blood-2006-03-010413 10.1098/rsob.190168 10.1016/j.cell.2004.11.004 10.1073/pnas.2008474117 10.1016/j.mad.2007.10.011 10.1186/s40425-019-0750-6 10.1016/0092-8674(79)90293-9 10.1038/s41598-019-39553-z 10.1038/nsmb.3296 10.1016/j.cell.2017.01.002 10.1038/s41419-018-0697-4 10.1101/cshperspect.a026070 10.1111/acel.12060 10.1158/2326-6066.CIR-18-0686 10.1038/s41467-018-03224-w 10.1016/j.cell.2006.12.007 10.1101/gad.1050003 10.1200/JCO.2011.34.7872 10.1038/ng1572 10.1038/317816a0 10.1016/j.ydbio.2011.02.007 10.1158/0008-5472.CAN-20-2002 10.1038/306594a0 10.1038/cdd.2008.30 10.1016/j.cell.2013.03.020 10.2147/OTT.S229065 10.1038/s43018-021-00221-9 10.1111/j.1474-9726.2012.00802.x 10.1038/s41419-020-2670-2 10.1101/cshperspect.a000935 10.1016/S0960-9822(02)01262-9 10.1016/j.cell.2004.11.006 10.1016/j.cell.2005.11.044 10.1016/j.molonc.2016.04.001 10.1038/s41467-018-07339-y 10.1038/nature09141 10.1016/j.stem.2018.08.019 10.1158/1078-0432.CCR-19-1874 10.1126/science.abc8697 10.1016/j.devcel.2019.06.012 10.1126/science.8023157 10.1371/journal.pone.0189861 10.1101/gad.14.3.289 10.1038/sj.emboj.7601115 10.1016/j.molcel.2004.09.032 10.1038/415045a 10.1038/ncomms12508 10.1038/nature03442 10.1038/s41598-020-58267-1 10.7554/eLife.34701 10.1126/science.1905840 10.1101/cshperspect.a026088 10.1074/jbc.C200093200 10.1016/S0092-8674(00)80626-1 10.1038/s41586-021-03307-7 10.1101/gad.310304 10.1371/journal.pone.0061353 10.1038/s41388-017-0101-3 10.1038/s41586-019-1450-6 10.1002/path.2584 10.1101/SQB.1980.044.01.069 10.1096/fj.201802027R 10.1038/s42003-021-01898-5 10.1007/s11357-018-0049-4 10.1038/cdd.2017.187 10.1038/35044005 10.1038/s41467-020-17596-5 10.1007/s00262-020-02711-8 10.1038/s41420-019-0157-7 10.1038/s41419-018-0463-7 10.1016/S0960-9822(01)00534-6 10.1016/j.jmb.2004.06.071 10.1038/cdd.2015.119 10.1038/nm0302-282 10.1126/sciimmunol.abd5515 10.1093/emboj/cdf595 10.1038/cdd.2016.97 10.1158/0008-5472.CAN-16-2832 10.1074/jbc.M002509200 10.1101/cshperspect.a036426 10.3390/cells7070064 10.1021/bi00769a018 10.1016/S0092-8674(00)80627-3 10.1073/pnas.76.5.2420 10.1016/j.cell.2004.12.009 10.1073/pnas.1719076115 10.1016/j.molcel.2007.11.015 10.1038/cdd.2017.180 10.1038/sj.cdd.4401539 10.1101/gad.1162404 10.1016/j.celrep.2019.12.028 10.1073/pnas.052713099 10.1038/362709a0 10.1126/science.1065486 10.1038/ncb2100 10.1038/sj.onc.1206699 10.3390/ijms20246197 10.1038/s41375-020-0949-z 10.1101/cshperspect.a026187 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.tig.2022.02.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EndPage | 612 |
ExternalDocumentID | 35346511 10_1016_j_tig_2022_02_010 S0168952522000373 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ -RU -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABLJU ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADUVX ADVLN ADXHL AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HZ~ IH2 IHE J1W K-O KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SSU SSZ T5K TN5 UQL WH7 WUQ Y6R Z5R ZCA ZCG ZGI ~G- ~KM 1RT AACTN AAIAV ABYKQ AFCTW AFKWA AFMIJ AJBFU AJOXV AMFUW DOVZS EFLBG G8K RIG XFK ZA5 AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c403t-e28f6ac9465427f79335130bcae1c577ed5a4af766370efc3578924321154be3 |
IEDL.DBID | .~1 |
ISSN | 0168-9525 |
IngestDate | Tue Aug 05 11:22:28 EDT 2025 Thu Apr 03 07:00:10 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Jul 01 01:43:37 EDT 2025 Fri Feb 23 02:41:02 EST 2024 Tue Aug 26 19:13:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | tumor suppression cancer aging DNA damage p53 |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-e28f6ac9465427f79335130bcae1c577ed5a4af766370efc3578924321154be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6097-5238 |
PMID | 35346511 |
PQID | 2644937708 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2644937708 pubmed_primary_35346511 crossref_citationtrail_10_1016_j_tig_2022_02_010 crossref_primary_10_1016_j_tig_2022_02_010 elsevier_sciencedirect_doi_10_1016_j_tig_2022_02_010 elsevier_clinicalkey_doi_10_1016_j_tig_2022_02_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 2022-Jun 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in genetics |
PublicationTitleAlternate | Trends Genet |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu (bb0395) 2018; 23 Mamriev (bb0505) 2020; 11 Brodsky (bb0335) 2000; 101 Ollmann (bb0340) 2000; 101 Wu (bb0565) 2020; 11 Sgarbi (bb0535) 2018; 7 Bojesen, Nordestgaard (bb0315) 2008; 7(2) Martins (bb0215) 2006; 127 Jost, Vucic (bb0500) 2020; 12 Zhao (bb0320) 2018; 7 Dumble (bb0240) 2007; 109 Hollstein (bb0080) 1991; 253 Gannon (bb0295) 2011; 353 McKinney (bb0165) 2004; 16 Derry (bb0590) 2001; 294 Wellenstein (bb0410) 2019; 572 Linzer, Levine (bb0085) 1979; 17 Schumacher (bb0355) 2005; 120 Harper, Elledge (bb0015) 2007; 28 Baugh (bb0120) 2018; 25 Wu, Prives (bb0285) 2018; 25 Sahin (bb0270) 2011; 470 Timofeev (bb0275) 2020; 80 Falck (bb0040) 2005; 434 Fan (bb0230) 2019; 33 Stein (bb0140) 2019; 20 Zhu (bb0180) 2020; 2020 Sulak (bb0200) 2016; 5 Cooks (bb0480) 2018; 9 Schumacher (bb0025) 2021; 592 Jenkins (bb0105) 1985; 317 Williams, Schumacher (bb0055) 2016; 6 Cho (bb0125) 1994; 265 Ventura (bb0220) 2007; 445 García-Cao (bb0190) 2002; 21 Dong (bb0425) 2021; 4 Zhang (bb0515) 2018; 9 Shieh (bb0050) 2000; 14 von Muhlinen (bb0325) 2018; 37 Gao (bb0360) 2008; 15 Schumacher (bb0350) 2005; 12 Liu (bb0280) 2010; 12 DeLeo (bb0095) 1979; 76 Weinberg (bb0160) 2004; 341 Maier (bb0255) 2004; 18 Aoki (bb0310) 2009; 23 Xue (bb0225) 2007; 445 Konopleva (bb0485) 2020; 34 Hauck (bb0290) 2017; 12 Ackermann (bb0370) 2016; 23 Song (bb0400) 2012; 11 Tubbs, Nussenzweig (bb0020) 2017; 168 Zhang (bb0520) 2019; 10 Saito (bb0045) 2002; 277 Charni-Natan (bb0470) 2018; 9 de Vries (bb0135) 2002; 99 Haas (bb0530) 2021; 2 Mostoslavsky (bb0405) 2006; 124 Beckerman (bb0150) 2010; 2 Schumacher (bb0330) 2001; 11 Liu (bb0440) 2020; 13 Cain (bb0155) 2000; 275 Madar (bb0435) 2013; 8 Cao (bb0305) 2006; 25 Olive (bb0115) 2004; 119 Blagih (bb0430) 2020; 30 Novo (bb0465) 2018; 9 Moyer (bb0460) 2020; 117 Guo (bb0415) 2017; 77 Lindahl (bb0005) 1993; 362 Capaci (bb0450) 2020; 11 Jay (bb0090) 1980; 44 Hofmann (bb0345) 2002; 12 Jiang (bb0490) 2019; 5 Moore (bb0245) 2007; 128 Gok Yavuz (bb0525) 2019; 9 Cordani (bb0070) 2016; 10 Lujambio (bb0455) 2013; 153 Malekzadeh (bb0570) 2020; 26 Pfister, Prives (bb0145) 2016; 7 Vater (bb0210) 1996; 13 Arandkar (bb0445) 2018; 115 Fang (bb0495) 2019; 7 Hsiue (bb0550) 2021; 371 McKenna (bb0420) 2003; 22 Trbusek (bb0130) 2011; 29 da Silva, Schumacher (bb0030) 2019; 9 Kore (bb0540) 2018; 14 Matheu (bb0580) 2004; 18 Cao (bb0300) 2003; 17 Ou (bb0375) 2019; 50 Rovinski (bb0250) 1987; 7 Zhou, Elledge (bb0035) 2000; 408 Christophorou (bb0205) 2005; 37 Zakut-Houri (bb0100) 1983; 306 Lang (bb0110) 2004; 119 Bykov (bb0510) 2002; 8 Jonkers (bb0175) 2001; 29 Sendoel (bb0380) 2010; 465 Lo (bb0555) 2019; 7 Yang (bb0560) 2021; 70 Gambino (bb0060) 2013; 12 Jentsch (bb0545) 2020; 10 Lindahl, Nyberg (bb0010) 1972; 11 Zuckerman (bb0075) 2009; 219 Charni (bb0475) 2016; 23 Fernández-Majada (bb0365) 2016; 7 Tyner (bb0235) 2002; 415 von Muhlinen (bb0585) 2018; 37 Migliaccio (bb0260) 1999; 402 Torgovnick (bb0195) 2018; 25 Habermehl (bb0385) 2019; 41 Rossi (bb0390) 2017; 24 Guha, Malkin (bb0185) 2017; 7 Douglass (bb0575) 2021; 6 Sica, Kroemer (bb0065) 2020; 7 Roake, Artandi (bb0265) 2017; 7 Donehower (bb0170) 1992; 356 Vater (10.1016/j.tig.2022.02.010_bb0210) 1996; 13 Trbusek (10.1016/j.tig.2022.02.010_bb0130) 2011; 29 Guo (10.1016/j.tig.2022.02.010_bb0415) 2017; 77 Gambino (10.1016/j.tig.2022.02.010_bb0060) 2013; 12 Jenkins (10.1016/j.tig.2022.02.010_bb0105) 1985; 317 Timofeev (10.1016/j.tig.2022.02.010_bb0275) 2020; 80 Ou (10.1016/j.tig.2022.02.010_bb0375) 2019; 50 Donehower (10.1016/j.tig.2022.02.010_bb0170) 1992; 356 Ventura (10.1016/j.tig.2022.02.010_bb0220) 2007; 445 Zhang (10.1016/j.tig.2022.02.010_bb0520) 2019; 10 Mamriev (10.1016/j.tig.2022.02.010_bb0505) 2020; 11 Zakut-Houri (10.1016/j.tig.2022.02.010_bb0100) 1983; 306 Linzer (10.1016/j.tig.2022.02.010_bb0085) 1979; 17 Cain (10.1016/j.tig.2022.02.010_bb0155) 2000; 275 Tubbs (10.1016/j.tig.2022.02.010_bb0020) 2017; 168 Wu (10.1016/j.tig.2022.02.010_bb0285) 2018; 25 Jost (10.1016/j.tig.2022.02.010_bb0500) 2020; 12 Douglass (10.1016/j.tig.2022.02.010_bb0575) 2021; 6 Zhu (10.1016/j.tig.2022.02.010_bb0180) 2020; 2020 Bykov (10.1016/j.tig.2022.02.010_bb0510) 2002; 8 Liu (10.1016/j.tig.2022.02.010_bb0440) 2020; 13 Sendoel (10.1016/j.tig.2022.02.010_bb0380) 2010; 465 Lo (10.1016/j.tig.2022.02.010_bb0555) 2019; 7 Konopleva (10.1016/j.tig.2022.02.010_bb0485) 2020; 34 Falck (10.1016/j.tig.2022.02.010_bb0040) 2005; 434 Schumacher (10.1016/j.tig.2022.02.010_bb0025) 2021; 592 Xue (10.1016/j.tig.2022.02.010_bb0225) 2007; 445 Jay (10.1016/j.tig.2022.02.010_bb0090) 1980; 44 Fan (10.1016/j.tig.2022.02.010_bb0230) 2019; 33 von Muhlinen (10.1016/j.tig.2022.02.010_bb0585) 2018; 37 Torgovnick (10.1016/j.tig.2022.02.010_bb0195) 2018; 25 Cao (10.1016/j.tig.2022.02.010_bb0305) 2006; 25 Malekzadeh (10.1016/j.tig.2022.02.010_bb0570) 2020; 26 Schumacher (10.1016/j.tig.2022.02.010_bb0350) 2005; 12 Madar (10.1016/j.tig.2022.02.010_bb0435) 2013; 8 Zhou (10.1016/j.tig.2022.02.010_bb0035) 2000; 408 Gok Yavuz (10.1016/j.tig.2022.02.010_bb0525) 2019; 9 Moyer (10.1016/j.tig.2022.02.010_bb0460) 2020; 117 Williams (10.1016/j.tig.2022.02.010_bb0055) 2016; 6 McKenna (10.1016/j.tig.2022.02.010_bb0420) 2003; 22 Song (10.1016/j.tig.2022.02.010_bb0400) 2012; 11 Liu (10.1016/j.tig.2022.02.010_bb0280) 2010; 12 Matheu (10.1016/j.tig.2022.02.010_bb0580) 2004; 18 Liu (10.1016/j.tig.2022.02.010_bb0395) 2018; 23 Ollmann (10.1016/j.tig.2022.02.010_bb0340) 2000; 101 Rossi (10.1016/j.tig.2022.02.010_bb0390) 2017; 24 Lang (10.1016/j.tig.2022.02.010_bb0110) 2004; 119 Gao (10.1016/j.tig.2022.02.010_bb0360) 2008; 15 Guha (10.1016/j.tig.2022.02.010_bb0185) 2017; 7 Sgarbi (10.1016/j.tig.2022.02.010_bb0535) 2018; 7 Tyner (10.1016/j.tig.2022.02.010_bb0235) 2002; 415 Yang (10.1016/j.tig.2022.02.010_bb0560) 2021; 70 Beckerman (10.1016/j.tig.2022.02.010_bb0150) 2010; 2 Novo (10.1016/j.tig.2022.02.010_bb0465) 2018; 9 Fang (10.1016/j.tig.2022.02.010_bb0495) 2019; 7 Hollstein (10.1016/j.tig.2022.02.010_bb0080) 1991; 253 Zhang (10.1016/j.tig.2022.02.010_bb0515) 2018; 9 Wellenstein (10.1016/j.tig.2022.02.010_bb0410) 2019; 572 Stein (10.1016/j.tig.2022.02.010_bb0140) 2019; 20 García-Cao (10.1016/j.tig.2022.02.010_bb0190) 2002; 21 Blagih (10.1016/j.tig.2022.02.010_bb0430) 2020; 30 Cho (10.1016/j.tig.2022.02.010_bb0125) 1994; 265 Schumacher (10.1016/j.tig.2022.02.010_bb0355) 2005; 120 Habermehl (10.1016/j.tig.2022.02.010_bb0385) 2019; 41 Lindahl (10.1016/j.tig.2022.02.010_bb0010) 1972; 11 Jonkers (10.1016/j.tig.2022.02.010_bb0175) 2001; 29 Gannon (10.1016/j.tig.2022.02.010_bb0295) 2011; 353 Arandkar (10.1016/j.tig.2022.02.010_bb0445) 2018; 115 Cao (10.1016/j.tig.2022.02.010_bb0300) 2003; 17 Jiang (10.1016/j.tig.2022.02.010_bb0490) 2019; 5 Dumble (10.1016/j.tig.2022.02.010_bb0240) 2007; 109 Mostoslavsky (10.1016/j.tig.2022.02.010_bb0405) 2006; 124 Migliaccio (10.1016/j.tig.2022.02.010_bb0260) 1999; 402 Roake (10.1016/j.tig.2022.02.010_bb0265) 2017; 7 Schumacher (10.1016/j.tig.2022.02.010_bb0330) 2001; 11 McKinney (10.1016/j.tig.2022.02.010_bb0165) 2004; 16 Fernández-Majada (10.1016/j.tig.2022.02.010_bb0365) 2016; 7 Zuckerman (10.1016/j.tig.2022.02.010_bb0075) 2009; 219 Rovinski (10.1016/j.tig.2022.02.010_bb0250) 1987; 7 Pfister (10.1016/j.tig.2022.02.010_bb0145) 2016; 7 de Vries (10.1016/j.tig.2022.02.010_bb0135) 2002; 99 Aoki (10.1016/j.tig.2022.02.010_bb0310) 2009; 23 Sahin (10.1016/j.tig.2022.02.010_bb0270) 2011; 470 Capaci (10.1016/j.tig.2022.02.010_bb0450) 2020; 11 Jentsch (10.1016/j.tig.2022.02.010_bb0545) 2020; 10 von Muhlinen (10.1016/j.tig.2022.02.010_bb0325) 2018; 37 Moore (10.1016/j.tig.2022.02.010_bb0245) 2007; 128 DeLeo (10.1016/j.tig.2022.02.010_bb0095) 1979; 76 Bojesen (10.1016/j.tig.2022.02.010_bb0315) 2008; 7(2) Kore (10.1016/j.tig.2022.02.010_bb0540) 2018; 14 Olive (10.1016/j.tig.2022.02.010_bb0115) 2004; 119 da Silva (10.1016/j.tig.2022.02.010_bb0030) 2019; 9 Christophorou (10.1016/j.tig.2022.02.010_bb0205) 2005; 37 Sulak (10.1016/j.tig.2022.02.010_bb0200) 2016; 5 Hofmann (10.1016/j.tig.2022.02.010_bb0345) 2002; 12 Derry (10.1016/j.tig.2022.02.010_bb0590) 2001; 294 Hsiue (10.1016/j.tig.2022.02.010_bb0550) 2021; 371 Sica (10.1016/j.tig.2022.02.010_bb0065) 2020; 7 Cooks (10.1016/j.tig.2022.02.010_bb0480) 2018; 9 Haas (10.1016/j.tig.2022.02.010_bb0530) 2021; 2 Harper (10.1016/j.tig.2022.02.010_bb0015) 2007; 28 Baugh (10.1016/j.tig.2022.02.010_bb0120) 2018; 25 Brodsky (10.1016/j.tig.2022.02.010_bb0335) 2000; 101 Lujambio (10.1016/j.tig.2022.02.010_bb0455) 2013; 153 Lindahl (10.1016/j.tig.2022.02.010_bb0005) 1993; 362 Weinberg (10.1016/j.tig.2022.02.010_bb0160) 2004; 341 Wu (10.1016/j.tig.2022.02.010_bb0565) 2020; 11 Cordani (10.1016/j.tig.2022.02.010_bb0070) 2016; 10 Hauck (10.1016/j.tig.2022.02.010_bb0290) 2017; 12 Zhao (10.1016/j.tig.2022.02.010_bb0320) 2018; 7 Ackermann (10.1016/j.tig.2022.02.010_bb0370) 2016; 23 Dong (10.1016/j.tig.2022.02.010_bb0425) 2021; 4 Saito (10.1016/j.tig.2022.02.010_bb0045) 2002; 277 Shieh (10.1016/j.tig.2022.02.010_bb0050) 2000; 14 Martins (10.1016/j.tig.2022.02.010_bb0215) 2006; 127 Maier (10.1016/j.tig.2022.02.010_bb0255) 2004; 18 Charni-Natan (10.1016/j.tig.2022.02.010_bb0470) 2018; 9 Charni (10.1016/j.tig.2022.02.010_bb0475) 2016; 23 |
References_xml | – volume: 44 start-page: 659 year: 1980 end-page: 664 ident: bb0090 article-title: A common transformation-related protein in murine sarcomas and leukemias publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 127 start-page: 1323 year: 2006 end-page: 1334 ident: bb0215 article-title: Modeling the therapeutic efficacy of p53 restoration in tumors publication-title: Cell – volume: 445 start-page: 661 year: 2007 end-page: 665 ident: bb0220 article-title: Restoration of p53 function leads to tumour regression in vivo publication-title: Nature 2006 445:7128 – volume: 2 start-page: 693 year: 2021 end-page: 708 ident: bb0530 article-title: Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma publication-title: Nat. Cancer – volume: 109 start-page: 1736 year: 2007 end-page: 1742 ident: bb0240 article-title: The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging publication-title: Blood – volume: 37 start-page: 2379 year: 2018 end-page: 2393 ident: bb0325 article-title: p53 isoforms regulate premature aging in human cells publication-title: Oncogene 2018 37:18 – volume: 12 start-page: 1908 year: 2002 end-page: 1918 ident: bb0345 article-title: HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis publication-title: Curr. Biol. – volume: 265 start-page: 346 year: 1994 end-page: 355 ident: bb0125 article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations publication-title: Science (New York, N.Y.) – volume: 341 start-page: 1145 year: 2004 end-page: 1159 ident: bb0160 article-title: Cooperative binding of tetrameric p53 to DNA publication-title: J. Mol. Biol. – volume: 402 start-page: 309 year: 1999 end-page: 313 ident: bb0260 article-title: The p66shc adaptor protein controls oxidative stress response and life span in mammals publication-title: Nature – volume: 465 start-page: 577 year: 2010 end-page: 583 ident: bb0380 article-title: HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase publication-title: Nature – volume: 5 start-page: 77 year: 2019 ident: bb0490 article-title: Protoporphyrin IX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells publication-title: Cell Death Discov. – volume: 128 start-page: 717 year: 2007 end-page: 730 ident: bb0245 article-title: Aging-associated truncated form of p53 interacts with wild-type p53 and alters p53 stability, localization, and activity publication-title: Mech. Ageing Dev. – volume: 362 start-page: 709 year: 1993 end-page: 715 ident: bb0005 article-title: Instability and decay of the primary structure of DNA publication-title: Nature – volume: 592 start-page: 695 year: 2021 end-page: 703 ident: bb0025 article-title: The central role of DNA damage in the ageing process publication-title: Nature – volume: 20 start-page: 6197 year: 2019 end-page: 6198 ident: bb0140 article-title: Gain-of-function mutant p53: all the roads lead to tumorigenesis publication-title: Int. J. Mol. Sci. – volume: 23 start-page: 544 year: 2018 end-page: 556.e4 ident: bb0395 article-title: Impaired notch signaling leads to a decrease in p53 activity and mitotic catastrophe in aged muscle stem cells publication-title: Cell Stem Cell – volume: 371 start-page: 8697 year: 2021 ident: bb0550 article-title: Targeting a neoantigen derived from a common publication-title: Science – volume: 4 start-page: 371 year: 2021 ident: bb0425 article-title: Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance publication-title: Commun. Biol. – volume: 275 start-page: 39944 year: 2000 end-page: 39953 ident: bb0155 article-title: The N terminus of p53 regulates its dissociation from DNA publication-title: J. Biol. Chem. – volume: 356 start-page: 215 year: 1992 end-page: 221 ident: bb0170 article-title: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours publication-title: Nature 1992 356:6366 – volume: 22 start-page: 5866 year: 2003 end-page: 5875 ident: bb0420 article-title: The RAS signal transduction pathway and its role in radiation sensitivity publication-title: Oncogene – volume: 408 start-page: 433 year: 2000 end-page: 439 ident: bb0035 article-title: The DNA damage response: putting checkpoints in perspective publication-title: Nature – volume: 23 start-page: 429 year: 2009 end-page: 435 ident: bb0310 article-title: CCR5 and p53 codon 72 gene polymorphisms: Implications in breast cancer development publication-title: Int. J. Mol. Med. – volume: 33 start-page: 5571 year: 2019 end-page: 5584 ident: bb0230 article-title: P53 ICE CRIM mouse: A tool to generate mutant allelic series in somatic cells and germ lines for cancer studies publication-title: FASEB J. – volume: 7 start-page: 34701 year: 2018 ident: bb0320 article-title: A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models publication-title: eLife – volume: 7 start-page: 12508 year: 2016 ident: bb0365 article-title: The tumour suppressor CYLD regulates the p53 DNA damage response publication-title: Nat. Commun. – volume: 37 start-page: 2379 year: 2018 end-page: 2393 ident: bb0585 article-title: P53 isoforms regulate premature aging in human cells publication-title: Oncogene – volume: 17 start-page: 43 year: 1979 end-page: 52 ident: bb0085 article-title: Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells publication-title: Cell – volume: 7 start-page: 64 year: 2018 ident: bb0535 article-title: Hypoxia and IF1 expression promote ROS decrease in cancer cells publication-title: Cells – volume: 115 start-page: 6410 year: 2018 end-page: 6415 ident: bb0445 article-title: Altered p53 functionality in cancer-associated fibroblasts contributes to their cancer-supporting features publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 439 year: 2018 ident: bb0515 article-title: APR-246 reactivates mutant p53 by targeting cysteines 124 and 277 publication-title: Cell Death Dis. – volume: 11 start-page: 449 year: 2012 end-page: 455 ident: bb0400 article-title: Telomere dysfunctional environment induces loss of quiescence and inherent impairments of hematopoietic stem cell function publication-title: Aging Cell – volume: 9 start-page: 5069 year: 2018 ident: bb0465 article-title: Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels publication-title: Nat. Commun. – volume: 23 start-page: 509 year: 2016 end-page: 520 ident: bb0475 article-title: Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation publication-title: Cell Death Differ. – volume: 8 start-page: 282 year: 2002 end-page: 288 ident: bb0510 article-title: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound publication-title: Nat. Med. – volume: 37 start-page: 718 year: 2005 end-page: 726 ident: bb0205 article-title: Temporal dissection of p53 function in vitro and in vivo publication-title: Nat. Genet. – volume: 7 year: 2017 ident: bb0265 article-title: Control of cellular aging, tissue function, and cancer by p53 downstream of telomeres publication-title: Cold Spring Harb. Perspect. Med. – volume: 6 start-page: 1 year: 2016 end-page: 16 ident: bb0055 article-title: p53 in the DNA-damage-repair process publication-title: Cold Spring Harb. Perspect. Med. – volume: 7 start-page: 1 year: 2020 end-page: 2 ident: bb0065 article-title: A bidirectional crosstalk between autophagy and TP53 determines the pace of aging publication-title: Mol. Cell. Oncol. – volume: 18 start-page: 306 year: 2004 ident: bb0255 article-title: Modulation of mammalian life span by the short isoform of p53 publication-title: Genes Dev. – volume: 12 start-page: 1 year: 2020 end-page: 10 ident: bb0500 article-title: Regulation of cell death and immunity by xiap publication-title: Cold Spring Harb. Perspect. Biol. – volume: 28 start-page: 739 year: 2007 end-page: 745 ident: bb0015 article-title: The DNA damage response: ten years after publication-title: Mol. Cell – volume: 6 start-page: 5515 year: 2021 ident: bb0575 article-title: Bispecific antibodies targeting mutant RAS neoantigens publication-title: Sci. Immunol. – volume: 34 start-page: 2858 year: 2020 end-page: 2874 ident: bb0485 article-title: MDM2 inhibition: an important step forward in cancer therapy publication-title: Leukemia – volume: 2 start-page: 1 year: 2010 end-page: 18 ident: bb0150 article-title: Transcriptional regulation by P53 publication-title: Cold Spring Harb. Perspect. Biol. – volume: 12 start-page: 153 year: 2005 end-page: 161 ident: bb0350 article-title: ced-13 can promote apoptosis and is induced in response to DNA damage publication-title: Cell Death Differ. – volume: 9 start-page: 697-4 year: 2018 ident: bb0470 article-title: Various stress stimuli rewire the profile of liver secretome in a p53-dependent manner publication-title: Cell Death Dis. – volume: 25 start-page: 154 year: 2018 end-page: 160 ident: bb0120 article-title: Why are there hotspot mutations in the TP53 gene in human cancers? publication-title: Cell Death Differ. – volume: 80 start-page: 5231 year: 2020 end-page: 5244 ident: bb0275 article-title: Phosphorylation control of P53 DNA-binding cooperativity balances tumorigenesis and aging publication-title: Cancer Res. – volume: 10 start-page: 1435-2 year: 2019 ident: bb0520 article-title: Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer publication-title: Cell Death Dis. – volume: 25 start-page: 2167 year: 2006 end-page: 2177 ident: bb0305 article-title: ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency publication-title: EMBO J. – volume: 99 start-page: 2948 year: 2002 end-page: 2953 ident: bb0135 article-title: Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 572 start-page: 538 year: 2019 end-page: 542 ident: bb0410 article-title: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis publication-title: Nature – volume: 7 start-page: 847 year: 1987 end-page: 853 ident: bb0250 article-title: Deletion of 5’-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation publication-title: Mol. Cell. Biol. – volume: 120 start-page: 357 year: 2005 end-page: 368 ident: bb0355 article-title: Translational repression of publication-title: Cell – volume: 117 start-page: 23663 year: 2020 end-page: 23673 ident: bb0460 article-title: P53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 306 start-page: 594 year: 1983 end-page: 597 ident: bb0100 article-title: A single gene and a pseudogene for the cellular tumour antigen p53 publication-title: Nature – volume: 7 start-page: 750 year: 2019 end-page: 756 ident: bb0495 article-title: MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment publication-title: J. Immunother. Cancer – volume: 25 start-page: 1027 year: 2018 end-page: 1039.e6 ident: bb0195 article-title: The Cdkn1a SUPER mouse as a tool to ttudy p53-mediated tumor suppression publication-title: Cell Rep. – volume: 11 start-page: 483 year: 2020 ident: bb0505 article-title: A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2 publication-title: Cell Death Dis. – volume: 50 start-page: 167 year: 2019 end-page: 183.e8 ident: bb0375 article-title: Somatic niche cells regulate the CEP-1/p53-mediated DNA damage response in primordial germ cells publication-title: Dev. Cell – volume: 8 start-page: 61353 year: 2013 ident: bb0435 article-title: Mutant p53 attenuates the anti-tumorigenic activity of fibroblasts-secreted interferon beta publication-title: PLoS One – volume: 277 start-page: 12491 year: 2002 end-page: 12494 ident: bb0045 article-title: ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation publication-title: J. Biol. Chem. – volume: 12 start-page: 435 year: 2013 end-page: 445 ident: bb0060 article-title: Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging publication-title: Aging Cell – volume: 101 start-page: 103 year: 2000 end-page: 113 ident: bb0335 article-title: Drosophila p53 binds a damage response element at the reaper locus publication-title: Cell – volume: 16 start-page: 413 year: 2004 end-page: 424 ident: bb0165 article-title: p53 linear diffusion along DNA requires its C terminus publication-title: Mol. Cell – volume: 10 start-page: 1008 year: 2016 end-page: 1029 ident: bb0070 article-title: Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition publication-title: Mol. Oncol. – volume: 7 start-page: 6054 year: 2016 ident: bb0145 article-title: Transcriptional regulation by wild-type and cancer-related mutant forms of p53 publication-title: Cold Spring Harb. Perspect. Med. – volume: 17 start-page: 201 year: 2003 end-page: 213 ident: bb0300 article-title: Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform publication-title: Genes Dev. – volume: 353 start-page: 1 year: 2011 end-page: 9 ident: bb0295 article-title: Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin publication-title: Dev. Biol. – volume: 124 start-page: 315 year: 2006 end-page: 329 ident: bb0405 article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 publication-title: Cell – volume: 41 start-page: 25 year: 2019 end-page: 38 ident: bb0385 article-title: Extension of longevity and reduction of inflammation is ovarian-dependent, but germ cell-independent in post-reproductive female mice publication-title: GeroScience – volume: 5 year: 2016 ident: bb0200 article-title: TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants publication-title: eLife – volume: 445 start-page: 656 year: 2007 end-page: 660 ident: bb0225 article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas publication-title: Nature 2006 445:7128 – volume: 317 start-page: 816 year: 1985 end-page: 818 ident: bb0105 article-title: The cellular oncogene p53 can be activated by mutagenesis publication-title: Nature – volume: 7(2) start-page: 158 year: 2008 end-page: 163 ident: bb0315 article-title: The common germline Arg72Pro polymorphism of p53 and increased longevity in humans – volume: 13 start-page: 1355 year: 2020 end-page: 1363 ident: bb0440 article-title: P53 mutant p53 N236S regulates cancer-associated fibroblasts properties through Stat3 pathway publication-title: OncoTargets Ther. – volume: 29 start-page: 418 year: 2001 end-page: 425 ident: bb0175 article-title: Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer publication-title: Nat. Genet. 2001 29:4 – volume: 13 start-page: 739 year: 1996 end-page: 748 ident: bb0210 article-title: Induction of apoptosis by tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras transformed p53-/- mouse embryo fibroblasts publication-title: Oncogene – volume: 30 start-page: 481 year: 2020 end-page: 496.e6 ident: bb0430 article-title: Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses publication-title: Cell Rep. – volume: 14 start-page: 104 year: 2018 ident: bb0540 article-title: Hypoxia-derived exosomes induce putative altered pathways in biosynthesis and ion regulatory channels in glioblastoma cells publication-title: Biochem. Biophys. Rep. – volume: 9 year: 2019 ident: bb0030 article-title: DNA damage responses in ageing publication-title: Open Biol. – volume: 7 start-page: 534 year: 2019 end-page: 543 ident: bb0555 article-title: Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer publication-title: Cancer Immunol. Res. – volume: 415 start-page: 45 year: 2002 end-page: 53 ident: bb0235 article-title: p53 mutant mice that display early ageing-associated phenotypes publication-title: Nature – volume: 119 start-page: 861 year: 2004 end-page: 872 ident: bb0110 article-title: Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome publication-title: Cell – volume: 25 start-page: 169 year: 2018 end-page: 179 ident: bb0285 article-title: Relevance of the p53-MDM2 axis to aging publication-title: Cell Death Differ. – volume: 434 start-page: 605 year: 2005 end-page: 611 ident: bb0040 article-title: Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage publication-title: Nature – volume: 168 start-page: 644 year: 2017 end-page: 656 ident: bb0020 article-title: Endogenous DNA damage as a source of genomic instability in cancer publication-title: Cell – volume: 11 start-page: 3610 year: 1972 end-page: 3618 ident: bb0010 article-title: Rate of depurination of native deoxyribonucleic acid publication-title: Biochemistry – volume: 15 start-page: 1054 year: 2008 end-page: 1062 ident: bb0360 article-title: The SCFFSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in publication-title: Cell Death Differ. – volume: 9 start-page: 39553 year: 2019 ident: bb0525 article-title: Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1 + TAMs publication-title: Sci. Rep. – volume: 11 start-page: 1722 year: 2001 end-page: 1727 ident: bb0330 article-title: The publication-title: Curr. Biol. – volume: 219 start-page: 3 year: 2009 end-page: 15 ident: bb0075 article-title: Tumour suppression by p53: The importance of apoptosis and cellular senescence publication-title: J. Pathol. – volume: 29 start-page: 2703 year: 2011 end-page: 2708 ident: bb0130 article-title: Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. – volume: 21 start-page: 6225 year: 2002 ident: bb0190 article-title: ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally publication-title: EMBO J. – volume: 14 start-page: 289 year: 2000 end-page: 300 ident: bb0050 article-title: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites publication-title: Genes Dev. – volume: 11 start-page: 17596-5 year: 2020 ident: bb0450 article-title: Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome publication-title: Nat. Commun. – volume: 253 start-page: 49 year: 1991 end-page: 53 ident: bb0080 article-title: p53 mutations in human cancers publication-title: Science (New York, N.Y.) – volume: 7 year: 2017 ident: bb0185 article-title: Inherited TP53 mutations and the Li-fraumeni syndrome publication-title: Cold Spring Harb. Perspect. Med. – volume: 12 start-page: 993 year: 2010 end-page: 998 ident: bb0280 article-title: Puma is required for p53-induced depletion of adult stem cells publication-title: Nat. Cell Biol. – volume: 23 start-page: 995 year: 2016 end-page: 1002 ident: bb0370 article-title: E4 ligase–specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis publication-title: Nat. Struct. Mol. Biol. – volume: 11 start-page: 16755 year: 2020 ident: bb0565 article-title: Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen publication-title: Nat. Commun. – volume: 9 start-page: 771 year: 2018 ident: bb0480 article-title: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246 publication-title: Nat. Commun. – volume: 12 start-page: 0189861 year: 2017 ident: bb0290 article-title: Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death publication-title: PLoS One – volume: 101 start-page: 91 year: 2000 end-page: 101 ident: bb0340 article-title: Drosophila p53 is a structural and functional homolog of the tumor suppressor p53 publication-title: Cell – volume: 470 start-page: 359 year: 2011 end-page: 365 ident: bb0270 article-title: Telomere dysfunction induces metabolic and mitochondrial compromise publication-title: Nature 2011 470:7334 – volume: 77 start-page: 2292 year: 2017 end-page: 2305 ident: bb0415 article-title: Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity publication-title: Cancer Res. – volume: 76 start-page: 2420 year: 1979 end-page: 2424 ident: bb0095 article-title: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 70 start-page: 667 year: 2021 end-page: 677 ident: bb0560 article-title: Unique TP53 neoantigen and the immune microenvironment in long-term survivors of Hepatocellular carcinoma publication-title: Cancer Immunol. Immunother. – volume: 26 start-page: 1267 year: 2020 end-page: 1276 ident: bb0570 article-title: Antigen experienced T cells from peripheral blood recognize p53 neoantigens publication-title: Clin. Cancer Res. – volume: 2020 start-page: 4534289 year: 2020 ident: bb0180 article-title: The establishment of esophageal precancerous lesion model by using p53 conditional knockout mouse in esophageal epithelium publication-title: Biomed. Res. Int. – volume: 18 start-page: 2736 year: 2004 ident: bb0580 article-title: Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging publication-title: Genes Dev. – volume: 10 start-page: 1481 year: 2020 ident: bb0545 article-title: p53 dynamics in single cells are temperature-sensitive publication-title: Sci. Rep. – volume: 294 start-page: 591 year: 2001 end-page: 595 ident: bb0590 article-title: p53: role in apoptosis, meiosis, and stress resistance publication-title: Science (New York, N.Y.) – volume: 153 start-page: 449 year: 2013 end-page: 460 ident: bb0455 article-title: Non-cell-autonomous tumor suppression by p53 publication-title: Cell – volume: 119 start-page: 847 year: 2004 end-page: 860 ident: bb0115 article-title: Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome publication-title: Cell – volume: 24 start-page: 72 year: 2017 end-page: 82 ident: bb0390 article-title: LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse publication-title: Cell Death Differ. – volume: 402 start-page: 309 year: 1999 ident: 10.1016/j.tig.2022.02.010_bb0260 article-title: The p66shc adaptor protein controls oxidative stress response and life span in mammals publication-title: Nature doi: 10.1038/46311 – volume: 25 start-page: 1027 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0195 article-title: The Cdkn1a SUPER mouse as a tool to ttudy p53-mediated tumor suppression publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.09.079 – volume: 109 start-page: 1736 year: 2007 ident: 10.1016/j.tig.2022.02.010_bb0240 article-title: The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging publication-title: Blood doi: 10.1182/blood-2006-03-010413 – volume: 7 start-page: 6054 year: 2016 ident: 10.1016/j.tig.2022.02.010_bb0145 article-title: Transcriptional regulation by wild-type and cancer-related mutant forms of p53 publication-title: Cold Spring Harb. Perspect. Med. – volume: 9 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0030 article-title: DNA damage responses in ageing publication-title: Open Biol. doi: 10.1098/rsob.190168 – volume: 119 start-page: 847 year: 2004 ident: 10.1016/j.tig.2022.02.010_bb0115 article-title: Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome publication-title: Cell doi: 10.1016/j.cell.2004.11.004 – volume: 117 start-page: 23663 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0460 article-title: P53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2008474117 – volume: 128 start-page: 717 year: 2007 ident: 10.1016/j.tig.2022.02.010_bb0245 article-title: Aging-associated truncated form of p53 interacts with wild-type p53 and alters p53 stability, localization, and activity publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2007.10.011 – volume: 7 start-page: 750 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0495 article-title: MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0750-6 – volume: 17 start-page: 43 year: 1979 ident: 10.1016/j.tig.2022.02.010_bb0085 article-title: Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells publication-title: Cell doi: 10.1016/0092-8674(79)90293-9 – volume: 9 start-page: 39553 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0525 article-title: Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1 + TAMs publication-title: Sci. Rep. doi: 10.1038/s41598-019-39553-z – volume: 23 start-page: 995 year: 2016 ident: 10.1016/j.tig.2022.02.010_bb0370 article-title: E4 ligase–specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3296 – volume: 168 start-page: 644 year: 2017 ident: 10.1016/j.tig.2022.02.010_bb0020 article-title: Endogenous DNA damage as a source of genomic instability in cancer publication-title: Cell doi: 10.1016/j.cell.2017.01.002 – volume: 9 start-page: 697-4 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0470 article-title: Various stress stimuli rewire the profile of liver secretome in a p53-dependent manner publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0697-4 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.tig.2022.02.010_bb0055 article-title: p53 in the DNA-damage-repair process publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a026070 – volume: 12 start-page: 435 year: 2013 ident: 10.1016/j.tig.2022.02.010_bb0060 article-title: Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging publication-title: Aging Cell doi: 10.1111/acel.12060 – volume: 7 start-page: 847 year: 1987 ident: 10.1016/j.tig.2022.02.010_bb0250 article-title: Deletion of 5’-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation publication-title: Mol. Cell. Biol. – volume: 7 start-page: 534 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0555 article-title: Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0686 – volume: 9 start-page: 771 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0480 article-title: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03224-w – volume: 127 start-page: 1323 year: 2006 ident: 10.1016/j.tig.2022.02.010_bb0215 article-title: Modeling the therapeutic efficacy of p53 restoration in tumors publication-title: Cell doi: 10.1016/j.cell.2006.12.007 – volume: 23 start-page: 429 year: 2009 ident: 10.1016/j.tig.2022.02.010_bb0310 article-title: CCR5 and p53 codon 72 gene polymorphisms: Implications in breast cancer development publication-title: Int. J. Mol. Med. – volume: 17 start-page: 201 year: 2003 ident: 10.1016/j.tig.2022.02.010_bb0300 article-title: Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform publication-title: Genes Dev. doi: 10.1101/gad.1050003 – volume: 29 start-page: 2703 year: 2011 ident: 10.1016/j.tig.2022.02.010_bb0130 article-title: Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2011.34.7872 – volume: 37 start-page: 718 year: 2005 ident: 10.1016/j.tig.2022.02.010_bb0205 article-title: Temporal dissection of p53 function in vitro and in vivo publication-title: Nat. Genet. doi: 10.1038/ng1572 – volume: 317 start-page: 816 year: 1985 ident: 10.1016/j.tig.2022.02.010_bb0105 article-title: The cellular oncogene p53 can be activated by mutagenesis publication-title: Nature doi: 10.1038/317816a0 – volume: 353 start-page: 1 year: 2011 ident: 10.1016/j.tig.2022.02.010_bb0295 article-title: Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.02.007 – volume: 80 start-page: 5231 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0275 article-title: Phosphorylation control of P53 DNA-binding cooperativity balances tumorigenesis and aging publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-20-2002 – volume: 306 start-page: 594 year: 1983 ident: 10.1016/j.tig.2022.02.010_bb0100 article-title: A single gene and a pseudogene for the cellular tumour antigen p53 publication-title: Nature doi: 10.1038/306594a0 – volume: 15 start-page: 1054 year: 2008 ident: 10.1016/j.tig.2022.02.010_bb0360 article-title: The SCFFSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in C. elegans publication-title: Cell Death Differ. doi: 10.1038/cdd.2008.30 – volume: 153 start-page: 449 year: 2013 ident: 10.1016/j.tig.2022.02.010_bb0455 article-title: Non-cell-autonomous tumor suppression by p53 publication-title: Cell doi: 10.1016/j.cell.2013.03.020 – volume: 13 start-page: 1355 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0440 article-title: P53 mutant p53 N236S regulates cancer-associated fibroblasts properties through Stat3 pathway publication-title: OncoTargets Ther. doi: 10.2147/OTT.S229065 – volume: 2 start-page: 693 year: 2021 ident: 10.1016/j.tig.2022.02.010_bb0530 article-title: Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma publication-title: Nat. Cancer doi: 10.1038/s43018-021-00221-9 – volume: 11 start-page: 449 year: 2012 ident: 10.1016/j.tig.2022.02.010_bb0400 article-title: Telomere dysfunctional environment induces loss of quiescence and inherent impairments of hematopoietic stem cell function publication-title: Aging Cell doi: 10.1111/j.1474-9726.2012.00802.x – volume: 11 start-page: 483 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0505 article-title: A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2 publication-title: Cell Death Dis. doi: 10.1038/s41419-020-2670-2 – volume: 2 start-page: 1 year: 2010 ident: 10.1016/j.tig.2022.02.010_bb0150 article-title: Transcriptional regulation by P53 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a000935 – volume: 12 start-page: 1908 year: 2002 ident: 10.1016/j.tig.2022.02.010_bb0345 article-title: Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01262-9 – volume: 119 start-page: 861 year: 2004 ident: 10.1016/j.tig.2022.02.010_bb0110 article-title: Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome publication-title: Cell doi: 10.1016/j.cell.2004.11.006 – volume: 124 start-page: 315 year: 2006 ident: 10.1016/j.tig.2022.02.010_bb0405 article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 publication-title: Cell doi: 10.1016/j.cell.2005.11.044 – volume: 10 start-page: 1008 year: 2016 ident: 10.1016/j.tig.2022.02.010_bb0070 article-title: Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2016.04.001 – volume: 9 start-page: 5069 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0465 article-title: Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels publication-title: Nat. Commun. doi: 10.1038/s41467-018-07339-y – volume: 10 start-page: 1435-2 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0520 article-title: Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer publication-title: Cell Death Dis. – volume: 465 start-page: 577 year: 2010 ident: 10.1016/j.tig.2022.02.010_bb0380 article-title: HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase publication-title: Nature doi: 10.1038/nature09141 – volume: 23 start-page: 544 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0395 article-title: Impaired notch signaling leads to a decrease in p53 activity and mitotic catastrophe in aged muscle stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.08.019 – volume: 26 start-page: 1267 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0570 article-title: Antigen experienced T cells from peripheral blood recognize p53 neoantigens publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-19-1874 – volume: 7 start-page: 1 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0065 article-title: A bidirectional crosstalk between autophagy and TP53 determines the pace of aging publication-title: Mol. Cell. Oncol. – volume: 371 start-page: 8697 year: 2021 ident: 10.1016/j.tig.2022.02.010_bb0550 article-title: Targeting a neoantigen derived from a common TP53 mutation publication-title: Science doi: 10.1126/science.abc8697 – volume: 356 start-page: 215 year: 1992 ident: 10.1016/j.tig.2022.02.010_bb0170 article-title: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours publication-title: Nature 1992 356:6366 – volume: 50 start-page: 167 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0375 article-title: Somatic niche cells regulate the CEP-1/p53-mediated DNA damage response in primordial germ cells publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.06.012 – volume: 265 start-page: 346 year: 1994 ident: 10.1016/j.tig.2022.02.010_bb0125 article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations publication-title: Science (New York, N.Y.) doi: 10.1126/science.8023157 – volume: 12 start-page: 0189861 year: 2017 ident: 10.1016/j.tig.2022.02.010_bb0290 article-title: Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death publication-title: PLoS One doi: 10.1371/journal.pone.0189861 – volume: 14 start-page: 289 year: 2000 ident: 10.1016/j.tig.2022.02.010_bb0050 article-title: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites publication-title: Genes Dev. doi: 10.1101/gad.14.3.289 – volume: 25 start-page: 2167 year: 2006 ident: 10.1016/j.tig.2022.02.010_bb0305 article-title: ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency publication-title: EMBO J. doi: 10.1038/sj.emboj.7601115 – volume: 16 start-page: 413 year: 2004 ident: 10.1016/j.tig.2022.02.010_bb0165 article-title: p53 linear diffusion along DNA requires its C terminus publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.09.032 – volume: 415 start-page: 45 year: 2002 ident: 10.1016/j.tig.2022.02.010_bb0235 article-title: p53 mutant mice that display early ageing-associated phenotypes publication-title: Nature doi: 10.1038/415045a – volume: 29 start-page: 418 year: 2001 ident: 10.1016/j.tig.2022.02.010_bb0175 article-title: Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer publication-title: Nat. Genet. 2001 29:4 – volume: 7 start-page: 12508 year: 2016 ident: 10.1016/j.tig.2022.02.010_bb0365 article-title: The tumour suppressor CYLD regulates the p53 DNA damage response publication-title: Nat. Commun. doi: 10.1038/ncomms12508 – volume: 434 start-page: 605 year: 2005 ident: 10.1016/j.tig.2022.02.010_bb0040 article-title: Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage publication-title: Nature doi: 10.1038/nature03442 – volume: 10 start-page: 1481 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0545 article-title: p53 dynamics in single cells are temperature-sensitive publication-title: Sci. Rep. doi: 10.1038/s41598-020-58267-1 – volume: 7 start-page: 34701 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0320 article-title: A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models publication-title: eLife doi: 10.7554/eLife.34701 – volume: 5 year: 2016 ident: 10.1016/j.tig.2022.02.010_bb0200 article-title: TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants publication-title: eLife – volume: 7(2) start-page: 158 year: 2008 ident: 10.1016/j.tig.2022.02.010_bb0315 – volume: 253 start-page: 49 year: 1991 ident: 10.1016/j.tig.2022.02.010_bb0080 article-title: p53 mutations in human cancers publication-title: Science (New York, N.Y.) doi: 10.1126/science.1905840 – volume: 7 year: 2017 ident: 10.1016/j.tig.2022.02.010_bb0265 article-title: Control of cellular aging, tissue function, and cancer by p53 downstream of telomeres publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a026088 – volume: 277 start-page: 12491 year: 2002 ident: 10.1016/j.tig.2022.02.010_bb0045 article-title: ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation publication-title: J. Biol. Chem. doi: 10.1074/jbc.C200093200 – volume: 101 start-page: 91 year: 2000 ident: 10.1016/j.tig.2022.02.010_bb0340 article-title: Drosophila p53 is a structural and functional homolog of the tumor suppressor p53 publication-title: Cell doi: 10.1016/S0092-8674(00)80626-1 – volume: 592 start-page: 695 year: 2021 ident: 10.1016/j.tig.2022.02.010_bb0025 article-title: The central role of DNA damage in the ageing process publication-title: Nature doi: 10.1038/s41586-021-03307-7 – volume: 18 start-page: 2736 year: 2004 ident: 10.1016/j.tig.2022.02.010_bb0580 article-title: Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging publication-title: Genes Dev. doi: 10.1101/gad.310304 – volume: 8 start-page: 61353 year: 2013 ident: 10.1016/j.tig.2022.02.010_bb0435 article-title: Mutant p53 attenuates the anti-tumorigenic activity of fibroblasts-secreted interferon beta publication-title: PLoS One doi: 10.1371/journal.pone.0061353 – volume: 37 start-page: 2379 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0585 article-title: P53 isoforms regulate premature aging in human cells publication-title: Oncogene doi: 10.1038/s41388-017-0101-3 – volume: 572 start-page: 538 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0410 article-title: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis publication-title: Nature doi: 10.1038/s41586-019-1450-6 – volume: 219 start-page: 3 year: 2009 ident: 10.1016/j.tig.2022.02.010_bb0075 article-title: Tumour suppression by p53: The importance of apoptosis and cellular senescence publication-title: J. Pathol. doi: 10.1002/path.2584 – volume: 44 start-page: 659 year: 1980 ident: 10.1016/j.tig.2022.02.010_bb0090 article-title: A common transformation-related protein in murine sarcomas and leukemias publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/SQB.1980.044.01.069 – volume: 33 start-page: 5571 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0230 article-title: P53 ICE CRIM mouse: A tool to generate mutant allelic series in somatic cells and germ lines for cancer studies publication-title: FASEB J. doi: 10.1096/fj.201802027R – volume: 4 start-page: 371 year: 2021 ident: 10.1016/j.tig.2022.02.010_bb0425 article-title: Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance publication-title: Commun. Biol. doi: 10.1038/s42003-021-01898-5 – volume: 41 start-page: 25 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0385 article-title: Extension of longevity and reduction of inflammation is ovarian-dependent, but germ cell-independent in post-reproductive female mice publication-title: GeroScience doi: 10.1007/s11357-018-0049-4 – volume: 25 start-page: 169 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0285 article-title: Relevance of the p53-MDM2 axis to aging publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.187 – volume: 408 start-page: 433 year: 2000 ident: 10.1016/j.tig.2022.02.010_bb0035 article-title: The DNA damage response: putting checkpoints in perspective publication-title: Nature doi: 10.1038/35044005 – volume: 11 start-page: 17596-5 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0450 article-title: Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome publication-title: Nat. Commun. doi: 10.1038/s41467-020-17596-5 – volume: 13 start-page: 739 year: 1996 ident: 10.1016/j.tig.2022.02.010_bb0210 article-title: Induction of apoptosis by tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras transformed p53-/- mouse embryo fibroblasts publication-title: Oncogene – volume: 70 start-page: 667 year: 2021 ident: 10.1016/j.tig.2022.02.010_bb0560 article-title: Unique TP53 neoantigen and the immune microenvironment in long-term survivors of Hepatocellular carcinoma publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-020-02711-8 – volume: 5 start-page: 77 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0490 article-title: Protoporphyrin IX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells publication-title: Cell Death Discov. doi: 10.1038/s41420-019-0157-7 – volume: 9 start-page: 439 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0515 article-title: APR-246 reactivates mutant p53 by targeting cysteines 124 and 277 publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0463-7 – volume: 11 start-page: 1722 year: 2001 ident: 10.1016/j.tig.2022.02.010_bb0330 article-title: The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00534-6 – volume: 470 start-page: 359 year: 2011 ident: 10.1016/j.tig.2022.02.010_bb0270 article-title: Telomere dysfunction induces metabolic and mitochondrial compromise publication-title: Nature 2011 470:7334 – volume: 341 start-page: 1145 year: 2004 ident: 10.1016/j.tig.2022.02.010_bb0160 article-title: Cooperative binding of tetrameric p53 to DNA publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.06.071 – volume: 445 start-page: 656 year: 2007 ident: 10.1016/j.tig.2022.02.010_bb0225 article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas publication-title: Nature 2006 445:7128 – volume: 14 start-page: 104 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0540 article-title: Hypoxia-derived exosomes induce putative altered pathways in biosynthesis and ion regulatory channels in glioblastoma cells publication-title: Biochem. Biophys. Rep. – volume: 23 start-page: 509 year: 2016 ident: 10.1016/j.tig.2022.02.010_bb0475 article-title: Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.119 – volume: 445 start-page: 661 year: 2007 ident: 10.1016/j.tig.2022.02.010_bb0220 article-title: Restoration of p53 function leads to tumour regression in vivo publication-title: Nature 2006 445:7128 – volume: 8 start-page: 282 year: 2002 ident: 10.1016/j.tig.2022.02.010_bb0510 article-title: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound publication-title: Nat. Med. doi: 10.1038/nm0302-282 – volume: 11 start-page: 16755 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0565 article-title: Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen publication-title: Nat. Commun. – volume: 6 start-page: 5515 year: 2021 ident: 10.1016/j.tig.2022.02.010_bb0575 article-title: Bispecific antibodies targeting mutant RAS neoantigens publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abd5515 – volume: 21 start-page: 6225 year: 2002 ident: 10.1016/j.tig.2022.02.010_bb0190 article-title: ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally publication-title: EMBO J. doi: 10.1093/emboj/cdf595 – volume: 24 start-page: 72 year: 2017 ident: 10.1016/j.tig.2022.02.010_bb0390 article-title: LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse publication-title: Cell Death Differ. doi: 10.1038/cdd.2016.97 – volume: 77 start-page: 2292 year: 2017 ident: 10.1016/j.tig.2022.02.010_bb0415 article-title: Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2832 – volume: 275 start-page: 39944 year: 2000 ident: 10.1016/j.tig.2022.02.010_bb0155 article-title: The N terminus of p53 regulates its dissociation from DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002509200 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0500 article-title: Regulation of cell death and immunity by xiap publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a036426 – volume: 7 start-page: 64 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0535 article-title: Hypoxia and IF1 expression promote ROS decrease in cancer cells publication-title: Cells doi: 10.3390/cells7070064 – volume: 11 start-page: 3610 year: 1972 ident: 10.1016/j.tig.2022.02.010_bb0010 article-title: Rate of depurination of native deoxyribonucleic acid publication-title: Biochemistry doi: 10.1021/bi00769a018 – volume: 101 start-page: 103 year: 2000 ident: 10.1016/j.tig.2022.02.010_bb0335 article-title: Drosophila p53 binds a damage response element at the reaper locus publication-title: Cell doi: 10.1016/S0092-8674(00)80627-3 – volume: 76 start-page: 2420 year: 1979 ident: 10.1016/j.tig.2022.02.010_bb0095 article-title: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.76.5.2420 – volume: 37 start-page: 2379 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0325 article-title: p53 isoforms regulate premature aging in human cells publication-title: Oncogene 2018 37:18 – volume: 120 start-page: 357 year: 2005 ident: 10.1016/j.tig.2022.02.010_bb0355 article-title: Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis publication-title: Cell doi: 10.1016/j.cell.2004.12.009 – volume: 115 start-page: 6410 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0445 article-title: Altered p53 functionality in cancer-associated fibroblasts contributes to their cancer-supporting features publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1719076115 – volume: 2020 start-page: 4534289 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0180 article-title: The establishment of esophageal precancerous lesion model by using p53 conditional knockout mouse in esophageal epithelium publication-title: Biomed. Res. Int. – volume: 28 start-page: 739 year: 2007 ident: 10.1016/j.tig.2022.02.010_bb0015 article-title: The DNA damage response: ten years after publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.11.015 – volume: 25 start-page: 154 year: 2018 ident: 10.1016/j.tig.2022.02.010_bb0120 article-title: Why are there hotspot mutations in the TP53 gene in human cancers? publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.180 – volume: 12 start-page: 153 year: 2005 ident: 10.1016/j.tig.2022.02.010_bb0350 article-title: C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401539 – volume: 18 start-page: 306 year: 2004 ident: 10.1016/j.tig.2022.02.010_bb0255 article-title: Modulation of mammalian life span by the short isoform of p53 publication-title: Genes Dev. doi: 10.1101/gad.1162404 – volume: 30 start-page: 481 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0430 article-title: Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.12.028 – volume: 99 start-page: 2948 year: 2002 ident: 10.1016/j.tig.2022.02.010_bb0135 article-title: Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.052713099 – volume: 362 start-page: 709 year: 1993 ident: 10.1016/j.tig.2022.02.010_bb0005 article-title: Instability and decay of the primary structure of DNA publication-title: Nature doi: 10.1038/362709a0 – volume: 294 start-page: 591 year: 2001 ident: 10.1016/j.tig.2022.02.010_bb0590 article-title: Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance publication-title: Science (New York, N.Y.) doi: 10.1126/science.1065486 – volume: 12 start-page: 993 year: 2010 ident: 10.1016/j.tig.2022.02.010_bb0280 article-title: Puma is required for p53-induced depletion of adult stem cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2100 – volume: 22 start-page: 5866 year: 2003 ident: 10.1016/j.tig.2022.02.010_bb0420 article-title: The RAS signal transduction pathway and its role in radiation sensitivity publication-title: Oncogene doi: 10.1038/sj.onc.1206699 – volume: 20 start-page: 6197 year: 2019 ident: 10.1016/j.tig.2022.02.010_bb0140 article-title: Gain-of-function mutant p53: all the roads lead to tumorigenesis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20246197 – volume: 34 start-page: 2858 year: 2020 ident: 10.1016/j.tig.2022.02.010_bb0485 article-title: MDM2 inhibition: an important step forward in cancer therapy publication-title: Leukemia doi: 10.1038/s41375-020-0949-z – volume: 7 year: 2017 ident: 10.1016/j.tig.2022.02.010_bb0185 article-title: Inherited TP53 mutations and the Li-fraumeni syndrome publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a026187 |
SSID | ssj0005735 |
Score | 2.666809 |
SecondaryResourceType | review_article |
Snippet | The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 598 |
SubjectTerms | aging Aging - genetics Apoptosis cancer DNA damage DNA Damage - genetics Genes, p53 Humans Neoplasms - genetics Neoplasms - metabolism p53 tumor suppression Tumor Suppressor Protein p53 - genetics |
Title | The p53 network: cellular and systemic DNA damage responses in cancer and aging |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0168952522000373 https://dx.doi.org/10.1016/j.tig.2022.02.010 https://www.ncbi.nlm.nih.gov/pubmed/35346511 https://www.proquest.com/docview/2644937708 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_GRPFFdH7NjxHBJ6Eua_qx-TamYyqbD07YW0jTTCpah9sefPFv965ph4JOEPrScmlD7nL3S3P5HcApRmjj4srKiZQWDno_7mDQix2tKR4oX6kmnUbuD4Leg3cz8kcl6BRnYSitMvf91qdn3jp_Us9Hsz5Jkvo9gpVmy3cRQGQsKsT46XkhWfn5x5c0j9AW2URhh6SLnc0sx2uWPOIS0XUz2k46RPtzbPoNe2YxqLsJGzl4ZG3bvy0ombQCq7ac5HsF1vr5Rvk23KH62cQXLLVp3heM_tBTyilTacwsf3Oi2eWgzWL1gk6FvdlsWTNlSco0GYOVzcoY7cCwezXs9Jy8doKjPS5mDipgHCjdIro0NxzjLBQ-hqtIK9PQfhia2FeeGocIOEJuxppIb3ApJlyi54mM2IVy-pqafWDGRIGn46ClDPdEZFpaiEgjrsGX6oCLKvBi0KTOecWpvMWzLBLIniSOs6RxlhyvBq_C2aLJxJJqLBN2C03I4rQo-jeJLn9ZI2_R6Js5_dXspFC1xGlGmlGpeZ1PJeFGRHIhb1Zhz9rAouvCF1RRvnHwv48ewjrd2fyzIyjP3ubmGJHOLKplplyDlfb1bW_wCUWO-MI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgiMcF8WY8g8QJqVrWNO3GbeKhwR4cGBK3KE0zVATdBOPAv8du2iEkHhJST23cRo5jf2mczwDHGKGtjysrL9ZGeOj9uIdBL_GMoXigpdYNOo3c64ftu-D6Xt7PwFl5FobSKgvf73x67q2LO7VCm7VxmtZuEaw0mtJHAJGzqIhZmCN2KlmBudZVp93_zPSIXJ1NbO-RQLm5mad5TdIHXCX6fs7cSedovw9PP8HPPAxdrsBygR9Zy3VxFWZstgbzrqLk-xos9Iq98nW4QQtgYylY5jK9Txn9pKesU6azhDkK59Sw836LJfoZ_Qp7cQmz9pWlGTNkD65tXsloAwaXF4OztleUT_BMwMXEwzEYhto0iTHNj4Y4EYXEiBUbbetGRpFNpA70MELMEXE7NMR7g6sx4RNDT2zFJlSyUWa3gVkbh4FJwqa2PBCxbRohYoPQBl9qQi6qwEulKVNQi1OFiydV5pA9KtSzIj0rjledV-FkKjJ2vBq_NfbLkVDlgVF0cQq9_m9CwVToi0X9JXZUDrXCmUYjozM7entVBB0RzEW8UYUtZwPTrgspqKh8fed_Hz2Exfag11Xdq35nF5boiUtH24PK5OXN7iPwmcQHhWF_ANRG-3M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+p53+network%3A+cellular+and+systemic+DNA+damage+responses+in+cancer+and+aging&rft.jtitle=Trends+in+genetics&rft.au=Vaddavalli%2C+Pavana+Lakshmi&rft.au=Schumacher%2C+Bj%C3%B6rn&rft.date=2022-06-01&rft.issn=0168-9525&rft.volume=38&rft.issue=6&rft.spage=598&rft_id=info:doi/10.1016%2Fj.tig.2022.02.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon |