ESTIMATION OF CELL LINEAGE TREES BY MAXIMUM-LIKELIHOOD PHYLOGENETICS

CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through insertion-deletion mutations of synthetic genomic barcodes during organismal development. To reconstruct the cell lineage tree from the mutated barcodes, current approaches apply general-purpose computatio...

Full description

Saved in:
Bibliographic Details
Published inThe annals of applied statistics Vol. 15; no. 1; p. 343
Main Authors Feng, Jean, Dewitt, 3rd, William S, McKenna, Aaron, Simon, Noah, Willis, Amy D, Matsen, 4th, Frederick A
Format Journal Article
LanguageEnglish
Published United States 01.03.2021
Online AccessGet more information

Cover

Loading…
Abstract CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through insertion-deletion mutations of synthetic genomic barcodes during organismal development. To reconstruct the cell lineage tree from the mutated barcodes, current approaches apply general-purpose computational tools that are agnostic to the mutation process and are unable to take full advantage of the data's structure. We propose a statistical model for the CRISPR mutation process and develop a procedure to estimate the resulting tree topology, branch lengths, and mutation parameters by iteratively applying penalized maximum likelihood estimation. By assuming the barcode evolves according to a molecular clock, our method infers relative ordering across parallel lineages, whereas existing techniques only infer ordering for nodes along the same lineage. When analyzing transgenic zebrafish data from McKenna, Findlay and Gagnon et al. (2016), we find that our method recapitulates known aspects of zebrafish development and the results are consistent across samples.
AbstractList CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through insertion-deletion mutations of synthetic genomic barcodes during organismal development. To reconstruct the cell lineage tree from the mutated barcodes, current approaches apply general-purpose computational tools that are agnostic to the mutation process and are unable to take full advantage of the data's structure. We propose a statistical model for the CRISPR mutation process and develop a procedure to estimate the resulting tree topology, branch lengths, and mutation parameters by iteratively applying penalized maximum likelihood estimation. By assuming the barcode evolves according to a molecular clock, our method infers relative ordering across parallel lineages, whereas existing techniques only infer ordering for nodes along the same lineage. When analyzing transgenic zebrafish data from McKenna, Findlay and Gagnon et al. (2016), we find that our method recapitulates known aspects of zebrafish development and the results are consistent across samples.
Author Willis, Amy D
Matsen, 4th, Frederick A
Dewitt, 3rd, William S
McKenna, Aaron
Feng, Jean
Simon, Noah
Author_xml – sequence: 1
  givenname: Jean
  surname: Feng
  fullname: Feng, Jean
  organization: Department of Epidemiology and Biostatistics, University of California, San Francisco
– sequence: 2
  givenname: William S
  surname: Dewitt, 3rd
  fullname: Dewitt, 3rd, William S
  organization: Department of Genome Sciences, University of Washington
– sequence: 3
  givenname: Aaron
  surname: McKenna
  fullname: McKenna, Aaron
  organization: Department of Molecular and Systems Biology, Dartmouth College
– sequence: 4
  givenname: Noah
  surname: Simon
  fullname: Simon, Noah
  organization: Department of Biostatistics, University of Washington
– sequence: 5
  givenname: Amy D
  surname: Willis
  fullname: Willis, Amy D
  organization: Department of Biostatistics, University of Washington
– sequence: 6
  givenname: Frederick A
  surname: Matsen, 4th
  fullname: Matsen, 4th, Frederick A
  organization: Computational Biology Program, Fred Hutchinson Cancer Research Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35990087$$D View this record in MEDLINE/PubMed
BookMark eNo1j7tOwzAYRj0U0QtM7MgvYPh9SRyPIXUbq06CSCrRqXJiRwLRixo68PZUgk7fGY6O9E3RaH_YB4QeKDxRRsUzA-IObqACYIQmVHFGYhrJMZoOwydAJBJBb9GYR0oBJHKC5rpuTJE2pipxtcCZthZbU-p0qXHzpnWNXza4SN9NsS6INSttTV5Vc_yab2y11KVuTFbfoZvefQ3h_n9naL3QTZaTi2Ky1JJOAP8mvhdUJtzL3kXKKcGZ9yB8wiX1neMgeNuHhPlWSh8uFFHZxYEpFhyLBe_YDD3-dY_ndhf89nj62LnTz_Z6h_0ClLNFmg
CitedBy_id crossref_primary_10_1098_rstb_2023_0318
crossref_primary_10_1038_s41588_024_01920_6
crossref_primary_10_1038_s41576_024_00788_w
crossref_primary_10_1073_pnas_2203352120
crossref_primary_10_1093_molbev_msad113
crossref_primary_10_1016_j_cels_2023_11_005
crossref_primary_10_1093_bioinformatics_btae221
crossref_primary_10_1098_rspb_2024_2850
crossref_primary_10_1146_annurev_cancerbio_061421_123301
crossref_primary_10_1098_rspb_2022_1844
crossref_primary_10_1016_j_cell_2022_10_028
ContentType Journal Article
DBID NPM
DOI 10.1214/20-aoas1400
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 35990087
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI146028
– fundername: NIH HHS
  grantid: DP5 OD019820
– fundername: NIGMS NIH HHS
  grantid: R01 GM113246
– fundername: NIAID NIH HHS
  grantid: F31 AI150163
– fundername: NHGRI NIH HHS
  grantid: T32 HG000035
– fundername: NHGRI NIH HHS
  grantid: K99 HG010152
– fundername: NHGRI NIH HHS
  grantid: R00 HG010152
GroupedDBID 123
23M
2AX
6J9
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ABZEH
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CS3
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HQ6
HVGLF
IPSME
J9A
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
P2P
PUASD
RBU
RNS
RPE
SA0
SJN
TN5
WHG
WS9
ID FETCH-LOGICAL-c403t-df41783d7fa59a9432dd04d8371dca3043bfe82db77defe8517c6e292ea2643c2
ISSN 1932-6157
IngestDate Thu Apr 03 07:09:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-df41783d7fa59a9432dd04d8371dca3043bfe82db77defe8517c6e292ea2643c2
OpenAccessLink https://projecteuclid.org/journals/annals-of-applied-statistics/volume-15/issue-1/Estimation-of-cell-lineage-trees-by-maximum-likelihood-phylogenetics/10.1214/20-AOAS1400.pdf
PMID 35990087
ParticipantIDs pubmed_primary_35990087
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The annals of applied statistics
PublicationTitleAlternate Ann Appl Stat
PublicationYear 2021
SSID ssj0054841
Score 2.3267
Snippet CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through insertion-deletion mutations of synthetic genomic barcodes...
SourceID pubmed
SourceType Index Database
StartPage 343
Title ESTIMATION OF CELL LINEAGE TREES BY MAXIMUM-LIKELIHOOD PHYLOGENETICS
URI https://www.ncbi.nlm.nih.gov/pubmed/35990087
Volume 15
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYkNA4oPENG8gHbpUhsZ06Pm5rqgaaBdFUak-THTsHJNqJVULir-c5dpOyAgIukWVHluP3y_N7z-8DoTeSW5HKWBNpG0mA4SmiubKESq5TzniSaBecXFwOJ3P-fpEsdm5MXXTJRr-tv_8yruR_qAp9QFcXJfsPlO0mhQ5oA33hCRSG51_ROJtVeeHr5pTjwYWzQU3zy8xdElWfsmw2OF8OirNFXswLMs0_ZNN8UpajwcfJclo6n7VqW8Dwc48Z1WVUVkFAdTFHPp1zLzcGP17bY2tkv4WLJua95YMlp7etFrXj6t6Oq7721_8zgIuP-loH43SwQtAdN6zAOEEOBDXUJ5vuOGuyhyDPJplPzbTHvmnMXYRKRNRa3YDqF-2-BXt__aWlJEvgDI38Qf3n0Vu5tLdDB-gAtApXJtXZdvy5DapbW-e0-5IQzQlrerezoiN0bzvLLU2klUiqY_QgqBL4zOPiIbpjV4_Q_aLLw3vzGI16hOByjB1CcEAIbhGCz5d4HyH4J4Q8QfNxVl1MSKibQWoesQ0xDY9FyoxoVCKV5IwaE3GTMhGbWrGIM93YlBothLHQSmJRDy2V1CoQj1lNn6LD1XplnyNsmWiG1oBOnGrufl8B6gS3rizAMKK1fIGe-S24uvbJUa62m_PytyMn6KhH0Cm62wCq7SsQ7Tb6dUuRH-EmPvY
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ESTIMATION+OF+CELL+LINEAGE+TREES+BY+MAXIMUM-LIKELIHOOD+PHYLOGENETICS&rft.jtitle=The+annals+of+applied+statistics&rft.au=Feng%2C+Jean&rft.au=Dewitt%2C+3rd%2C+William+S&rft.au=McKenna%2C+Aaron&rft.au=Simon%2C+Noah&rft.date=2021-03-01&rft.issn=1932-6157&rft.volume=15&rft.issue=1&rft.spage=343&rft_id=info:doi/10.1214%2F20-aoas1400&rft_id=info%3Apmid%2F35990087&rft_id=info%3Apmid%2F35990087&rft.externalDocID=35990087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon