The p53 network: cellular and systemic DNA damage responses in cancer and aging

The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a...

Full description

Saved in:
Bibliographic Details
Published inTrends in genetics Vol. 38; no. 6; pp. 598 - 612
Main Authors Vaddavalli, Pavana Lakshmi, Schumacher, Björn
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated. The tumor protein TP53 is the single most frequently mutated gene in human cancer.p53 is a central regulator of the DNA damage response that impacts cancer and aging.p53 is regulated by non-cell-autonomous mechanisms and exerts systemic consequences.Therapeutic strategies targeting p53 in cancer have recently made significant progress.
AbstractList The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated. The tumor protein TP53 is the single most frequently mutated gene in human cancer.p53 is a central regulator of the DNA damage response that impacts cancer and aging.p53 is regulated by non-cell-autonomous mechanisms and exerts systemic consequences.Therapeutic strategies targeting p53 in cancer have recently made significant progress.
The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.
The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.
Author Schumacher, Björn
Vaddavalli, Pavana Lakshmi
Author_xml – sequence: 1
  givenname: Pavana Lakshmi
  surname: Vaddavalli
  fullname: Vaddavalli, Pavana Lakshmi
  organization: Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
– sequence: 2
  givenname: Björn
  orcidid: 0000-0001-6097-5238
  surname: Schumacher
  fullname: Schumacher, Björn
  email: bjoern.schumacher@uni-koeln.de
  organization: Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35346511$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUQD0U8Sh8AAvyyNLiRxwnMFXlKSG6dLdc5ya4JE6xXVD_HleBhQGkK1myzrm6Oido5HoHCJ1TMqWE5lfrabTNlBHGpiQNJSN0nP6LSSmYOEInIawJIUJycYiOuOBZLig9RovlK-CN4NhB_Oz92zU20LbbVnusXYXDLkTorMG3LzNc6U43gD2ETe8CBGwdNtoZGFjdWNecooNatwHOvt8xWt7fLeePk-fFw9N89jwxGeFxAqyoc23KdEXGZC1LzgXlZGU0UCOkhEroTNcyz7kkUBsuZFGyjDNKRbYCPkaXw9qN79-3EKLqbNhfrh3026BYnmUll5IUCb34RrerDiq18bbTfqd-GiRADoDxfQgeamVs1NH2LnptW0WJ2hdWa5UKq31hRdJQkkz6y_xZ_pdzMziQ6nxY8CoYCyliZT2YqKre_mmXv2zTWmeNbt9g94_7BSqIpic
CitedBy_id crossref_primary_10_1007_s00210_025_03805_9
crossref_primary_10_1007_s11033_024_09425_5
crossref_primary_10_1016_j_lfs_2024_123334
crossref_primary_10_3390_molecules29245893
crossref_primary_10_1016_j_tice_2024_102561
crossref_primary_10_7717_peerj_17532
crossref_primary_10_1016_j_ncrna_2025_03_003
crossref_primary_10_1016_j_ijbiomac_2024_137137
crossref_primary_10_1051_bioconf_20237201009
crossref_primary_10_23946_2500_0764_2023_8_4_115_123
crossref_primary_10_1016_j_phrs_2023_106835
crossref_primary_10_1038_s41419_023_05761_9
crossref_primary_10_1097_CAD_0000000000001711
crossref_primary_10_1016_S1875_5364_25_60847_8
crossref_primary_10_1007_s10528_024_10704_w
crossref_primary_10_3389_fonc_2023_1179947
crossref_primary_10_7759_cureus_51090
crossref_primary_10_3389_fphar_2024_1490878
crossref_primary_10_3390_ijms252312928
crossref_primary_10_1016_j_chemosphere_2024_143217
crossref_primary_10_3390_molecules28093912
crossref_primary_10_1016_j_intimp_2024_112475
crossref_primary_10_1038_s41598_025_87545_z
crossref_primary_10_3389_fphar_2024_1409210
crossref_primary_10_1016_j_jep_2024_118293
crossref_primary_10_3390_biom14111354
crossref_primary_10_1038_s41392_023_01347_1
crossref_primary_10_1016_j_tig_2024_08_007
crossref_primary_10_1016_j_psj_2023_103231
crossref_primary_10_3390_cancers17061008
crossref_primary_10_1126_sciadv_adp2229
crossref_primary_10_1097_MD_0000000000036598
crossref_primary_10_1016_j_jbc_2023_104800
crossref_primary_10_1073_pnas_2419196122
crossref_primary_10_3389_fgene_2024_1441189
crossref_primary_10_3724_abbs_2025008
crossref_primary_10_1080_07391102_2024_2429181
crossref_primary_10_1038_s41420_023_01730_5
crossref_primary_10_1186_s12894_023_01334_2
crossref_primary_10_1038_s41418_023_01170_9
crossref_primary_10_1093_stmcls_sxae056
crossref_primary_10_1016_j_trecan_2024_08_001
crossref_primary_10_1007_s00467_023_06162_y
crossref_primary_10_1016_j_jinorgbio_2023_112125
crossref_primary_10_1002_mco2_288
crossref_primary_10_1016_j_jbc_2025_108418
crossref_primary_10_1111_jog_15766
crossref_primary_10_3390_ijms241310812
crossref_primary_10_1016_j_aca_2024_343048
crossref_primary_10_1186_s13073_024_01318_3
crossref_primary_10_1155_2022_6948367
crossref_primary_10_4240_wjgs_v16_i2_276
crossref_primary_10_34133_bmr_0170
crossref_primary_10_1038_s41419_022_05408_1
crossref_primary_10_1007_s13205_024_04166_5
crossref_primary_10_3390_ijms24043589
crossref_primary_10_1038_s41598_024_65221_y
crossref_primary_10_1016_j_bbamcr_2025_119908
crossref_primary_10_1039_D3SC06222H
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2023050271
crossref_primary_10_3390_biology11091325
crossref_primary_10_1002_jat_4520
crossref_primary_10_1186_s12935_025_03717_x
crossref_primary_10_1016_j_isci_2023_107601
crossref_primary_10_1007_s44297_024_00029_w
crossref_primary_10_1002_tox_24219
crossref_primary_10_1186_s12920_023_01727_0
crossref_primary_10_1016_j_biopha_2024_116917
crossref_primary_10_1002_mco2_782
crossref_primary_10_1038_s41419_024_06586_w
crossref_primary_10_1002_jbt_23504
crossref_primary_10_1016_j_biochi_2023_09_026
crossref_primary_10_3390_ijms24108499
crossref_primary_10_1038_s41419_024_06702_w
crossref_primary_10_1016_j_heliyon_2024_e40096
crossref_primary_10_3390_epigenomes7040032
crossref_primary_10_1002_bab_2521
crossref_primary_10_3892_mmr_2025_13445
crossref_primary_10_1016_j_biopha_2023_116114
crossref_primary_10_3389_fimmu_2024_1429523
crossref_primary_10_3892_mmr_2025_13446
crossref_primary_10_1002_smtd_202400757
crossref_primary_10_1073_pnas_2303698120
crossref_primary_10_3389_fphar_2023_1215995
crossref_primary_10_1093_labmed_lmae048
crossref_primary_10_1038_s41598_024_58424_w
crossref_primary_10_54817_IC_v63n4a05
crossref_primary_10_1111_bph_15978
crossref_primary_10_3390_gidisord4030016
crossref_primary_10_1038_s41598_025_91700_x
crossref_primary_10_1111_acel_14335
crossref_primary_10_3892_ol_2022_13504
crossref_primary_10_1016_j_jbc_2024_108050
crossref_primary_10_1080_15257770_2024_2428436
crossref_primary_10_1177_15330338231178403
crossref_primary_10_3390_antiox11061121
crossref_primary_10_1016_j_bneo_2024_100004
crossref_primary_10_1016_j_esmoop_2025_104136
crossref_primary_10_1021_acs_jmedchem_3c02347
crossref_primary_10_3389_fgene_2022_944681
crossref_primary_10_3389_fonc_2023_1229696
crossref_primary_10_1016_j_bbcan_2024_189206
crossref_primary_10_3390_ijms252312647
crossref_primary_10_1007_s43440_024_00685_3
crossref_primary_10_1186_s12885_023_11758_6
crossref_primary_10_3389_fgene_2022_949989
crossref_primary_10_1016_j_jep_2023_116996
crossref_primary_10_1096_fj_202402479RRR
crossref_primary_10_18632_aging_205619
crossref_primary_10_1111_acel_13869
crossref_primary_10_1016_j_toxlet_2023_06_005
crossref_primary_10_1021_acsami_3c03181
crossref_primary_10_3390_cells13050441
crossref_primary_10_1139_cjpp_2023_0192
crossref_primary_10_1007_s00432_024_05989_8
crossref_primary_10_1007_s11033_024_10051_4
crossref_primary_10_1093_genetics_iyae128
crossref_primary_10_3390_molecules29174275
crossref_primary_10_1002_mco2_352
Cites_doi 10.1038/46311
10.1016/j.celrep.2018.09.079
10.1182/blood-2006-03-010413
10.1098/rsob.190168
10.1016/j.cell.2004.11.004
10.1073/pnas.2008474117
10.1016/j.mad.2007.10.011
10.1186/s40425-019-0750-6
10.1016/0092-8674(79)90293-9
10.1038/s41598-019-39553-z
10.1038/nsmb.3296
10.1016/j.cell.2017.01.002
10.1038/s41419-018-0697-4
10.1101/cshperspect.a026070
10.1111/acel.12060
10.1158/2326-6066.CIR-18-0686
10.1038/s41467-018-03224-w
10.1016/j.cell.2006.12.007
10.1101/gad.1050003
10.1200/JCO.2011.34.7872
10.1038/ng1572
10.1038/317816a0
10.1016/j.ydbio.2011.02.007
10.1158/0008-5472.CAN-20-2002
10.1038/306594a0
10.1038/cdd.2008.30
10.1016/j.cell.2013.03.020
10.2147/OTT.S229065
10.1038/s43018-021-00221-9
10.1111/j.1474-9726.2012.00802.x
10.1038/s41419-020-2670-2
10.1101/cshperspect.a000935
10.1016/S0960-9822(02)01262-9
10.1016/j.cell.2004.11.006
10.1016/j.cell.2005.11.044
10.1016/j.molonc.2016.04.001
10.1038/s41467-018-07339-y
10.1038/nature09141
10.1016/j.stem.2018.08.019
10.1158/1078-0432.CCR-19-1874
10.1126/science.abc8697
10.1016/j.devcel.2019.06.012
10.1126/science.8023157
10.1371/journal.pone.0189861
10.1101/gad.14.3.289
10.1038/sj.emboj.7601115
10.1016/j.molcel.2004.09.032
10.1038/415045a
10.1038/ncomms12508
10.1038/nature03442
10.1038/s41598-020-58267-1
10.7554/eLife.34701
10.1126/science.1905840
10.1101/cshperspect.a026088
10.1074/jbc.C200093200
10.1016/S0092-8674(00)80626-1
10.1038/s41586-021-03307-7
10.1101/gad.310304
10.1371/journal.pone.0061353
10.1038/s41388-017-0101-3
10.1038/s41586-019-1450-6
10.1002/path.2584
10.1101/SQB.1980.044.01.069
10.1096/fj.201802027R
10.1038/s42003-021-01898-5
10.1007/s11357-018-0049-4
10.1038/cdd.2017.187
10.1038/35044005
10.1038/s41467-020-17596-5
10.1007/s00262-020-02711-8
10.1038/s41420-019-0157-7
10.1038/s41419-018-0463-7
10.1016/S0960-9822(01)00534-6
10.1016/j.jmb.2004.06.071
10.1038/cdd.2015.119
10.1038/nm0302-282
10.1126/sciimmunol.abd5515
10.1093/emboj/cdf595
10.1038/cdd.2016.97
10.1158/0008-5472.CAN-16-2832
10.1074/jbc.M002509200
10.1101/cshperspect.a036426
10.3390/cells7070064
10.1021/bi00769a018
10.1016/S0092-8674(00)80627-3
10.1073/pnas.76.5.2420
10.1016/j.cell.2004.12.009
10.1073/pnas.1719076115
10.1016/j.molcel.2007.11.015
10.1038/cdd.2017.180
10.1038/sj.cdd.4401539
10.1101/gad.1162404
10.1016/j.celrep.2019.12.028
10.1073/pnas.052713099
10.1038/362709a0
10.1126/science.1065486
10.1038/ncb2100
10.1038/sj.onc.1206699
10.3390/ijms20246197
10.1038/s41375-020-0949-z
10.1101/cshperspect.a026187
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.tig.2022.02.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EndPage 612
ExternalDocumentID 35346511
10_1016_j_tig_2022_02_010
S0168952522000373
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-RU
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABLJU
ABMAC
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADUVX
ADVLN
ADXHL
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HZ~
IH2
IHE
J1W
K-O
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SSU
SSZ
T5K
TN5
UQL
WH7
WUQ
Y6R
Z5R
ZCA
ZCG
ZGI
~G-
~KM
1RT
AACTN
AAIAV
ABYKQ
AFCTW
AFKWA
AFMIJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
RIG
XFK
ZA5
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c403t-e28f6ac9465427f79335130bcae1c577ed5a4af766370efc3578924321154be3
IEDL.DBID .~1
ISSN 0168-9525
IngestDate Tue Aug 05 11:22:28 EDT 2025
Thu Apr 03 07:00:10 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Jul 01 01:43:37 EDT 2025
Fri Feb 23 02:41:02 EST 2024
Tue Aug 26 19:13:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords tumor suppression
cancer
aging
DNA damage
p53
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-e28f6ac9465427f79335130bcae1c577ed5a4af766370efc3578924321154be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6097-5238
PMID 35346511
PQID 2644937708
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2644937708
pubmed_primary_35346511
crossref_citationtrail_10_1016_j_tig_2022_02_010
crossref_primary_10_1016_j_tig_2022_02_010
elsevier_sciencedirect_doi_10_1016_j_tig_2022_02_010
elsevier_clinicalkey_doi_10_1016_j_tig_2022_02_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in genetics
PublicationTitleAlternate Trends Genet
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu (bb0395) 2018; 23
Mamriev (bb0505) 2020; 11
Brodsky (bb0335) 2000; 101
Ollmann (bb0340) 2000; 101
Wu (bb0565) 2020; 11
Sgarbi (bb0535) 2018; 7
Bojesen, Nordestgaard (bb0315) 2008; 7(2)
Martins (bb0215) 2006; 127
Jost, Vucic (bb0500) 2020; 12
Zhao (bb0320) 2018; 7
Dumble (bb0240) 2007; 109
Hollstein (bb0080) 1991; 253
Gannon (bb0295) 2011; 353
McKinney (bb0165) 2004; 16
Derry (bb0590) 2001; 294
Wellenstein (bb0410) 2019; 572
Linzer, Levine (bb0085) 1979; 17
Schumacher (bb0355) 2005; 120
Harper, Elledge (bb0015) 2007; 28
Baugh (bb0120) 2018; 25
Wu, Prives (bb0285) 2018; 25
Sahin (bb0270) 2011; 470
Timofeev (bb0275) 2020; 80
Falck (bb0040) 2005; 434
Fan (bb0230) 2019; 33
Stein (bb0140) 2019; 20
Zhu (bb0180) 2020; 2020
Sulak (bb0200) 2016; 5
Cooks (bb0480) 2018; 9
Schumacher (bb0025) 2021; 592
Jenkins (bb0105) 1985; 317
Williams, Schumacher (bb0055) 2016; 6
Cho (bb0125) 1994; 265
Ventura (bb0220) 2007; 445
García-Cao (bb0190) 2002; 21
Dong (bb0425) 2021; 4
Zhang (bb0515) 2018; 9
Shieh (bb0050) 2000; 14
von Muhlinen (bb0325) 2018; 37
Gao (bb0360) 2008; 15
Schumacher (bb0350) 2005; 12
Liu (bb0280) 2010; 12
DeLeo (bb0095) 1979; 76
Weinberg (bb0160) 2004; 341
Maier (bb0255) 2004; 18
Aoki (bb0310) 2009; 23
Xue (bb0225) 2007; 445
Konopleva (bb0485) 2020; 34
Hauck (bb0290) 2017; 12
Ackermann (bb0370) 2016; 23
Song (bb0400) 2012; 11
Tubbs, Nussenzweig (bb0020) 2017; 168
Zhang (bb0520) 2019; 10
Saito (bb0045) 2002; 277
Charni-Natan (bb0470) 2018; 9
de Vries (bb0135) 2002; 99
Haas (bb0530) 2021; 2
Mostoslavsky (bb0405) 2006; 124
Beckerman (bb0150) 2010; 2
Schumacher (bb0330) 2001; 11
Liu (bb0440) 2020; 13
Cain (bb0155) 2000; 275
Madar (bb0435) 2013; 8
Cao (bb0305) 2006; 25
Olive (bb0115) 2004; 119
Blagih (bb0430) 2020; 30
Novo (bb0465) 2018; 9
Moyer (bb0460) 2020; 117
Guo (bb0415) 2017; 77
Lindahl (bb0005) 1993; 362
Capaci (bb0450) 2020; 11
Jay (bb0090) 1980; 44
Hofmann (bb0345) 2002; 12
Jiang (bb0490) 2019; 5
Moore (bb0245) 2007; 128
Gok Yavuz (bb0525) 2019; 9
Cordani (bb0070) 2016; 10
Lujambio (bb0455) 2013; 153
Malekzadeh (bb0570) 2020; 26
Pfister, Prives (bb0145) 2016; 7
Vater (bb0210) 1996; 13
Arandkar (bb0445) 2018; 115
Fang (bb0495) 2019; 7
Hsiue (bb0550) 2021; 371
McKenna (bb0420) 2003; 22
Trbusek (bb0130) 2011; 29
da Silva, Schumacher (bb0030) 2019; 9
Kore (bb0540) 2018; 14
Matheu (bb0580) 2004; 18
Cao (bb0300) 2003; 17
Ou (bb0375) 2019; 50
Rovinski (bb0250) 1987; 7
Zhou, Elledge (bb0035) 2000; 408
Christophorou (bb0205) 2005; 37
Zakut-Houri (bb0100) 1983; 306
Lang (bb0110) 2004; 119
Bykov (bb0510) 2002; 8
Jonkers (bb0175) 2001; 29
Sendoel (bb0380) 2010; 465
Lo (bb0555) 2019; 7
Yang (bb0560) 2021; 70
Gambino (bb0060) 2013; 12
Jentsch (bb0545) 2020; 10
Lindahl, Nyberg (bb0010) 1972; 11
Zuckerman (bb0075) 2009; 219
Charni (bb0475) 2016; 23
Fernández-Majada (bb0365) 2016; 7
Tyner (bb0235) 2002; 415
von Muhlinen (bb0585) 2018; 37
Migliaccio (bb0260) 1999; 402
Torgovnick (bb0195) 2018; 25
Habermehl (bb0385) 2019; 41
Rossi (bb0390) 2017; 24
Guha, Malkin (bb0185) 2017; 7
Douglass (bb0575) 2021; 6
Sica, Kroemer (bb0065) 2020; 7
Roake, Artandi (bb0265) 2017; 7
Donehower (bb0170) 1992; 356
Vater (10.1016/j.tig.2022.02.010_bb0210) 1996; 13
Trbusek (10.1016/j.tig.2022.02.010_bb0130) 2011; 29
Guo (10.1016/j.tig.2022.02.010_bb0415) 2017; 77
Gambino (10.1016/j.tig.2022.02.010_bb0060) 2013; 12
Jenkins (10.1016/j.tig.2022.02.010_bb0105) 1985; 317
Timofeev (10.1016/j.tig.2022.02.010_bb0275) 2020; 80
Ou (10.1016/j.tig.2022.02.010_bb0375) 2019; 50
Donehower (10.1016/j.tig.2022.02.010_bb0170) 1992; 356
Ventura (10.1016/j.tig.2022.02.010_bb0220) 2007; 445
Zhang (10.1016/j.tig.2022.02.010_bb0520) 2019; 10
Mamriev (10.1016/j.tig.2022.02.010_bb0505) 2020; 11
Zakut-Houri (10.1016/j.tig.2022.02.010_bb0100) 1983; 306
Linzer (10.1016/j.tig.2022.02.010_bb0085) 1979; 17
Cain (10.1016/j.tig.2022.02.010_bb0155) 2000; 275
Tubbs (10.1016/j.tig.2022.02.010_bb0020) 2017; 168
Wu (10.1016/j.tig.2022.02.010_bb0285) 2018; 25
Jost (10.1016/j.tig.2022.02.010_bb0500) 2020; 12
Douglass (10.1016/j.tig.2022.02.010_bb0575) 2021; 6
Zhu (10.1016/j.tig.2022.02.010_bb0180) 2020; 2020
Bykov (10.1016/j.tig.2022.02.010_bb0510) 2002; 8
Liu (10.1016/j.tig.2022.02.010_bb0440) 2020; 13
Sendoel (10.1016/j.tig.2022.02.010_bb0380) 2010; 465
Lo (10.1016/j.tig.2022.02.010_bb0555) 2019; 7
Konopleva (10.1016/j.tig.2022.02.010_bb0485) 2020; 34
Falck (10.1016/j.tig.2022.02.010_bb0040) 2005; 434
Schumacher (10.1016/j.tig.2022.02.010_bb0025) 2021; 592
Xue (10.1016/j.tig.2022.02.010_bb0225) 2007; 445
Jay (10.1016/j.tig.2022.02.010_bb0090) 1980; 44
Fan (10.1016/j.tig.2022.02.010_bb0230) 2019; 33
von Muhlinen (10.1016/j.tig.2022.02.010_bb0585) 2018; 37
Torgovnick (10.1016/j.tig.2022.02.010_bb0195) 2018; 25
Cao (10.1016/j.tig.2022.02.010_bb0305) 2006; 25
Malekzadeh (10.1016/j.tig.2022.02.010_bb0570) 2020; 26
Schumacher (10.1016/j.tig.2022.02.010_bb0350) 2005; 12
Madar (10.1016/j.tig.2022.02.010_bb0435) 2013; 8
Zhou (10.1016/j.tig.2022.02.010_bb0035) 2000; 408
Gok Yavuz (10.1016/j.tig.2022.02.010_bb0525) 2019; 9
Moyer (10.1016/j.tig.2022.02.010_bb0460) 2020; 117
Williams (10.1016/j.tig.2022.02.010_bb0055) 2016; 6
McKenna (10.1016/j.tig.2022.02.010_bb0420) 2003; 22
Song (10.1016/j.tig.2022.02.010_bb0400) 2012; 11
Liu (10.1016/j.tig.2022.02.010_bb0280) 2010; 12
Matheu (10.1016/j.tig.2022.02.010_bb0580) 2004; 18
Liu (10.1016/j.tig.2022.02.010_bb0395) 2018; 23
Ollmann (10.1016/j.tig.2022.02.010_bb0340) 2000; 101
Rossi (10.1016/j.tig.2022.02.010_bb0390) 2017; 24
Lang (10.1016/j.tig.2022.02.010_bb0110) 2004; 119
Gao (10.1016/j.tig.2022.02.010_bb0360) 2008; 15
Guha (10.1016/j.tig.2022.02.010_bb0185) 2017; 7
Sgarbi (10.1016/j.tig.2022.02.010_bb0535) 2018; 7
Tyner (10.1016/j.tig.2022.02.010_bb0235) 2002; 415
Yang (10.1016/j.tig.2022.02.010_bb0560) 2021; 70
Beckerman (10.1016/j.tig.2022.02.010_bb0150) 2010; 2
Novo (10.1016/j.tig.2022.02.010_bb0465) 2018; 9
Fang (10.1016/j.tig.2022.02.010_bb0495) 2019; 7
Hollstein (10.1016/j.tig.2022.02.010_bb0080) 1991; 253
Zhang (10.1016/j.tig.2022.02.010_bb0515) 2018; 9
Wellenstein (10.1016/j.tig.2022.02.010_bb0410) 2019; 572
Stein (10.1016/j.tig.2022.02.010_bb0140) 2019; 20
García-Cao (10.1016/j.tig.2022.02.010_bb0190) 2002; 21
Blagih (10.1016/j.tig.2022.02.010_bb0430) 2020; 30
Cho (10.1016/j.tig.2022.02.010_bb0125) 1994; 265
Schumacher (10.1016/j.tig.2022.02.010_bb0355) 2005; 120
Habermehl (10.1016/j.tig.2022.02.010_bb0385) 2019; 41
Lindahl (10.1016/j.tig.2022.02.010_bb0010) 1972; 11
Jonkers (10.1016/j.tig.2022.02.010_bb0175) 2001; 29
Gannon (10.1016/j.tig.2022.02.010_bb0295) 2011; 353
Arandkar (10.1016/j.tig.2022.02.010_bb0445) 2018; 115
Cao (10.1016/j.tig.2022.02.010_bb0300) 2003; 17
Jiang (10.1016/j.tig.2022.02.010_bb0490) 2019; 5
Dumble (10.1016/j.tig.2022.02.010_bb0240) 2007; 109
Mostoslavsky (10.1016/j.tig.2022.02.010_bb0405) 2006; 124
Migliaccio (10.1016/j.tig.2022.02.010_bb0260) 1999; 402
Roake (10.1016/j.tig.2022.02.010_bb0265) 2017; 7
Schumacher (10.1016/j.tig.2022.02.010_bb0330) 2001; 11
McKinney (10.1016/j.tig.2022.02.010_bb0165) 2004; 16
Fernández-Majada (10.1016/j.tig.2022.02.010_bb0365) 2016; 7
Zuckerman (10.1016/j.tig.2022.02.010_bb0075) 2009; 219
Rovinski (10.1016/j.tig.2022.02.010_bb0250) 1987; 7
Pfister (10.1016/j.tig.2022.02.010_bb0145) 2016; 7
de Vries (10.1016/j.tig.2022.02.010_bb0135) 2002; 99
Aoki (10.1016/j.tig.2022.02.010_bb0310) 2009; 23
Sahin (10.1016/j.tig.2022.02.010_bb0270) 2011; 470
Capaci (10.1016/j.tig.2022.02.010_bb0450) 2020; 11
Jentsch (10.1016/j.tig.2022.02.010_bb0545) 2020; 10
von Muhlinen (10.1016/j.tig.2022.02.010_bb0325) 2018; 37
Moore (10.1016/j.tig.2022.02.010_bb0245) 2007; 128
DeLeo (10.1016/j.tig.2022.02.010_bb0095) 1979; 76
Bojesen (10.1016/j.tig.2022.02.010_bb0315) 2008; 7(2)
Kore (10.1016/j.tig.2022.02.010_bb0540) 2018; 14
Olive (10.1016/j.tig.2022.02.010_bb0115) 2004; 119
da Silva (10.1016/j.tig.2022.02.010_bb0030) 2019; 9
Christophorou (10.1016/j.tig.2022.02.010_bb0205) 2005; 37
Sulak (10.1016/j.tig.2022.02.010_bb0200) 2016; 5
Hofmann (10.1016/j.tig.2022.02.010_bb0345) 2002; 12
Derry (10.1016/j.tig.2022.02.010_bb0590) 2001; 294
Hsiue (10.1016/j.tig.2022.02.010_bb0550) 2021; 371
Sica (10.1016/j.tig.2022.02.010_bb0065) 2020; 7
Cooks (10.1016/j.tig.2022.02.010_bb0480) 2018; 9
Haas (10.1016/j.tig.2022.02.010_bb0530) 2021; 2
Harper (10.1016/j.tig.2022.02.010_bb0015) 2007; 28
Baugh (10.1016/j.tig.2022.02.010_bb0120) 2018; 25
Brodsky (10.1016/j.tig.2022.02.010_bb0335) 2000; 101
Lujambio (10.1016/j.tig.2022.02.010_bb0455) 2013; 153
Lindahl (10.1016/j.tig.2022.02.010_bb0005) 1993; 362
Weinberg (10.1016/j.tig.2022.02.010_bb0160) 2004; 341
Wu (10.1016/j.tig.2022.02.010_bb0565) 2020; 11
Cordani (10.1016/j.tig.2022.02.010_bb0070) 2016; 10
Hauck (10.1016/j.tig.2022.02.010_bb0290) 2017; 12
Zhao (10.1016/j.tig.2022.02.010_bb0320) 2018; 7
Ackermann (10.1016/j.tig.2022.02.010_bb0370) 2016; 23
Dong (10.1016/j.tig.2022.02.010_bb0425) 2021; 4
Saito (10.1016/j.tig.2022.02.010_bb0045) 2002; 277
Shieh (10.1016/j.tig.2022.02.010_bb0050) 2000; 14
Martins (10.1016/j.tig.2022.02.010_bb0215) 2006; 127
Maier (10.1016/j.tig.2022.02.010_bb0255) 2004; 18
Charni-Natan (10.1016/j.tig.2022.02.010_bb0470) 2018; 9
Charni (10.1016/j.tig.2022.02.010_bb0475) 2016; 23
References_xml – volume: 44
  start-page: 659
  year: 1980
  end-page: 664
  ident: bb0090
  article-title: A common transformation-related protein in murine sarcomas and leukemias
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
– volume: 127
  start-page: 1323
  year: 2006
  end-page: 1334
  ident: bb0215
  article-title: Modeling the therapeutic efficacy of p53 restoration in tumors
  publication-title: Cell
– volume: 445
  start-page: 661
  year: 2007
  end-page: 665
  ident: bb0220
  article-title: Restoration of p53 function leads to tumour regression in vivo
  publication-title: Nature 2006 445:7128
– volume: 2
  start-page: 693
  year: 2021
  end-page: 708
  ident: bb0530
  article-title: Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma
  publication-title: Nat. Cancer
– volume: 109
  start-page: 1736
  year: 2007
  end-page: 1742
  ident: bb0240
  article-title: The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging
  publication-title: Blood
– volume: 37
  start-page: 2379
  year: 2018
  end-page: 2393
  ident: bb0325
  article-title: p53 isoforms regulate premature aging in human cells
  publication-title: Oncogene 2018 37:18
– volume: 12
  start-page: 1908
  year: 2002
  end-page: 1918
  ident: bb0345
  article-title: HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis
  publication-title: Curr. Biol.
– volume: 265
  start-page: 346
  year: 1994
  end-page: 355
  ident: bb0125
  article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations
  publication-title: Science (New York, N.Y.)
– volume: 341
  start-page: 1145
  year: 2004
  end-page: 1159
  ident: bb0160
  article-title: Cooperative binding of tetrameric p53 to DNA
  publication-title: J. Mol. Biol.
– volume: 402
  start-page: 309
  year: 1999
  end-page: 313
  ident: bb0260
  article-title: The p66shc adaptor protein controls oxidative stress response and life span in mammals
  publication-title: Nature
– volume: 465
  start-page: 577
  year: 2010
  end-page: 583
  ident: bb0380
  article-title: HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase
  publication-title: Nature
– volume: 5
  start-page: 77
  year: 2019
  ident: bb0490
  article-title: Protoporphyrin IX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells
  publication-title: Cell Death Discov.
– volume: 128
  start-page: 717
  year: 2007
  end-page: 730
  ident: bb0245
  article-title: Aging-associated truncated form of p53 interacts with wild-type p53 and alters p53 stability, localization, and activity
  publication-title: Mech. Ageing Dev.
– volume: 362
  start-page: 709
  year: 1993
  end-page: 715
  ident: bb0005
  article-title: Instability and decay of the primary structure of DNA
  publication-title: Nature
– volume: 592
  start-page: 695
  year: 2021
  end-page: 703
  ident: bb0025
  article-title: The central role of DNA damage in the ageing process
  publication-title: Nature
– volume: 20
  start-page: 6197
  year: 2019
  end-page: 6198
  ident: bb0140
  article-title: Gain-of-function mutant p53: all the roads lead to tumorigenesis
  publication-title: Int. J. Mol. Sci.
– volume: 23
  start-page: 544
  year: 2018
  end-page: 556.e4
  ident: bb0395
  article-title: Impaired notch signaling leads to a decrease in p53 activity and mitotic catastrophe in aged muscle stem cells
  publication-title: Cell Stem Cell
– volume: 371
  start-page: 8697
  year: 2021
  ident: bb0550
  article-title: Targeting a neoantigen derived from a common
  publication-title: Science
– volume: 4
  start-page: 371
  year: 2021
  ident: bb0425
  article-title: Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance
  publication-title: Commun. Biol.
– volume: 275
  start-page: 39944
  year: 2000
  end-page: 39953
  ident: bb0155
  article-title: The N terminus of p53 regulates its dissociation from DNA
  publication-title: J. Biol. Chem.
– volume: 356
  start-page: 215
  year: 1992
  end-page: 221
  ident: bb0170
  article-title: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours
  publication-title: Nature 1992 356:6366
– volume: 22
  start-page: 5866
  year: 2003
  end-page: 5875
  ident: bb0420
  article-title: The RAS signal transduction pathway and its role in radiation sensitivity
  publication-title: Oncogene
– volume: 408
  start-page: 433
  year: 2000
  end-page: 439
  ident: bb0035
  article-title: The DNA damage response: putting checkpoints in perspective
  publication-title: Nature
– volume: 23
  start-page: 429
  year: 2009
  end-page: 435
  ident: bb0310
  article-title: CCR5 and p53 codon 72 gene polymorphisms: Implications in breast cancer development
  publication-title: Int. J. Mol. Med.
– volume: 33
  start-page: 5571
  year: 2019
  end-page: 5584
  ident: bb0230
  article-title: P53 ICE CRIM mouse: A tool to generate mutant allelic series in somatic cells and germ lines for cancer studies
  publication-title: FASEB J.
– volume: 7
  start-page: 34701
  year: 2018
  ident: bb0320
  article-title: A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models
  publication-title: eLife
– volume: 7
  start-page: 12508
  year: 2016
  ident: bb0365
  article-title: The tumour suppressor CYLD regulates the p53 DNA damage response
  publication-title: Nat. Commun.
– volume: 37
  start-page: 2379
  year: 2018
  end-page: 2393
  ident: bb0585
  article-title: P53 isoforms regulate premature aging in human cells
  publication-title: Oncogene
– volume: 17
  start-page: 43
  year: 1979
  end-page: 52
  ident: bb0085
  article-title: Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells
  publication-title: Cell
– volume: 7
  start-page: 64
  year: 2018
  ident: bb0535
  article-title: Hypoxia and IF1 expression promote ROS decrease in cancer cells
  publication-title: Cells
– volume: 115
  start-page: 6410
  year: 2018
  end-page: 6415
  ident: bb0445
  article-title: Altered p53 functionality in cancer-associated fibroblasts contributes to their cancer-supporting features
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 439
  year: 2018
  ident: bb0515
  article-title: APR-246 reactivates mutant p53 by targeting cysteines 124 and 277
  publication-title: Cell Death Dis.
– volume: 11
  start-page: 449
  year: 2012
  end-page: 455
  ident: bb0400
  article-title: Telomere dysfunctional environment induces loss of quiescence and inherent impairments of hematopoietic stem cell function
  publication-title: Aging Cell
– volume: 9
  start-page: 5069
  year: 2018
  ident: bb0465
  article-title: Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels
  publication-title: Nat. Commun.
– volume: 23
  start-page: 509
  year: 2016
  end-page: 520
  ident: bb0475
  article-title: Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation
  publication-title: Cell Death Differ.
– volume: 8
  start-page: 282
  year: 2002
  end-page: 288
  ident: bb0510
  article-title: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound
  publication-title: Nat. Med.
– volume: 37
  start-page: 718
  year: 2005
  end-page: 726
  ident: bb0205
  article-title: Temporal dissection of p53 function in vitro and in vivo
  publication-title: Nat. Genet.
– volume: 7
  year: 2017
  ident: bb0265
  article-title: Control of cellular aging, tissue function, and cancer by p53 downstream of telomeres
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 16
  ident: bb0055
  article-title: p53 in the DNA-damage-repair process
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 7
  start-page: 1
  year: 2020
  end-page: 2
  ident: bb0065
  article-title: A bidirectional crosstalk between autophagy and TP53 determines the pace of aging
  publication-title: Mol. Cell. Oncol.
– volume: 18
  start-page: 306
  year: 2004
  ident: bb0255
  article-title: Modulation of mammalian life span by the short isoform of p53
  publication-title: Genes Dev.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 10
  ident: bb0500
  article-title: Regulation of cell death and immunity by xiap
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 28
  start-page: 739
  year: 2007
  end-page: 745
  ident: bb0015
  article-title: The DNA damage response: ten years after
  publication-title: Mol. Cell
– volume: 6
  start-page: 5515
  year: 2021
  ident: bb0575
  article-title: Bispecific antibodies targeting mutant RAS neoantigens
  publication-title: Sci. Immunol.
– volume: 34
  start-page: 2858
  year: 2020
  end-page: 2874
  ident: bb0485
  article-title: MDM2 inhibition: an important step forward in cancer therapy
  publication-title: Leukemia
– volume: 2
  start-page: 1
  year: 2010
  end-page: 18
  ident: bb0150
  article-title: Transcriptional regulation by P53
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 12
  start-page: 153
  year: 2005
  end-page: 161
  ident: bb0350
  article-title: ced-13 can promote apoptosis and is induced in response to DNA damage
  publication-title: Cell Death Differ.
– volume: 9
  start-page: 697-4
  year: 2018
  ident: bb0470
  article-title: Various stress stimuli rewire the profile of liver secretome in a p53-dependent manner
  publication-title: Cell Death Dis.
– volume: 25
  start-page: 154
  year: 2018
  end-page: 160
  ident: bb0120
  article-title: Why are there hotspot mutations in the TP53 gene in human cancers?
  publication-title: Cell Death Differ.
– volume: 80
  start-page: 5231
  year: 2020
  end-page: 5244
  ident: bb0275
  article-title: Phosphorylation control of P53 DNA-binding cooperativity balances tumorigenesis and aging
  publication-title: Cancer Res.
– volume: 10
  start-page: 1435-2
  year: 2019
  ident: bb0520
  article-title: Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer
  publication-title: Cell Death Dis.
– volume: 25
  start-page: 2167
  year: 2006
  end-page: 2177
  ident: bb0305
  article-title: ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency
  publication-title: EMBO J.
– volume: 99
  start-page: 2948
  year: 2002
  end-page: 2953
  ident: bb0135
  article-title: Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 572
  start-page: 538
  year: 2019
  end-page: 542
  ident: bb0410
  article-title: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis
  publication-title: Nature
– volume: 7
  start-page: 847
  year: 1987
  end-page: 853
  ident: bb0250
  article-title: Deletion of 5’-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation
  publication-title: Mol. Cell. Biol.
– volume: 120
  start-page: 357
  year: 2005
  end-page: 368
  ident: bb0355
  article-title: Translational repression of
  publication-title: Cell
– volume: 117
  start-page: 23663
  year: 2020
  end-page: 23673
  ident: bb0460
  article-title: P53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 306
  start-page: 594
  year: 1983
  end-page: 597
  ident: bb0100
  article-title: A single gene and a pseudogene for the cellular tumour antigen p53
  publication-title: Nature
– volume: 7
  start-page: 750
  year: 2019
  end-page: 756
  ident: bb0495
  article-title: MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment
  publication-title: J. Immunother. Cancer
– volume: 25
  start-page: 1027
  year: 2018
  end-page: 1039.e6
  ident: bb0195
  article-title: The Cdkn1a SUPER mouse as a tool to ttudy p53-mediated tumor suppression
  publication-title: Cell Rep.
– volume: 11
  start-page: 483
  year: 2020
  ident: bb0505
  article-title: A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2
  publication-title: Cell Death Dis.
– volume: 50
  start-page: 167
  year: 2019
  end-page: 183.e8
  ident: bb0375
  article-title: Somatic niche cells regulate the CEP-1/p53-mediated DNA damage response in primordial germ cells
  publication-title: Dev. Cell
– volume: 8
  start-page: 61353
  year: 2013
  ident: bb0435
  article-title: Mutant p53 attenuates the anti-tumorigenic activity of fibroblasts-secreted interferon beta
  publication-title: PLoS One
– volume: 277
  start-page: 12491
  year: 2002
  end-page: 12494
  ident: bb0045
  article-title: ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 435
  year: 2013
  end-page: 445
  ident: bb0060
  article-title: Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging
  publication-title: Aging Cell
– volume: 101
  start-page: 103
  year: 2000
  end-page: 113
  ident: bb0335
  article-title: Drosophila p53 binds a damage response element at the reaper locus
  publication-title: Cell
– volume: 16
  start-page: 413
  year: 2004
  end-page: 424
  ident: bb0165
  article-title: p53 linear diffusion along DNA requires its C terminus
  publication-title: Mol. Cell
– volume: 10
  start-page: 1008
  year: 2016
  end-page: 1029
  ident: bb0070
  article-title: Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition
  publication-title: Mol. Oncol.
– volume: 7
  start-page: 6054
  year: 2016
  ident: bb0145
  article-title: Transcriptional regulation by wild-type and cancer-related mutant forms of p53
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 17
  start-page: 201
  year: 2003
  end-page: 213
  ident: bb0300
  article-title: Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform
  publication-title: Genes Dev.
– volume: 353
  start-page: 1
  year: 2011
  end-page: 9
  ident: bb0295
  article-title: Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin
  publication-title: Dev. Biol.
– volume: 124
  start-page: 315
  year: 2006
  end-page: 329
  ident: bb0405
  article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
  publication-title: Cell
– volume: 41
  start-page: 25
  year: 2019
  end-page: 38
  ident: bb0385
  article-title: Extension of longevity and reduction of inflammation is ovarian-dependent, but germ cell-independent in post-reproductive female mice
  publication-title: GeroScience
– volume: 5
  year: 2016
  ident: bb0200
  article-title: TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants
  publication-title: eLife
– volume: 445
  start-page: 656
  year: 2007
  end-page: 660
  ident: bb0225
  article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
  publication-title: Nature 2006 445:7128
– volume: 317
  start-page: 816
  year: 1985
  end-page: 818
  ident: bb0105
  article-title: The cellular oncogene p53 can be activated by mutagenesis
  publication-title: Nature
– volume: 7(2)
  start-page: 158
  year: 2008
  end-page: 163
  ident: bb0315
  article-title: The common germline Arg72Pro polymorphism of p53 and increased longevity in humans
– volume: 13
  start-page: 1355
  year: 2020
  end-page: 1363
  ident: bb0440
  article-title: P53 mutant p53 N236S regulates cancer-associated fibroblasts properties through Stat3 pathway
  publication-title: OncoTargets Ther.
– volume: 29
  start-page: 418
  year: 2001
  end-page: 425
  ident: bb0175
  article-title: Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer
  publication-title: Nat. Genet. 2001 29:4
– volume: 13
  start-page: 739
  year: 1996
  end-page: 748
  ident: bb0210
  article-title: Induction of apoptosis by tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras transformed p53-/- mouse embryo fibroblasts
  publication-title: Oncogene
– volume: 30
  start-page: 481
  year: 2020
  end-page: 496.e6
  ident: bb0430
  article-title: Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses
  publication-title: Cell Rep.
– volume: 14
  start-page: 104
  year: 2018
  ident: bb0540
  article-title: Hypoxia-derived exosomes induce putative altered pathways in biosynthesis and ion regulatory channels in glioblastoma cells
  publication-title: Biochem. Biophys. Rep.
– volume: 9
  year: 2019
  ident: bb0030
  article-title: DNA damage responses in ageing
  publication-title: Open Biol.
– volume: 7
  start-page: 534
  year: 2019
  end-page: 543
  ident: bb0555
  article-title: Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer
  publication-title: Cancer Immunol. Res.
– volume: 415
  start-page: 45
  year: 2002
  end-page: 53
  ident: bb0235
  article-title: p53 mutant mice that display early ageing-associated phenotypes
  publication-title: Nature
– volume: 119
  start-page: 861
  year: 2004
  end-page: 872
  ident: bb0110
  article-title: Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome
  publication-title: Cell
– volume: 25
  start-page: 169
  year: 2018
  end-page: 179
  ident: bb0285
  article-title: Relevance of the p53-MDM2 axis to aging
  publication-title: Cell Death Differ.
– volume: 434
  start-page: 605
  year: 2005
  end-page: 611
  ident: bb0040
  article-title: Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage
  publication-title: Nature
– volume: 168
  start-page: 644
  year: 2017
  end-page: 656
  ident: bb0020
  article-title: Endogenous DNA damage as a source of genomic instability in cancer
  publication-title: Cell
– volume: 11
  start-page: 3610
  year: 1972
  end-page: 3618
  ident: bb0010
  article-title: Rate of depurination of native deoxyribonucleic acid
  publication-title: Biochemistry
– volume: 15
  start-page: 1054
  year: 2008
  end-page: 1062
  ident: bb0360
  article-title: The SCFFSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in
  publication-title: Cell Death Differ.
– volume: 9
  start-page: 39553
  year: 2019
  ident: bb0525
  article-title: Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1 + TAMs
  publication-title: Sci. Rep.
– volume: 11
  start-page: 1722
  year: 2001
  end-page: 1727
  ident: bb0330
  article-title: The
  publication-title: Curr. Biol.
– volume: 219
  start-page: 3
  year: 2009
  end-page: 15
  ident: bb0075
  article-title: Tumour suppression by p53: The importance of apoptosis and cellular senescence
  publication-title: J. Pathol.
– volume: 29
  start-page: 2703
  year: 2011
  end-page: 2708
  ident: bb0130
  article-title: Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia
  publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol.
– volume: 21
  start-page: 6225
  year: 2002
  ident: bb0190
  article-title: ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally
  publication-title: EMBO J.
– volume: 14
  start-page: 289
  year: 2000
  end-page: 300
  ident: bb0050
  article-title: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites
  publication-title: Genes Dev.
– volume: 11
  start-page: 17596-5
  year: 2020
  ident: bb0450
  article-title: Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome
  publication-title: Nat. Commun.
– volume: 253
  start-page: 49
  year: 1991
  end-page: 53
  ident: bb0080
  article-title: p53 mutations in human cancers
  publication-title: Science (New York, N.Y.)
– volume: 7
  year: 2017
  ident: bb0185
  article-title: Inherited TP53 mutations and the Li-fraumeni syndrome
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 12
  start-page: 993
  year: 2010
  end-page: 998
  ident: bb0280
  article-title: Puma is required for p53-induced depletion of adult stem cells
  publication-title: Nat. Cell Biol.
– volume: 23
  start-page: 995
  year: 2016
  end-page: 1002
  ident: bb0370
  article-title: E4 ligase–specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis
  publication-title: Nat. Struct. Mol. Biol.
– volume: 11
  start-page: 16755
  year: 2020
  ident: bb0565
  article-title: Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen
  publication-title: Nat. Commun.
– volume: 9
  start-page: 771
  year: 2018
  ident: bb0480
  article-title: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246
  publication-title: Nat. Commun.
– volume: 12
  start-page: 0189861
  year: 2017
  ident: bb0290
  article-title: Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death
  publication-title: PLoS One
– volume: 101
  start-page: 91
  year: 2000
  end-page: 101
  ident: bb0340
  article-title: Drosophila p53 is a structural and functional homolog of the tumor suppressor p53
  publication-title: Cell
– volume: 470
  start-page: 359
  year: 2011
  end-page: 365
  ident: bb0270
  article-title: Telomere dysfunction induces metabolic and mitochondrial compromise
  publication-title: Nature 2011 470:7334
– volume: 77
  start-page: 2292
  year: 2017
  end-page: 2305
  ident: bb0415
  article-title: Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity
  publication-title: Cancer Res.
– volume: 76
  start-page: 2420
  year: 1979
  end-page: 2424
  ident: bb0095
  article-title: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 70
  start-page: 667
  year: 2021
  end-page: 677
  ident: bb0560
  article-title: Unique TP53 neoantigen and the immune microenvironment in long-term survivors of Hepatocellular carcinoma
  publication-title: Cancer Immunol. Immunother.
– volume: 26
  start-page: 1267
  year: 2020
  end-page: 1276
  ident: bb0570
  article-title: Antigen experienced T cells from peripheral blood recognize p53 neoantigens
  publication-title: Clin. Cancer Res.
– volume: 2020
  start-page: 4534289
  year: 2020
  ident: bb0180
  article-title: The establishment of esophageal precancerous lesion model by using p53 conditional knockout mouse in esophageal epithelium
  publication-title: Biomed. Res. Int.
– volume: 18
  start-page: 2736
  year: 2004
  ident: bb0580
  article-title: Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging
  publication-title: Genes Dev.
– volume: 10
  start-page: 1481
  year: 2020
  ident: bb0545
  article-title: p53 dynamics in single cells are temperature-sensitive
  publication-title: Sci. Rep.
– volume: 294
  start-page: 591
  year: 2001
  end-page: 595
  ident: bb0590
  article-title: p53: role in apoptosis, meiosis, and stress resistance
  publication-title: Science (New York, N.Y.)
– volume: 153
  start-page: 449
  year: 2013
  end-page: 460
  ident: bb0455
  article-title: Non-cell-autonomous tumor suppression by p53
  publication-title: Cell
– volume: 119
  start-page: 847
  year: 2004
  end-page: 860
  ident: bb0115
  article-title: Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome
  publication-title: Cell
– volume: 24
  start-page: 72
  year: 2017
  end-page: 82
  ident: bb0390
  article-title: LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse
  publication-title: Cell Death Differ.
– volume: 402
  start-page: 309
  year: 1999
  ident: 10.1016/j.tig.2022.02.010_bb0260
  article-title: The p66shc adaptor protein controls oxidative stress response and life span in mammals
  publication-title: Nature
  doi: 10.1038/46311
– volume: 25
  start-page: 1027
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0195
  article-title: The Cdkn1a SUPER mouse as a tool to ttudy p53-mediated tumor suppression
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.09.079
– volume: 109
  start-page: 1736
  year: 2007
  ident: 10.1016/j.tig.2022.02.010_bb0240
  article-title: The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging
  publication-title: Blood
  doi: 10.1182/blood-2006-03-010413
– volume: 7
  start-page: 6054
  year: 2016
  ident: 10.1016/j.tig.2022.02.010_bb0145
  article-title: Transcriptional regulation by wild-type and cancer-related mutant forms of p53
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 9
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0030
  article-title: DNA damage responses in ageing
  publication-title: Open Biol.
  doi: 10.1098/rsob.190168
– volume: 119
  start-page: 847
  year: 2004
  ident: 10.1016/j.tig.2022.02.010_bb0115
  article-title: Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.004
– volume: 117
  start-page: 23663
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0460
  article-title: P53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2008474117
– volume: 128
  start-page: 717
  year: 2007
  ident: 10.1016/j.tig.2022.02.010_bb0245
  article-title: Aging-associated truncated form of p53 interacts with wild-type p53 and alters p53 stability, localization, and activity
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2007.10.011
– volume: 7
  start-page: 750
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0495
  article-title: MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0750-6
– volume: 17
  start-page: 43
  year: 1979
  ident: 10.1016/j.tig.2022.02.010_bb0085
  article-title: Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells
  publication-title: Cell
  doi: 10.1016/0092-8674(79)90293-9
– volume: 9
  start-page: 39553
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0525
  article-title: Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1 + TAMs
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39553-z
– volume: 23
  start-page: 995
  year: 2016
  ident: 10.1016/j.tig.2022.02.010_bb0370
  article-title: E4 ligase–specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3296
– volume: 168
  start-page: 644
  year: 2017
  ident: 10.1016/j.tig.2022.02.010_bb0020
  article-title: Endogenous DNA damage as a source of genomic instability in cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.002
– volume: 9
  start-page: 697-4
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0470
  article-title: Various stress stimuli rewire the profile of liver secretome in a p53-dependent manner
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0697-4
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.tig.2022.02.010_bb0055
  article-title: p53 in the DNA-damage-repair process
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a026070
– volume: 12
  start-page: 435
  year: 2013
  ident: 10.1016/j.tig.2022.02.010_bb0060
  article-title: Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging
  publication-title: Aging Cell
  doi: 10.1111/acel.12060
– volume: 7
  start-page: 847
  year: 1987
  ident: 10.1016/j.tig.2022.02.010_bb0250
  article-title: Deletion of 5’-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation
  publication-title: Mol. Cell. Biol.
– volume: 7
  start-page: 534
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0555
  article-title: Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0686
– volume: 9
  start-page: 771
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0480
  article-title: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03224-w
– volume: 127
  start-page: 1323
  year: 2006
  ident: 10.1016/j.tig.2022.02.010_bb0215
  article-title: Modeling the therapeutic efficacy of p53 restoration in tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.12.007
– volume: 23
  start-page: 429
  year: 2009
  ident: 10.1016/j.tig.2022.02.010_bb0310
  article-title: CCR5 and p53 codon 72 gene polymorphisms: Implications in breast cancer development
  publication-title: Int. J. Mol. Med.
– volume: 17
  start-page: 201
  year: 2003
  ident: 10.1016/j.tig.2022.02.010_bb0300
  article-title: Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform
  publication-title: Genes Dev.
  doi: 10.1101/gad.1050003
– volume: 29
  start-page: 2703
  year: 2011
  ident: 10.1016/j.tig.2022.02.010_bb0130
  article-title: Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia
  publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol.
  doi: 10.1200/JCO.2011.34.7872
– volume: 37
  start-page: 718
  year: 2005
  ident: 10.1016/j.tig.2022.02.010_bb0205
  article-title: Temporal dissection of p53 function in vitro and in vivo
  publication-title: Nat. Genet.
  doi: 10.1038/ng1572
– volume: 317
  start-page: 816
  year: 1985
  ident: 10.1016/j.tig.2022.02.010_bb0105
  article-title: The cellular oncogene p53 can be activated by mutagenesis
  publication-title: Nature
  doi: 10.1038/317816a0
– volume: 353
  start-page: 1
  year: 2011
  ident: 10.1016/j.tig.2022.02.010_bb0295
  article-title: Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2011.02.007
– volume: 80
  start-page: 5231
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0275
  article-title: Phosphorylation control of P53 DNA-binding cooperativity balances tumorigenesis and aging
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-20-2002
– volume: 306
  start-page: 594
  year: 1983
  ident: 10.1016/j.tig.2022.02.010_bb0100
  article-title: A single gene and a pseudogene for the cellular tumour antigen p53
  publication-title: Nature
  doi: 10.1038/306594a0
– volume: 15
  start-page: 1054
  year: 2008
  ident: 10.1016/j.tig.2022.02.010_bb0360
  article-title: The SCFFSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in C. elegans
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2008.30
– volume: 153
  start-page: 449
  year: 2013
  ident: 10.1016/j.tig.2022.02.010_bb0455
  article-title: Non-cell-autonomous tumor suppression by p53
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.020
– volume: 13
  start-page: 1355
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0440
  article-title: P53 mutant p53 N236S regulates cancer-associated fibroblasts properties through Stat3 pathway
  publication-title: OncoTargets Ther.
  doi: 10.2147/OTT.S229065
– volume: 2
  start-page: 693
  year: 2021
  ident: 10.1016/j.tig.2022.02.010_bb0530
  article-title: Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-021-00221-9
– volume: 11
  start-page: 449
  year: 2012
  ident: 10.1016/j.tig.2022.02.010_bb0400
  article-title: Telomere dysfunctional environment induces loss of quiescence and inherent impairments of hematopoietic stem cell function
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2012.00802.x
– volume: 11
  start-page: 483
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0505
  article-title: A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-2670-2
– volume: 2
  start-page: 1
  year: 2010
  ident: 10.1016/j.tig.2022.02.010_bb0150
  article-title: Transcriptional regulation by P53
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a000935
– volume: 12
  start-page: 1908
  year: 2002
  ident: 10.1016/j.tig.2022.02.010_bb0345
  article-title: Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01262-9
– volume: 119
  start-page: 861
  year: 2004
  ident: 10.1016/j.tig.2022.02.010_bb0110
  article-title: Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.006
– volume: 124
  start-page: 315
  year: 2006
  ident: 10.1016/j.tig.2022.02.010_bb0405
  article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
  publication-title: Cell
  doi: 10.1016/j.cell.2005.11.044
– volume: 10
  start-page: 1008
  year: 2016
  ident: 10.1016/j.tig.2022.02.010_bb0070
  article-title: Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2016.04.001
– volume: 9
  start-page: 5069
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0465
  article-title: Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07339-y
– volume: 10
  start-page: 1435-2
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0520
  article-title: Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer
  publication-title: Cell Death Dis.
– volume: 465
  start-page: 577
  year: 2010
  ident: 10.1016/j.tig.2022.02.010_bb0380
  article-title: HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase
  publication-title: Nature
  doi: 10.1038/nature09141
– volume: 23
  start-page: 544
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0395
  article-title: Impaired notch signaling leads to a decrease in p53 activity and mitotic catastrophe in aged muscle stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.08.019
– volume: 26
  start-page: 1267
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0570
  article-title: Antigen experienced T cells from peripheral blood recognize p53 neoantigens
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-19-1874
– volume: 7
  start-page: 1
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0065
  article-title: A bidirectional crosstalk between autophagy and TP53 determines the pace of aging
  publication-title: Mol. Cell. Oncol.
– volume: 371
  start-page: 8697
  year: 2021
  ident: 10.1016/j.tig.2022.02.010_bb0550
  article-title: Targeting a neoantigen derived from a common TP53 mutation
  publication-title: Science
  doi: 10.1126/science.abc8697
– volume: 356
  start-page: 215
  year: 1992
  ident: 10.1016/j.tig.2022.02.010_bb0170
  article-title: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours
  publication-title: Nature 1992 356:6366
– volume: 50
  start-page: 167
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0375
  article-title: Somatic niche cells regulate the CEP-1/p53-mediated DNA damage response in primordial germ cells
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.06.012
– volume: 265
  start-page: 346
  year: 1994
  ident: 10.1016/j.tig.2022.02.010_bb0125
  article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.8023157
– volume: 12
  start-page: 0189861
  year: 2017
  ident: 10.1016/j.tig.2022.02.010_bb0290
  article-title: Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0189861
– volume: 14
  start-page: 289
  year: 2000
  ident: 10.1016/j.tig.2022.02.010_bb0050
  article-title: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.3.289
– volume: 25
  start-page: 2167
  year: 2006
  ident: 10.1016/j.tig.2022.02.010_bb0305
  article-title: ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601115
– volume: 16
  start-page: 413
  year: 2004
  ident: 10.1016/j.tig.2022.02.010_bb0165
  article-title: p53 linear diffusion along DNA requires its C terminus
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.09.032
– volume: 415
  start-page: 45
  year: 2002
  ident: 10.1016/j.tig.2022.02.010_bb0235
  article-title: p53 mutant mice that display early ageing-associated phenotypes
  publication-title: Nature
  doi: 10.1038/415045a
– volume: 29
  start-page: 418
  year: 2001
  ident: 10.1016/j.tig.2022.02.010_bb0175
  article-title: Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer
  publication-title: Nat. Genet. 2001 29:4
– volume: 7
  start-page: 12508
  year: 2016
  ident: 10.1016/j.tig.2022.02.010_bb0365
  article-title: The tumour suppressor CYLD regulates the p53 DNA damage response
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12508
– volume: 434
  start-page: 605
  year: 2005
  ident: 10.1016/j.tig.2022.02.010_bb0040
  article-title: Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage
  publication-title: Nature
  doi: 10.1038/nature03442
– volume: 10
  start-page: 1481
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0545
  article-title: p53 dynamics in single cells are temperature-sensitive
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58267-1
– volume: 7
  start-page: 34701
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0320
  article-title: A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models
  publication-title: eLife
  doi: 10.7554/eLife.34701
– volume: 5
  year: 2016
  ident: 10.1016/j.tig.2022.02.010_bb0200
  article-title: TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants
  publication-title: eLife
– volume: 7(2)
  start-page: 158
  year: 2008
  ident: 10.1016/j.tig.2022.02.010_bb0315
– volume: 253
  start-page: 49
  year: 1991
  ident: 10.1016/j.tig.2022.02.010_bb0080
  article-title: p53 mutations in human cancers
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1905840
– volume: 7
  year: 2017
  ident: 10.1016/j.tig.2022.02.010_bb0265
  article-title: Control of cellular aging, tissue function, and cancer by p53 downstream of telomeres
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a026088
– volume: 277
  start-page: 12491
  year: 2002
  ident: 10.1016/j.tig.2022.02.010_bb0045
  article-title: ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C200093200
– volume: 101
  start-page: 91
  year: 2000
  ident: 10.1016/j.tig.2022.02.010_bb0340
  article-title: Drosophila p53 is a structural and functional homolog of the tumor suppressor p53
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80626-1
– volume: 592
  start-page: 695
  year: 2021
  ident: 10.1016/j.tig.2022.02.010_bb0025
  article-title: The central role of DNA damage in the ageing process
  publication-title: Nature
  doi: 10.1038/s41586-021-03307-7
– volume: 18
  start-page: 2736
  year: 2004
  ident: 10.1016/j.tig.2022.02.010_bb0580
  article-title: Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging
  publication-title: Genes Dev.
  doi: 10.1101/gad.310304
– volume: 8
  start-page: 61353
  year: 2013
  ident: 10.1016/j.tig.2022.02.010_bb0435
  article-title: Mutant p53 attenuates the anti-tumorigenic activity of fibroblasts-secreted interferon beta
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061353
– volume: 37
  start-page: 2379
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0585
  article-title: P53 isoforms regulate premature aging in human cells
  publication-title: Oncogene
  doi: 10.1038/s41388-017-0101-3
– volume: 572
  start-page: 538
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0410
  article-title: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis
  publication-title: Nature
  doi: 10.1038/s41586-019-1450-6
– volume: 219
  start-page: 3
  year: 2009
  ident: 10.1016/j.tig.2022.02.010_bb0075
  article-title: Tumour suppression by p53: The importance of apoptosis and cellular senescence
  publication-title: J. Pathol.
  doi: 10.1002/path.2584
– volume: 44
  start-page: 659
  year: 1980
  ident: 10.1016/j.tig.2022.02.010_bb0090
  article-title: A common transformation-related protein in murine sarcomas and leukemias
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/SQB.1980.044.01.069
– volume: 33
  start-page: 5571
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0230
  article-title: P53 ICE CRIM mouse: A tool to generate mutant allelic series in somatic cells and germ lines for cancer studies
  publication-title: FASEB J.
  doi: 10.1096/fj.201802027R
– volume: 4
  start-page: 371
  year: 2021
  ident: 10.1016/j.tig.2022.02.010_bb0425
  article-title: Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-01898-5
– volume: 41
  start-page: 25
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0385
  article-title: Extension of longevity and reduction of inflammation is ovarian-dependent, but germ cell-independent in post-reproductive female mice
  publication-title: GeroScience
  doi: 10.1007/s11357-018-0049-4
– volume: 25
  start-page: 169
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0285
  article-title: Relevance of the p53-MDM2 axis to aging
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2017.187
– volume: 408
  start-page: 433
  year: 2000
  ident: 10.1016/j.tig.2022.02.010_bb0035
  article-title: The DNA damage response: putting checkpoints in perspective
  publication-title: Nature
  doi: 10.1038/35044005
– volume: 11
  start-page: 17596-5
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0450
  article-title: Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17596-5
– volume: 13
  start-page: 739
  year: 1996
  ident: 10.1016/j.tig.2022.02.010_bb0210
  article-title: Induction of apoptosis by tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras transformed p53-/- mouse embryo fibroblasts
  publication-title: Oncogene
– volume: 70
  start-page: 667
  year: 2021
  ident: 10.1016/j.tig.2022.02.010_bb0560
  article-title: Unique TP53 neoantigen and the immune microenvironment in long-term survivors of Hepatocellular carcinoma
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-020-02711-8
– volume: 5
  start-page: 77
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0490
  article-title: Protoporphyrin IX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-019-0157-7
– volume: 9
  start-page: 439
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0515
  article-title: APR-246 reactivates mutant p53 by targeting cysteines 124 and 277
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0463-7
– volume: 11
  start-page: 1722
  year: 2001
  ident: 10.1016/j.tig.2022.02.010_bb0330
  article-title: The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00534-6
– volume: 470
  start-page: 359
  year: 2011
  ident: 10.1016/j.tig.2022.02.010_bb0270
  article-title: Telomere dysfunction induces metabolic and mitochondrial compromise
  publication-title: Nature 2011 470:7334
– volume: 341
  start-page: 1145
  year: 2004
  ident: 10.1016/j.tig.2022.02.010_bb0160
  article-title: Cooperative binding of tetrameric p53 to DNA
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.06.071
– volume: 445
  start-page: 656
  year: 2007
  ident: 10.1016/j.tig.2022.02.010_bb0225
  article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
  publication-title: Nature 2006 445:7128
– volume: 14
  start-page: 104
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0540
  article-title: Hypoxia-derived exosomes induce putative altered pathways in biosynthesis and ion regulatory channels in glioblastoma cells
  publication-title: Biochem. Biophys. Rep.
– volume: 23
  start-page: 509
  year: 2016
  ident: 10.1016/j.tig.2022.02.010_bb0475
  article-title: Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2015.119
– volume: 445
  start-page: 661
  year: 2007
  ident: 10.1016/j.tig.2022.02.010_bb0220
  article-title: Restoration of p53 function leads to tumour regression in vivo
  publication-title: Nature 2006 445:7128
– volume: 8
  start-page: 282
  year: 2002
  ident: 10.1016/j.tig.2022.02.010_bb0510
  article-title: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound
  publication-title: Nat. Med.
  doi: 10.1038/nm0302-282
– volume: 11
  start-page: 16755
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0565
  article-title: Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen
  publication-title: Nat. Commun.
– volume: 6
  start-page: 5515
  year: 2021
  ident: 10.1016/j.tig.2022.02.010_bb0575
  article-title: Bispecific antibodies targeting mutant RAS neoantigens
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abd5515
– volume: 21
  start-page: 6225
  year: 2002
  ident: 10.1016/j.tig.2022.02.010_bb0190
  article-title: ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf595
– volume: 24
  start-page: 72
  year: 2017
  ident: 10.1016/j.tig.2022.02.010_bb0390
  article-title: LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2016.97
– volume: 77
  start-page: 2292
  year: 2017
  ident: 10.1016/j.tig.2022.02.010_bb0415
  article-title: Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2832
– volume: 275
  start-page: 39944
  year: 2000
  ident: 10.1016/j.tig.2022.02.010_bb0155
  article-title: The N terminus of p53 regulates its dissociation from DNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002509200
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0500
  article-title: Regulation of cell death and immunity by xiap
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a036426
– volume: 7
  start-page: 64
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0535
  article-title: Hypoxia and IF1 expression promote ROS decrease in cancer cells
  publication-title: Cells
  doi: 10.3390/cells7070064
– volume: 11
  start-page: 3610
  year: 1972
  ident: 10.1016/j.tig.2022.02.010_bb0010
  article-title: Rate of depurination of native deoxyribonucleic acid
  publication-title: Biochemistry
  doi: 10.1021/bi00769a018
– volume: 101
  start-page: 103
  year: 2000
  ident: 10.1016/j.tig.2022.02.010_bb0335
  article-title: Drosophila p53 binds a damage response element at the reaper locus
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80627-3
– volume: 76
  start-page: 2420
  year: 1979
  ident: 10.1016/j.tig.2022.02.010_bb0095
  article-title: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.76.5.2420
– volume: 37
  start-page: 2379
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0325
  article-title: p53 isoforms regulate premature aging in human cells
  publication-title: Oncogene 2018 37:18
– volume: 120
  start-page: 357
  year: 2005
  ident: 10.1016/j.tig.2022.02.010_bb0355
  article-title: Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.009
– volume: 115
  start-page: 6410
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0445
  article-title: Altered p53 functionality in cancer-associated fibroblasts contributes to their cancer-supporting features
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1719076115
– volume: 2020
  start-page: 4534289
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0180
  article-title: The establishment of esophageal precancerous lesion model by using p53 conditional knockout mouse in esophageal epithelium
  publication-title: Biomed. Res. Int.
– volume: 28
  start-page: 739
  year: 2007
  ident: 10.1016/j.tig.2022.02.010_bb0015
  article-title: The DNA damage response: ten years after
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.11.015
– volume: 25
  start-page: 154
  year: 2018
  ident: 10.1016/j.tig.2022.02.010_bb0120
  article-title: Why are there hotspot mutations in the TP53 gene in human cancers?
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2017.180
– volume: 12
  start-page: 153
  year: 2005
  ident: 10.1016/j.tig.2022.02.010_bb0350
  article-title: C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401539
– volume: 18
  start-page: 306
  year: 2004
  ident: 10.1016/j.tig.2022.02.010_bb0255
  article-title: Modulation of mammalian life span by the short isoform of p53
  publication-title: Genes Dev.
  doi: 10.1101/gad.1162404
– volume: 30
  start-page: 481
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0430
  article-title: Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.12.028
– volume: 99
  start-page: 2948
  year: 2002
  ident: 10.1016/j.tig.2022.02.010_bb0135
  article-title: Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.052713099
– volume: 362
  start-page: 709
  year: 1993
  ident: 10.1016/j.tig.2022.02.010_bb0005
  article-title: Instability and decay of the primary structure of DNA
  publication-title: Nature
  doi: 10.1038/362709a0
– volume: 294
  start-page: 591
  year: 2001
  ident: 10.1016/j.tig.2022.02.010_bb0590
  article-title: Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1065486
– volume: 12
  start-page: 993
  year: 2010
  ident: 10.1016/j.tig.2022.02.010_bb0280
  article-title: Puma is required for p53-induced depletion of adult stem cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2100
– volume: 22
  start-page: 5866
  year: 2003
  ident: 10.1016/j.tig.2022.02.010_bb0420
  article-title: The RAS signal transduction pathway and its role in radiation sensitivity
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206699
– volume: 20
  start-page: 6197
  year: 2019
  ident: 10.1016/j.tig.2022.02.010_bb0140
  article-title: Gain-of-function mutant p53: all the roads lead to tumorigenesis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20246197
– volume: 34
  start-page: 2858
  year: 2020
  ident: 10.1016/j.tig.2022.02.010_bb0485
  article-title: MDM2 inhibition: an important step forward in cancer therapy
  publication-title: Leukemia
  doi: 10.1038/s41375-020-0949-z
– volume: 7
  year: 2017
  ident: 10.1016/j.tig.2022.02.010_bb0185
  article-title: Inherited TP53 mutations and the Li-fraumeni syndrome
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a026187
SSID ssj0005735
Score 2.666809
SecondaryResourceType review_article
Snippet The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 598
SubjectTerms aging
Aging - genetics
Apoptosis
cancer
DNA damage
DNA Damage - genetics
Genes, p53
Humans
Neoplasms - genetics
Neoplasms - metabolism
p53
tumor suppression
Tumor Suppressor Protein p53 - genetics
Title The p53 network: cellular and systemic DNA damage responses in cancer and aging
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0168952522000373
https://dx.doi.org/10.1016/j.tig.2022.02.010
https://www.ncbi.nlm.nih.gov/pubmed/35346511
https://www.proquest.com/docview/2644937708
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_GRPFFdH7NjxHBJ6Eua_qx-TamYyqbD07YW0jTTCpah9sefPFv965ph4JOEPrScmlD7nL3S3P5HcApRmjj4srKiZQWDno_7mDQix2tKR4oX6kmnUbuD4Leg3cz8kcl6BRnYSitMvf91qdn3jp_Us9Hsz5Jkvo9gpVmy3cRQGQsKsT46XkhWfn5x5c0j9AW2URhh6SLnc0sx2uWPOIS0XUz2k46RPtzbPoNe2YxqLsJGzl4ZG3bvy0ombQCq7ac5HsF1vr5Rvk23KH62cQXLLVp3heM_tBTyilTacwsf3Oi2eWgzWL1gk6FvdlsWTNlSco0GYOVzcoY7cCwezXs9Jy8doKjPS5mDipgHCjdIro0NxzjLBQ-hqtIK9PQfhia2FeeGocIOEJuxppIb3ApJlyi54mM2IVy-pqafWDGRIGn46ClDPdEZFpaiEgjrsGX6oCLKvBi0KTOecWpvMWzLBLIniSOs6RxlhyvBq_C2aLJxJJqLBN2C03I4rQo-jeJLn9ZI2_R6Js5_dXspFC1xGlGmlGpeZ1PJeFGRHIhb1Zhz9rAouvCF1RRvnHwv48ewjrd2fyzIyjP3ubmGJHOLKplplyDlfb1bW_wCUWO-MI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgiMcF8WY8g8QJqVrWNO3GbeKhwR4cGBK3KE0zVATdBOPAv8du2iEkHhJST23cRo5jf2mczwDHGKGtjysrL9ZGeOj9uIdBL_GMoXigpdYNOo3c64ftu-D6Xt7PwFl5FobSKgvf73x67q2LO7VCm7VxmtZuEaw0mtJHAJGzqIhZmCN2KlmBudZVp93_zPSIXJ1NbO-RQLm5mad5TdIHXCX6fs7cSedovw9PP8HPPAxdrsBygR9Zy3VxFWZstgbzrqLk-xos9Iq98nW4QQtgYylY5jK9Txn9pKesU6azhDkK59Sw836LJfoZ_Qp7cQmz9pWlGTNkD65tXsloAwaXF4OztleUT_BMwMXEwzEYhto0iTHNj4Y4EYXEiBUbbetGRpFNpA70MELMEXE7NMR7g6sx4RNDT2zFJlSyUWa3gVkbh4FJwqa2PBCxbRohYoPQBl9qQi6qwEulKVNQi1OFiydV5pA9KtSzIj0rjledV-FkKjJ2vBq_NfbLkVDlgVF0cQq9_m9CwVToi0X9JXZUDrXCmUYjozM7entVBB0RzEW8UYUtZwPTrgspqKh8fed_Hz2Exfag11Xdq35nF5boiUtH24PK5OXN7iPwmcQHhWF_ANRG-3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+p53+network%3A+cellular+and+systemic+DNA+damage+responses+in+cancer+and+aging&rft.jtitle=Trends+in+genetics&rft.au=Vaddavalli%2C+Pavana+Lakshmi&rft.au=Schumacher%2C+Bj%C3%B6rn&rft.date=2022-06-01&rft.issn=0168-9525&rft.volume=38&rft.issue=6&rft.spage=598&rft_id=info:doi/10.1016%2Fj.tig.2022.02.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon