ESTIMATION OF CELL LINEAGE TREES BY MAXIMUM-LIKELIHOOD PHYLOGENETICS
CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through insertion-deletion mutations of synthetic genomic barcodes during organismal development. To reconstruct the cell lineage tree from the mutated barcodes, current approaches apply general-purpose computatio...
Saved in:
Published in | The annals of applied statistics Vol. 15; no. 1; p. 343 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2021
|
Online Access | Get more information |
Cover
Loading…
Abstract | CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through insertion-deletion mutations of synthetic genomic barcodes during organismal development. To reconstruct the cell lineage tree from the mutated barcodes, current approaches apply general-purpose computational tools that are agnostic to the mutation process and are unable to take full advantage of the data's structure. We propose a statistical model for the CRISPR mutation process and develop a procedure to estimate the resulting tree topology, branch lengths, and mutation parameters by iteratively applying penalized maximum likelihood estimation. By assuming the barcode evolves according to a molecular clock, our method infers relative ordering across parallel lineages, whereas existing techniques only infer ordering for nodes along the same lineage. When analyzing transgenic zebrafish data from McKenna, Findlay and Gagnon et al. (2016), we find that our method recapitulates known aspects of zebrafish development and the results are consistent across samples. |
---|---|
AbstractList | CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through insertion-deletion mutations of synthetic genomic barcodes during organismal development. To reconstruct the cell lineage tree from the mutated barcodes, current approaches apply general-purpose computational tools that are agnostic to the mutation process and are unable to take full advantage of the data's structure. We propose a statistical model for the CRISPR mutation process and develop a procedure to estimate the resulting tree topology, branch lengths, and mutation parameters by iteratively applying penalized maximum likelihood estimation. By assuming the barcode evolves according to a molecular clock, our method infers relative ordering across parallel lineages, whereas existing techniques only infer ordering for nodes along the same lineage. When analyzing transgenic zebrafish data from McKenna, Findlay and Gagnon et al. (2016), we find that our method recapitulates known aspects of zebrafish development and the results are consistent across samples. |
Author | Willis, Amy D Matsen, 4th, Frederick A Dewitt, 3rd, William S McKenna, Aaron Feng, Jean Simon, Noah |
Author_xml | – sequence: 1 givenname: Jean surname: Feng fullname: Feng, Jean organization: Department of Epidemiology and Biostatistics, University of California, San Francisco – sequence: 2 givenname: William S surname: Dewitt, 3rd fullname: Dewitt, 3rd, William S organization: Department of Genome Sciences, University of Washington – sequence: 3 givenname: Aaron surname: McKenna fullname: McKenna, Aaron organization: Department of Molecular and Systems Biology, Dartmouth College – sequence: 4 givenname: Noah surname: Simon fullname: Simon, Noah organization: Department of Biostatistics, University of Washington – sequence: 5 givenname: Amy D surname: Willis fullname: Willis, Amy D organization: Department of Biostatistics, University of Washington – sequence: 6 givenname: Frederick A surname: Matsen, 4th fullname: Matsen, 4th, Frederick A organization: Computational Biology Program, Fred Hutchinson Cancer Research Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35990087$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j7tOwzAYRj0U0QtM7MgvYPh9SRyPIXUbq06CSCrRqXJiRwLRixo68PZUgk7fGY6O9E3RaH_YB4QeKDxRRsUzA-IObqACYIQmVHFGYhrJMZoOwydAJBJBb9GYR0oBJHKC5rpuTJE2pipxtcCZthZbU-p0qXHzpnWNXza4SN9NsS6INSttTV5Vc_yab2y11KVuTFbfoZvefQ3h_n9naL3QTZaTi2Ky1JJOAP8mvhdUJtzL3kXKKcGZ9yB8wiX1neMgeNuHhPlWSh8uFFHZxYEpFhyLBe_YDD3-dY_ndhf89nj62LnTz_Z6h_0ClLNFmg |
CitedBy_id | crossref_primary_10_1098_rstb_2023_0318 crossref_primary_10_1038_s41588_024_01920_6 crossref_primary_10_1038_s41576_024_00788_w crossref_primary_10_1073_pnas_2203352120 crossref_primary_10_1093_molbev_msad113 crossref_primary_10_1016_j_cels_2023_11_005 crossref_primary_10_1093_bioinformatics_btae221 crossref_primary_10_1098_rspb_2024_2850 crossref_primary_10_1146_annurev_cancerbio_061421_123301 crossref_primary_10_1098_rspb_2022_1844 crossref_primary_10_1016_j_cell_2022_10_028 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1214/20-aoas1400 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 35990087 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI146028 – fundername: NIH HHS grantid: DP5 OD019820 – fundername: NIGMS NIH HHS grantid: R01 GM113246 – fundername: NIAID NIH HHS grantid: F31 AI150163 – fundername: NHGRI NIH HHS grantid: T32 HG000035 – fundername: NHGRI NIH HHS grantid: K99 HG010152 – fundername: NHGRI NIH HHS grantid: R00 HG010152 |
GroupedDBID | 123 23M 2AX 6J9 AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ABZEH ACDIW ACGFO ACHJO ACMTB ACTMH ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CS3 DQDLB DSRWC EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HQ6 HVGLF IPSME J9A JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 P2P PUASD RBU RNS RPE SA0 SJN TN5 WHG WS9 |
ID | FETCH-LOGICAL-c403t-df41783d7fa59a9432dd04d8371dca3043bfe82db77defe8517c6e292ea2643c2 |
ISSN | 1932-6157 |
IngestDate | Thu Apr 03 07:09:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-df41783d7fa59a9432dd04d8371dca3043bfe82db77defe8517c6e292ea2643c2 |
OpenAccessLink | https://projecteuclid.org/journals/annals-of-applied-statistics/volume-15/issue-1/Estimation-of-cell-lineage-trees-by-maximum-likelihood-phylogenetics/10.1214/20-AOAS1400.pdf |
PMID | 35990087 |
ParticipantIDs | pubmed_primary_35990087 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The annals of applied statistics |
PublicationTitleAlternate | Ann Appl Stat |
PublicationYear | 2021 |
SSID | ssj0054841 |
Score | 2.3267 |
Snippet | CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through insertion-deletion mutations of synthetic genomic barcodes... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 343 |
Title | ESTIMATION OF CELL LINEAGE TREES BY MAXIMUM-LIKELIHOOD PHYLOGENETICS |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35990087 |
Volume | 15 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYkNA4oPENG8gHbpUhsZ06Pm5rqgaaBdFUak-THTsHJNqJVULir-c5dpOyAgIukWVHluP3y_N7z-8DoTeSW5HKWBNpG0mA4SmiubKESq5TzniSaBecXFwOJ3P-fpEsdm5MXXTJRr-tv_8yruR_qAp9QFcXJfsPlO0mhQ5oA33hCRSG51_ROJtVeeHr5pTjwYWzQU3zy8xdElWfsmw2OF8OirNFXswLMs0_ZNN8UpajwcfJclo6n7VqW8Dwc48Z1WVUVkFAdTFHPp1zLzcGP17bY2tkv4WLJua95YMlp7etFrXj6t6Oq7721_8zgIuP-loH43SwQtAdN6zAOEEOBDXUJ5vuOGuyhyDPJplPzbTHvmnMXYRKRNRa3YDqF-2-BXt__aWlJEvgDI38Qf3n0Vu5tLdDB-gAtApXJtXZdvy5DapbW-e0-5IQzQlrerezoiN0bzvLLU2klUiqY_QgqBL4zOPiIbpjV4_Q_aLLw3vzGI16hOByjB1CcEAIbhGCz5d4HyH4J4Q8QfNxVl1MSKibQWoesQ0xDY9FyoxoVCKV5IwaE3GTMhGbWrGIM93YlBothLHQSmJRDy2V1CoQj1lNn6LD1XplnyNsmWiG1oBOnGrufl8B6gS3rizAMKK1fIGe-S24uvbJUa62m_PytyMn6KhH0Cm62wCq7SsQ7Tb6dUuRH-EmPvY |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ESTIMATION+OF+CELL+LINEAGE+TREES+BY+MAXIMUM-LIKELIHOOD+PHYLOGENETICS&rft.jtitle=The+annals+of+applied+statistics&rft.au=Feng%2C+Jean&rft.au=Dewitt%2C+3rd%2C+William+S&rft.au=McKenna%2C+Aaron&rft.au=Simon%2C+Noah&rft.date=2021-03-01&rft.issn=1932-6157&rft.volume=15&rft.issue=1&rft.spage=343&rft_id=info:doi/10.1214%2F20-aoas1400&rft_id=info%3Apmid%2F35990087&rft_id=info%3Apmid%2F35990087&rft.externalDocID=35990087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon |