Debris Flow Classification and Risk Assessment Based on Combination Weighting Method and Cluster Analysis: A Case Study of Debris Flow Clusters in Longmenshan Town, Pengzhou, China

Debris flows can damage infrastructure and threaten human life and property safety, especially in tourist attractions. Therefore, it is crucial to classify and evaluate the risk of debris flows. This article takes 14 debris flows in Longmenshan Town, Pengzhou, Sichuan, China, as the research object....

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 13; p. 7551
Main Authors Li, Yuanzheng, Shen, Junhui, Huang, Meng, Peng, Zhanghai
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Debris flows can damage infrastructure and threaten human life and property safety, especially in tourist attractions. Therefore, it is crucial to classify and evaluate the risk of debris flows. This article takes 14 debris flows in Longmenshan Town, Pengzhou, Sichuan, China, as the research object. Based on on-site geological surveys, combined with drone images and multiple remote sensing images, the essential characteristics of each debris flow are comprehensively determined. A total of nine factors are used as the primary indicators affecting the risk of debris flow: drainage density, roundness, the average gradient of the main channel, maximum elevation difference, bending coefficient of the main channel, the loose-material supply length ratio, vegetation area ratio, population density, and loose-material volume of unit area. The subjective weights of each indicator are obtained using the Analytic Hierarchy Process, while the objective weights are obtained using the CRITIC method. Based on this, the distance function is introduced to couple the subjective and objective weights, determine each indicator’s combined weights, and obtain the integrated evaluation score values of different debris flow hazards. Considering the integrated evaluation score of debris flow, cluster analysis was used to classify 14 debris flows and cluster effectiveness indicators were introduced to determine the effectiveness of debris flow classification. A quantitative standard for the risk of debris flow within the study area was proposed, and finally, a risk assessment of debris flow in the study area was made. Comparing the results of this paper with the gray correlation method, the coupled synergistic method, and the geological field survey results, proves that the proposed method is feasible and provides a reasonable scientific basis for the study of the hazard assessment of regional debris flow clusters and other related issues within the scope of the Jianjiang River basin and other areas.
AbstractList Debris flows can damage infrastructure and threaten human life and property safety, especially in tourist attractions. Therefore, it is crucial to classify and evaluate the risk of debris flows. This article takes 14 debris flows in Longmenshan Town, Pengzhou, Sichuan, China, as the research object. Based on on-site geological surveys, combined with drone images and multiple remote sensing images, the essential characteristics of each debris flow are comprehensively determined. A total of nine factors are used as the primary indicators affecting the risk of debris flow: drainage density, roundness, the average gradient of the main channel, maximum elevation difference, bending coefficient of the main channel, the loose-material supply length ratio, vegetation area ratio, population density, and loose-material volume of unit area. The subjective weights of each indicator are obtained using the Analytic Hierarchy Process, while the objective weights are obtained using the CRITIC method. Based on this, the distance function is introduced to couple the subjective and objective weights, determine each indicator's combined weights, and obtain the integrated evaluation score values of different debris flow hazards. Considering the integrated evaluation score of debris flow, cluster analysis was used to classify 14 debris flows and cluster effectiveness indicators were introduced to determine the effectiveness of debris flow classification. A quantitative standard for the risk of debris flow within the study area was proposed, and finally, a risk assessment of debris flow in the study area was made. Comparing the results of this paper with the gray correlation method, the coupled synergistic method, and the geological field survey results, proves that the proposed method is feasible and provides a reasonable scientific basis for the study of the hazard assessment of regional debris flow clusters and other related issues within the scope of the Jianjiang River basin and other areas.
Audience Academic
Author Huang, Meng
Shen, Junhui
Li, Yuanzheng
Peng, Zhanghai
Author_xml – sequence: 1
  givenname: Yuanzheng
  orcidid: 0000-0003-4999-5793
  surname: Li
  fullname: Li, Yuanzheng
– sequence: 2
  givenname: Junhui
  surname: Shen
  fullname: Shen, Junhui
– sequence: 3
  givenname: Meng
  surname: Huang
  fullname: Huang, Meng
– sequence: 4
  givenname: Zhanghai
  surname: Peng
  fullname: Peng, Zhanghai
BookMark eNptUs1uEzEQXqEiUUpPvIAljjTFjtdrL7ewUKgUBIIijqtZ_2wcNnbqcVSF5-IBMQlCBeE52Bp_Px7PPK5OQgy2qp4yesl5S1_Adss441II9qA6nVPZzHjN5Mm986PqHHFNy2oZV4yeVj9e2yF5JFdTvCPdBIjeeQ3Zx0AgGPLJ4zeyQLSIGxsyeQVoDSmXXdwMPhyBX60fV9mHkby3eRXNgdlNO8w2kUWAaY8eX5IF6QqbfM47syfRkb-tD2gkPpBlDGMxwxUEchPvwgX5aMP4fRV3F6RbFdMn1UMHE9rz3_tZ9eXqzU33brb88Pa6WyxnuqY8zwzVnLWqFO-EbNTQDErAADWXhsLQamdamAsuuKXa2ZYzBtLaWg31fNACGn5WXR91TYR1v01-A2nfR_D9IRHT2EPKXk-2V065BhqQqqlrxwUYGIxgqnWito7JovXsqLVN8XZnMffruEvlb7CfK97wuVS0LajLI2qEIuqDizmBLmHsxuvSb-dLfiGFlKzlVBXC8yNBp4iYrPvzTEb7X2PR3xuLgmb_oLXPhx4WGz_9l_MTxp696g
CitedBy_id crossref_primary_10_1371_journal_pone_0303698
crossref_primary_10_3233_JIFS_230680
crossref_primary_10_3390_geohazards5010011
crossref_primary_10_3390_app142411960
crossref_primary_10_1007_s12145_024_01453_w
crossref_primary_10_3390_app13169418
crossref_primary_10_3390_s24041205
Cites_doi 10.1007/s11069-006-9105-y
10.1007/s10346-014-0465-1
10.1007/s10064-015-0784-z
10.1016/j.geomorph.2015.05.022
10.1007/s00603-007-0155-6
10.1093/biomet/30.1-2.81
10.1007/s11629-013-2511-1
10.1016/0305-0548(94)00059-H
10.14419/ijet.v7i2.14.11464
10.1007/s006030050041
10.1016/j.ins.2012.01.005
10.1007/s10346-017-0824-9
10.1016/j.geomorph.2012.05.008
10.1007/s00603-013-0426-3
10.1016/0022-2496(77)90033-5
10.1016/S0013-7952(02)00105-9
10.1109/34.895981
10.1016/j.procs.2015.07.081
10.1016/j.cageo.2012.08.024
10.1016/j.enggeo.2011.01.002
10.1016/j.geomorph.2006.07.007
10.5194/nhess-9-1897-2009
10.1093/bioinformatics/btr406
10.2307/2346830
10.1016/j.neunet.2007.01.002
10.1016/j.geomorph.2004.09.017
10.1007/s12594-018-1067-7
10.1016/j.enggeo.2020.105979
10.1016/j.patcog.2011.04.032
10.1016/j.geomorph.2019.04.027
10.1007/s00254-007-0649-2
10.1016/j.enggeo.2016.12.003
10.1016/j.eswa.2009.03.006
10.1002/gj.4416
10.1007/s11069-021-04558-3
10.1007/s11069-006-9069-y
10.1348/000711005X48266
10.1016/S0167-9473(97)00020-0
10.1007/s00603-012-0244-z
10.1007/s11069-012-0539-0
10.1007/s10706-021-01961-2
10.1144/qjegh2013-038
10.3390/s19112579
10.1007/s10346-020-01558-5
10.1016/j.patrec.2016.11.017
10.1016/j.anbehav.2015.01.010
10.1207/s15327906mbr1303_2
10.1080/10106049.2021.2009920
10.1007/s10346-015-0631-0
10.1016/j.enggeo.2022.106961
10.1680/geng.9.00083
10.1126/science.1136800
10.1016/j.enggeo.2006.02.007
10.1016/j.geomorph.2020.107125
10.1007/978-1-60327-194-3
10.1007/s11518-006-0151-5
10.3390/su13084098
10.5194/nhess-20-1287-2020
10.1007/s00254-007-0788-5
10.1007/s11771-014-1992-6
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app13137551
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Geology
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_8f8f6a6a78644f35adabd5189f54ef17
A757719308
10_3390_app13137551
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c403t-d0c3198076f5768b6b85aba437d0ab9cfd9a25353e0cfe9311a7ee48b42bc5a63
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:36 EDT 2025
Mon Jun 30 11:17:48 EDT 2025
Tue Jun 10 20:43:23 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Tue Jul 01 04:33:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-d0c3198076f5768b6b85aba437d0ab9cfd9a25353e0cfe9311a7ee48b42bc5a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4999-5793
OpenAccessLink https://doaj.org/article/8f8f6a6a78644f35adabd5189f54ef17
PQID 2836327809
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_8f8f6a6a78644f35adabd5189f54ef17
proquest_journals_2836327809
gale_infotracacademiconefile_A757719308
crossref_primary_10_3390_app13137551
crossref_citationtrail_10_3390_app13137551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Saaty (ref_40) 2004; 13
Chen (ref_20) 2016; 75
Camanho (ref_39) 2015; 55
Frey (ref_23) 2007; 315
Kendall (ref_57) 1938; 30
Wei (ref_21) 2017; 217
Nakamura (ref_35) 2007; 20
Xu (ref_46) 2013; 46
ref_52
Ouyang (ref_14) 2013; 52
Steinley (ref_51) 2006; 59
Hammah (ref_47) 1999; 32
Joshi (ref_6) 2022; 57
Liang (ref_25) 2020; 20
Gu (ref_22) 2022; 40
Diakoulaki (ref_34) 1995; 22
Malet (ref_13) 2009; 9
Li (ref_55) 2017; 85
Wu (ref_10) 2013; 10
Wang (ref_37) 2017; 17
Lu (ref_28) 2007; 43
Struyf (ref_59) 1997; 26
Zhou (ref_9) 2016; 13
Hammah (ref_49) 2000; 22
Zhang (ref_66) 2013; 66
Nie (ref_11) 2021; 106
Omkar (ref_56) 2009; 36
Chen (ref_1) 2007; 84
Joshi (ref_5) 2018; 92
Islam (ref_63) 2021; 37
Jomelli (ref_2) 2015; 250
Jimenez (ref_44) 2008; 41
Huang (ref_64) 2014; 11
Pokharel (ref_24) 2021; 18
Chang (ref_26) 2006; 85
Bodenhofer (ref_53) 2011; 27
ref_36
Zhang (ref_33) 2011; 32
Li (ref_61) 2014; 21
Zhao (ref_12) 2020; 359
Shi (ref_15) 2016; 75
Mamat (ref_60) 2018; 7
Lin (ref_30) 2002; 66
Tokhmechi (ref_48) 2011; 118
Iovine (ref_19) 2005; 66
Cabral (ref_4) 2023; 313
Lee (ref_17) 2021; 281
Hartigan (ref_50) 1979; 28
Tunusluoglu (ref_29) 2008; 54
Liang (ref_18) 2012; 171
Puth (ref_58) 2015; 102
Chang (ref_65) 2017; 14
Saeidi (ref_45) 2014; 47
Meng (ref_31) 2010; 31
Zou (ref_8) 2019; 340
Sun (ref_62) 2012; 193
Saaty (ref_38) 1977; 15
ref_41
Chang (ref_27) 2007; 42
Chang (ref_32) 2007; 53
ref_3
Cui (ref_7) 2014; 33
Monnet (ref_43) 2012; 165
Blashfield (ref_42) 1978; 13
Niu (ref_16) 2014; 47
Shang (ref_54) 2012; 45
References_xml – volume: 43
  start-page: 223
  year: 2007
  ident: ref_28
  article-title: Vulnerability assessment of rainfall-induced debris flows in Taiwan
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-006-9105-y
– volume: 11
  start-page: 955
  year: 2014
  ident: ref_64
  article-title: Formation and activation of catastrophic debris flows in Baishui River basin, Sichuan Province, China
  publication-title: Landslides
  doi: 10.1007/s10346-014-0465-1
– volume: 75
  start-page: 909
  year: 2016
  ident: ref_15
  article-title: Assessing debris flow susceptibility in Heshigten Banner, Inner Mongolia, China, using principal component analysis and an improved fuzzy C-means algorithm
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-015-0784-z
– volume: 250
  start-page: 407
  year: 2015
  ident: ref_2
  article-title: A new hierarchical Bayesian approach to analyse environmental and climatic influences on debris flow occurrence
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.05.022
– volume: 41
  start-page: 929
  year: 2008
  ident: ref_44
  article-title: Fuzzy spectral clustering for identification of rock discontinuity sets
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-007-0155-6
– volume: 30
  start-page: 81
  year: 1938
  ident: ref_57
  article-title: A new measure of rank correlation
  publication-title: Biometrika
  doi: 10.1093/biomet/30.1-2.81
– volume: 10
  start-page: 293
  year: 2013
  ident: ref_10
  article-title: Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-013-2511-1
– volume: 22
  start-page: 763
  year: 1995
  ident: ref_34
  article-title: Determining objective weights in multiple criteria problems: The critic method
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(94)00059-H
– volume: 7
  start-page: 105
  year: 2018
  ident: ref_60
  article-title: Silhouette index for determining optimal k-means clustering on images in different color models
  publication-title: Int. J. Eng. Technol.
  doi: 10.14419/ijet.v7i2.14.11464
– volume: 32
  start-page: 1
  year: 1999
  ident: ref_47
  article-title: On distance measures for the fuzzy K-means algorithm for joint data
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s006030050041
– volume: 193
  start-page: 81
  year: 2012
  ident: ref_62
  article-title: Convergence analysis and improvements of quantum-behaved particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.01.005
– volume: 14
  start-page: 1783
  year: 2017
  ident: ref_65
  article-title: Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China
  publication-title: Landslides
  doi: 10.1007/s10346-017-0824-9
– volume: 171
  start-page: 94
  year: 2012
  ident: ref_18
  article-title: Assessment of debris flow hazards using a Bayesian Network
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.05.008
– volume: 47
  start-page: 717
  year: 2014
  ident: ref_45
  article-title: Prediction of the rock mass diggability index by using fuzzy clustering-based, ANN and multiple regression methods
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-013-0426-3
– volume: 15
  start-page: 234
  year: 1977
  ident: ref_38
  article-title: A scaling method for priorities in hierarchical structures
  publication-title: J. Math. Psychol.
  doi: 10.1016/0022-2496(77)90033-5
– volume: 66
  start-page: 295
  year: 2002
  ident: ref_30
  article-title: Assessing debris-flow hazard in a watershed in Taiwan
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(02)00105-9
– volume: 31
  start-page: 2925
  year: 2010
  ident: ref_31
  article-title: Application of stepwise discriminant analysis to screening evaluation factors of debris flow
  publication-title: Rock Soil Mech.
– volume: 32
  start-page: 831
  year: 2011
  ident: ref_33
  article-title: Evaluation of debris flow risk in Jinsha River based on combined weight process
  publication-title: Rock Soil Mech.
– volume: 22
  start-page: 1467
  year: 2000
  ident: ref_49
  article-title: Validity measures for the fuzzy cluster analysis of orientation
  publication-title: Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.895981
– volume: 55
  start-page: 1123
  year: 2015
  ident: ref_39
  article-title: Criteria in AHP: A systematic review of literature
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.081
– volume: 52
  start-page: 1
  year: 2013
  ident: ref_14
  article-title: A MacCormack-TVD fnite diference method to simulate the mass fow in mountainous terrain with variable computational domain
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.024
– volume: 118
  start-page: 75
  year: 2011
  ident: ref_48
  article-title: Investigating the validity of conventional joint set clustering methods
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2011.01.002
– volume: 84
  start-page: 44
  year: 2007
  ident: ref_1
  article-title: A rational method for estimating maximum discharge of a landslide-induced debris flow: A case study from Southwestern China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.07.007
– volume: 9
  start-page: 1897
  year: 2009
  ident: ref_13
  article-title: A GIS-based numerical model for simulating the kinematics of mud and debris fows over complex terrain
  publication-title: Nat. Hazard Earth Syst. Sci.
  doi: 10.5194/nhess-9-1897-2009
– volume: 27
  start-page: 2463
  year: 2011
  ident: ref_53
  article-title: APCluster: An R package for affinity propagation clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr406
– volume: 28
  start-page: 100
  year: 1979
  ident: ref_50
  article-title: Algorithm AS 136: A K-means clustering algorithm
  publication-title: Appl. Stat.
  doi: 10.2307/2346830
– volume: 20
  start-page: 723
  year: 2007
  ident: ref_35
  article-title: Reinforcement learning for a biped robot based on a CPG-actor-critic method
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2007.01.002
– volume: 66
  start-page: 287
  year: 2005
  ident: ref_19
  article-title: Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.09.017
– volume: 92
  start-page: 555
  year: 2018
  ident: ref_5
  article-title: Weathering controlled landslide in Deccan traps: Insight from Mahabaleshwar, Maharashtra
  publication-title: J. Geol. Soc. India
  doi: 10.1007/s12594-018-1067-7
– volume: 281
  start-page: 105979
  year: 2021
  ident: ref_17
  article-title: An artificial neural network model to predict debris-flow volumes caused by extreme rainfall in the central region of South Korea
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105979
– volume: 45
  start-page: 474
  year: 2012
  ident: ref_54
  article-title: Fast affinity propagation clustering: A multilevel approach
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.04.032
– volume: 340
  start-page: 84
  year: 2019
  ident: ref_8
  article-title: Regional risk assessment of debris flows in China-An HRU-based approach
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2019.04.027
– volume: 53
  start-page: 339
  year: 2007
  ident: ref_32
  article-title: The application of genetic algorithm in debris flows prediction
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0649-2
– volume: 217
  start-page: 23
  year: 2017
  ident: ref_21
  article-title: Rainfall threshold for initiation of channelized debris flows in a small catchment based on in-site measurement
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.12.003
– volume: 36
  start-page: 11312
  year: 2009
  ident: ref_56
  article-title: Narayana Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.03.006
– volume: 57
  start-page: 5039
  year: 2022
  ident: ref_6
  article-title: Co-seismic landslides in the Sikkim Himalaya during the 2011 Sikkim Earthquake: Lesson learned from the past and inference for the future
  publication-title: Geol. J.
  doi: 10.1002/gj.4416
– volume: 106
  start-page: 2635
  year: 2021
  ident: ref_11
  article-title: Dynamic hazard assessment of group-occurring debris flows based on a coupled model
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-021-04558-3
– volume: 42
  start-page: 209
  year: 2007
  ident: ref_27
  article-title: Risk degree of debris flow applying neural networks
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-006-9069-y
– volume: 59
  start-page: 1
  year: 2006
  ident: ref_51
  article-title: Means clustering: A half-century synthesis
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1348/000711005X48266
– volume: 26
  start-page: 17
  year: 1997
  ident: ref_59
  article-title: Integrating robust clustering techniques in S-PLUS
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(97)00020-0
– ident: ref_3
– volume: 17
  start-page: 83
  year: 2017
  ident: ref_37
  article-title: Air quality evaluation based on improved CRITIC weighting method and fuzzy optimization method
  publication-title: Stat. Decis.
– volume: 46
  start-page: 189
  year: 2013
  ident: ref_46
  article-title: Fuzzy C-means cluster analysis based on mutative scale chaos optimization algorithm for the grouping of discontinuity sets
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-012-0244-z
– volume: 66
  start-page: 1073
  year: 2013
  ident: ref_66
  article-title: Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0539-0
– volume: 40
  start-page: 1267
  year: 2022
  ident: ref_22
  article-title: The risk assessment of debris flow hazards in zhouqu based on the projection pursuit classification model
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-021-01961-2
– volume: 47
  start-page: 211
  year: 2014
  ident: ref_16
  article-title: Debris-flow hazard assessment based on stepwise discriminant analysis and extension theory
  publication-title: Q. J. Eng. Geol. Hydrogeol.
  doi: 10.1144/qjegh2013-038
– ident: ref_52
  doi: 10.3390/s19112579
– volume: 18
  start-page: 1403
  year: 2021
  ident: ref_24
  article-title: Spatial clustering and modelling for landslide susceptibility mapping in the north of the Kathmandu Valley, Nepal
  publication-title: Landslides
  doi: 10.1007/s10346-020-01558-5
– volume: 85
  start-page: 72
  year: 2017
  ident: ref_55
  article-title: Adjustable preference affinity propagation clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.11.017
– volume: 75
  start-page: 1
  year: 2016
  ident: ref_20
  article-title: Weights-of-evidence method based on GIS for assessing susceptibility to debris flows in Kangding County, Sichuan Province, China
  publication-title: Environ. Earth Sci.
– volume: 102
  start-page: 77
  year: 2015
  ident: ref_58
  article-title: Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits
  publication-title: Anim. Behav.
  doi: 10.1016/j.anbehav.2015.01.010
– volume: 33
  start-page: 145
  year: 2014
  ident: ref_7
  article-title: Progress and prospects in research on mountain hazards in China
  publication-title: Prog. Geogr.
– volume: 13
  start-page: 271
  year: 1978
  ident: ref_42
  article-title: The literature on cluster analysis
  publication-title: Multivar. Behav. Res.
  doi: 10.1207/s15327906mbr1303_2
– volume: 37
  start-page: 9021
  year: 2021
  ident: ref_63
  article-title: Landslide susceptibility modeling in a complex mountainous region of Sikkim Himalaya using new hybrid data mining approach
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.2009920
– volume: 13
  start-page: 1243
  year: 2016
  ident: ref_9
  article-title: A rapid method to identify the potential of debris flow development induced by rainfall in the catchments of the Wenchuan earthquake area
  publication-title: Landslides
  doi: 10.1007/s10346-015-0631-0
– volume: 313
  start-page: 106961
  year: 2023
  ident: ref_4
  article-title: A multi-step hazard assessment for debris-flow prone areas influenced by hydroclimatic events
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2022.106961
– volume: 165
  start-page: 367
  year: 2012
  ident: ref_43
  article-title: The use of a cluster analysis in a Ménard pressuremeter survey
  publication-title: Proc. Inst. Civ. Eng.-Geotech. Eng.
  doi: 10.1680/geng.9.00083
– volume: 315
  start-page: 972
  year: 2007
  ident: ref_23
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 85
  start-page: 270
  year: 2006
  ident: ref_26
  article-title: Application of back-propagation networks in debris flow prediction
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2006.02.007
– volume: 359
  start-page: 107125
  year: 2020
  ident: ref_12
  article-title: AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107125
– ident: ref_41
  doi: 10.1007/978-1-60327-194-3
– volume: 13
  start-page: 1
  year: 2004
  ident: ref_40
  article-title: Decision making—The analytic hierarchy and network processes (AHP/ANP)
  publication-title: J. Syst. Sci. Syst. Eng.
  doi: 10.1007/s11518-006-0151-5
– ident: ref_36
  doi: 10.3390/su13084098
– volume: 20
  start-page: 1287
  year: 2020
  ident: ref_25
  article-title: Classification and susceptibility assessment of debris flow based on a semi-quantitative method combination of the fuzzy C-means algorithm, factor analysis and efficacy coefficient
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-20-1287-2020
– volume: 54
  start-page: 9
  year: 2008
  ident: ref_29
  article-title: Extraction of potential debris source areas by logistic regression technique: A case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey)
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0788-5
– volume: 21
  start-page: 709
  year: 2014
  ident: ref_61
  article-title: Ant colony ATTA clustering algorithm of rock mass structural plane in groups
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-014-1992-6
SSID ssj0000913810
Score 2.3050895
Snippet Debris flows can damage infrastructure and threaten human life and property safety, especially in tourist attractions. Therefore, it is crucial to classify and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7551
SubjectTerms Algorithms
Artificial intelligence
Case studies
Classification
classification of debris flows
Cluster analysis
combination weighting method
Earthquakes
Flow velocity
Geological surveys
Geology
Longmenshan Town
Methods
National scenic areas
Onsite
optimization
Rain
Remote sensing
Risk assessment
Simulation
Urban areas
Vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_aIuiD2FPpaZU8FPygi9lNssn6IndHzyK2lGKxb0s-r8Vjt3bvkPp3-Qc6yebOFtTXzYRsmMlkZpL8fgjtUqJ0QZjKuFQuY6aimcqtzgovXW5EJagKdcjDo_LglH0642ep4Nala5UrnxgdtW1NqJG_g22wpIWQpPpw-T0LrFHhdDVRaNxFm-CCJSRfm-P9o-OTdZUloF7KnPQP8yjk9-FcOKc5FZznt7aiiNj_L78cN5vpI_QwRYl41Kt1C91xzQA9uIEdOED3PkZO3usB2krrs8OvE4j0m8foFzgSWL94Om9_4Mh8Ge4ERTVg1Vh8ctF9w6M1LCcew25mMTSCg4BkuRf8GuumMBw-jETTsedkvgzgCngFZ_Iej_AEeuNwJfEatx7fHjpKd_iiwZ_bZgaDdeeqwaGqvYePXTP7ed4u93Dk8X6CTqf7XyYHWWJoyAwjdJFZYmAJSyJKH_IWXWrJlVaMCgs2UBlvK1VwyqkjxruK5rkSzjGpWaENVyV9ijaatnHbCDOmhTHMF8RaECCK6xJCGV0xW5aGySF6u1JWbRJ8eWDRmNeQxgTN1jc0O0S7a-HLHrXj72LjoPW1SIDajh_aq1mdVm4tvfSlKpWQEDp6ypVV2vJcVp4z53MxRK-CzdTBIcAPGZXeNcC0ArRWPRJcCAiTCUxhZ2VWdfIUXf3Hrp_9v_k5uh-o7vurwjtoY3G1dC8gIFrol8nqfwMxfwzf
  priority: 102
  providerName: ProQuest
Title Debris Flow Classification and Risk Assessment Based on Combination Weighting Method and Cluster Analysis: A Case Study of Debris Flow Clusters in Longmenshan Town, Pengzhou, China
URI https://www.proquest.com/docview/2836327809
https://doaj.org/article/8f8f6a6a78644f35adabd5189f54ef17
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgXOCA2ABRNqp3mMSHFhHHduxwa6uVCbFpmpjYLfLnNq1KEG01wd_FH8izk1adBOLCNXmWHb9v5_n3CNlnuTZFznUmlPYZtxXLNHUmK4Ly1MpKMh3PIY9PyqNz_ulCXGy0-oo1YR08cLdx71VQodSllgo9d2BCO22coKoKgvtA0z1y9HkbyVSywRWN0FXdhTyGeX38H0wZZVIIescFJaT-v9nj5GSmT8jjPjqEUbeqbXLPNzvk0QZm4A7Z7rVxDm96yOi3T8kvNBuorTCdtbeQ-lzGCqC06aAbB2fX8xsYrUE4YYy-ywG-RHOAqXFH-DWdkuIkcJzaSqeRk9kyQinACrzkA4xggqMhFiD-gDbA3akT9RyuG_jcNpc42fxKNxDPsA_g1DeXP6_a5QGkrt3PyPn08MvkKOv7MWSW52yRudyiwqpcliFmKaY0SmijOZMOOV7Z4CpdCCaYz23wFaNUS--5MrwwVuiSPSdbTdv4FwQ4N9JaHorcOSTItTAlBi6m4q4sLVcD8m7Fotr2YOWxZ8asxqQl8rPe4OeA7K-Jv3UYHX8mG0der0kisHZ6gOJW9-JW_0vcBuR1lJQ6qj8uyOr-FgN-VgTSqkdSSIlBcY6fsLcSprq3C_Mag7mSFVLl1cv_sZpd8rDAoKsrH94jW4vvS_8Kg6SFGZL7avpxSB6MD09Oz4ZJO34D-SAUJg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAIeECsgCgP8MMSHFpHEduwgIdQVuo61E0Kbtrfgr3QTVTKWVlP5o3jiD-TsJGWTgLe9xpc41p1_dz7bv0Nog4RSxSGVARPSBlSnJJCRUUGcCxtpnnIiXR5yvJcMD-inI3a0gn62d2HcscoWEz1Qm1K7HPkbcIMJibkI0_en3wNXNcrtrrYlNGqz2LWLc1iyVe92PoB-n8fx4ON-fxg0VQUCTUMyC0yowewErN9zF2urRAkmlaSEG_jvVOcmlTEjjNhQ5zYlUSS5tVQoGivNZELgu9fQdUpI6maUGGwvczqOY1NEYX0NENpDtwsdkYhwxqJLjs_XB_iXF_CubXAX3WliUtyrjWgNrdiig25fYCrsoBvbvgLwooPWGjSo8MuGsvrVPfQLYAvQAg-m5Tn2dTbdCSSvdCwLg7-cVN9wb0kCirfAdxoMjQBHsDSvBQ99lha6w2Nf1tq_2Z_OHZUDbslT3uIe7sPb2B2AXOAyx5e79tIVPinwqCwm0Fl1LAvscuib-LMtJj-Oy_km9lXD76ODK9HcA7RalIV9iDClimtN8zg0BgRCyVQCgZNKqUkSTUUXvW6VlemGLN3V7JhmsGhyms0uaLaLNpbCpzVHyN_FtpzWlyKO2Ns_KM8mWYMTmchFnshEcgGBak6YNFIZFok0Z9TmEe-iF85mMgc_8ENaNrcoYFiOyCvrccY5BOUhDGG9NauswaUq-zOLHv2_-Rm6Odwfj7LRzt7uY3QrhtCuPqS8jlZnZ3P7BEKxmXrq7R-jr1c94X4DDUZI1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxA8IFZAFAb4YYgPLZoT23GChFDbrWxsq6ZpE3sL_ko3USVjbTWVv4sn_jrOTlI2CXjba3KOY935vnz-HUJrlEgVESYDnkgbMJ3SQIZGBVGe2FCLVFDp8pD7w3j7mH0-4SdL6FdzF8aVVTY60StqU2qXI98AMxjTSCQk3cjrsoiDzcHH8--B6yDlTlqbdhqViOza-SWEb5MPO5vA61dRNNg66m8HdYeBQDNCp4EhGkQwgVg-d363ilXCpZKMCgNrSHVuUhlxyqklOrcpDUMprGWJYpHSXMYUvnsLLQuIikgLLfe2hgeHiwyPQ9xMQlJdCqQ0Je5MOqQhFZyH18yg7xbwL5vgDd3gAbpfe6i4W4nUClqyRRvdu4Jb2Ea3P_l-wPM2Wql1wwS_qQGs3z5EP0GJge7Ag3F5iX3XTVeP5EUAy8Lgw7PJN9xdQILiHlhSg-ElKCcI1CvCLz5nC9Phfd_k2o_sj2cO2AE3UCrvcRf3YTR25ZBzXOb4-tSeeoLPCrxXFiOYbHIqC-wy6uv4wBajH6flbB37HuKP0PGN8O4xahVlYZ8gzJgSWrM8IsYAAZFcxeBGqZSZONYs6aB3DbMyXUOnuw4e4wxCKMfZ7ApnO2htQXxeIYb8naznuL4gcTDf_kF5McpqrZEleZLHMpYiAbc1p1waqQwPkzTnzOah6KDXTmYyp4zgh7Ss71TAshysV9YVXAhw0QksYbURq6zWUpPsz556-v_XL9Ed2GzZ3s5w9xm6G4GfV1Usr6LW9GJmn4NfNlUv6g2A0deb3nO_Aas5Tmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Debris+Flow+Classification+and+Risk+Assessment+Based+on+Combination+Weighting+Method+and+Cluster+Analysis%3A+A+Case+Study+of+Debris+Flow+Clusters+in+Longmenshan+Town%2C+Pengzhou%2C+China&rft.jtitle=Applied+sciences&rft.au=Li%2C+Yuanzheng&rft.au=Shen%2C+Junhui&rft.au=Huang%2C+Meng&rft.au=Peng%2C+Zhanghai&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=13&rft_id=info:doi/10.3390%2Fapp13137551&rft.externalDocID=A757719308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon