Robust, stretchable and photothermal self-healing polyurethane elastomer based on furan-modified polydopamine nanoparticles
The realization of high strengthen, large ductility, and multiple-responding for self-healing composites is an urgent problem to be solved for expanding practical applications in industry. Herein, a simple stagey was proposed to prepare multiple-responding self-healing composites, which possess outs...
Saved in:
Published in | Polymer (Guilford) Vol. 190; p. 122219 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
02.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The realization of high strengthen, large ductility, and multiple-responding for self-healing composites is an urgent problem to be solved for expanding practical applications in industry. Herein, a simple stagey was proposed to prepare multiple-responding self-healing composites, which possess outstanding both tensile strengths also ductility, by utilizing furfuryl-modified polydopamine particles (F-PDAPs) as crosslinkers in maleimide-terminated polyurethane (m-PU) based on Diels-Alder reaction. Due to the excellent photo-thermal effect of F-PDAPs and the existence of DA bonds, the composites exhibited excellent healing efficiency under NIR (91.83%) and thermal (92.54%) initiation, in particular, could locally and specifically repair any crack under near-infrared light conditions. Furthermore, the tensile strength of composite materials was reached up to 34.26 MPa with a high breaking strain of 800%. Besides, the composites exhibited outstanding adhesive strength that could be healed via thermally induced. Such excellent comprehensive performance gives the composite materials an opportunity to have great potential in the fields of coatings, binders, etc.
[Display omitted]
•The self-healing composites possess outstanding tensile strengths also ductility.•The composites can realize specifically healing under NIR irradiation.•The composites have good adhesive strength that can be healed by thermal-induced. |
---|---|
AbstractList | The realization of high strengthen, large ductility, and multiple-responding for self-healing composites is an urgent problem to be solved for expanding practical applications in industry. Herein, a simple stagey was proposed to prepare multiple-responding self-healing composites, which possess outstanding both tensile strengths also ductility, by utilizing furfuryl-modified polydopamine particles (F-PDAPs) as crosslinkers in maleimide-terminated polyurethane (m-PU) based on Diels-Alder reaction. Due to the excellent photo-thermal effect of F-PDAPs and the existence of DA bonds, the composites exhibited excellent healing efficiency under NIR (91.83%) and thermal (92.54%) initiation, in particular, could locally and specifically repair any crack under near-infrared light conditions. Furthermore, the tensile strength of composite materials was reached up to 34.26 MPa with a high breaking strain of 800%. Besides, the composites exhibited outstanding adhesive strength that could be healed via thermally induced. Such excellent comprehensive performance gives the composite materials an opportunity to have great potential in the fields of coatings, binders, etc. The realization of high strengthen, large ductility, and multiple-responding for self-healing composites is an urgent problem to be solved for expanding practical applications in industry. Herein, a simple stagey was proposed to prepare multiple-responding self-healing composites, which possess outstanding both tensile strengths also ductility, by utilizing furfuryl-modified polydopamine particles (F-PDAPs) as crosslinkers in maleimide-terminated polyurethane (m-PU) based on Diels-Alder reaction. Due to the excellent photo-thermal effect of F-PDAPs and the existence of DA bonds, the composites exhibited excellent healing efficiency under NIR (91.83%) and thermal (92.54%) initiation, in particular, could locally and specifically repair any crack under near-infrared light conditions. Furthermore, the tensile strength of composite materials was reached up to 34.26 MPa with a high breaking strain of 800%. Besides, the composites exhibited outstanding adhesive strength that could be healed via thermally induced. Such excellent comprehensive performance gives the composite materials an opportunity to have great potential in the fields of coatings, binders, etc. [Display omitted] •The self-healing composites possess outstanding tensile strengths also ductility.•The composites can realize specifically healing under NIR irradiation.•The composites have good adhesive strength that can be healed by thermal-induced. |
ArticleNumber | 122219 |
Author | Zhou, Mi Cheng, Xu Yang, Shiwen Wang, Haibo Yan, Bin Du, Zongliang Du, Xiaosheng |
Author_xml | – sequence: 1 givenname: Shiwen surname: Yang fullname: Yang, Shiwen organization: College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China – sequence: 2 givenname: Xiaosheng orcidid: 0000-0001-8239-4303 surname: Du fullname: Du, Xiaosheng organization: College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China – sequence: 3 givenname: Zongliang surname: Du fullname: Du, Zongliang organization: College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China – sequence: 4 givenname: Mi surname: Zhou fullname: Zhou, Mi organization: College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China – sequence: 5 givenname: Xu surname: Cheng fullname: Cheng, Xu organization: College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China – sequence: 6 givenname: Haibo orcidid: 0000-0001-5321-8888 surname: Wang fullname: Wang, Haibo email: whb6985@scu.edu.cn organization: College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China – sequence: 7 givenname: Bin surname: Yan fullname: Yan, Bin email: yanbinscu@126.com organization: College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China |
BookMark | eNqFkE2LFDEQhoOs4OzqTxACXu0xqfT0dPAgsqwfsCCInkO6utrOkE7aJC0s_nkzzJ687Cmh8rz1kueaXYUYiLHXUuylkN27036N_mGhtAcBdQYAUj9jO9kfVQOg5RXbCaGgUX0nX7DrnE9CCDhAu2N_v8dhy-UtzyVRwdkOnrgNI1_nWGKZKS3W80x-amay3oVf_Fy2VXi2gTh5m0us3XywmUYeA5-2ZEOzxNFNrk7O-BhXu7iKBxvqNRWHnvJL9nyyPtOrx_OG_fx09-P2S3P_7fPX24_3DbZClWbUo64_QqlHxAFbDT1Rh9Ci7FF3pOFAKEVPoJQcUB2hVwqnXrRWTtBqdcPeXPauKf7eKBdzilsKtdKAOnYg-063lTpcKEwx50STWZNbbHowUpizZ3Myj57N2bO5eK659__l0BVbXAwlWeefTH-4pKkK-OPqa0ZHAWl0ibCYMbonNvwDKeGiIQ |
CitedBy_id | crossref_primary_10_1016_j_polymer_2020_123211 crossref_primary_10_1007_s10924_020_01923_4 crossref_primary_10_1016_j_mtcomm_2025_111752 crossref_primary_10_1016_j_seppur_2021_120382 crossref_primary_10_1039_D0MA00873G crossref_primary_10_1016_j_porgcoat_2023_108153 crossref_primary_10_1039_D1CS00374G crossref_primary_10_1016_j_compositesb_2021_109273 crossref_primary_10_1002_aisy_202400790 crossref_primary_10_20964_2020_11_50 crossref_primary_10_1016_j_apmate_2022_100036 crossref_primary_10_1016_j_colsurfa_2024_134544 crossref_primary_10_1016_j_eurpolymj_2025_113792 crossref_primary_10_1016_j_compositesb_2021_109428 crossref_primary_10_1016_j_eurpolymj_2024_113566 crossref_primary_10_1016_j_polymer_2021_123464 crossref_primary_10_1016_j_polymer_2022_125227 crossref_primary_10_3390_polym15030778 crossref_primary_10_3390_polym16030441 crossref_primary_10_1016_j_porgcoat_2022_107010 crossref_primary_10_1016_j_eurpolymj_2023_111844 crossref_primary_10_1021_acsapm_1c00495 crossref_primary_10_1039_D1TB02710G crossref_primary_10_1039_D2RA08052D crossref_primary_10_1002_adfm_202006324 crossref_primary_10_1002_pi_6715 crossref_primary_10_3390_gels9080658 crossref_primary_10_3390_polym12030603 crossref_primary_10_1002_adfm_202405130 crossref_primary_10_1002_app_54825 crossref_primary_10_1016_j_apsusc_2024_159645 crossref_primary_10_1016_j_porgcoat_2022_106790 crossref_primary_10_1016_j_porgcoat_2021_106672 crossref_primary_10_1016_j_porgcoat_2022_107244 crossref_primary_10_1021_acsami_4c14718 crossref_primary_10_1016_j_porgcoat_2023_107886 crossref_primary_10_1016_j_jcis_2022_10_089 crossref_primary_10_1016_j_jiec_2023_09_045 crossref_primary_10_1039_D4TC03214D crossref_primary_10_1007_s10965_020_02186_2 crossref_primary_10_1016_j_compositesa_2021_106538 crossref_primary_10_1039_D3GC02796A crossref_primary_10_1021_acs_biomac_0c01777 crossref_primary_10_1016_j_polymer_2020_122894 crossref_primary_10_1016_j_polymer_2021_124015 crossref_primary_10_1016_j_polymer_2021_123603 crossref_primary_10_1016_j_jmst_2022_12_043 crossref_primary_10_1016_j_synthmet_2020_116417 crossref_primary_10_1016_j_polymer_2021_124373 crossref_primary_10_1016_j_polymer_2024_126693 crossref_primary_10_1021_acs_langmuir_1c02355 crossref_primary_10_1021_acs_chemmater_3c01517 crossref_primary_10_1016_j_addma_2021_102487 |
Cites_doi | 10.1126/science.1167391 10.1021/acsami.9b00599 10.1021/acssuschemeng.8b03151 10.1038/am.2017.125 10.1002/adma.201602332 10.1002/adma.201204683 10.1016/j.memsci.2019.117356 10.1021/acsami.8b22533 10.1021/la400587j 10.1021/cm303049k 10.1016/j.polymer.2018.02.036 10.1039/C5TA09793B 10.1021/acsami.6b11043 10.1039/C7PY00896A 10.1002/adma.201100303 10.1039/C4TA00235K 10.1002/adfm.200901486 10.1002/adma.201704661 10.1039/C9DT01298B 10.1002/adfm.201400299 10.1002/adma.201301513 10.1126/science.1148726 10.1002/adma.201601934 10.1002/adma.201603000 10.1021/ma300458y 10.1039/C8PY00162F 10.1021/acsami.7b01954 10.1002/pola.27655 10.1002/adma.201504239 10.1038/ncomms4218 10.1002/anie.201403442 10.3390/app10010050 10.1021/bm101281b 10.1016/j.polymer.2017.03.080 10.1021/acsami.7b06407 10.1039/C9QM00233B 10.1016/j.polymer.2015.11.031 10.1021/ma101108g 10.1016/j.polymer.2016.01.005 10.1038/nchem.2492 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Mar 2, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2, 2020 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1016/j.polymer.2020.122219 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2291 |
ExternalDocumentID | 10_1016_j_polymer_2020_122219 S003238612030063X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SCB SEW SSH T9H WUQ 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c403t-d9d9221c19dccbc4928ee6c24c18c96e925ec108e2331bc372833cf804a1f2493 |
IEDL.DBID | .~1 |
ISSN | 0032-3861 |
IngestDate | Wed Aug 13 06:37:39 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Tue Jul 01 03:36:23 EDT 2025 Fri Feb 23 02:47:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiple stimuli Mechanical enhancement Self-healing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-d9d9221c19dccbc4928ee6c24c18c96e925ec108e2331bc372833cf804a1f2493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5321-8888 0000-0001-8239-4303 |
PQID | 2376218694 |
PQPubID | 2045419 |
ParticipantIDs | proquest_journals_2376218694 crossref_primary_10_1016_j_polymer_2020_122219 crossref_citationtrail_10_1016_j_polymer_2020_122219 elsevier_sciencedirect_doi_10_1016_j_polymer_2020_122219 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-02 |
PublicationDateYYYYMMDD | 2020-03-02 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Polymer (Guilford) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Yu, Zhang, Wu, Chen, Sun (bib15) 2013; 25 Ryou, Lee, Park, Choi (bib24) 2011; 23 Liu, Ai, Liu, Deng, He, Lu (bib29) 2013; 25 Xiao, Liu, Xia, Liu, Xu, Wang (bib20) 2015; 53 Liu, Zhang, Yin, Huang, Wang (bib21) 2020; 10 Zechel, Geitner, Abend, Siegmann, Enke, Kuhl, Klein, Vitz, Gräfe, Dietzek, Schmitt, Popp, Schubert, Hager (bib18) 2017; 9 Heo, Sodano (bib31) 2014; 24 Sahoo, Cheng, Lin, Chan, Judeh, Zhao (bib5) 2010; 19 Li, Wang, Keplinger, Zuo, Jin, Sun, Zheng, Cao, Lissel, Linder, You, Bao (bib13) 2016; 8 Lin, Sheng, Liu, Xu, Ji, Li, Yan, Yang (bib22) 2018; 140 Xie, Gong, Song, Tan, Zhang, Li, Zhang, Xu, Xu, Zheng (bib25) 2019; 48 Bai, He, Shi, Tian, Xu, Ma, Yin (bib36) 2017; 116 Wang, Hohn, Kreuzer, Widmann, Haese, Moulin, Muller-Buschbaum (bib8) 2019; 11 Ju, Lee, Lee, Park, Lee (bib33) 2011; 12 Xiong, Wang, Zhu, Yu, Hu (bib27) 2016; 84 Wan, Peng, Jiang, Cheng (bib4) 2016; 28 Li, Lu, Wang, Xia (bib28) 2018; 9 Zangmeister, Morris, Tarlov (bib34) 2013; 29 Bonderer, Studart, Gauckler (bib1) 2008; 319 Yin, Xiong, Liu, Li, Qian, Zhou, He (bib6) 2019; 591 Ji, Cao, Yu, Xu (bib16) 2014; 53 Willocq, Bose, Khelifa, Garcia, Dubois, Raquez (bib23) 2016; 4 Subramanian, Tey, Zhang, Ng, Roy, Wei, Hu (bib40) 2016; 82 Fang, Du, Jiang, Du, Pan, Cheng, Wang (bib38) 2018; 6 Xiong, Wang, Yu, Chen, Zhu, Hu (bib30) 2014; 2 Wang, Liu, Zhang, Guo, Song, Lou, Guan, He, You (bib39) 2019; 3 Wu, Guo, Peng, Hameed, Kraska, Stühn, Mai (bib10) 2012; 45 Lai, Mei, Jia, Li, You, Bao (bib17) 2016; 28 Song, Xu, Dargusch, Chen, Wang, Guo (bib9) 2017; 29 Ghosh, Urban (bib12) 2009; 323 Han, Zhang, Lu, Wang, Wang, Zhang (bib26) 2016; 8 Ge, Sun, Zhang, Zhang, Shi, Zhao, Zhu, Jiang, Yu (bib3) 2016; 28 Engel, Kickelbick (bib32) 2013; 25 Wang, Hui, He, Yang (bib35) 2017; 8 Liu, Feng, Bo, Estep, Zhang (bib11) 2010; 43 Guo, Heng, Wang, Wang, Jiang (bib2) 2016; 28 Zhang, Shi, Huang, Xu, Xu, Chu, Ma (bib7) 2019; 11 Ying, Zhang, Cheng (bib14) 2014; 5 Li, Jiang, Wu, Chen, Chen, Cao, Wang (bib19) 2017; 9 Bai, Shi (bib37) 2017; 9 Heo (10.1016/j.polymer.2020.122219_bib31) 2014; 24 Zhang (10.1016/j.polymer.2020.122219_bib7) 2019; 11 Li (10.1016/j.polymer.2020.122219_bib19) 2017; 9 Yin (10.1016/j.polymer.2020.122219_bib6) 2019; 591 Liu (10.1016/j.polymer.2020.122219_bib11) 2010; 43 Ji (10.1016/j.polymer.2020.122219_bib16) 2014; 53 Yu (10.1016/j.polymer.2020.122219_bib15) 2013; 25 Lai (10.1016/j.polymer.2020.122219_bib17) 2016; 28 Guo (10.1016/j.polymer.2020.122219_bib2) 2016; 28 Engel (10.1016/j.polymer.2020.122219_bib32) 2013; 25 Bai (10.1016/j.polymer.2020.122219_bib36) 2017; 116 Fang (10.1016/j.polymer.2020.122219_bib38) 2018; 6 Song (10.1016/j.polymer.2020.122219_bib9) 2017; 29 Bonderer (10.1016/j.polymer.2020.122219_bib1) 2008; 319 Willocq (10.1016/j.polymer.2020.122219_bib23) 2016; 4 Lin (10.1016/j.polymer.2020.122219_bib22) 2018; 140 Xiong (10.1016/j.polymer.2020.122219_bib30) 2014; 2 Li (10.1016/j.polymer.2020.122219_bib28) 2018; 9 Liu (10.1016/j.polymer.2020.122219_bib21) 2020; 10 Xie (10.1016/j.polymer.2020.122219_bib25) 2019; 48 Sahoo (10.1016/j.polymer.2020.122219_bib5) 2010; 19 Bai (10.1016/j.polymer.2020.122219_bib37) 2017; 9 Han (10.1016/j.polymer.2020.122219_bib26) 2016; 8 Ju (10.1016/j.polymer.2020.122219_bib33) 2011; 12 Wang (10.1016/j.polymer.2020.122219_bib8) 2019; 11 Li (10.1016/j.polymer.2020.122219_bib13) 2016; 8 Ying (10.1016/j.polymer.2020.122219_bib14) 2014; 5 Xiong (10.1016/j.polymer.2020.122219_bib27) 2016; 84 Ryou (10.1016/j.polymer.2020.122219_bib24) 2011; 23 Wang (10.1016/j.polymer.2020.122219_bib35) 2017; 8 Subramanian (10.1016/j.polymer.2020.122219_bib40) 2016; 82 Zechel (10.1016/j.polymer.2020.122219_bib18) 2017; 9 Liu (10.1016/j.polymer.2020.122219_bib29) 2013; 25 Ghosh (10.1016/j.polymer.2020.122219_bib12) 2009; 323 Wu (10.1016/j.polymer.2020.122219_bib10) 2012; 45 Xiao (10.1016/j.polymer.2020.122219_bib20) 2015; 53 Ge (10.1016/j.polymer.2020.122219_bib3) 2016; 28 Wang (10.1016/j.polymer.2020.122219_bib39) 2019; 3 Zangmeister (10.1016/j.polymer.2020.122219_bib34) 2013; 29 Wan (10.1016/j.polymer.2020.122219_bib4) 2016; 28 |
References_xml | – volume: 11 start-page: 10998 year: 2019 end-page: 11005 ident: bib8 article-title: Morphology tuning of ZnO/P3HT/P3HT-b-PEO hybrid films deposited via spray or spin coating publication-title: ACS Appl. Mater. Interfaces – volume: 82 start-page: 285 year: 2016 end-page: 294 ident: bib40 article-title: Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids publication-title: Polymer – volume: 3 start-page: 1833 year: 2019 end-page: 1839 ident: bib39 article-title: Strong, detachable, and self-healing dynamic crosslinked hot melt polyurethane adhesive publication-title: Mater. Chem. Front. – volume: 25 start-page: 1353 year: 2013 end-page: 1359 ident: bib29 article-title: Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy publication-title: Adv. Mater. – volume: 10 start-page: 50 year: 2020 ident: bib21 article-title: Debonding detection of reinforced concrete (RC) beam with near-surface mounted (NSM) pre-stressed carbon fiber reinforced polymer (CFRP) plates using embedded piezoceramic smart aggregates (SAs) publication-title: Appl. Sci. – volume: 48 start-page: 6971 year: 2019 end-page: 6983 ident: bib25 article-title: Design of novel lanthanide-doped core-shell nanocrystals with D ual up-conversion and down-conversion luminescence for anti-counterfeiting printing publication-title: Dalton Trans. – volume: 6 start-page: 14490 year: 2018 end-page: 14500 ident: bib38 article-title: Thermal-driven self-healing and recyclable waterborne polyurethane films based on reversible covalent interaction publication-title: ACS Sustain. Chem. Eng. – volume: 9 year: 2017 ident: bib18 article-title: Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds publication-title: NPG Asia Mater. – volume: 8 start-page: 29088 year: 2016 end-page: 29100 ident: bib26 article-title: Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 149 year: 2013 end-page: 157 ident: bib32 article-title: Thermoreversible reactions on inorganic nanoparticle surfaces: diels–alder reactions on sterically crowded surfaces publication-title: Chem. Mater. – volume: 140 start-page: 150 year: 2018 end-page: 157 ident: bib22 article-title: NIR induced self-healing electrical conductivity polyurethane/graphene nanocomposites based on Diels−Alder reaction publication-title: Polymer – volume: 591 start-page: 117356 year: 2019 ident: bib6 article-title: Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties publication-title: J. Membr. Sci. – volume: 19 start-page: 3962 year: 2010 end-page: 3971 ident: bib5 article-title: Specific functionalization of carbon nanotubes for advanced polymer nanocomposites publication-title: Adv. Funct. Mater. – volume: 23 start-page: 3066 year: 2011 end-page: 3070 ident: bib24 article-title: Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries publication-title: Adv. Mater. – volume: 53 start-page: 6781 year: 2014 end-page: 6785 ident: bib16 article-title: Dynamic diselenide bonds: exchange reaction induced by visible light without catalysis publication-title: Angew. Chem., Int. Ed. Engl. – volume: 319 start-page: 1069 year: 2008 end-page: 1073 ident: bib1 article-title: Bioinspired design and assembly of platelet reinforced polymer films publication-title: Science – volume: 28 start-page: 7862 year: 2016 end-page: 7898 ident: bib4 article-title: Bioinspired graphene-based nanocomposites and their application in flexible energy devices publication-title: Adv. Mater. – volume: 8 start-page: 618 year: 2016 end-page: 624 ident: bib13 article-title: A highly stretchable autonomous self-healing elastomer publication-title: Nat. Chem. – volume: 4 start-page: 4089 year: 2016 end-page: 4097 ident: bib23 article-title: Healing by the Joule effect of electrically conductive poly(ester-urethane)/carbon nanotube nanocomposites publication-title: J. Mater. Chem. – volume: 28 start-page: 8277 year: 2016 end-page: 8282 ident: bib17 article-title: A stiff and healable polymer based on dynamic-covalent boroxine bonds publication-title: Adv. Mater. – volume: 24 start-page: 5261 year: 2014 end-page: 5268 ident: bib31 article-title: Self-healing polyurethanes with shape recovery publication-title: Adv. Funct. Mater. – volume: 8 start-page: 4494 year: 2017 end-page: 4502 ident: bib35 article-title: Thermoreversible cross-linking of ethylene/propylene copolymer rubbers publication-title: Polym. Chem. – volume: 29 year: 2017 ident: bib9 article-title: Granular nanostructure: a facile biomimetic strategy for the design of supertough polymeric materials with high ductility and strength publication-title: Adv. Mater. – volume: 9 start-page: 2166 year: 2018 end-page: 2172 ident: bib28 article-title: Diels–Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function publication-title: Polym. Chem. – volume: 28 start-page: 722 year: 2016 end-page: 728 ident: bib3 article-title: Stretchable electronics: a stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties publication-title: Adv. Mater. – volume: 323 start-page: 1458 year: 2009 end-page: 1460 ident: bib12 article-title: Self-repairing oxetane-substituted chitosan polyurethane networks publication-title: Science – volume: 53 start-page: 2094 year: 2015 end-page: 2103 ident: bib20 article-title: Facile fabrication of fast recyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker publication-title: Polym. Chem. – volume: 29 start-page: 8619 year: 2013 end-page: 8628 ident: bib34 article-title: Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine publication-title: Langmuir – volume: 84 start-page: 328 year: 2016 end-page: 335 ident: bib27 article-title: Poly(ε-caprolactone)-grafted polydopamine particles for biocomposites with near-infrared light triggered self-healing ability publication-title: Polymer – volume: 11 start-page: 12958 year: 2019 end-page: 12967 ident: bib7 article-title: Octahedral SnO2/graphene composites with enhanced gas-sensing performance at room temperature publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 7578 year: 2014 end-page: 7587 ident: bib30 article-title: Polydopamine particles for next-generation multifunctional biocomposites publication-title: J. Mater. Chem. – volume: 12 start-page: 625 year: 2011 end-page: 632 ident: bib33 article-title: Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property publication-title: Biomacromolecules – volume: 5 start-page: 3218 year: 2014 ident: bib14 article-title: Dynamic urea bond for the design of reversible and self-healing polymers publication-title: Nat. Commun. – volume: 25 start-page: 4912 year: 2013 end-page: 4917 ident: bib15 article-title: Bio-inspired high-performance and recyclable cross-linked polymers publication-title: Adv. Mater. – volume: 28 start-page: 8505 year: 2016 end-page: 8510 ident: bib2 article-title: Robust underwater oil-repellent material inspired by columnar nacre publication-title: Adv. Mater. – volume: 43 start-page: 6058 year: 2010 end-page: 6066 ident: bib11 article-title: Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization publication-title: Macromolecules – volume: 9 start-page: 20797 year: 2017 end-page: 20807 ident: bib19 article-title: Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible diels-alder network and amino-functionalized carbon nanotubes publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 3829 year: 2012 end-page: 3840 ident: bib10 article-title: Toughening epoxy thermosets with block ionomer complexes: a nanostructure–mechanical property correlation publication-title: Macromolecules – volume: 116 start-page: 268 year: 2017 end-page: 277 ident: bib36 article-title: Self-assembled elastomer nanocomposites utilizing C 60 and poly(styrene-b-butadiene-b-styrene) via thermally reversible Diels-Alder reaction with self-healing and remolding abilities publication-title: Polymer – volume: 9 start-page: 27213 year: 2017 end-page: 27222 ident: bib37 article-title: Dynamically cross-linked elastomer hybrids with light-induced rapid and efficient self-healing ability and reprogrammable shape memory behavior publication-title: ACS Appl. Mater. Interfaces – volume: 323 start-page: 1458 year: 2009 ident: 10.1016/j.polymer.2020.122219_bib12 article-title: Self-repairing oxetane-substituted chitosan polyurethane networks publication-title: Science doi: 10.1126/science.1167391 – volume: 11 start-page: 10998 year: 2019 ident: 10.1016/j.polymer.2020.122219_bib8 article-title: Morphology tuning of ZnO/P3HT/P3HT-b-PEO hybrid films deposited via spray or spin coating publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00599 – volume: 6 start-page: 14490 year: 2018 ident: 10.1016/j.polymer.2020.122219_bib38 article-title: Thermal-driven self-healing and recyclable waterborne polyurethane films based on reversible covalent interaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03151 – volume: 9 year: 2017 ident: 10.1016/j.polymer.2020.122219_bib18 article-title: Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds publication-title: NPG Asia Mater. doi: 10.1038/am.2017.125 – volume: 28 start-page: 8277 year: 2016 ident: 10.1016/j.polymer.2020.122219_bib17 article-title: A stiff and healable polymer based on dynamic-covalent boroxine bonds publication-title: Adv. Mater. doi: 10.1002/adma.201602332 – volume: 25 start-page: 1353 year: 2013 ident: 10.1016/j.polymer.2020.122219_bib29 article-title: Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy publication-title: Adv. Mater. doi: 10.1002/adma.201204683 – volume: 591 start-page: 117356 year: 2019 ident: 10.1016/j.polymer.2020.122219_bib6 article-title: Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117356 – volume: 11 start-page: 12958 year: 2019 ident: 10.1016/j.polymer.2020.122219_bib7 article-title: Octahedral SnO2/graphene composites with enhanced gas-sensing performance at room temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22533 – volume: 29 start-page: 8619 year: 2013 ident: 10.1016/j.polymer.2020.122219_bib34 article-title: Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine publication-title: Langmuir doi: 10.1021/la400587j – volume: 25 start-page: 149 year: 2013 ident: 10.1016/j.polymer.2020.122219_bib32 article-title: Thermoreversible reactions on inorganic nanoparticle surfaces: diels–alder reactions on sterically crowded surfaces publication-title: Chem. Mater. doi: 10.1021/cm303049k – volume: 140 start-page: 150 year: 2018 ident: 10.1016/j.polymer.2020.122219_bib22 article-title: NIR induced self-healing electrical conductivity polyurethane/graphene nanocomposites based on Diels−Alder reaction publication-title: Polymer doi: 10.1016/j.polymer.2018.02.036 – volume: 4 start-page: 4089 year: 2016 ident: 10.1016/j.polymer.2020.122219_bib23 article-title: Healing by the Joule effect of electrically conductive poly(ester-urethane)/carbon nanotube nanocomposites publication-title: J. Mater. Chem. doi: 10.1039/C5TA09793B – volume: 8 start-page: 29088 year: 2016 ident: 10.1016/j.polymer.2020.122219_bib26 article-title: Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11043 – volume: 8 start-page: 4494 year: 2017 ident: 10.1016/j.polymer.2020.122219_bib35 article-title: Thermoreversible cross-linking of ethylene/propylene copolymer rubbers publication-title: Polym. Chem. doi: 10.1039/C7PY00896A – volume: 23 start-page: 3066 year: 2011 ident: 10.1016/j.polymer.2020.122219_bib24 article-title: Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201100303 – volume: 2 start-page: 7578 year: 2014 ident: 10.1016/j.polymer.2020.122219_bib30 article-title: Polydopamine particles for next-generation multifunctional biocomposites publication-title: J. Mater. Chem. doi: 10.1039/C4TA00235K – volume: 19 start-page: 3962 year: 2010 ident: 10.1016/j.polymer.2020.122219_bib5 article-title: Specific functionalization of carbon nanotubes for advanced polymer nanocomposites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200901486 – volume: 29 year: 2017 ident: 10.1016/j.polymer.2020.122219_bib9 article-title: Granular nanostructure: a facile biomimetic strategy for the design of supertough polymeric materials with high ductility and strength publication-title: Adv. Mater. doi: 10.1002/adma.201704661 – volume: 48 start-page: 6971 year: 2019 ident: 10.1016/j.polymer.2020.122219_bib25 article-title: Design of novel lanthanide-doped core-shell nanocrystals with D ual up-conversion and down-conversion luminescence for anti-counterfeiting printing publication-title: Dalton Trans. doi: 10.1039/C9DT01298B – volume: 24 start-page: 5261 year: 2014 ident: 10.1016/j.polymer.2020.122219_bib31 article-title: Self-healing polyurethanes with shape recovery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400299 – volume: 25 start-page: 4912 year: 2013 ident: 10.1016/j.polymer.2020.122219_bib15 article-title: Bio-inspired high-performance and recyclable cross-linked polymers publication-title: Adv. Mater. doi: 10.1002/adma.201301513 – volume: 319 start-page: 1069 year: 2008 ident: 10.1016/j.polymer.2020.122219_bib1 article-title: Bioinspired design and assembly of platelet reinforced polymer films publication-title: Science doi: 10.1126/science.1148726 – volume: 28 start-page: 7862 year: 2016 ident: 10.1016/j.polymer.2020.122219_bib4 article-title: Bioinspired graphene-based nanocomposites and their application in flexible energy devices publication-title: Adv. Mater. doi: 10.1002/adma.201601934 – volume: 28 start-page: 8505 year: 2016 ident: 10.1016/j.polymer.2020.122219_bib2 article-title: Robust underwater oil-repellent material inspired by columnar nacre publication-title: Adv. Mater. doi: 10.1002/adma.201603000 – volume: 45 start-page: 3829 year: 2012 ident: 10.1016/j.polymer.2020.122219_bib10 article-title: Toughening epoxy thermosets with block ionomer complexes: a nanostructure–mechanical property correlation publication-title: Macromolecules doi: 10.1021/ma300458y – volume: 9 start-page: 2166 year: 2018 ident: 10.1016/j.polymer.2020.122219_bib28 article-title: Diels–Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function publication-title: Polym. Chem. doi: 10.1039/C8PY00162F – volume: 9 start-page: 20797 year: 2017 ident: 10.1016/j.polymer.2020.122219_bib19 article-title: Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible diels-alder network and amino-functionalized carbon nanotubes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01954 – volume: 53 start-page: 2094 year: 2015 ident: 10.1016/j.polymer.2020.122219_bib20 article-title: Facile fabrication of fast recyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker publication-title: Polym. Chem. doi: 10.1002/pola.27655 – volume: 28 start-page: 722 year: 2016 ident: 10.1016/j.polymer.2020.122219_bib3 article-title: Stretchable electronics: a stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties publication-title: Adv. Mater. doi: 10.1002/adma.201504239 – volume: 5 start-page: 3218 year: 2014 ident: 10.1016/j.polymer.2020.122219_bib14 article-title: Dynamic urea bond for the design of reversible and self-healing polymers publication-title: Nat. Commun. doi: 10.1038/ncomms4218 – volume: 53 start-page: 6781 year: 2014 ident: 10.1016/j.polymer.2020.122219_bib16 article-title: Dynamic diselenide bonds: exchange reaction induced by visible light without catalysis publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201403442 – volume: 10 start-page: 50 year: 2020 ident: 10.1016/j.polymer.2020.122219_bib21 article-title: Debonding detection of reinforced concrete (RC) beam with near-surface mounted (NSM) pre-stressed carbon fiber reinforced polymer (CFRP) plates using embedded piezoceramic smart aggregates (SAs) publication-title: Appl. Sci. doi: 10.3390/app10010050 – volume: 12 start-page: 625 year: 2011 ident: 10.1016/j.polymer.2020.122219_bib33 article-title: Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property publication-title: Biomacromolecules doi: 10.1021/bm101281b – volume: 116 start-page: 268 year: 2017 ident: 10.1016/j.polymer.2020.122219_bib36 article-title: Self-assembled elastomer nanocomposites utilizing C 60 and poly(styrene-b-butadiene-b-styrene) via thermally reversible Diels-Alder reaction with self-healing and remolding abilities publication-title: Polymer doi: 10.1016/j.polymer.2017.03.080 – volume: 9 start-page: 27213 year: 2017 ident: 10.1016/j.polymer.2020.122219_bib37 article-title: Dynamically cross-linked elastomer hybrids with light-induced rapid and efficient self-healing ability and reprogrammable shape memory behavior publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06407 – volume: 3 start-page: 1833 year: 2019 ident: 10.1016/j.polymer.2020.122219_bib39 article-title: Strong, detachable, and self-healing dynamic crosslinked hot melt polyurethane adhesive publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00233B – volume: 82 start-page: 285 year: 2016 ident: 10.1016/j.polymer.2020.122219_bib40 article-title: Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids publication-title: Polymer doi: 10.1016/j.polymer.2015.11.031 – volume: 43 start-page: 6058 year: 2010 ident: 10.1016/j.polymer.2020.122219_bib11 article-title: Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization publication-title: Macromolecules doi: 10.1021/ma101108g – volume: 84 start-page: 328 year: 2016 ident: 10.1016/j.polymer.2020.122219_bib27 article-title: Poly(ε-caprolactone)-grafted polydopamine particles for biocomposites with near-infrared light triggered self-healing ability publication-title: Polymer doi: 10.1016/j.polymer.2016.01.005 – volume: 8 start-page: 618 year: 2016 ident: 10.1016/j.polymer.2020.122219_bib13 article-title: A highly stretchable autonomous self-healing elastomer publication-title: Nat. Chem. doi: 10.1038/nchem.2492 |
SSID | ssj0002524 |
Score | 2.53482 |
Snippet | The realization of high strengthen, large ductility, and multiple-responding for self-healing composites is an urgent problem to be solved for expanding... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 122219 |
SubjectTerms | Adhesive strength Binders Composite materials Crack initiation Crosslinking Diels-Alder reactions Ductility Elastomers Industrial applications Infrared radiation Mechanical enhancement Multiple stimuli Nanoparticles Polyurethane Polyurethane resins Self healing materials Self-healing Temperature effects Tensile strength |
Title | Robust, stretchable and photothermal self-healing polyurethane elastomer based on furan-modified polydopamine nanoparticles |
URI | https://dx.doi.org/10.1016/j.polymer.2020.122219 https://www.proquest.com/docview/2376218694 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYQPGw8IAabxo8hP-wRt43tuvEjqkDdpvEwgdQ3Kzk7oqhNKpo-ICT-du4SZ8A0CQkpD0nkSxzf5b6zdN8dY99NpgFM4oWFxAjtLYjUDFLhZZElhbI6y2mj-PvSTK71z-lwusHGHReG0iqj7299euOt451-XM3-cjYjjq9CvEGERjtFoJ0Sg12PyMp7j89pHnIo20rMSgoa_czi6d_2ltX8fhGoLKikOgtSUsGd_-PTP566gZ-LXbYT40Z-1k7tE9sI5R77MO7ate2x7ReVBffZw58qX6_qU05cEFQMEaR4Vnq-vKnqhnS1wKetwrwQFCqiDKdZrnHwTVYGHjCoriucNCeY87wqebFGWBOLys8KDFub4R533At8KS-zEk9jjt1ndn1xfjWeiNhnQYAeqFp46y1-OiTWA-SgrUxDMCA1JClYE6wcBkgGaZBKJTmoEYYkCop0oFGduH1TX9hmWZXhK-PGJyNQFpSyXitoiLt4FFmeSm-K_IDpbnUdxCLk1Atj7rpss1sXleJIKa5VygHr_RVbtlU43hJIO9W5V-bkECneEj3uVO3i_7xylDvUdO_Sh-9_8hH7SFdNBps8Zpv13Tp8w5Cmzk8amz1hW2c_fk0unwD9uvlM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69NDtUGzdhvWxVYcdpyaWFNU6FkGL9JXD0AK5CTYloykSO1icw9A_X8qW224YUGCAD4YtSrIo86MA8iPAd50pRJ04bjDRXDmDPNWDlDtRZEkhjcrycFC8nujxrbqYDqcbMOpyYUJYZbT9rU1vrHV80o-r2V_OZiHHVxLeEELTPiWgnb6BzcBONezB5sn55XjyZJDFULRkzFLwIPCcyNO_P1pW898LH5hBRaBaECJw7vwbov4y1g0Cnb2H7eg6spN2dh9gw5c7sDXqKrbtwLsX5IIf4eFnla9X9Q8W0kFINyFHimWlY8u7qm7yrhbU28rPCx68RZJhYZZranyXlZ558qvriibNAtI5VpWsWBOy8UXlZgV5rk1zR4fuBQ3Kyqyk2xhm9wluz05vRmMeSy1wVANZc2ecoU_HxDjEHJURqfcahcIkRaO9EUOPySD1QsokR3lMXonEIh0o0iid4ORn6JVV6b8A0y45RmlQSuOUxCZ3l64iy1PhdJHvgupW12LkIQ_lMOa2Czi7t1EpNijFtkrZhaMnsWVLxPGaQNqpzv6xoyyBxWuiB52qbfylVzaEDzUFvNTe__d8CFvjm-sre3U-udyHt-FNE9AmDqBX_1r7r-Th1Pm3uIMfAX-u-_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust%2C+stretchable+and+photothermal+self-healing+polyurethane+elastomer+based+on+furan-modified+polydopamine+nanoparticles&rft.jtitle=Polymer+%28Guilford%29&rft.au=Yang%2C+Shiwen&rft.au=Du%2C+Xiaosheng&rft.au=Du%2C+Zongliang&rft.au=Zhou%2C+Mi&rft.date=2020-03-02&rft.issn=0032-3861&rft.volume=190&rft.spage=122219&rft_id=info:doi/10.1016%2Fj.polymer.2020.122219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymer_2020_122219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |