Debris Flow Classification and Risk Assessment Based on Combination Weighting Method and Cluster Analysis: A Case Study of Debris Flow Clusters in Longmenshan Town, Pengzhou, China
Debris flows can damage infrastructure and threaten human life and property safety, especially in tourist attractions. Therefore, it is crucial to classify and evaluate the risk of debris flows. This article takes 14 debris flows in Longmenshan Town, Pengzhou, Sichuan, China, as the research object....
Saved in:
Published in | Applied sciences Vol. 13; no. 13; p. 7551 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Debris flows can damage infrastructure and threaten human life and property safety, especially in tourist attractions. Therefore, it is crucial to classify and evaluate the risk of debris flows. This article takes 14 debris flows in Longmenshan Town, Pengzhou, Sichuan, China, as the research object. Based on on-site geological surveys, combined with drone images and multiple remote sensing images, the essential characteristics of each debris flow are comprehensively determined. A total of nine factors are used as the primary indicators affecting the risk of debris flow: drainage density, roundness, the average gradient of the main channel, maximum elevation difference, bending coefficient of the main channel, the loose-material supply length ratio, vegetation area ratio, population density, and loose-material volume of unit area. The subjective weights of each indicator are obtained using the Analytic Hierarchy Process, while the objective weights are obtained using the CRITIC method. Based on this, the distance function is introduced to couple the subjective and objective weights, determine each indicator’s combined weights, and obtain the integrated evaluation score values of different debris flow hazards. Considering the integrated evaluation score of debris flow, cluster analysis was used to classify 14 debris flows and cluster effectiveness indicators were introduced to determine the effectiveness of debris flow classification. A quantitative standard for the risk of debris flow within the study area was proposed, and finally, a risk assessment of debris flow in the study area was made. Comparing the results of this paper with the gray correlation method, the coupled synergistic method, and the geological field survey results, proves that the proposed method is feasible and provides a reasonable scientific basis for the study of the hazard assessment of regional debris flow clusters and other related issues within the scope of the Jianjiang River basin and other areas. |
---|---|
AbstractList | Debris flows can damage infrastructure and threaten human life and property safety, especially in tourist attractions. Therefore, it is crucial to classify and evaluate the risk of debris flows. This article takes 14 debris flows in Longmenshan Town, Pengzhou, Sichuan, China, as the research object. Based on on-site geological surveys, combined with drone images and multiple remote sensing images, the essential characteristics of each debris flow are comprehensively determined. A total of nine factors are used as the primary indicators affecting the risk of debris flow: drainage density, roundness, the average gradient of the main channel, maximum elevation difference, bending coefficient of the main channel, the loose-material supply length ratio, vegetation area ratio, population density, and loose-material volume of unit area. The subjective weights of each indicator are obtained using the Analytic Hierarchy Process, while the objective weights are obtained using the CRITIC method. Based on this, the distance function is introduced to couple the subjective and objective weights, determine each indicator's combined weights, and obtain the integrated evaluation score values of different debris flow hazards. Considering the integrated evaluation score of debris flow, cluster analysis was used to classify 14 debris flows and cluster effectiveness indicators were introduced to determine the effectiveness of debris flow classification. A quantitative standard for the risk of debris flow within the study area was proposed, and finally, a risk assessment of debris flow in the study area was made. Comparing the results of this paper with the gray correlation method, the coupled synergistic method, and the geological field survey results, proves that the proposed method is feasible and provides a reasonable scientific basis for the study of the hazard assessment of regional debris flow clusters and other related issues within the scope of the Jianjiang River basin and other areas. |
Audience | Academic |
Author | Huang, Meng Shen, Junhui Li, Yuanzheng Peng, Zhanghai |
Author_xml | – sequence: 1 givenname: Yuanzheng orcidid: 0000-0003-4999-5793 surname: Li fullname: Li, Yuanzheng – sequence: 2 givenname: Junhui surname: Shen fullname: Shen, Junhui – sequence: 3 givenname: Meng surname: Huang fullname: Huang, Meng – sequence: 4 givenname: Zhanghai surname: Peng fullname: Peng, Zhanghai |
BookMark | eNptUs1uEzEQXqEiUUpPvIAljjTFjtdrL7ewUKgUBIIijqtZ_2wcNnbqcVSF5-IBMQlCBeE52Bp_Px7PPK5OQgy2qp4yesl5S1_Adss441II9qA6nVPZzHjN5Mm986PqHHFNy2oZV4yeVj9e2yF5JFdTvCPdBIjeeQ3Zx0AgGPLJ4zeyQLSIGxsyeQVoDSmXXdwMPhyBX60fV9mHkby3eRXNgdlNO8w2kUWAaY8eX5IF6QqbfM47syfRkb-tD2gkPpBlDGMxwxUEchPvwgX5aMP4fRV3F6RbFdMn1UMHE9rz3_tZ9eXqzU33brb88Pa6WyxnuqY8zwzVnLWqFO-EbNTQDErAADWXhsLQamdamAsuuKXa2ZYzBtLaWg31fNACGn5WXR91TYR1v01-A2nfR_D9IRHT2EPKXk-2V065BhqQqqlrxwUYGIxgqnWito7JovXsqLVN8XZnMffruEvlb7CfK97wuVS0LajLI2qEIuqDizmBLmHsxuvSb-dLfiGFlKzlVBXC8yNBp4iYrPvzTEb7X2PR3xuLgmb_oLXPhx4WGz_9l_MTxp696g |
CitedBy_id | crossref_primary_10_1371_journal_pone_0303698 crossref_primary_10_3233_JIFS_230680 crossref_primary_10_3390_geohazards5010011 crossref_primary_10_3390_app142411960 crossref_primary_10_1007_s12145_024_01453_w crossref_primary_10_3390_app13169418 crossref_primary_10_3390_s24041205 |
Cites_doi | 10.1007/s11069-006-9105-y 10.1007/s10346-014-0465-1 10.1007/s10064-015-0784-z 10.1016/j.geomorph.2015.05.022 10.1007/s00603-007-0155-6 10.1093/biomet/30.1-2.81 10.1007/s11629-013-2511-1 10.1016/0305-0548(94)00059-H 10.14419/ijet.v7i2.14.11464 10.1007/s006030050041 10.1016/j.ins.2012.01.005 10.1007/s10346-017-0824-9 10.1016/j.geomorph.2012.05.008 10.1007/s00603-013-0426-3 10.1016/0022-2496(77)90033-5 10.1016/S0013-7952(02)00105-9 10.1109/34.895981 10.1016/j.procs.2015.07.081 10.1016/j.cageo.2012.08.024 10.1016/j.enggeo.2011.01.002 10.1016/j.geomorph.2006.07.007 10.5194/nhess-9-1897-2009 10.1093/bioinformatics/btr406 10.2307/2346830 10.1016/j.neunet.2007.01.002 10.1016/j.geomorph.2004.09.017 10.1007/s12594-018-1067-7 10.1016/j.enggeo.2020.105979 10.1016/j.patcog.2011.04.032 10.1016/j.geomorph.2019.04.027 10.1007/s00254-007-0649-2 10.1016/j.enggeo.2016.12.003 10.1016/j.eswa.2009.03.006 10.1002/gj.4416 10.1007/s11069-021-04558-3 10.1007/s11069-006-9069-y 10.1348/000711005X48266 10.1016/S0167-9473(97)00020-0 10.1007/s00603-012-0244-z 10.1007/s11069-012-0539-0 10.1007/s10706-021-01961-2 10.1144/qjegh2013-038 10.3390/s19112579 10.1007/s10346-020-01558-5 10.1016/j.patrec.2016.11.017 10.1016/j.anbehav.2015.01.010 10.1207/s15327906mbr1303_2 10.1080/10106049.2021.2009920 10.1007/s10346-015-0631-0 10.1016/j.enggeo.2022.106961 10.1680/geng.9.00083 10.1126/science.1136800 10.1016/j.enggeo.2006.02.007 10.1016/j.geomorph.2020.107125 10.1007/978-1-60327-194-3 10.1007/s11518-006-0151-5 10.3390/su13084098 10.5194/nhess-20-1287-2020 10.1007/s00254-007-0788-5 10.1007/s11771-014-1992-6 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app13137551 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Geology |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_8f8f6a6a78644f35adabd5189f54ef17 A757719308 10_3390_app13137551 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c403t-d0c3198076f5768b6b85aba437d0ab9cfd9a25353e0cfe9311a7ee48b42bc5a63 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:36 EDT 2025 Mon Jun 30 11:17:48 EDT 2025 Tue Jun 10 20:43:23 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Tue Jul 01 04:33:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-d0c3198076f5768b6b85aba437d0ab9cfd9a25353e0cfe9311a7ee48b42bc5a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4999-5793 |
OpenAccessLink | https://doaj.org/article/8f8f6a6a78644f35adabd5189f54ef17 |
PQID | 2836327809 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8f8f6a6a78644f35adabd5189f54ef17 proquest_journals_2836327809 gale_infotracacademiconefile_A757719308 crossref_primary_10_3390_app13137551 crossref_citationtrail_10_3390_app13137551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Saaty (ref_40) 2004; 13 Chen (ref_20) 2016; 75 Camanho (ref_39) 2015; 55 Frey (ref_23) 2007; 315 Kendall (ref_57) 1938; 30 Wei (ref_21) 2017; 217 Nakamura (ref_35) 2007; 20 Xu (ref_46) 2013; 46 ref_52 Ouyang (ref_14) 2013; 52 Steinley (ref_51) 2006; 59 Hammah (ref_47) 1999; 32 Joshi (ref_6) 2022; 57 Liang (ref_25) 2020; 20 Gu (ref_22) 2022; 40 Diakoulaki (ref_34) 1995; 22 Malet (ref_13) 2009; 9 Li (ref_55) 2017; 85 Wu (ref_10) 2013; 10 Wang (ref_37) 2017; 17 Lu (ref_28) 2007; 43 Struyf (ref_59) 1997; 26 Zhou (ref_9) 2016; 13 Hammah (ref_49) 2000; 22 Zhang (ref_66) 2013; 66 Nie (ref_11) 2021; 106 Omkar (ref_56) 2009; 36 Chen (ref_1) 2007; 84 Joshi (ref_5) 2018; 92 Islam (ref_63) 2021; 37 Jomelli (ref_2) 2015; 250 Jimenez (ref_44) 2008; 41 Huang (ref_64) 2014; 11 Pokharel (ref_24) 2021; 18 Chang (ref_26) 2006; 85 Bodenhofer (ref_53) 2011; 27 ref_36 Zhang (ref_33) 2011; 32 Li (ref_61) 2014; 21 Zhao (ref_12) 2020; 359 Shi (ref_15) 2016; 75 Mamat (ref_60) 2018; 7 Lin (ref_30) 2002; 66 Tokhmechi (ref_48) 2011; 118 Iovine (ref_19) 2005; 66 Cabral (ref_4) 2023; 313 Lee (ref_17) 2021; 281 Hartigan (ref_50) 1979; 28 Tunusluoglu (ref_29) 2008; 54 Liang (ref_18) 2012; 171 Puth (ref_58) 2015; 102 Chang (ref_65) 2017; 14 Saeidi (ref_45) 2014; 47 Meng (ref_31) 2010; 31 Zou (ref_8) 2019; 340 Sun (ref_62) 2012; 193 Saaty (ref_38) 1977; 15 ref_41 Chang (ref_27) 2007; 42 Chang (ref_32) 2007; 53 ref_3 Cui (ref_7) 2014; 33 Monnet (ref_43) 2012; 165 Blashfield (ref_42) 1978; 13 Niu (ref_16) 2014; 47 Shang (ref_54) 2012; 45 |
References_xml | – volume: 43 start-page: 223 year: 2007 ident: ref_28 article-title: Vulnerability assessment of rainfall-induced debris flows in Taiwan publication-title: Nat. Hazards doi: 10.1007/s11069-006-9105-y – volume: 11 start-page: 955 year: 2014 ident: ref_64 article-title: Formation and activation of catastrophic debris flows in Baishui River basin, Sichuan Province, China publication-title: Landslides doi: 10.1007/s10346-014-0465-1 – volume: 75 start-page: 909 year: 2016 ident: ref_15 article-title: Assessing debris flow susceptibility in Heshigten Banner, Inner Mongolia, China, using principal component analysis and an improved fuzzy C-means algorithm publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-015-0784-z – volume: 250 start-page: 407 year: 2015 ident: ref_2 article-title: A new hierarchical Bayesian approach to analyse environmental and climatic influences on debris flow occurrence publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.05.022 – volume: 41 start-page: 929 year: 2008 ident: ref_44 article-title: Fuzzy spectral clustering for identification of rock discontinuity sets publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-007-0155-6 – volume: 30 start-page: 81 year: 1938 ident: ref_57 article-title: A new measure of rank correlation publication-title: Biometrika doi: 10.1093/biomet/30.1-2.81 – volume: 10 start-page: 293 year: 2013 ident: ref_10 article-title: Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study publication-title: J. Mt. Sci. doi: 10.1007/s11629-013-2511-1 – volume: 22 start-page: 763 year: 1995 ident: ref_34 article-title: Determining objective weights in multiple criteria problems: The critic method publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(94)00059-H – volume: 7 start-page: 105 year: 2018 ident: ref_60 article-title: Silhouette index for determining optimal k-means clustering on images in different color models publication-title: Int. J. Eng. Technol. doi: 10.14419/ijet.v7i2.14.11464 – volume: 32 start-page: 1 year: 1999 ident: ref_47 article-title: On distance measures for the fuzzy K-means algorithm for joint data publication-title: Rock Mech. Rock Eng. doi: 10.1007/s006030050041 – volume: 193 start-page: 81 year: 2012 ident: ref_62 article-title: Convergence analysis and improvements of quantum-behaved particle swarm optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.01.005 – volume: 14 start-page: 1783 year: 2017 ident: ref_65 article-title: Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China publication-title: Landslides doi: 10.1007/s10346-017-0824-9 – volume: 171 start-page: 94 year: 2012 ident: ref_18 article-title: Assessment of debris flow hazards using a Bayesian Network publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.05.008 – volume: 47 start-page: 717 year: 2014 ident: ref_45 article-title: Prediction of the rock mass diggability index by using fuzzy clustering-based, ANN and multiple regression methods publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-013-0426-3 – volume: 15 start-page: 234 year: 1977 ident: ref_38 article-title: A scaling method for priorities in hierarchical structures publication-title: J. Math. Psychol. doi: 10.1016/0022-2496(77)90033-5 – volume: 66 start-page: 295 year: 2002 ident: ref_30 article-title: Assessing debris-flow hazard in a watershed in Taiwan publication-title: Eng. Geol. doi: 10.1016/S0013-7952(02)00105-9 – volume: 31 start-page: 2925 year: 2010 ident: ref_31 article-title: Application of stepwise discriminant analysis to screening evaluation factors of debris flow publication-title: Rock Soil Mech. – volume: 32 start-page: 831 year: 2011 ident: ref_33 article-title: Evaluation of debris flow risk in Jinsha River based on combined weight process publication-title: Rock Soil Mech. – volume: 22 start-page: 1467 year: 2000 ident: ref_49 article-title: Validity measures for the fuzzy cluster analysis of orientation publication-title: Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.895981 – volume: 55 start-page: 1123 year: 2015 ident: ref_39 article-title: Criteria in AHP: A systematic review of literature publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.07.081 – volume: 52 start-page: 1 year: 2013 ident: ref_14 article-title: A MacCormack-TVD fnite diference method to simulate the mass fow in mountainous terrain with variable computational domain publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.024 – volume: 118 start-page: 75 year: 2011 ident: ref_48 article-title: Investigating the validity of conventional joint set clustering methods publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2011.01.002 – volume: 84 start-page: 44 year: 2007 ident: ref_1 article-title: A rational method for estimating maximum discharge of a landslide-induced debris flow: A case study from Southwestern China publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.07.007 – volume: 9 start-page: 1897 year: 2009 ident: ref_13 article-title: A GIS-based numerical model for simulating the kinematics of mud and debris fows over complex terrain publication-title: Nat. Hazard Earth Syst. Sci. doi: 10.5194/nhess-9-1897-2009 – volume: 27 start-page: 2463 year: 2011 ident: ref_53 article-title: APCluster: An R package for affinity propagation clustering publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr406 – volume: 28 start-page: 100 year: 1979 ident: ref_50 article-title: Algorithm AS 136: A K-means clustering algorithm publication-title: Appl. Stat. doi: 10.2307/2346830 – volume: 20 start-page: 723 year: 2007 ident: ref_35 article-title: Reinforcement learning for a biped robot based on a CPG-actor-critic method publication-title: Neural Netw. doi: 10.1016/j.neunet.2007.01.002 – volume: 66 start-page: 287 year: 2005 ident: ref_19 article-title: Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.09.017 – volume: 92 start-page: 555 year: 2018 ident: ref_5 article-title: Weathering controlled landslide in Deccan traps: Insight from Mahabaleshwar, Maharashtra publication-title: J. Geol. Soc. India doi: 10.1007/s12594-018-1067-7 – volume: 281 start-page: 105979 year: 2021 ident: ref_17 article-title: An artificial neural network model to predict debris-flow volumes caused by extreme rainfall in the central region of South Korea publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105979 – volume: 45 start-page: 474 year: 2012 ident: ref_54 article-title: Fast affinity propagation clustering: A multilevel approach publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.04.032 – volume: 340 start-page: 84 year: 2019 ident: ref_8 article-title: Regional risk assessment of debris flows in China-An HRU-based approach publication-title: Geomorphology doi: 10.1016/j.geomorph.2019.04.027 – volume: 53 start-page: 339 year: 2007 ident: ref_32 article-title: The application of genetic algorithm in debris flows prediction publication-title: Environ. Geol. doi: 10.1007/s00254-007-0649-2 – volume: 217 start-page: 23 year: 2017 ident: ref_21 article-title: Rainfall threshold for initiation of channelized debris flows in a small catchment based on in-site measurement publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.12.003 – volume: 36 start-page: 11312 year: 2009 ident: ref_56 article-title: Narayana Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.03.006 – volume: 57 start-page: 5039 year: 2022 ident: ref_6 article-title: Co-seismic landslides in the Sikkim Himalaya during the 2011 Sikkim Earthquake: Lesson learned from the past and inference for the future publication-title: Geol. J. doi: 10.1002/gj.4416 – volume: 106 start-page: 2635 year: 2021 ident: ref_11 article-title: Dynamic hazard assessment of group-occurring debris flows based on a coupled model publication-title: Nat. Hazards doi: 10.1007/s11069-021-04558-3 – volume: 42 start-page: 209 year: 2007 ident: ref_27 article-title: Risk degree of debris flow applying neural networks publication-title: Nat. Hazards doi: 10.1007/s11069-006-9069-y – volume: 59 start-page: 1 year: 2006 ident: ref_51 article-title: Means clustering: A half-century synthesis publication-title: Br. J. Math. Stat. Psychol. doi: 10.1348/000711005X48266 – volume: 26 start-page: 17 year: 1997 ident: ref_59 article-title: Integrating robust clustering techniques in S-PLUS publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(97)00020-0 – ident: ref_3 – volume: 17 start-page: 83 year: 2017 ident: ref_37 article-title: Air quality evaluation based on improved CRITIC weighting method and fuzzy optimization method publication-title: Stat. Decis. – volume: 46 start-page: 189 year: 2013 ident: ref_46 article-title: Fuzzy C-means cluster analysis based on mutative scale chaos optimization algorithm for the grouping of discontinuity sets publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-012-0244-z – volume: 66 start-page: 1073 year: 2013 ident: ref_66 article-title: Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods publication-title: Nat. Hazards doi: 10.1007/s11069-012-0539-0 – volume: 40 start-page: 1267 year: 2022 ident: ref_22 article-title: The risk assessment of debris flow hazards in zhouqu based on the projection pursuit classification model publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-021-01961-2 – volume: 47 start-page: 211 year: 2014 ident: ref_16 article-title: Debris-flow hazard assessment based on stepwise discriminant analysis and extension theory publication-title: Q. J. Eng. Geol. Hydrogeol. doi: 10.1144/qjegh2013-038 – ident: ref_52 doi: 10.3390/s19112579 – volume: 18 start-page: 1403 year: 2021 ident: ref_24 article-title: Spatial clustering and modelling for landslide susceptibility mapping in the north of the Kathmandu Valley, Nepal publication-title: Landslides doi: 10.1007/s10346-020-01558-5 – volume: 85 start-page: 72 year: 2017 ident: ref_55 article-title: Adjustable preference affinity propagation clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.11.017 – volume: 75 start-page: 1 year: 2016 ident: ref_20 article-title: Weights-of-evidence method based on GIS for assessing susceptibility to debris flows in Kangding County, Sichuan Province, China publication-title: Environ. Earth Sci. – volume: 102 start-page: 77 year: 2015 ident: ref_58 article-title: Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits publication-title: Anim. Behav. doi: 10.1016/j.anbehav.2015.01.010 – volume: 33 start-page: 145 year: 2014 ident: ref_7 article-title: Progress and prospects in research on mountain hazards in China publication-title: Prog. Geogr. – volume: 13 start-page: 271 year: 1978 ident: ref_42 article-title: The literature on cluster analysis publication-title: Multivar. Behav. Res. doi: 10.1207/s15327906mbr1303_2 – volume: 37 start-page: 9021 year: 2021 ident: ref_63 article-title: Landslide susceptibility modeling in a complex mountainous region of Sikkim Himalaya using new hybrid data mining approach publication-title: Geocarto Int. doi: 10.1080/10106049.2021.2009920 – volume: 13 start-page: 1243 year: 2016 ident: ref_9 article-title: A rapid method to identify the potential of debris flow development induced by rainfall in the catchments of the Wenchuan earthquake area publication-title: Landslides doi: 10.1007/s10346-015-0631-0 – volume: 313 start-page: 106961 year: 2023 ident: ref_4 article-title: A multi-step hazard assessment for debris-flow prone areas influenced by hydroclimatic events publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2022.106961 – volume: 165 start-page: 367 year: 2012 ident: ref_43 article-title: The use of a cluster analysis in a Ménard pressuremeter survey publication-title: Proc. Inst. Civ. Eng.-Geotech. Eng. doi: 10.1680/geng.9.00083 – volume: 315 start-page: 972 year: 2007 ident: ref_23 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – volume: 85 start-page: 270 year: 2006 ident: ref_26 article-title: Application of back-propagation networks in debris flow prediction publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2006.02.007 – volume: 359 start-page: 107125 year: 2020 ident: ref_12 article-title: AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107125 – ident: ref_41 doi: 10.1007/978-1-60327-194-3 – volume: 13 start-page: 1 year: 2004 ident: ref_40 article-title: Decision making—The analytic hierarchy and network processes (AHP/ANP) publication-title: J. Syst. Sci. Syst. Eng. doi: 10.1007/s11518-006-0151-5 – ident: ref_36 doi: 10.3390/su13084098 – volume: 20 start-page: 1287 year: 2020 ident: ref_25 article-title: Classification and susceptibility assessment of debris flow based on a semi-quantitative method combination of the fuzzy C-means algorithm, factor analysis and efficacy coefficient publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-20-1287-2020 – volume: 54 start-page: 9 year: 2008 ident: ref_29 article-title: Extraction of potential debris source areas by logistic regression technique: A case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey) publication-title: Environ. Geol. doi: 10.1007/s00254-007-0788-5 – volume: 21 start-page: 709 year: 2014 ident: ref_61 article-title: Ant colony ATTA clustering algorithm of rock mass structural plane in groups publication-title: J. Cent. South Univ. doi: 10.1007/s11771-014-1992-6 |
SSID | ssj0000913810 |
Score | 2.3050895 |
Snippet | Debris flows can damage infrastructure and threaten human life and property safety, especially in tourist attractions. Therefore, it is crucial to classify and... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7551 |
SubjectTerms | Algorithms Artificial intelligence Case studies Classification classification of debris flows Cluster analysis combination weighting method Earthquakes Flow velocity Geological surveys Geology Longmenshan Town Methods National scenic areas Onsite optimization Rain Remote sensing Risk assessment Simulation Urban areas Vegetation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_aIuiD2FPpaZU8FPygi9lNssn6IndHzyK2lGKxb0s-r8Vjt3bvkPp3-Qc6yebOFtTXzYRsmMlkZpL8fgjtUqJ0QZjKuFQuY6aimcqtzgovXW5EJagKdcjDo_LglH0642ep4Nala5UrnxgdtW1NqJG_g22wpIWQpPpw-T0LrFHhdDVRaNxFm-CCJSRfm-P9o-OTdZUloF7KnPQP8yjk9-FcOKc5FZznt7aiiNj_L78cN5vpI_QwRYl41Kt1C91xzQA9uIEdOED3PkZO3usB2krrs8OvE4j0m8foFzgSWL94Om9_4Mh8Ge4ERTVg1Vh8ctF9w6M1LCcew25mMTSCg4BkuRf8GuumMBw-jETTsedkvgzgCngFZ_Iej_AEeuNwJfEatx7fHjpKd_iiwZ_bZgaDdeeqwaGqvYePXTP7ed4u93Dk8X6CTqf7XyYHWWJoyAwjdJFZYmAJSyJKH_IWXWrJlVaMCgs2UBlvK1VwyqkjxruK5rkSzjGpWaENVyV9ijaatnHbCDOmhTHMF8RaECCK6xJCGV0xW5aGySF6u1JWbRJ8eWDRmNeQxgTN1jc0O0S7a-HLHrXj72LjoPW1SIDajh_aq1mdVm4tvfSlKpWQEDp6ypVV2vJcVp4z53MxRK-CzdTBIcAPGZXeNcC0ArRWPRJcCAiTCUxhZ2VWdfIUXf3Hrp_9v_k5uh-o7vurwjtoY3G1dC8gIFrol8nqfwMxfwzf priority: 102 providerName: ProQuest |
Title | Debris Flow Classification and Risk Assessment Based on Combination Weighting Method and Cluster Analysis: A Case Study of Debris Flow Clusters in Longmenshan Town, Pengzhou, China |
URI | https://www.proquest.com/docview/2836327809 https://doaj.org/article/8f8f6a6a78644f35adabd5189f54ef17 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgXOCA2ABRNqp3mMSHFhHHduxwa6uVCbFpmpjYLfLnNq1KEG01wd_FH8izk1adBOLCNXmWHb9v5_n3CNlnuTZFznUmlPYZtxXLNHUmK4Ly1MpKMh3PIY9PyqNz_ulCXGy0-oo1YR08cLdx71VQodSllgo9d2BCO22coKoKgvtA0z1y9HkbyVSywRWN0FXdhTyGeX38H0wZZVIIescFJaT-v9nj5GSmT8jjPjqEUbeqbXLPNzvk0QZm4A7Z7rVxDm96yOi3T8kvNBuorTCdtbeQ-lzGCqC06aAbB2fX8xsYrUE4YYy-ywG-RHOAqXFH-DWdkuIkcJzaSqeRk9kyQinACrzkA4xggqMhFiD-gDbA3akT9RyuG_jcNpc42fxKNxDPsA_g1DeXP6_a5QGkrt3PyPn08MvkKOv7MWSW52yRudyiwqpcliFmKaY0SmijOZMOOV7Z4CpdCCaYz23wFaNUS--5MrwwVuiSPSdbTdv4FwQ4N9JaHorcOSTItTAlBi6m4q4sLVcD8m7Fotr2YOWxZ8asxqQl8rPe4OeA7K-Jv3UYHX8mG0der0kisHZ6gOJW9-JW_0vcBuR1lJQ6qj8uyOr-FgN-VgTSqkdSSIlBcY6fsLcSprq3C_Mag7mSFVLl1cv_sZpd8rDAoKsrH94jW4vvS_8Kg6SFGZL7avpxSB6MD09Oz4ZJO34D-SAUJg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAIeECsgCgP8MMSHFpHEduwgIdQVuo61E0Kbtrfgr3QTVTKWVlP5o3jiD-TsJGWTgLe9xpc41p1_dz7bv0Nog4RSxSGVARPSBlSnJJCRUUGcCxtpnnIiXR5yvJcMD-inI3a0gn62d2HcscoWEz1Qm1K7HPkbcIMJibkI0_en3wNXNcrtrrYlNGqz2LWLc1iyVe92PoB-n8fx4ON-fxg0VQUCTUMyC0yowewErN9zF2urRAkmlaSEG_jvVOcmlTEjjNhQ5zYlUSS5tVQoGivNZELgu9fQdUpI6maUGGwvczqOY1NEYX0NENpDtwsdkYhwxqJLjs_XB_iXF_CubXAX3WliUtyrjWgNrdiig25fYCrsoBvbvgLwooPWGjSo8MuGsvrVPfQLYAvQAg-m5Tn2dTbdCSSvdCwLg7-cVN9wb0kCirfAdxoMjQBHsDSvBQ99lha6w2Nf1tq_2Z_OHZUDbslT3uIe7sPb2B2AXOAyx5e79tIVPinwqCwm0Fl1LAvscuib-LMtJj-Oy_km9lXD76ODK9HcA7RalIV9iDClimtN8zg0BgRCyVQCgZNKqUkSTUUXvW6VlemGLN3V7JhmsGhyms0uaLaLNpbCpzVHyN_FtpzWlyKO2Ns_KM8mWYMTmchFnshEcgGBak6YNFIZFok0Z9TmEe-iF85mMgc_8ENaNrcoYFiOyCvrccY5BOUhDGG9NauswaUq-zOLHv2_-Rm6Odwfj7LRzt7uY3QrhtCuPqS8jlZnZ3P7BEKxmXrq7R-jr1c94X4DDUZI1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxA8IFZAFAb4YYgPLZoT23GChFDbrWxsq6ZpE3sL_ko3USVjbTWVv4sn_jrOTlI2CXjba3KOY935vnz-HUJrlEgVESYDnkgbMJ3SQIZGBVGe2FCLVFDp8pD7w3j7mH0-4SdL6FdzF8aVVTY60StqU2qXI98AMxjTSCQk3cjrsoiDzcHH8--B6yDlTlqbdhqViOza-SWEb5MPO5vA61dRNNg66m8HdYeBQDNCp4EhGkQwgVg-d363ilXCpZKMCgNrSHVuUhlxyqklOrcpDUMprGWJYpHSXMYUvnsLLQuIikgLLfe2hgeHiwyPQ9xMQlJdCqQ0Je5MOqQhFZyH18yg7xbwL5vgDd3gAbpfe6i4W4nUClqyRRvdu4Jb2Ea3P_l-wPM2Wql1wwS_qQGs3z5EP0GJge7Ag3F5iX3XTVeP5EUAy8Lgw7PJN9xdQILiHlhSg-ElKCcI1CvCLz5nC9Phfd_k2o_sj2cO2AE3UCrvcRf3YTR25ZBzXOb4-tSeeoLPCrxXFiOYbHIqC-wy6uv4wBajH6flbB37HuKP0PGN8O4xahVlYZ8gzJgSWrM8IsYAAZFcxeBGqZSZONYs6aB3DbMyXUOnuw4e4wxCKMfZ7ApnO2htQXxeIYb8naznuL4gcTDf_kF5McpqrZEleZLHMpYiAbc1p1waqQwPkzTnzOah6KDXTmYyp4zgh7Ss71TAshysV9YVXAhw0QksYbURq6zWUpPsz556-v_XL9Ed2GzZ3s5w9xm6G4GfV1Usr6LW9GJmn4NfNlUv6g2A0deb3nO_Aas5Tmk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Debris+Flow+Classification+and+Risk+Assessment+Based+on+Combination+Weighting+Method+and+Cluster+Analysis%3A+A+Case+Study+of+Debris+Flow+Clusters+in+Longmenshan+Town%2C+Pengzhou%2C+China&rft.jtitle=Applied+sciences&rft.au=Li%2C+Yuanzheng&rft.au=Shen%2C+Junhui&rft.au=Huang%2C+Meng&rft.au=Peng%2C+Zhanghai&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=13&rft_id=info:doi/10.3390%2Fapp13137551&rft.externalDocID=A757719308 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |