Geometric phase in eigenspace evolution of invariant and adiabatic action operators

The theory of geometric phase is generalized to a cyclic evolution of the eigenspace of an invariant operator with N-fold degeneracy. The corresponding geometric phase is interpreted as a holonomy inherited from the universal Stiefel U(N) bundle over a Grassmann manifold. Most significantly, for an...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 95; no. 5; p. 050406
Main Authors Teo, Jeffrey C Y, Wang, Z D
Format Journal Article
LanguageEnglish
Published United States 29.07.2005
Online AccessGet more information

Cover

Loading…
Abstract The theory of geometric phase is generalized to a cyclic evolution of the eigenspace of an invariant operator with N-fold degeneracy. The corresponding geometric phase is interpreted as a holonomy inherited from the universal Stiefel U(N) bundle over a Grassmann manifold. Most significantly, for an arbitrary initial state, this holonomy captures the inherent geometric feature of the state evolution that may not be cyclic. Moreover, a rigorous theory of geometric phase in the evolution of the eigenspace of an adiabatic action operator is also formulated, with the corresponding holonomy being elaborated by a pullback U(N) bundle.
AbstractList The theory of geometric phase is generalized to a cyclic evolution of the eigenspace of an invariant operator with N-fold degeneracy. The corresponding geometric phase is interpreted as a holonomy inherited from the universal Stiefel U(N) bundle over a Grassmann manifold. Most significantly, for an arbitrary initial state, this holonomy captures the inherent geometric feature of the state evolution that may not be cyclic. Moreover, a rigorous theory of geometric phase in the evolution of the eigenspace of an adiabatic action operator is also formulated, with the corresponding holonomy being elaborated by a pullback U(N) bundle.
Author Teo, Jeffrey C Y
Wang, Z D
Author_xml – sequence: 1
  givenname: Jeffrey C Y
  surname: Teo
  fullname: Teo, Jeffrey C Y
  organization: Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
– sequence: 2
  givenname: Z D
  surname: Wang
  fullname: Wang, Z D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16090857$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOwzAURL0oog_4BJB_IOHasZ1kiSooSJVYAOvqxr6hRq0T2W6l_j1FhdUsZs6RZs4mYQjE2J2AUgioHsbtKUU67ijnstUlaFBgJmwGUImiBainbJ7SNwAIaZprNhUGWmh0PWPvKxr2lKO3fNxiIu4DJ_9FIY1oidNx2B2yHwIf-nN1xOgxZI7BcXQeO8xnEO1lMVLEPMR0w6563CW6_csF-3x--li-FOu31evycV1YBVUuHFaoGuPICFTQN6pFK0BKq7QiDU2tTUvgqsZI7YTrEapOKqqFhV8BygW7v3jHQ7cntxmj32M8bf7fyR_cglVH
CitedBy_id crossref_primary_10_1103_PhysRevA_79_064303
crossref_primary_10_1016_j_physleta_2007_10_032
crossref_primary_10_1016_j_physrep_2023_07_004
crossref_primary_10_1103_PhysRevA_74_020302
crossref_primary_10_1103_PhysRevA_75_014301
crossref_primary_10_1103_PhysRevA_74_030304
crossref_primary_10_7566_JPSJ_83_034001
ContentType Journal Article
DBID NPM
DOI 10.1103/physrevlett.95.050406
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 16090857
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
3MX
5VS
6TJ
85S
8NH
AAYJJ
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
F5P
MVM
N9A
NPBMV
NPM
OHT
P0-
P2P
RNS
ROL
S7W
SJN
TN5
UBE
VOH
VQA
WH7
XOL
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c403t-da3a486de61a40f849ac1022c454e5087569e0d38625d1dfa03b24e71c0c403a2
ISSN 0031-9007
IngestDate Tue Oct 15 23:31:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-da3a486de61a40f849ac1022c454e5087569e0d38625d1dfa03b24e71c0c403a2
PMID 16090857
ParticipantIDs pubmed_primary_16090857
PublicationCentury 2000
PublicationDate 2005-07-29
PublicationDateYYYYMMDD 2005-07-29
PublicationDate_xml – month: 07
  year: 2005
  text: 2005-07-29
  day: 29
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2005
SSID ssj0001268
Score 1.8768139
Snippet The theory of geometric phase is generalized to a cyclic evolution of the eigenspace of an invariant operator with N-fold degeneracy. The corresponding...
SourceID pubmed
SourceType Index Database
StartPage 050406
Title Geometric phase in eigenspace evolution of invariant and adiabatic action operators
URI https://www.ncbi.nlm.nih.gov/pubmed/16090857
Volume 95
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5TEXwR73fJg2-jM20ubR9FvKAwBDcQXyRNUxTcBTb34K_3nCbthk68vJTSjDTL9_U05zTnO4ScyFTzWJsoyE0sAqEYD1ITx0EsswLzPm3odlu01XVX3DzIh0bjdmbX0ts4a5n3uXkl_0EVrgGumCX7B2TrTuECnAO-cASE4fgrjK_soIcVsUxz-Axvo1L-A9U1wUrA42on_uZOFmICXrH2G8pRkCBzWq2uVPhgaMvv7aPZxepdhaHPb3ktU3_qRXjHhVl9LlizMuVldN5ZkEe_n7iKKkgMV_rQg7eUHLduuIq0laV05TA9I-SM2WMSbIGab5EZKkNgmAbGiuNspbL19fcwscNeCVOoWIqy-z-3fhLKrpoWyEKcoMlrY-BmpQq3KfdS9n_LJ3PB6E7njg3FZH1_nxyOcuHRWSOr3mOgZw7-ddKw_Q2y7LAZbZL7mgS0JAF96dMpCWhNAjooaE0CCiSgNQmoIwGtSbBFupcXnfPrwFfKCIxgfBzkmmuRqNyqUAtWJCLVBl15I6SwEosWqNSynIP7KvMwLzTjWSRsHBqGHehomyz2B327S6gII8uVzKMcPGVZqIwrHjGpU8OLJNF2j-y42XgaOjmUp2qe9r9tOSArU44dkqUCnj97BIu5cXZcwvQB4nhIng
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+phase+in+eigenspace+evolution+of+invariant+and+adiabatic+action+operators&rft.jtitle=Physical+review+letters&rft.au=Teo%2C+Jeffrey+C+Y&rft.au=Wang%2C+Z+D&rft.date=2005-07-29&rft.issn=0031-9007&rft.volume=95&rft.issue=5&rft.spage=050406&rft_id=info:doi/10.1103%2Fphysrevlett.95.050406&rft_id=info%3Apmid%2F16090857&rft_id=info%3Apmid%2F16090857&rft.externalDocID=16090857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon