Synthesis and properties of GuNA purine/pyrimidine nucleosides and oligonucleotides
We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into oligonucleotides. The GuNA-T-modified oligonucleotides possessed high duplex-forming ability towards their complementary single-stranded RNAs and...
Saved in:
Published in | Organic & biomolecular chemistry Vol. 18; no. 46; pp. 9461 - 9472 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
CAMBRIDGE
Royal Soc Chemistry
07.12.2020
Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into oligonucleotides. The GuNA-T-modified oligonucleotides possessed high duplex-forming ability towards their complementary single-stranded RNAs and were highly stable against 3′-exonuclease. Therefore, GuNA is a promissing artificial nucleic acid for therapeutic antisense oligonucleotides. We herein report the facile synthesis of GuNA phosphoramidites bearing adenine (A), guanine (G), and 5-methylcytosine (
m
C) nucleobases and a robust method for the preparation of GuNA-modified oligonucleotides, even with sequences having acid-sensitive purine nucleobases. Oligonucleotides modified with GuNA-A, -G, or -
m
C possessed high duplex-forming ability, similar to those modified with GuNA-T. Moreover, some of the GuNA-modified oligonucleotides were revealed to have high base discriminating ability compared with that of their natural counterparts. GuNA nucleosides exhibited no genotoxicity in bacterial reverse mutation assays. Thus, all GuNAs (GuNA-T, -A, -G, and -
m
C) are now available to be examined in therapeutic applications.
Facile synthesis of GuNA (guanidine-bridged nucleic acid) phosphoramidites bearing thymine, adenine, guanine, and 5-methylcytosine nucleobases and a robust method for the preparation of GuNA-modified oligonucleotides are described. |
---|---|
AbstractList | We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into oligonucleotides. The GuNA-T-modified oligonucleotides possessed high duplex-forming ability towards their complementary single-stranded RNAs and were highly stable against 3′-exonuclease. Therefore, GuNA is a promissing artificial nucleic acid for therapeutic antisense oligonucleotides. We herein report the facile synthesis of GuNA phosphoramidites bearing adenine (A), guanine (G), and 5-methylcytosine (
m
C) nucleobases and a robust method for the preparation of GuNA-modified oligonucleotides, even with sequences having acid-sensitive purine nucleobases. Oligonucleotides modified with GuNA-A, -G, or -
m
C possessed high duplex-forming ability, similar to those modified with GuNA-T. Moreover, some of the GuNA-modified oligonucleotides were revealed to have high base discriminating ability compared with that of their natural counterparts. GuNA nucleosides exhibited no genotoxicity in bacterial reverse mutation assays. Thus, all GuNAs (GuNA-T, -A, -G, and -
m
C) are now available to be examined in therapeutic applications. We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into oligonucleotides. The GuNA-T-modified oligonucleotides possessed high duplex-forming ability towards their complementary single-stranded RNAs and were highly stable against 3′-exonuclease. Therefore, GuNA is a promissing artificial nucleic acid for therapeutic antisense oligonucleotides. We herein report the facile synthesis of GuNA phosphoramidites bearing adenine (A), guanine (G), and 5-methylcytosine ( m C) nucleobases and a robust method for the preparation of GuNA-modified oligonucleotides, even with sequences having acid-sensitive purine nucleobases. Oligonucleotides modified with GuNA-A, -G, or - m C possessed high duplex-forming ability, similar to those modified with GuNA-T. Moreover, some of the GuNA-modified oligonucleotides were revealed to have high base discriminating ability compared with that of their natural counterparts. GuNA nucleosides exhibited no genotoxicity in bacterial reverse mutation assays. Thus, all GuNAs (GuNA-T, -A, -G, and - m C) are now available to be examined in therapeutic applications. Facile synthesis of GuNA (guanidine-bridged nucleic acid) phosphoramidites bearing thymine, adenine, guanine, and 5-methylcytosine nucleobases and a robust method for the preparation of GuNA-modified oligonucleotides are described. We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into oligonucleotides. The GuNA-T-modified oligonucleotides possessed high duplex-forming ability towards their complementary single-stranded RNAs and were highly stable against 3'-exonuclease. Therefore, GuNA is a promissing artificial nucleic acid for therapeutic antisense oligonucleotides. We herein report the facile synthesis of GuNA phosphoramidites bearing adenine (A), guanine (G), and 5-methylcytosine (mC) nucleobases and a robust method for the preparation of GuNA-modified oligonucleotides, even with sequences having acid-sensitive purine nucleobases. Oligonucleotides modified with GuNA-A, -G, or -mC possessed high duplex-forming ability, similar to those modified with GuNA-T. Moreover, some of the GuNA-modified oligonucleotides were revealed to have high base discriminating ability compared with that of their natural counterparts. GuNA nucleosides exhibited no genotoxicity in bacterial reverse mutation assays. Thus, all GuNAs (GuNA-T, -A, -G, and -mC) are now available to be examined in therapeutic applications.We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into oligonucleotides. The GuNA-T-modified oligonucleotides possessed high duplex-forming ability towards their complementary single-stranded RNAs and were highly stable against 3'-exonuclease. Therefore, GuNA is a promissing artificial nucleic acid for therapeutic antisense oligonucleotides. We herein report the facile synthesis of GuNA phosphoramidites bearing adenine (A), guanine (G), and 5-methylcytosine (mC) nucleobases and a robust method for the preparation of GuNA-modified oligonucleotides, even with sequences having acid-sensitive purine nucleobases. Oligonucleotides modified with GuNA-A, -G, or -mC possessed high duplex-forming ability, similar to those modified with GuNA-T. Moreover, some of the GuNA-modified oligonucleotides were revealed to have high base discriminating ability compared with that of their natural counterparts. GuNA nucleosides exhibited no genotoxicity in bacterial reverse mutation assays. Thus, all GuNAs (GuNA-T, -A, -G, and -mC) are now available to be examined in therapeutic applications. We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into oligonucleotides. The GuNA-T-modified oligonucleotides possessed high duplex-forming ability towards their complementary single-stranded RNAs and were highly stable against 3'-exonuclease. Therefore, GuNA is a promissing artificial nucleic acid for therapeutic antisense oligonucleotides. We herein report the facile synthesis of GuNA phosphoramidites bearing adenine (A), guanine (G), and 5-methylcytosine (mC) nucleobases and a robust method for the preparation of GuNA-modified oligonucleotides, even with sequences having acid-sensitive purine nucleobases. Oligonucleotides modified with GuNA-A, -G, or -mC possessed high duplex-forming ability, similar to those modified with GuNA-T. Moreover, some of the GuNA-modified oligonucleotides were revealed to have high base discriminating ability compared with that of their natural counterparts. GuNA nucleosides exhibited no genotoxicity in bacterial reverse mutation assays. Thus, all GuNAs (GuNA-T, -A, -G, and -mC) are now available to be examined in therapeutic applications. We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into oligonucleotides. The GuNA-T-modified oligonucleotides possessed high duplex-forming ability towards their complementary single-stranded RNAs and were highly stable against 3 ' -exonuclease. Therefore, GuNA is a promissing artificial nucleic acid for therapeutic antisense oligonucleotides. We herein report the facile synthesis of GuNA phosphoramidites bearing adenine (A), guanine (G), and 5-methylcytosine (C-m) nucleobases and a robust method for the preparation of GuNA-modified oligonucleotides, even with sequences having acid-sensitive purine nucleobases. Oligonucleotides modified with GuNA-A, -G, or -C-m possessed high duplex-forming ability, similar to those modified with GuNA-T. Moreover, some of the GuNA-modified oligonucleotides were revealed to have high base discriminating ability compared with that of their natural counterparts. GuNA nucleosides exhibited no genotoxicity in bacterial reverse mutation assays. Thus, all GuNAs (GuNA-T, -A, -G, and -C-m) are now available to be examined in therapeutic applications. |
Author | Yamakoshi, Shuhei Obika, Satoshi Sawamoto, Hiroaki Arai, Yuuki Yamada, Katsuya Ohta, Tetsuya Yamaguchi, Takao Horie, Naohiro Kawanishi, Eiji Kumagai, Shinji Takegawa-Araki, Tomo |
AuthorAffiliation | Health and Nutrition (NIBIOHN) Osaka University Graduate School of Pharmaceutical Sciences Sohyaku. Innovative Research Division Mitsubishi Tanabe Pharma Corporation National Institutes of Biomedical Innovation |
AuthorAffiliation_xml | – name: Health and Nutrition (NIBIOHN) – name: Sohyaku. Innovative Research Division – name: Osaka University – name: Graduate School of Pharmaceutical Sciences – name: National Institutes of Biomedical Innovation – name: Mitsubishi Tanabe Pharma Corporation |
Author_xml | – sequence: 1 givenname: Shinji surname: Kumagai fullname: Kumagai, Shinji – sequence: 2 givenname: Hiroaki surname: Sawamoto fullname: Sawamoto, Hiroaki – sequence: 3 givenname: Tomo surname: Takegawa-Araki fullname: Takegawa-Araki, Tomo – sequence: 4 givenname: Yuuki surname: Arai fullname: Arai, Yuuki – sequence: 5 givenname: Shuhei surname: Yamakoshi fullname: Yamakoshi, Shuhei – sequence: 6 givenname: Katsuya surname: Yamada fullname: Yamada, Katsuya – sequence: 7 givenname: Tetsuya surname: Ohta fullname: Ohta, Tetsuya – sequence: 8 givenname: Eiji surname: Kawanishi fullname: Kawanishi, Eiji – sequence: 9 givenname: Naohiro surname: Horie fullname: Horie, Naohiro – sequence: 10 givenname: Takao surname: Yamaguchi fullname: Yamaguchi, Takao – sequence: 11 givenname: Satoshi surname: Obika fullname: Obika, Satoshi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33179694$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gwh0UiUsFWjr-WCc-lm0pSBU9FM6RY0_AVdZObUdo_z3eZrtIFQdOfjXzvJ7xjI_JgQ8eCXlN4SMFrs4shA6oqsE-I0dU1PUCllwd7DWDQ3Kc0h1sISlekEPOaa2kEkfk9nbj8y9MLlXa22qMYcSYHaYq9NXV9O28GqfoPJ6Nm-jWzhZZ-ckMGJKzOJvC4H6GOZi3wZfkea-HhK925wn58fny--rL4vrm6uvq_HphBPC8sHJpuTGMaQOUGaNr02naSWaksLaTHRNCKtMBayhS3ShBba3rzjKUsgfOT8jpfG_p-n7ClNu1SwaHQXsMU2qZkAANV6AK-u4Jehem6Et3W6oMhUu2LNTbHTV1a7TtWJ6s46Z9HFcBPszAb-xCn4xDb3CPAYCEhkrVFPVQtPl_euWyzi74VZh8LlaYrSaGlCL2rdnlc9RuaCm029W3F3Dz6WH1F8Xy_onlsdI_4TczHJPZc3__Ef8DriG14Q |
CitedBy_id | crossref_primary_10_1007_s10238_023_01179_x crossref_primary_10_3390_ijms22073526 crossref_primary_10_1021_acs_jmedchem_1c01680 crossref_primary_10_1016_j_addr_2023_114872 crossref_primary_10_1021_acs_joc_2c01093 crossref_primary_10_1089_nat_2021_0034 crossref_primary_10_1039_D1OB01174J crossref_primary_10_1016_j_bmcl_2023_129289 crossref_primary_10_1093_nar_gkad608 |
Cites_doi | 10.1021/ja00069a009 10.1073/pnas.91.17.7864 10.1021/ja961308m 10.1039/C4RA14721A 10.1021/acs.orglett.6b00311 10.1002/chem.201704338 10.1021/jo9814445 10.1021/acs.orglett.8b00476 10.1016/0165-1161(83)90010-9 10.1038/nature14138 10.1039/C3CC46017G 10.1201/9780849387951 10.3762/bjoc.14.111 10.1038/374546a0 10.1021/ol049470e 10.1039/C4MD00184B 10.1021/jo9806658 10.1038/s41573-020-0075-7 10.1021/acs.orglett.7b01898 10.1089/nat.2015.0534 10.1080/15257770600793729 10.1039/C8OB01307A 10.1016/0165-1161(94)90037-X 10.1039/c4md00184b 10.1039/c4ra14721a 10.1039/c8ob01307a 10.1212/NXG.0000000000000323 10.1039/c3cc46017g |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 17B 1KM AOWDO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
DOI | 10.1039/d0ob01970d |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2020 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Biotechnology Research Abstracts Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-0539 |
EndPage | 9472 |
ExternalDocumentID | 33179694 000608169800009 10_1039_D0OB01970D d0ob01970d |
Genre | Journal Article |
GrantInformation_xml | – fundername: Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED grantid: JP19am0101084 |
GroupedDBID | - 0-7 0R 123 1TJ 29N 4.4 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ACPRK ADMRA ADSRN AENEX AFRAH AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG KC5 M4U N9A O9- OK1 P2P R7B R7C RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ VH6 VQA WH7 X YNT YZZ --- -DZ -~X 0R~ 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF XSW 17B 1KM BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE -JG CGR CUY CVF ECM EIF NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c403t-d65d3cc22ac012cca7cba1b62c64ddb6b24469cb0281e1a8941d7a7bd2e66f033 |
ISICitedReferencesCount | 10 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000608169800009 |
ISSN | 1477-0520 1477-0539 |
IngestDate | Thu Jul 10 23:03:13 EDT 2025 Mon Jun 30 12:05:15 EDT 2025 Wed Feb 19 02:09:05 EST 2025 Fri Aug 29 16:20:05 EDT 2025 Wed Aug 06 16:19:23 EDT 2025 Tue Jul 01 01:52:09 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Sat Jan 08 03:48:12 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | 2'-AMINO-LNA ANALOG RECOMMENDATIONS DNA GUANIDINE CPG CATIONIC BACKBONE |
Language | English |
LinkModel | OpenURL |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c403t-d65d3cc22ac012cca7cba1b62c64ddb6b24469cb0281e1a8941d7a7bd2e66f033 |
Notes | 10.1039/d0ob01970d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7742-3939 0000-0003-3180-0257 0000-0002-6842-6812 0000-0002-4220-6328 |
PMID | 33179694 |
PQID | 2467643625 |
PQPubID | 2047497 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1039_D0OB01970D pubmed_primary_33179694 webofscience_primary_000608169800009CitationCount proquest_journals_2467643625 webofscience_primary_000608169800009 proquest_miscellaneous_2460083909 crossref_primary_10_1039_D0OB01970D rsc_primary_d0ob01970d |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201207 |
PublicationDateYYYYMMDD | 2020-12-07 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201207 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | CAMBRIDGE |
PublicationPlace_xml | – name: CAMBRIDGE – name: England – name: Cambridge |
PublicationTitle | Organic & biomolecular chemistry |
PublicationTitleAbbrev | ORG BIOMOL CHEM |
PublicationTitleAlternate | Org Biomol Chem |
PublicationYear | 2020 |
Publisher | Royal Soc Chemistry Royal Society of Chemistry |
Publisher_xml | – name: Royal Soc Chemistry – name: Royal Society of Chemistry |
References | Scoles (D0OB01970D-(cit2c)/*[position()=1]) 2019; 5 Ohto (D0OB01970D-(cit9b)/*[position()=1]) 2015; 520 Blaskó (D0OB01970D-(cit4c)/*[position()=1]) 1996; 118 Singh (D0OB01970D-(cit7)/*[position()=1]) 1998; 63 Gatehouse (D0OB01970D-(cit19)/*[position()=1]) 1994; 312 Sharma (D0OB01970D-(cit2b)/*[position()=1]) 2014; 5 Singh (D0OB01970D-(cit11)/*[position()=2]) 2017; 19 Barman (D0OB01970D-(cit4e)/*[position()=1]) 2015; 5 Ravn (D0OB01970D-(cit5)/*[position()=1]) 2006; 25 Dempcy (D0OB01970D-(cit4b)/*[position()=1]) 1994; 91 Sawamoto (D0OB01970D-(cit8)/*[position()=1]) 2018; 20 Crooke (D0OB01970D-(cit2a)/*[position()=1]) 2007 Prakash (D0OB01970D-(cit4d)/*[position()=1]) 2004; 6 Lu (D0OB01970D-(cit12)/*[position()=2]) 2016; 18 Berman (D0OB01970D-(cit17)/*[position()=1]) 2016; 26 Roberts (D0OB01970D-(cit1)/*[position()=1]) 2020; 19 Meng (D0OB01970D-(cit4g)/*[position()=1]) 2018; 14 Shrestha (D0OB01970D-(cit3)/*[position()=1]) 2014; 50 Hashimoto (D0OB01970D-(cit4a)/*[position()=1]) 1993; 115 Singh (D0OB01970D-(cit6)/*[position()=1]) 1998; 63 Basic (D0OB01970D-(cit9a)/*[position()=1]) 1995; 374 Maron (D0OB01970D-(cit18)/*[position()=1]) 1983; 113 Horie (D0OB01970D-(cit14)/*[position()=1]) 2018; 16 Schmidtgall (D0OB01970D-(cit4f)/*[position()=1]) 2018; 24 Ravn, J (WOS:000239453200001) 2006; 25 KRIEG, AM (WOS:A1995QR06900053) 1995; 374 MARON, DM (WOS:A1983QN33600001) 1983; 113 Horie, N (WOS:000444484800019) 2018; 16 Meng, M (WOS:000434080700002) 2018; 14 Barman, J (WOS:000348985400071) 2015; 5 HASHIMOTO, H (WOS:A1993LT67400009) 1993; 115 GATEHOUSE, D (WOS:A1994NQ87500005) 1994; 312 Schmidtgall, B (WOS:000423804800004) 2018; 24 Singh, RP (WOS:000407307900042) 2017; 19 Blasko, A (WOS:A1996VE26600003) 1996; 118 Sharma, VK (WOS:000343023100003) 2014; 5 Singh, SK (WOS:000075892600001) 1998; 63 Singh, SK (WOS:000077834800076) 1998; 63 Roberts, TC (WOS:000559631900001) 2020; 19 Prakash, TP (WOS:000221868300023) 2004; 6 Shrestha, AR (WOS:000328650000022) 2014; 50 Ohto, U (WOS:000353689700055) 2015; 520 DEMPCY, RO (WOS:A1994PC24200008) 1994; 91 (000608169800009.1) 2011 Scoles, DR (WOS:000481665200013) 2019; 5 Sawamoto, H (WOS:000429886900055) 2018; 20 Lu, SH (WOS:000374436800004) 2016; 18 Crooke, S. T. (000608169800009.6) 2007 Berman, CL (WOS:000373927700002) 2016; 26 |
References_xml | – issn: 2007 publication-title: Antisense Drug Technology: Principles, Strategies, and Applications doi: Crooke – issn: 2011 publication-title: Macugen® Prescribing Information – volume: 115 start-page: 7128 year: 1993 ident: D0OB01970D-(cit4a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00069a009 – volume: 91 start-page: 7864 year: 1994 ident: D0OB01970D-(cit4b)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.17.7864 – volume: 118 start-page: 7892 year: 1996 ident: D0OB01970D-(cit4c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja961308m – volume: 5 start-page: 12257 year: 2015 ident: D0OB01970D-(cit4e)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA14721A – volume: 18 start-page: 1724 year: 2016 ident: D0OB01970D-(cit12)/*[position()=2] publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b00311 – volume: 24 start-page: 1544 year: 2018 ident: D0OB01970D-(cit4f)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201704338 – volume: 63 start-page: 10035 year: 1998 ident: D0OB01970D-(cit7)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo9814445 – volume: 20 start-page: 1928 year: 2018 ident: D0OB01970D-(cit8)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00476 – volume: 113 start-page: 173 year: 1983 ident: D0OB01970D-(cit18)/*[position()=1] publication-title: Mutat. Res. doi: 10.1016/0165-1161(83)90010-9 – volume: 520 start-page: 702 year: 2015 ident: D0OB01970D-(cit9b)/*[position()=1] publication-title: Nature doi: 10.1038/nature14138 – volume: 50 start-page: 575 year: 2014 ident: D0OB01970D-(cit3)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C3CC46017G – volume-title: Antisense Drug Technology: Principles, Strategies, and Applications year: 2007 ident: D0OB01970D-(cit2a)/*[position()=1] doi: 10.1201/9780849387951 – volume: 14 start-page: 1293 year: 2018 ident: D0OB01970D-(cit4g)/*[position()=1] publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.14.111 – volume: 374 start-page: 546 year: 1995 ident: D0OB01970D-(cit9a)/*[position()=1] publication-title: Nature doi: 10.1038/374546a0 – volume: 6 start-page: 1971 year: 2004 ident: D0OB01970D-(cit4d)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol049470e – volume: 5 start-page: e323 year: 2019 ident: D0OB01970D-(cit2c)/*[position()=1] publication-title: Neurol.: Genet. – volume: 5 start-page: 1454 year: 2014 ident: D0OB01970D-(cit2b)/*[position()=1] publication-title: MedChemComm doi: 10.1039/C4MD00184B – volume: 63 start-page: 6078 year: 1998 ident: D0OB01970D-(cit6)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo9806658 – volume: 19 start-page: 673 year: 2020 ident: D0OB01970D-(cit1)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/s41573-020-0075-7 – volume: 19 start-page: 4110 year: 2017 ident: D0OB01970D-(cit11)/*[position()=2] publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b01898 – volume: 26 start-page: 73 year: 2016 ident: D0OB01970D-(cit17)/*[position()=1] publication-title: Nucleic Acid Ther. doi: 10.1089/nat.2015.0534 – volume: 25 start-page: 843 year: 2006 ident: D0OB01970D-(cit5)/*[position()=1] publication-title: Nucleosides, Nucleotides Nucleic Acids doi: 10.1080/15257770600793729 – volume: 16 start-page: 6531 year: 2018 ident: D0OB01970D-(cit14)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C8OB01307A – volume: 312 start-page: 217 year: 1994 ident: D0OB01970D-(cit19)/*[position()=1] publication-title: Mutat. Res. doi: 10.1016/0165-1161(94)90037-X – volume: 18 start-page: 1724 year: 2016 ident: WOS:000374436800004 article-title: Fluorescent Sensing of Guanine and Guanosine Monophosphate with Conjugated Receptors Incorporating Aniline and Naphthyridine Moieties publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.6b00311 – volume: 374 start-page: 546 year: 1995 ident: WOS:A1995QR06900053 article-title: CPG MOTIFS IN BACTERIAL-DNA TRIGGER DIRECT B-CELL ACTIVATION publication-title: NATURE – volume: 19 start-page: 4110 year: 2017 ident: WOS:000407307900042 article-title: Tandem Oxidative Dearomatizing Spirocyclizations of Propargyl Guanidines and Ureas publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.7b01898 – volume: 5 start-page: 1454 year: 2014 ident: WOS:000343023100003 article-title: Antisense oligonucleotides: modifications and clinical trials publication-title: MEDCHEMCOMM doi: 10.1039/c4md00184b – year: 2011 ident: 000608169800009.1 publication-title: Macugen<(R)>Prescribing Information – volume: 118 start-page: 7892 year: 1996 ident: WOS:A1996VE26600003 article-title: Association of short-strand DNA oligomers with guanidinium-linked nucleosides. A kinetic and thermodynamic study publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 6 start-page: 1971 year: 2004 ident: WOS:000221868300023 article-title: 2 '-O-[2-(Guanidinium)ethyl]-modified oligonucleotides: Stabilizing effect on duplex and triplex structures publication-title: ORGANIC LETTERS doi: 10.1021/ol049470e – volume: 91 start-page: 7864 year: 1994 ident: WOS:A1994PC24200008 article-title: DESIGN AND SYNTHESIS OF DEOXYNUCLEIC GUANIDINE - A POLYCATION ANALOG OF DNA publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA – volume: 20 start-page: 1928 year: 2018 ident: WOS:000429886900055 article-title: Synthetic Method for 2 '-Amino-LNA Bearing Any of the Four Nucleobases via a Transglycosylation Reaction publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.8b00476 – volume: 26 start-page: 73 year: 2016 ident: WOS:000373927700002 article-title: OSWG Recommendations for Genotoxicity Testing of Novel Oligonucleotide-Based Therapeutics publication-title: NUCLEIC ACID THERAPEUTICS doi: 10.1089/nat.2015.0534 – volume: 5 start-page: 12257 year: 2015 ident: WOS:000348985400071 article-title: 2 '-N-Guanidino, 4 '-C-ethylene bridged thymidine (GENA-T) modified oligonucleotide exhibits triplex formation with excellent enzymatic stability publication-title: RSC ADVANCES doi: 10.1039/c4ra14721a – year: 2007 ident: 000608169800009.6 publication-title: Antisense Drug Technology: Principles, Strategies, and Applications – volume: 113 start-page: 173 year: 1983 ident: WOS:A1983QN33600001 article-title: REVISED METHODS FOR THE SALMONELLA MUTAGENICITY TEST publication-title: MUTATION RESEARCH – volume: 16 start-page: 6531 year: 2018 ident: WOS:000444484800019 article-title: Facile synthesis and fundamental properties of an N-methylguanidine-bridged nucleic acid (GuNA[NMe]) publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c8ob01307a – volume: 115 start-page: 7128 year: 1993 ident: WOS:A1993LT67400009 article-title: ZWITTERIONIC DNA publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 5 start-page: ARTN e323 year: 2019 ident: WOS:000481665200013 article-title: Antisense oligonucleotides publication-title: NEUROLOGY-GENETICS doi: 10.1212/NXG.0000000000000323 – volume: 520 start-page: 702 year: 2015 ident: WOS:000353689700055 article-title: Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9 publication-title: NATURE doi: 10.1038/nature14138 – volume: 63 start-page: 6078 year: 1998 ident: WOS:000075892600001 article-title: Synthesis of novel bicyclo[2.2.1] ribonucleosides: 2 '-amino- and 2 '-thio-LNA monomeric nucleosides publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 24 start-page: 1544 year: 2018 ident: WOS:000423804800004 article-title: Oligonucleotides with Cationic Backbone and Their Hybridization with DNA: Interplay of Base Pairing and Electrostatic Attraction publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201704338 – volume: 25 start-page: 843 year: 2006 ident: WOS:000239453200001 article-title: Synthesis of 2 '-amino-LNA purine nucleosides publication-title: NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS doi: 10.1080/15257770600793729 – volume: 312 start-page: 217 year: 1994 ident: WOS:A1994NQ87500005 article-title: RECOMMENDATIONS FOR THE PERFORMANCE OF BACTERIAL MUTATION ASSAYS publication-title: MUTATION RESEARCH – volume: 63 start-page: 10035 year: 1998 ident: WOS:000077834800076 article-title: Synthesis of 2 '-amino-LNA: A novel conformationally restricted high-affinity oligonucleotide analogue with a handle publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 14 start-page: 1293 year: 2018 ident: WOS:000434080700002 article-title: Oligonucleotide analogues with cationic backbone linkages publication-title: BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY doi: 10.3762/bjoc.14.111 – volume: 19 start-page: 673 year: 2020 ident: WOS:000559631900001 article-title: Advances in oligonucleotide drug delivery publication-title: NATURE REVIEWS DRUG DISCOVERY doi: 10.1038/s41573-020-0075-7 – volume: 50 start-page: 575 year: 2014 ident: WOS:000328650000022 article-title: Guanidine bridged nucleic acid (GuNA): an effect of a cationic bridged nucleic acid on DNA binding affinity publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc46017g |
SSID | ssj0019764 |
Score | 2.3774214 |
Snippet | We recently designed guanidine-bridged nucleic acids (GuNA), and GuNA bearing a thymine (T) nucleobase was synthesized and successfully incorporated into... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9461 |
SubjectTerms | Adenine Antisense oligonucleotides Antisense therapy Bases (nucleic acids) Chemistry Chemistry, Organic Exonuclease Genotoxicity Guanidine Guanine Mutation Nucleic acids Nucleosides Oligonucleotides Oligonucleotides - chemical synthesis Oligonucleotides - chemistry Physical Sciences Purine Nucleosides - chemical synthesis Purine Nucleosides - chemistry Pyrimidine Nucleosides - chemical synthesis Pyrimidine Nucleosides - chemistry Science & Technology Synthesis Therapeutic applications Thymine |
Title | Synthesis and properties of GuNA purine/pyrimidine nucleosides and oligonucleotides |
URI | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000608169800009 https://www.ncbi.nlm.nih.gov/pubmed/33179694 https://www.proquest.com/docview/2467643625 https://www.proquest.com/docview/2460083909 |
Volume | 18 |
WOS | 000608169800009 |
WOSCitedRecordID | wos000608169800009 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgO8AF8TUIDBTELmgKS5zUro-lGxSExqGdNE6Vv1IKI6m6RGj89TzbSRxokQaXqPJHXPn9Yv_e8_N7CB0Ag09yTY1dg-MoE5xFPE5UNJA57OY5FlRYL99TMjnLPpwPzr3rkL1dUonX8ufWeyX_I1UoA7maW7L_INnupVAAv0G-8AQJw_NaMp5eFcDfTEgRd92_XBkvaRdG9l19OjpcGVu6Ngl2r0z6LmUoZWEiGJcmS6frVl4sF6UrrExhn666m5rS4sNc1G9z6R7KNk-cPwr6zhcutfX0y7L4uuxMN_wHBzhYi-xkuS6BsXprwTe9gOpotOYue_YMhvAQdK_7XNdNl8Y4gZ2jB-2tpxmlkXG1cdtNv8zFMNpchOs2TGizpLLMRWtvtmeWuVQ_G0t_nJrIqSouBbBWGiu_wXVuh77yJtrFoFfAwrg7Opm9_9gdPAE7s44I7f9uI9qm7Mj3_p3DbCgmQFPWl3Irk7GsZXYX3WnUjXDksHMP3dDFfXRr3ErvAZp2GAoBDKHHUFjmocFQ6DB05BEU9hBkO_2JoIfo7O3JbDyJmkQbkczitIoUGahUSoy5BL4C3zSVgieCYEkypQQRwAEJkwK4aKITPmRZoiinQmFNSB6n6R7aKcpCP0ZhzLM85SmOhxp0z1wKybimcogVtMSEBuhVO3Vz2UShN8lQLubWGyJl8-P40xs7zccBetm1XbnYK1tb7bcSmDff5uUcw_4PXBuU-wC96Kphas1xGC90Wds2RgFhMQvQIye5bpgUaDUjLAvQHoiyK_YQCNBBX7pdCxvgaJgQNrTaV4CS6zQbNzNh4lBUT_425lN0239j-2inWtf6GVDiSjxvYPwLNgK43g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+properties+of+GuNA+purine%2Fpyrimidine+nucleosides+and+oligonucleotides&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Kumagai%2C+Shinji&rft.au=Sawamoto%2C+Hiroaki&rft.au=Takegawa-Araki%2C+Tomo&rft.au=Arai%2C+Yuuki&rft.date=2020-12-07&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=18&rft.issue=46&rft.spage=9461&rft.epage=9472&rft_id=info:doi/10.1039%2Fd0ob01970d&rft.externalDocID=d0ob01970d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon |