An Approach for Demand Forecasting in Steel Industries Using Ensemble Learning

This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature selection, cross-validation, and regression ensemble framework. Bagging (random forest regression (RFR)), boosting (gradient boosting regression (GBR...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2022; no. 1
Main Authors Raju, S. M. Taslim Uddin, Sarker, Amlan, Das, Apurba, Islam, Md. Milon, Al-Rakhami, Mabrook S., Al-Amri, Atif M., Mohiuddin, Tasniah, Albogamy, Fahad R.
Format Journal Article
LanguageEnglish
Published Hoboken Hindawi 2022
Hindawi Limited
Hindawi-Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature selection, cross-validation, and regression ensemble framework. Bagging (random forest regression (RFR)), boosting (gradient boosting regression (GBR) and extreme gradient boosting regression (XGBR)), and stacking (STACK) are employed as ensemble models. Different machine learning (ML) approaches, including support vector regression (SVR), extreme learning machine (ELM), and multilayer perceptron neural network (MLP), are adopted as reference models. In order to maximize the determination coefficient (R2) value and reduce the root mean square error (RMSE), hyperparameters are set using the grid search method. Using a steel industry dataset, all tests are carried out under identical experimental conditions. In this context, STACK1 (ELM + GBR + XGBR-SVR) and STACK2 (ELM + GBR + XGBR-LASSO) models provided better performance than other models. The highest accuracies of R2 of 0.97 and 0.97 are obtained using STACK1 and STACK2, respectively. Moreover, the rank according to performances is STACK1, STACK2, XGBR, GBR, RFR, MLP, ELM, and SVR. As it improves the performance of models and reduces the risk of decision-making, the ensemble method can be used to forecast the demand in a steel industry one month ahead.
AbstractList This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature selection, cross‐validation, and regression ensemble framework. Bagging (random forest regression (RFR)), boosting (gradient boosting regression (GBR) and extreme gradient boosting regression (XGBR)), and stacking (STACK) are employed as ensemble models. Different machine learning (ML) approaches, including support vector regression (SVR), extreme learning machine (ELM), and multilayer perceptron neural network (MLP), are adopted as reference models. In order to maximize the determination coefficient ( R 2 ) value and reduce the root mean square error (RMSE), hyperparameters are set using the grid search method. Using a steel industry dataset, all tests are carried out under identical experimental conditions. In this context, STACK 1 (ELM + GBR + XGBR‐SVR) and STACK 2 (ELM + GBR + XGBR‐LASSO) models provided better performance than other models. The highest accuracies of R 2 of 0.97 and 0.97 are obtained using STACK 1 and STACK 2 , respectively. Moreover, the rank according to performances is STACK 1 , STACK 2 , XGBR, GBR, RFR, MLP, ELM, and SVR. As it improves the performance of models and reduces the risk of decision‐making, the ensemble method can be used to forecast the demand in a steel industry one month ahead.
This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature selection, cross-validation, and regression ensemble framework. Bagging (random forest regression (RFR)), boosting (gradient boosting regression (GBR) and extreme gradient boosting regression (XGBR)), and stacking (STACK) are employed as ensemble models. Different machine learning (ML) approaches, including support vector regression (SVR), extreme learning machine (ELM), and multilayer perceptron neural network (MLP), are adopted as reference models. In order to maximize the determination coefficient (R2) value and reduce the root mean square error (RMSE), hyperparameters are set using the grid search method. Using a steel industry dataset, all tests are carried out under identical experimental conditions. In this context, STACK1 (ELM + GBR + XGBR-SVR) and STACK2 (ELM + GBR + XGBR-LASSO) models provided better performance than other models. The highest accuracies of R2 of 0.97 and 0.97 are obtained using STACK1 and STACK2, respectively. Moreover, the rank according to performances is STACK1, STACK2, XGBR, GBR, RFR, MLP, ELM, and SVR. As it improves the performance of models and reduces the risk of decision-making, the ensemble method can be used to forecast the demand in a steel industry one month ahead.
Author Al-Amri, Atif M.
Islam, Md. Milon
Al-Rakhami, Mabrook S.
Mohiuddin, Tasniah
Albogamy, Fahad R.
Sarker, Amlan
Raju, S. M. Taslim Uddin
Das, Apurba
Author_xml – sequence: 1
  givenname: S. M. Taslim Uddin
  orcidid: 0000-0001-6866-0222
  surname: Raju
  fullname: Raju, S. M. Taslim Uddin
  organization: Department of Computer Science and EngineeringKhulna University of Engineering & TechnologyKhulna 9203Bangladeshkuet.ac.bd
– sequence: 2
  givenname: Amlan
  orcidid: 0000-0003-0729-5633
  surname: Sarker
  fullname: Sarker, Amlan
  organization: Department of Computer Science and EngineeringDaffodil International UniversityDhaka 1207Bangladeshdaffodilvarsity.edu.bd
– sequence: 3
  givenname: Apurba
  orcidid: 0000-0002-2529-3546
  surname: Das
  fullname: Das, Apurba
  organization: Department of Industrial Engineering and ManagementKhulna University of Engineering & TechnologyKhulna 9203Bangladeshkuet.ac.bd
– sequence: 4
  givenname: Md. Milon
  orcidid: 0000-0002-4535-5978
  surname: Islam
  fullname: Islam, Md. Milon
  organization: Department of Computer Science and EngineeringKhulna University of Engineering & TechnologyKhulna 9203Bangladeshkuet.ac.bd
– sequence: 5
  givenname: Mabrook S.
  orcidid: 0000-0001-5343-8370
  surname: Al-Rakhami
  fullname: Al-Rakhami, Mabrook S.
  organization: Research Chair of Pervasive and Mobile ComputingInformation Systems DepartmentCollege of Computer and Information SciencesKing Saud UniversityRiyadh 11543Saudi Arabiaksu.edu.sa
– sequence: 6
  givenname: Atif M.
  orcidid: 0000-0002-1887-5193
  surname: Al-Amri
  fullname: Al-Amri, Atif M.
  organization: Research Chair of Pervasive and Mobile ComputingInformation Systems DepartmentCollege of Computer and Information SciencesKing Saud UniversityRiyadh 11543Saudi Arabiaksu.edu.sa
– sequence: 7
  givenname: Tasniah
  orcidid: 0000-0002-1306-9184
  surname: Mohiuddin
  fullname: Mohiuddin, Tasniah
  organization: Department of Computer Science and EngineeringMilitary Institute of Science and TechnologyDhaka 1216Bangladeshmist.ac.bd
– sequence: 8
  givenname: Fahad R.
  orcidid: 0000-0002-2783-860X
  surname: Albogamy
  fullname: Albogamy, Fahad R.
  organization: Computer Sciences ProgramTurabah University CollegeTaif UniversityTaif 21944Saudi Arabiatu.edu.sa
BookMark eNp9kEtPKzEMRiMEEs8dPyASS5iL48wkk2XF61aqYAGso0ziwlRtUpKpEP-eKUV3eVe27KPP1jlm-zFFYuxcwB8hmuYaAfHaGGxbqfbYkQBjKmhQ7W97rSrUrT5kx6UsAMAoqY_Y4yTyyXqdk_PvfJ4yv6WVi4Hfp0zelaGPb7yP_HkgWvJpDJsy5J4Kfy3bzV0stOqWxGfkchwnp-xg7paFzn7rCXu9v3u5-VvNnh6mN5NZ5WuQQ-VJozAE4ENnfCvRB2WUIq2xFgIgkOiCx9o0XqM0EqSUXQeodJijcEGesOkuNyS3sOvcr1z-ssn19meQ8pt1eej9kixK18hGeRE01MrL1kvlgNq6a1tVoxizLnZZo4WPDZXBLtImx_F9i0oq0aAxcqSudpTPqZRM839XBditfbu1b3_tj_jlDn_vY3Cf_f_pb89ngvg
CitedBy_id crossref_primary_10_32604_cmc_2023_032843
crossref_primary_10_3390_app131911112
crossref_primary_10_1109_TAI_2023_3319308
crossref_primary_10_1007_s13563_022_00357_9
crossref_primary_10_1093_jigpal_jzae060
crossref_primary_10_3390_forecast6030028
crossref_primary_10_48077_scihor11_2023_166
crossref_primary_10_1177_03019233241254891
crossref_primary_10_3390_en16020787
crossref_primary_10_1016_j_engappai_2023_106870
crossref_primary_10_1080_03019233_2023_2218243
crossref_primary_10_1155_2022_9390768
crossref_primary_10_3390_rs15133422
crossref_primary_10_1080_23307706_2023_2257695
Cites_doi 10.1016/j.eswa.2021.114974
10.1145/2379776.2379786
10.1016/j.dss.2008.07.009
10.1016/j.iref.2017.01.030
10.1016/j.ejor.2006.12.004
10.1109/ISS1.2017.8389297
10.1016/j.eswa.2018.06.032
10.1016/j.energy.2020.119174
10.1016/j.envsoft.2004.09.019
10.1109/IJCNN.2007.4370923
10.1109/IS.2016.7737388
10.1007/s00181-017-1311-9
10.1080/1573062X.2014.994003
10.1016/j.apenergy.2010.05.018
10.1016/B978-0-12-809393-1.00006-4
10.1016/j.enpol.2006.05.009
10.1016/j.ijforecast.2006.01.001
10.1016/s0893-6080(00)00026-5
10.1016/j.eswa.2010.07.014
10.3390/en11040949
10.1016/0169-2070(89)90008-3
10.3390/en6041887
10.1080/1573062x.2014.994003
10.1016/j.energy.2021.119869
10.1016/j.asoc.2017.12.032
10.1007/s00366-016-0446-1
10.1007/978-1-4302-5990-9_4
10.1093/biomet/87.4.954
10.1016/j.compag.2018.03.023
10.1109/mcas.2006.1688199
10.17221/268/2015-agricecon
10.1109/access.2020.2989857
10.3390/en11061605
10.1080/00031305.1999.10474426
10.4236/jpee.2014.24023
10.1016/j.amc.2006.08.094
10.1016/j.renene.2017.09.078
10.1109/UPEC.2018.8542107
10.1016/j.asoc.2019.105837
10.1080/1573062x.2018.1424219
10.1016/j.engappai.2015.04.016
10.1016/j.engappai.2019.03.012
10.1007/s11071-020-06111-6
ContentType Journal Article
Copyright Copyright © 2022 S. M. Taslim Uddin Raju et al.
Copyright © 2022 S. M. Taslim Uddin Raju et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 S. M. Taslim Uddin Raju et al.
– notice: Copyright © 2022 S. M. Taslim Uddin Raju et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2022/9928836
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
Research Library (ProQuest Database)
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
Research Library (Alumni Edition)
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access Journals
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Sarfraz, Shahzad
Editor_xml – sequence: 1
  givenname: Shahzad
  surname: Sarfraz
  fullname: Sarfraz, Shahzad
– fullname: Shahzad Sarfraz
ExternalDocumentID oai_doaj_org_article_23a5356c1d7046c38c36a0e84b886421
10_1155_2022_9928836
GeographicLocations Bangladesh
GeographicLocations_xml – name: Bangladesh
GrantInformation_xml – fundername: Deanship of Scientific Research, King Saud University
  grantid: TURSP-2020/331
– fundername: Taif University
– fundername: King Saud University
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HBH
HCIFZ
HHY
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
.Y3
24P
31~
3R3
5VS
AAEVG
AAHHS
AAYXX
ACBWZ
ACCFJ
ACXQS
ADZOD
AEEZP
AEIMD
AEQDE
AFZJQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
DCZOG
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
ROL
WYUIH
7XB
8FK
JQ2
MBDVC
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c403t-ce7219e00cdb9c832cd6966e77241100de1bdc2495c723930333bb0267df21ad3
IEDL.DBID DOA
ISSN 1076-2787
IngestDate Mon Nov 04 19:56:47 EST 2024
Thu Oct 10 20:35:17 EDT 2024
Fri Aug 23 04:35:54 EDT 2024
Sun Jun 02 19:23:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-ce7219e00cdb9c832cd6966e77241100de1bdc2495c723930333bb0267df21ad3
ORCID 0000-0003-0729-5633
0000-0001-5343-8370
0000-0002-1306-9184
0000-0002-4535-5978
0000-0001-6866-0222
0000-0002-1887-5193
0000-0002-2529-3546
0000-0002-2783-860X
OpenAccessLink https://doaj.org/article/23a5356c1d7046c38c36a0e84b886421
PQID 2636152993
PQPubID 2029978
ParticipantIDs doaj_primary_oai_doaj_org_article_23a5356c1d7046c38c36a0e84b886421
proquest_journals_2636152993
crossref_primary_10_1155_2022_9928836
hindawi_primary_10_1155_2022_9928836
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2022
Publisher Hindawi
Hindawi Limited
Hindawi-Wiley
Publisher_xml – name: Hindawi
– name: Hindawi Limited
– name: Hindawi-Wiley
References e_1_2_9_30_2
Yasin H. (e_1_2_9_41_2) 2016; 12
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_34_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
Bergstra J. (e_1_2_9_40_2) 2012; 13
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_39_2
e_1_2_9_19_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_23_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
Cawley G. C. (e_1_2_9_42_2) 2010; 11
Stevenson W. J. (e_1_2_9_1_2) 2007
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_26_2
e_1_2_9_47_2
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – ident: e_1_2_9_33_2
  doi: 10.1016/j.eswa.2021.114974
– volume-title: Operations Management
  year: 2007
  ident: e_1_2_9_1_2
  contributor:
    fullname: Stevenson W. J.
– ident: e_1_2_9_22_2
  doi: 10.1145/2379776.2379786
– ident: e_1_2_9_17_2
  doi: 10.1016/j.dss.2008.07.009
– ident: e_1_2_9_27_2
  doi: 10.1016/j.iref.2017.01.030
– ident: e_1_2_9_7_2
  doi: 10.1016/j.ejor.2006.12.004
– ident: e_1_2_9_12_2
  doi: 10.1109/ISS1.2017.8389297
– ident: e_1_2_9_44_2
  doi: 10.1016/j.eswa.2018.06.032
– ident: e_1_2_9_31_2
  doi: 10.1016/j.energy.2020.119174
– ident: e_1_2_9_4_2
  doi: 10.1016/j.envsoft.2004.09.019
– ident: e_1_2_9_14_2
  doi: 10.1109/IJCNN.2007.4370923
– ident: e_1_2_9_26_2
  doi: 10.1109/IS.2016.7737388
– ident: e_1_2_9_28_2
  doi: 10.1007/s00181-017-1311-9
– ident: e_1_2_9_37_2
  doi: 10.1080/1573062X.2014.994003
– ident: e_1_2_9_2_2
  doi: 10.1016/j.apenergy.2010.05.018
– ident: e_1_2_9_16_2
  doi: 10.1016/B978-0-12-809393-1.00006-4
– ident: e_1_2_9_5_2
  doi: 10.1016/j.enpol.2006.05.009
– ident: e_1_2_9_20_2
  doi: 10.1016/j.ijforecast.2006.01.001
– ident: e_1_2_9_39_2
  doi: 10.1016/s0893-6080(00)00026-5
– ident: e_1_2_9_18_2
  doi: 10.1016/j.eswa.2010.07.014
– ident: e_1_2_9_21_2
  doi: 10.3390/en11040949
– ident: e_1_2_9_46_2
  doi: 10.1016/0169-2070(89)90008-3
– ident: e_1_2_9_47_2
  doi: 10.3390/en6041887
– ident: e_1_2_9_35_2
  doi: 10.1080/1573062x.2014.994003
– ident: e_1_2_9_32_2
  doi: 10.1016/j.energy.2021.119869
– ident: e_1_2_9_23_2
  doi: 10.1016/j.asoc.2017.12.032
– ident: e_1_2_9_36_2
  doi: 10.1007/s00366-016-0446-1
– ident: e_1_2_9_11_2
  doi: 10.1007/978-1-4302-5990-9_4
– ident: e_1_2_9_38_2
  doi: 10.1093/biomet/87.4.954
– ident: e_1_2_9_43_2
  doi: 10.1016/j.compag.2018.03.023
– volume: 11
  start-page: 2079
  year: 2010
  ident: e_1_2_9_42_2
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: Cawley G. C.
– ident: e_1_2_9_19_2
  doi: 10.1109/mcas.2006.1688199
– ident: e_1_2_9_29_2
  doi: 10.17221/268/2015-agricecon
– ident: e_1_2_9_15_2
  doi: 10.1109/access.2020.2989857
– ident: e_1_2_9_24_2
  doi: 10.3390/en11061605
– ident: e_1_2_9_34_2
  doi: 10.1080/00031305.1999.10474426
– ident: e_1_2_9_6_2
  doi: 10.4236/jpee.2014.24023
– ident: e_1_2_9_3_2
  doi: 10.1016/j.amc.2006.08.094
– ident: e_1_2_9_13_2
  doi: 10.1016/j.renene.2017.09.078
– ident: e_1_2_9_25_2
  doi: 10.1109/UPEC.2018.8542107
– volume: 12
  start-page: 3009
  year: 2016
  ident: e_1_2_9_41_2
  article-title: Prediction of crude oil prices using support vector regression (svr) with grid search-cross validation algorithm
  publication-title: Global Journal of Pure and Applied Mathematics
  contributor:
    fullname: Yasin H.
– ident: e_1_2_9_8_2
  doi: 10.1016/j.asoc.2019.105837
– ident: e_1_2_9_10_2
  doi: 10.1080/1573062x.2018.1424219
– ident: e_1_2_9_9_2
  doi: 10.1016/j.engappai.2015.04.016
– ident: e_1_2_9_30_2
  doi: 10.1016/j.engappai.2019.03.012
– volume: 13
  start-page: 281
  year: 2012
  ident: e_1_2_9_40_2
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: Bergstra J.
– ident: e_1_2_9_45_2
  doi: 10.1007/s11071-020-06111-6
SSID ssj0009637
Score 2.3875184
Snippet This paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and standardization, feature...
SourceID doaj
proquest
crossref
hindawi
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Accuracy
Agribusiness
Algorithms
Artificial intelligence
Artificial neural networks
Crude oil prices
Datasets
Decision making
Decision trees
Demand
Economic forecasting
Ensemble learning
Feature selection
Investigations
Iron and steel industry
Machine learning
Market positioning
Mathematical models
Multilayer perceptrons
Neural networks
Performance enhancement
Pipelines
Regression
Root-mean-square errors
Sales forecasting
Standardization
Steel industry
Steel production
Supply chains
Support vector machines
Time series
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access Journals
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQZEeYhCQR6KBEOEEztuMhZoVSHBwEPqFvlxQKUSEAni73OXukXAAGMi25HufLn7nMv3Mdb1Tgpr4zwyhiTMYkgj63IRIfABMKBtrzkauLrWo3t1OU7HgSSp-v0JH7MdwfPkNM9JFlcvs-Uso_i7GY2_uHV1Q42JQEZHCW7AeX_7j7nfMk9D0I817xMh34_Jrzdxk16GG2w91IW8P3Nkiy1BucnWrhakqtUma4U4rPhxIIs-2WLX_ZL3Ay84xwKUX-D40nOS3HSmoqZmPin5bQ0w5XOdDlyiaRXgg7KCZzsFHmhWH7fZ_XBwdz6KgkZC5JSQdeQAIVwOQjhvc4fh6bxGBANYNCtig_MQW-9IYNr1iO1MSCmtJdkp_5DExssdtlK-lLDLuFI-iR8AROIJh9A8ZYSCXm4yL61qs6O5_YrXGRVG0UCINC3IzkWwc5udkXEXY4jAurmBTi1CPBSJNKlMtYt9DxG6k5mT2gjIlM0y-ve2zbrBNX88qzP3WxGCryoSLbFOwzwr9_63yj5bpcvZyUqHrdRv73CAtUZtD5ud9gnBJMiD
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NS8QwEA26XvQgrh-4ukoOK-ihmDZp2p5k1V1F0IsK3ko-xnVh7apd8e-byaaKCHpt0xQmmcm86fQ9QnrWcKZ1XERKoYRZDGmkTcEiB3wAFEid-dLA9Y28vBdXD-lDKLjVoa2yiYk-UNupwRr5cSK5O3xd8OQnL68Rqkbh19UgobFIluIky7ClKx9efJPuSs-Z6RCOjBK3M5vG9zRFzJ8cFwVq7cofR5Jn7nfJ8BNC4o_xrxDtz53hGlkNCSPtz1e4TRagWicr119sq_U6aQcHrelhYJE-2iA3_Yr2A2E4dZkpPXfjK0tRi9OoGrud6biitzOACW0EPNwUvoeADqoanvUEaOBfHW2S--Hg7uwyCuIJkRGMzyIDDtsVwJixujDOb42VDtqAy6YF0sRZiLU1qDxtMqRBY5xzrVGPyj4msbJ8i7SqaQXbhAphk_gRgCUWAQo-JxQTkBUqt1yLDjlo7Fe-zDkySo8t0rREO5fBzh1yisb9GoPM1v7C9G1UBkcpE65SnkoT28xBd8Nzw6VikAud5_hTbof0wtL8865us25l8Mq6_N5DO3_f3iXLONm81NIlrdnbO-y55GOm9_0O-wShENK0
  priority: 102
  providerName: ProQuest
Title An Approach for Demand Forecasting in Steel Industries Using Ensemble Learning
URI https://dx.doi.org/10.1155/2022/9928836
https://www.proquest.com/docview/2636152993
https://doaj.org/article/23a5356c1d7046c38c36a0e84b886421
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF9LDko6KGYNunruKu7LoKL-IC9lTzGB2gVu-LfN9OmonjYi5ceStqEmU5mvjD9PoADawTXOswDpUjCLMQ40CbngQM-iAoTndZHA5fjZHQnLybx5IfUF_WENfTAjeFOIqFiEScmtKmDckZkRiSKYyZ1ltFPmvXuy_MWTLV0u4lI2zb3OCaEH53kOSnrJr8SUM3T70rfRwLAn09_NuQ6ywxXYcWXh6zXLGsN5rBch-XLb27Vah3WfDhW7MhzRh9vwLhXsp6nB2euDmVnbnxpGSlvGlVRbzN7KtnNFPGZtXId7hV1xwAblBW-6Gdknm31YRPuhoPb01HgpRICI7mYBgYdksuRc2N1blyUGps4IIOudpZECmcx1NaQzrRJifSMCyG0JvUpex-FyootWChfS9wGJqWNwntEHlmCI_ScVFximqvMCi07cNjar3hrGDGKGknEcUF2LrydO9An436PIR7r-obzbuG9W8zybgcOvGtmzLXX-q3wMVgVUSJcuebSrdj5j6XswhJN2Ry_7MHC9P0D911BMtVdmM-G511Y7A_GV9fd-kt01-vR5Au1Odtp
link.rule.ids 315,783,787,866,867,880,881,2109,4032,12778,21401,27936,27937,27938,33386,33757,43613,43818
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB6V5QA9oPISC7T1ASQ4RDix401O1QKLtoVdIR4SN8uP4SHRLJCt-vfryTogVKm9Jo4jjT3j-SaT7wPY8U5wa9MyMYYkzFLME-tKngTgg2hQ2V5TGhiN1fBa_rjJb2LBrY5tlW1MbAK1nziqkR9kSoTDNwRP8e3pOSHVKPq6GiU05mCeqKqKDswfDsbnF2-0u6phzQwYRyVZ2Jtt63ueE-rPDsqS1HbVu0Op4e4P6fA9geLfD38F6ebkOfkESzFlZP3ZGi_DB6xW4OPolW-1XoHl6KI124s80vurMO5XrB8pw1nITdlxGF95RmqcztTU78weKnY5RXxkrYRHmKLpImCDqsaf9hFZZGC9W4Prk8HV0TCJ8gmJk1xME4cB3ZXIufO2dMFznVcB3GDIpyURxXlMrXekPe16RITGhRDWkiKVv81S48U6dKpJhRvApPRZeovIM08QhZ6Thkvslabwwsou7Lb2008zlgzdoIs812RnHe3chUMy7usY4rZuLkxe7nR0FZ0Jk4tcudT3Anh3onBCGY6FtEVBv-V2YScuzX_etd2um45-Weu3XbT579tfYWF4NTrTZ9_Hp1uwSBPPCi_b0Jm-_MLPIRWZ2i9xv_0BUNDXBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Approach+for+Demand+Forecasting+in+Steel+Industries+Using+Ensemble+Learning&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=S.+M.+Taslim+Uddin+Raju&rft.au=Amlan+Sarker&rft.au=Apurba+Das&rft.au=Md.+Milon+Islam&rft.date=2022&rft.pub=Hindawi-Wiley&rft.eissn=1099-0526&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F9928836&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_23a5356c1d7046c38c36a0e84b886421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon