An Approach for Demand Forecasting in Steel Industries Using Ensemble Learning
This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature selection, cross-validation, and regression ensemble framework. Bagging (random forest regression (RFR)), boosting (gradient boosting regression (GBR...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2022; no. 1 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Hindawi
2022
Hindawi Limited Hindawi-Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature selection, cross-validation, and regression ensemble framework. Bagging (random forest regression (RFR)), boosting (gradient boosting regression (GBR) and extreme gradient boosting regression (XGBR)), and stacking (STACK) are employed as ensemble models. Different machine learning (ML) approaches, including support vector regression (SVR), extreme learning machine (ELM), and multilayer perceptron neural network (MLP), are adopted as reference models. In order to maximize the determination coefficient (R2) value and reduce the root mean square error (RMSE), hyperparameters are set using the grid search method. Using a steel industry dataset, all tests are carried out under identical experimental conditions. In this context, STACK1 (ELM + GBR + XGBR-SVR) and STACK2 (ELM + GBR + XGBR-LASSO) models provided better performance than other models. The highest accuracies of R2 of 0.97 and 0.97 are obtained using STACK1 and STACK2, respectively. Moreover, the rank according to performances is STACK1, STACK2, XGBR, GBR, RFR, MLP, ELM, and SVR. As it improves the performance of models and reduces the risk of decision-making, the ensemble method can be used to forecast the demand in a steel industry one month ahead. |
---|---|
AbstractList | This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature selection, cross‐validation, and regression ensemble framework. Bagging (random forest regression (RFR)), boosting (gradient boosting regression (GBR) and extreme gradient boosting regression (XGBR)), and stacking (STACK) are employed as ensemble models. Different machine learning (ML) approaches, including support vector regression (SVR), extreme learning machine (ELM), and multilayer perceptron neural network (MLP), are adopted as reference models. In order to maximize the determination coefficient ( R 2 ) value and reduce the root mean square error (RMSE), hyperparameters are set using the grid search method. Using a steel industry dataset, all tests are carried out under identical experimental conditions. In this context, STACK 1 (ELM + GBR + XGBR‐SVR) and STACK 2 (ELM + GBR + XGBR‐LASSO) models provided better performance than other models. The highest accuracies of R 2 of 0.97 and 0.97 are obtained using STACK 1 and STACK 2 , respectively. Moreover, the rank according to performances is STACK 1 , STACK 2 , XGBR, GBR, RFR, MLP, ELM, and SVR. As it improves the performance of models and reduces the risk of decision‐making, the ensemble method can be used to forecast the demand in a steel industry one month ahead. This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature selection, cross-validation, and regression ensemble framework. Bagging (random forest regression (RFR)), boosting (gradient boosting regression (GBR) and extreme gradient boosting regression (XGBR)), and stacking (STACK) are employed as ensemble models. Different machine learning (ML) approaches, including support vector regression (SVR), extreme learning machine (ELM), and multilayer perceptron neural network (MLP), are adopted as reference models. In order to maximize the determination coefficient (R2) value and reduce the root mean square error (RMSE), hyperparameters are set using the grid search method. Using a steel industry dataset, all tests are carried out under identical experimental conditions. In this context, STACK1 (ELM + GBR + XGBR-SVR) and STACK2 (ELM + GBR + XGBR-LASSO) models provided better performance than other models. The highest accuracies of R2 of 0.97 and 0.97 are obtained using STACK1 and STACK2, respectively. Moreover, the rank according to performances is STACK1, STACK2, XGBR, GBR, RFR, MLP, ELM, and SVR. As it improves the performance of models and reduces the risk of decision-making, the ensemble method can be used to forecast the demand in a steel industry one month ahead. |
Author | Al-Amri, Atif M. Islam, Md. Milon Al-Rakhami, Mabrook S. Mohiuddin, Tasniah Albogamy, Fahad R. Sarker, Amlan Raju, S. M. Taslim Uddin Das, Apurba |
Author_xml | – sequence: 1 givenname: S. M. Taslim Uddin orcidid: 0000-0001-6866-0222 surname: Raju fullname: Raju, S. M. Taslim Uddin organization: Department of Computer Science and EngineeringKhulna University of Engineering & TechnologyKhulna 9203Bangladeshkuet.ac.bd – sequence: 2 givenname: Amlan orcidid: 0000-0003-0729-5633 surname: Sarker fullname: Sarker, Amlan organization: Department of Computer Science and EngineeringDaffodil International UniversityDhaka 1207Bangladeshdaffodilvarsity.edu.bd – sequence: 3 givenname: Apurba orcidid: 0000-0002-2529-3546 surname: Das fullname: Das, Apurba organization: Department of Industrial Engineering and ManagementKhulna University of Engineering & TechnologyKhulna 9203Bangladeshkuet.ac.bd – sequence: 4 givenname: Md. Milon orcidid: 0000-0002-4535-5978 surname: Islam fullname: Islam, Md. Milon organization: Department of Computer Science and EngineeringKhulna University of Engineering & TechnologyKhulna 9203Bangladeshkuet.ac.bd – sequence: 5 givenname: Mabrook S. orcidid: 0000-0001-5343-8370 surname: Al-Rakhami fullname: Al-Rakhami, Mabrook S. organization: Research Chair of Pervasive and Mobile ComputingInformation Systems DepartmentCollege of Computer and Information SciencesKing Saud UniversityRiyadh 11543Saudi Arabiaksu.edu.sa – sequence: 6 givenname: Atif M. orcidid: 0000-0002-1887-5193 surname: Al-Amri fullname: Al-Amri, Atif M. organization: Research Chair of Pervasive and Mobile ComputingInformation Systems DepartmentCollege of Computer and Information SciencesKing Saud UniversityRiyadh 11543Saudi Arabiaksu.edu.sa – sequence: 7 givenname: Tasniah orcidid: 0000-0002-1306-9184 surname: Mohiuddin fullname: Mohiuddin, Tasniah organization: Department of Computer Science and EngineeringMilitary Institute of Science and TechnologyDhaka 1216Bangladeshmist.ac.bd – sequence: 8 givenname: Fahad R. orcidid: 0000-0002-2783-860X surname: Albogamy fullname: Albogamy, Fahad R. organization: Computer Sciences ProgramTurabah University CollegeTaif UniversityTaif 21944Saudi Arabiatu.edu.sa |
BookMark | eNp9kEtPKzEMRiMEEs8dPyASS5iL48wkk2XF61aqYAGso0ziwlRtUpKpEP-eKUV3eVe27KPP1jlm-zFFYuxcwB8hmuYaAfHaGGxbqfbYkQBjKmhQ7W97rSrUrT5kx6UsAMAoqY_Y4yTyyXqdk_PvfJ4yv6WVi4Hfp0zelaGPb7yP_HkgWvJpDJsy5J4Kfy3bzV0stOqWxGfkchwnp-xg7paFzn7rCXu9v3u5-VvNnh6mN5NZ5WuQQ-VJozAE4ENnfCvRB2WUIq2xFgIgkOiCx9o0XqM0EqSUXQeodJijcEGesOkuNyS3sOvcr1z-ssn19meQ8pt1eej9kixK18hGeRE01MrL1kvlgNq6a1tVoxizLnZZo4WPDZXBLtImx_F9i0oq0aAxcqSudpTPqZRM839XBditfbu1b3_tj_jlDn_vY3Cf_f_pb89ngvg |
CitedBy_id | crossref_primary_10_32604_cmc_2023_032843 crossref_primary_10_3390_app131911112 crossref_primary_10_1109_TAI_2023_3319308 crossref_primary_10_1007_s13563_022_00357_9 crossref_primary_10_1093_jigpal_jzae060 crossref_primary_10_3390_forecast6030028 crossref_primary_10_48077_scihor11_2023_166 crossref_primary_10_1177_03019233241254891 crossref_primary_10_3390_en16020787 crossref_primary_10_1016_j_engappai_2023_106870 crossref_primary_10_1080_03019233_2023_2218243 crossref_primary_10_1155_2022_9390768 crossref_primary_10_3390_rs15133422 crossref_primary_10_1080_23307706_2023_2257695 |
Cites_doi | 10.1016/j.eswa.2021.114974 10.1145/2379776.2379786 10.1016/j.dss.2008.07.009 10.1016/j.iref.2017.01.030 10.1016/j.ejor.2006.12.004 10.1109/ISS1.2017.8389297 10.1016/j.eswa.2018.06.032 10.1016/j.energy.2020.119174 10.1016/j.envsoft.2004.09.019 10.1109/IJCNN.2007.4370923 10.1109/IS.2016.7737388 10.1007/s00181-017-1311-9 10.1080/1573062X.2014.994003 10.1016/j.apenergy.2010.05.018 10.1016/B978-0-12-809393-1.00006-4 10.1016/j.enpol.2006.05.009 10.1016/j.ijforecast.2006.01.001 10.1016/s0893-6080(00)00026-5 10.1016/j.eswa.2010.07.014 10.3390/en11040949 10.1016/0169-2070(89)90008-3 10.3390/en6041887 10.1080/1573062x.2014.994003 10.1016/j.energy.2021.119869 10.1016/j.asoc.2017.12.032 10.1007/s00366-016-0446-1 10.1007/978-1-4302-5990-9_4 10.1093/biomet/87.4.954 10.1016/j.compag.2018.03.023 10.1109/mcas.2006.1688199 10.17221/268/2015-agricecon 10.1109/access.2020.2989857 10.3390/en11061605 10.1080/00031305.1999.10474426 10.4236/jpee.2014.24023 10.1016/j.amc.2006.08.094 10.1016/j.renene.2017.09.078 10.1109/UPEC.2018.8542107 10.1016/j.asoc.2019.105837 10.1080/1573062x.2018.1424219 10.1016/j.engappai.2015.04.016 10.1016/j.engappai.2019.03.012 10.1007/s11071-020-06111-6 |
ContentType | Journal Article |
Copyright | Copyright © 2022 S. M. Taslim Uddin Raju et al. Copyright © 2022 S. M. Taslim Uddin Raju et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2022 S. M. Taslim Uddin Raju et al. – notice: Copyright © 2022 S. M. Taslim Uddin Raju et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1155/2022/9928836 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database Research Library (ProQuest Database) Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection Research Library (Alumni Edition) ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access Journals url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-0526 |
Editor | Sarfraz, Shahzad |
Editor_xml | – sequence: 1 givenname: Shahzad surname: Sarfraz fullname: Sarfraz, Shahzad – fullname: Shahzad Sarfraz |
ExternalDocumentID | oai_doaj_org_article_23a5356c1d7046c38c36a0e84b886421 10_1155_2022_9928836 |
GeographicLocations | Bangladesh |
GeographicLocations_xml | – name: Bangladesh |
GrantInformation_xml | – fundername: Deanship of Scientific Research, King Saud University grantid: TURSP-2020/331 – fundername: Taif University – fundername: King Saud University |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACSCC ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ATUGU AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBD EBS F00 F01 F04 F5P G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HBH HCIFZ HHY HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LP6 LP7 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC XBAML XG1 XPP XSW XV2 ~IA ~WT .Y3 24P 31~ 3R3 5VS AAEVG AAHHS AAYXX ACBWZ ACCFJ ACXQS ADZOD AEEZP AEIMD AEQDE AFZJQ AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF BFHJK CITATION DCZOG EJD FEDTE H13 HF~ HVGLF LH4 LW6 ROL WYUIH 7XB 8FK JQ2 MBDVC PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c403t-ce7219e00cdb9c832cd6966e77241100de1bdc2495c723930333bb0267df21ad3 |
IEDL.DBID | DOA |
ISSN | 1076-2787 |
IngestDate | Mon Nov 04 19:56:47 EST 2024 Thu Oct 10 20:35:17 EDT 2024 Fri Aug 23 04:35:54 EDT 2024 Sun Jun 02 19:23:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-ce7219e00cdb9c832cd6966e77241100de1bdc2495c723930333bb0267df21ad3 |
ORCID | 0000-0003-0729-5633 0000-0001-5343-8370 0000-0002-1306-9184 0000-0002-4535-5978 0000-0001-6866-0222 0000-0002-1887-5193 0000-0002-2529-3546 0000-0002-2783-860X |
OpenAccessLink | https://doaj.org/article/23a5356c1d7046c38c36a0e84b886421 |
PQID | 2636152993 |
PQPubID | 2029978 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_23a5356c1d7046c38c36a0e84b886421 proquest_journals_2636152993 crossref_primary_10_1155_2022_9928836 hindawi_primary_10_1155_2022_9928836 |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2022 |
Publisher | Hindawi Hindawi Limited Hindawi-Wiley |
Publisher_xml | – name: Hindawi – name: Hindawi Limited – name: Hindawi-Wiley |
References | e_1_2_9_30_2 Yasin H. (e_1_2_9_41_2) 2016; 12 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_34_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_11_2 e_1_2_9_32_2 Bergstra J. (e_1_2_9_40_2) 2012; 13 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_13_2 e_1_2_9_38_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_18_2 e_1_2_9_17_2 e_1_2_9_39_2 e_1_2_9_19_2 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_20_2 e_1_2_9_45_2 e_1_2_9_23_2 e_1_2_9_22_2 e_1_2_9_43_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 Cawley G. C. (e_1_2_9_42_2) 2010; 11 Stevenson W. J. (e_1_2_9_1_2) 2007 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_26_2 e_1_2_9_47_2 e_1_2_9_29_2 e_1_2_9_28_2 |
References_xml | – ident: e_1_2_9_33_2 doi: 10.1016/j.eswa.2021.114974 – volume-title: Operations Management year: 2007 ident: e_1_2_9_1_2 contributor: fullname: Stevenson W. J. – ident: e_1_2_9_22_2 doi: 10.1145/2379776.2379786 – ident: e_1_2_9_17_2 doi: 10.1016/j.dss.2008.07.009 – ident: e_1_2_9_27_2 doi: 10.1016/j.iref.2017.01.030 – ident: e_1_2_9_7_2 doi: 10.1016/j.ejor.2006.12.004 – ident: e_1_2_9_12_2 doi: 10.1109/ISS1.2017.8389297 – ident: e_1_2_9_44_2 doi: 10.1016/j.eswa.2018.06.032 – ident: e_1_2_9_31_2 doi: 10.1016/j.energy.2020.119174 – ident: e_1_2_9_4_2 doi: 10.1016/j.envsoft.2004.09.019 – ident: e_1_2_9_14_2 doi: 10.1109/IJCNN.2007.4370923 – ident: e_1_2_9_26_2 doi: 10.1109/IS.2016.7737388 – ident: e_1_2_9_28_2 doi: 10.1007/s00181-017-1311-9 – ident: e_1_2_9_37_2 doi: 10.1080/1573062X.2014.994003 – ident: e_1_2_9_2_2 doi: 10.1016/j.apenergy.2010.05.018 – ident: e_1_2_9_16_2 doi: 10.1016/B978-0-12-809393-1.00006-4 – ident: e_1_2_9_5_2 doi: 10.1016/j.enpol.2006.05.009 – ident: e_1_2_9_20_2 doi: 10.1016/j.ijforecast.2006.01.001 – ident: e_1_2_9_39_2 doi: 10.1016/s0893-6080(00)00026-5 – ident: e_1_2_9_18_2 doi: 10.1016/j.eswa.2010.07.014 – ident: e_1_2_9_21_2 doi: 10.3390/en11040949 – ident: e_1_2_9_46_2 doi: 10.1016/0169-2070(89)90008-3 – ident: e_1_2_9_47_2 doi: 10.3390/en6041887 – ident: e_1_2_9_35_2 doi: 10.1080/1573062x.2014.994003 – ident: e_1_2_9_32_2 doi: 10.1016/j.energy.2021.119869 – ident: e_1_2_9_23_2 doi: 10.1016/j.asoc.2017.12.032 – ident: e_1_2_9_36_2 doi: 10.1007/s00366-016-0446-1 – ident: e_1_2_9_11_2 doi: 10.1007/978-1-4302-5990-9_4 – ident: e_1_2_9_38_2 doi: 10.1093/biomet/87.4.954 – ident: e_1_2_9_43_2 doi: 10.1016/j.compag.2018.03.023 – volume: 11 start-page: 2079 year: 2010 ident: e_1_2_9_42_2 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: Journal of Machine Learning Research contributor: fullname: Cawley G. C. – ident: e_1_2_9_19_2 doi: 10.1109/mcas.2006.1688199 – ident: e_1_2_9_29_2 doi: 10.17221/268/2015-agricecon – ident: e_1_2_9_15_2 doi: 10.1109/access.2020.2989857 – ident: e_1_2_9_24_2 doi: 10.3390/en11061605 – ident: e_1_2_9_34_2 doi: 10.1080/00031305.1999.10474426 – ident: e_1_2_9_6_2 doi: 10.4236/jpee.2014.24023 – ident: e_1_2_9_3_2 doi: 10.1016/j.amc.2006.08.094 – ident: e_1_2_9_13_2 doi: 10.1016/j.renene.2017.09.078 – ident: e_1_2_9_25_2 doi: 10.1109/UPEC.2018.8542107 – volume: 12 start-page: 3009 year: 2016 ident: e_1_2_9_41_2 article-title: Prediction of crude oil prices using support vector regression (svr) with grid search-cross validation algorithm publication-title: Global Journal of Pure and Applied Mathematics contributor: fullname: Yasin H. – ident: e_1_2_9_8_2 doi: 10.1016/j.asoc.2019.105837 – ident: e_1_2_9_10_2 doi: 10.1080/1573062x.2018.1424219 – ident: e_1_2_9_9_2 doi: 10.1016/j.engappai.2015.04.016 – ident: e_1_2_9_30_2 doi: 10.1016/j.engappai.2019.03.012 – volume: 13 start-page: 281 year: 2012 ident: e_1_2_9_40_2 article-title: Random search for hyper-parameter optimization publication-title: Journal of Machine Learning Research contributor: fullname: Bergstra J. – ident: e_1_2_9_45_2 doi: 10.1007/s11071-020-06111-6 |
SSID | ssj0009637 |
Score | 2.3875184 |
Snippet | This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature... |
SourceID | doaj proquest crossref hindawi |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Accuracy Agribusiness Algorithms Artificial intelligence Artificial neural networks Crude oil prices Datasets Decision making Decision trees Demand Economic forecasting Ensemble learning Feature selection Investigations Iron and steel industry Machine learning Market positioning Mathematical models Multilayer perceptrons Neural networks Performance enhancement Pipelines Regression Root-mean-square errors Sales forecasting Standardization Steel industry Steel production Supply chains Support vector machines Time series |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access Journals dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQZEeYhCQR6KBEOEEztuMhZoVSHBwEPqFvlxQKUSEAni73OXukXAAGMi25HufLn7nMv3Mdb1Tgpr4zwyhiTMYkgj63IRIfABMKBtrzkauLrWo3t1OU7HgSSp-v0JH7MdwfPkNM9JFlcvs-Uso_i7GY2_uHV1Q42JQEZHCW7AeX_7j7nfMk9D0I817xMh34_Jrzdxk16GG2w91IW8P3Nkiy1BucnWrhakqtUma4U4rPhxIIs-2WLX_ZL3Ay84xwKUX-D40nOS3HSmoqZmPin5bQ0w5XOdDlyiaRXgg7KCZzsFHmhWH7fZ_XBwdz6KgkZC5JSQdeQAIVwOQjhvc4fh6bxGBANYNCtig_MQW-9IYNr1iO1MSCmtJdkp_5DExssdtlK-lLDLuFI-iR8AROIJh9A8ZYSCXm4yL61qs6O5_YrXGRVG0UCINC3IzkWwc5udkXEXY4jAurmBTi1CPBSJNKlMtYt9DxG6k5mT2gjIlM0y-ve2zbrBNX88qzP3WxGCryoSLbFOwzwr9_63yj5bpcvZyUqHrdRv73CAtUZtD5ud9gnBJMiD priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NS8QwEA26XvQgrh-4ukoOK-ihmDZp2p5k1V1F0IsK3ko-xnVh7apd8e-byaaKCHpt0xQmmcm86fQ9QnrWcKZ1XERKoYRZDGmkTcEiB3wAFEid-dLA9Y28vBdXD-lDKLjVoa2yiYk-UNupwRr5cSK5O3xd8OQnL68Rqkbh19UgobFIluIky7ClKx9efJPuSs-Z6RCOjBK3M5vG9zRFzJ8cFwVq7cofR5Jn7nfJ8BNC4o_xrxDtz53hGlkNCSPtz1e4TRagWicr119sq_U6aQcHrelhYJE-2iA3_Yr2A2E4dZkpPXfjK0tRi9OoGrud6biitzOACW0EPNwUvoeADqoanvUEaOBfHW2S--Hg7uwyCuIJkRGMzyIDDtsVwJixujDOb42VDtqAy6YF0sRZiLU1qDxtMqRBY5xzrVGPyj4msbJ8i7SqaQXbhAphk_gRgCUWAQo-JxQTkBUqt1yLDjlo7Fe-zDkySo8t0rREO5fBzh1yisb9GoPM1v7C9G1UBkcpE65SnkoT28xBd8Nzw6VikAud5_hTbof0wtL8865us25l8Mq6_N5DO3_f3iXLONm81NIlrdnbO-y55GOm9_0O-wShENK0 priority: 102 providerName: ProQuest |
Title | An Approach for Demand Forecasting in Steel Industries Using Ensemble Learning |
URI | https://dx.doi.org/10.1155/2022/9928836 https://www.proquest.com/docview/2636152993 https://doaj.org/article/23a5356c1d7046c38c36a0e84b886421 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF9LDko6KGYNunruKu7LoKL-IC9lTzGB2gVu-LfN9OmonjYi5ceStqEmU5mvjD9PoADawTXOswDpUjCLMQ40CbngQM-iAoTndZHA5fjZHQnLybx5IfUF_WENfTAjeFOIqFiEScmtKmDckZkRiSKYyZ1ltFPmvXuy_MWTLV0u4lI2zb3OCaEH53kOSnrJr8SUM3T70rfRwLAn09_NuQ6ywxXYcWXh6zXLGsN5rBch-XLb27Vah3WfDhW7MhzRh9vwLhXsp6nB2euDmVnbnxpGSlvGlVRbzN7KtnNFPGZtXId7hV1xwAblBW-6Gdknm31YRPuhoPb01HgpRICI7mYBgYdksuRc2N1blyUGps4IIOudpZECmcx1NaQzrRJifSMCyG0JvUpex-FyootWChfS9wGJqWNwntEHlmCI_ScVFximqvMCi07cNjar3hrGDGKGknEcUF2LrydO9An436PIR7r-obzbuG9W8zybgcOvGtmzLXX-q3wMVgVUSJcuebSrdj5j6XswhJN2Ry_7MHC9P0D911BMtVdmM-G511Y7A_GV9fd-kt01-vR5Au1Odtp |
link.rule.ids | 315,783,787,866,867,880,881,2109,4032,12778,21401,27936,27937,27938,33386,33757,43613,43818 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB6V5QA9oPISC7T1ASQ4RDix401O1QKLtoVdIR4SN8uP4SHRLJCt-vfryTogVKm9Jo4jjT3j-SaT7wPY8U5wa9MyMYYkzFLME-tKngTgg2hQ2V5TGhiN1fBa_rjJb2LBrY5tlW1MbAK1nziqkR9kSoTDNwRP8e3pOSHVKPq6GiU05mCeqKqKDswfDsbnF2-0u6phzQwYRyVZ2Jtt63ueE-rPDsqS1HbVu0Op4e4P6fA9geLfD38F6ebkOfkESzFlZP3ZGi_DB6xW4OPolW-1XoHl6KI124s80vurMO5XrB8pw1nITdlxGF95RmqcztTU78weKnY5RXxkrYRHmKLpImCDqsaf9hFZZGC9W4Prk8HV0TCJ8gmJk1xME4cB3ZXIufO2dMFznVcB3GDIpyURxXlMrXekPe16RITGhRDWkiKVv81S48U6dKpJhRvApPRZeovIM08QhZ6Thkvslabwwsou7Lb2008zlgzdoIs812RnHe3chUMy7usY4rZuLkxe7nR0FZ0Jk4tcudT3Anh3onBCGY6FtEVBv-V2YScuzX_etd2um45-Weu3XbT579tfYWF4NTrTZ9_Hp1uwSBPPCi_b0Jm-_MLPIRWZ2i9xv_0BUNDXBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Approach+for+Demand+Forecasting+in+Steel+Industries+Using+Ensemble+Learning&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=S.+M.+Taslim+Uddin+Raju&rft.au=Amlan+Sarker&rft.au=Apurba+Das&rft.au=Md.+Milon+Islam&rft.date=2022&rft.pub=Hindawi-Wiley&rft.eissn=1099-0526&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F9928836&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_23a5356c1d7046c38c36a0e84b886421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |