IMERG V06: Changes to the Morphing Algorithm
As the US Science Team’s globally gridded precipitation product from the NASA/JAXA Global Precipitation Measurement (GPM) mission, the Integrated Multi-satellitE Retrievals for GPM (IMERG) estimates the surface precipitation rates at 0.1° every half-hour using spaceborne sensors for various scientif...
Saved in:
Published in | Journal of atmospheric and oceanic technology Vol. 36; no. 12; pp. 2471 - 2482 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
American Meteorological Society
01.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0739-0572 1520-0426 |
DOI | 10.1175/JTECH-D-19-0114.1 |
Cover
Loading…
Abstract | As the US Science Team’s globally gridded precipitation product from the NASA/JAXA Global Precipitation Measurement (GPM) mission, the Integrated Multi-satellitE Retrievals for GPM (IMERG) estimates the surface precipitation rates at 0.1° every half-hour using spaceborne sensors for various scientific and societal applications. One key component of IMERG is the morphing algorithm, which uses motion vectors to perform quasi-Lagrangian interpolation to fill in gaps in the passive microwave precipitation field using motion vectors. Up to IMERG V05, the motion vectors were derived from the large-scale motions of infrared observations of cloud tops. This study details the changes introduced in IMERG V06 to derive motion vectors from large-scale motions of selected atmospheric variables in numerical models, which allow IMERG estimates to be extended from the 60°N/S latitude band to the entire globe. Evaluation against both instantaneous passive microwave retrievals and ground measurements demonstrates the general improvement in the precipitation field of the new approach. Most of the model variables tested exhibited similar performance, but total precipitable water vapor was chosen as the source of the motion vectors for IMERG V06 due to its competitive performance and global completeness. Continuing assessments will provide further insights into possible refinements of this revised morphing scheme in future versions of IMERG. |
---|---|
AbstractList | As the U.S. Science Team’s globally gridded precipitation product from the NASA–JAXA Global Precipitation Measurement (GPM) mission, the Integrated Multi-Satellite Retrievals for GPM (IMERG) estimates the surface precipitation rates at 0.1° every half hour using spaceborne sensors for various scientific and societal applications. One key component of IMERG is the morphing algorithm, which uses motion vectors to perform quasi-Lagrangian interpolation to fill in gaps in the passive microwave precipitation field using motion vectors. Up to IMERG V05, the motion vectors were derived from the large-scale motions of infrared observations of cloud tops. This study details the changes introduced in IMERG V06 to derive motion vectors from large-scale motions of selected atmospheric variables in numerical models, which allow IMERG estimates to be extended from the 60°N–60°S latitude band to the entire globe. Evaluation against both instantaneous passive microwave retrievals and ground measurements demonstrates the general improvement in the precipitation field of the new approach. Most of the model variables tested exhibited similar performance, but total precipitable water vapor was chosen as the source of the motion vectors for IMERG V06 due to its competitive performance and global completeness. Continuing assessments will provide further insights into possible refinements of this revised morphing scheme in future versions of IMERG. As the US Science Team’s globally gridded precipitation product from the NASA/JAXA Global Precipitation Measurement (GPM) mission, the Integrated Multi-satellitE Retrievals for GPM (IMERG) estimates the surface precipitation rates at 0.1° every half-hour using spaceborne sensors for various scientific and societal applications. One key component of IMERG is the morphing algorithm, which uses motion vectors to perform quasi-Lagrangian interpolation to fill in gaps in the passive microwave precipitation field using motion vectors. Up to IMERG V05, the motion vectors were derived from the large-scale motions of infrared observations of cloud tops. This study details the changes introduced in IMERG V06 to derive motion vectors from large-scale motions of selected atmospheric variables in numerical models, which allow IMERG estimates to be extended from the 60°N/S latitude band to the entire globe. Evaluation against both instantaneous passive microwave retrievals and ground measurements demonstrates the general improvement in the precipitation field of the new approach. Most of the model variables tested exhibited similar performance, but total precipitable water vapor was chosen as the source of the motion vectors for IMERG V06 due to its competitive performance and global completeness. Continuing assessments will provide further insights into possible refinements of this revised morphing scheme in future versions of IMERG. |
Audience | PUBLIC |
Author | Huffman, George J Nelkin, Eric J Tan, Jackson Bolvin, David T |
Author_xml | – sequence: 1 givenname: Jackson surname: Tan fullname: Tan, Jackson organization: Universities Space Research Association – sequence: 2 givenname: George J surname: Huffman fullname: Huffman, George J organization: Goddard Space Flight Center – sequence: 3 givenname: David T surname: Bolvin fullname: Bolvin, David T organization: Science Systems and Applications (United States) – sequence: 4 givenname: Eric J surname: Nelkin fullname: Nelkin, Eric J organization: Science Systems and Applications (United States) |
BookMark | eNp9kE9PAjEQxRujiYB-ABMPm3h1cabdtltvBBAxEBODXpvuP3YJbLEtB7-9i3jy4GkO837z5r0-OW9tWxJygzBElPzhZTUdP8eTGFUMiMkQz0gPOYUYEirOSQ8k6zZc0kvS934DAMhQ9Mj9fDl9m0UfIB6jcW3ademjYKNQl9HSun3dtOtotF1b14R6d0UuKrP15fXvHJD3p-mq8128zubj0SLOE2AhzgvFMMGkAAGcFUpQJjlTGacqlZDmhldCpaLIWZFlBadcVirHCjIONJF5yQbk7nR37-znofRBb-zBtZ2lpixVkgtFk06FJ1XurPeurPTeNTvjvjSCPpaif0rRE41KH0vR2DHyD5M3wYTGtsGZZvsveXsiW-ON7uTdL4AKgHWpkH0DEdttiA |
CitedBy_id | crossref_primary_10_3390_rs12132171 crossref_primary_10_3390_en15228553 crossref_primary_10_3390_rs13245107 crossref_primary_10_1002_joc_8299 crossref_primary_10_1080_17538947_2024_2390453 crossref_primary_10_1016_j_dib_2024_111179 crossref_primary_10_3390_rs15184601 crossref_primary_10_3390_atmos14030453 crossref_primary_10_3390_rs15071805 crossref_primary_10_3390_rs13040689 crossref_primary_10_3390_rs13091745 crossref_primary_10_1080_10106049_2022_2101695 crossref_primary_10_1175_JTECH_D_21_0032_1 crossref_primary_10_1175_JHM_D_21_0040_1 crossref_primary_10_1029_2022JD036665 crossref_primary_10_1007_s00477_022_02346_4 crossref_primary_10_3390_rs14010042 crossref_primary_10_3390_rs14020412 crossref_primary_10_1029_2021MS002948 crossref_primary_10_1016_j_jhydrol_2023_129962 crossref_primary_10_1175_JHM_D_21_0075_1 crossref_primary_10_1016_j_jhydrol_2024_131425 crossref_primary_10_5194_hess_29_85_2025 crossref_primary_10_1088_1755_1315_1105_1_012037 crossref_primary_10_1016_j_atmosres_2022_106357 crossref_primary_10_5194_piahs_386_223_2024 crossref_primary_10_1098_rsta_2020_0137 crossref_primary_10_3390_w14091503 crossref_primary_10_1080_2150704X_2024_2307321 crossref_primary_10_3390_rs16030457 crossref_primary_10_1016_j_jhydrol_2024_131384 crossref_primary_10_1016_j_atmosres_2025_108075 crossref_primary_10_1029_2021WR031650 crossref_primary_10_3390_rs14153835 crossref_primary_10_1126_science_adi0833 crossref_primary_10_1175_WAF_D_20_0172_1 crossref_primary_10_3390_atmos13020330 crossref_primary_10_2139_ssrn_4098667 crossref_primary_10_1016_j_ejrh_2021_100983 crossref_primary_10_1016_j_rse_2021_112754 crossref_primary_10_3390_rs14205085 crossref_primary_10_1016_j_jhydrol_2020_125474 crossref_primary_10_1016_j_jhydrol_2023_129555 crossref_primary_10_3390_rs14215563 crossref_primary_10_1016_j_atmosres_2022_106403 crossref_primary_10_1007_s11069_024_07055_5 crossref_primary_10_1016_j_teadva_2024_200116 crossref_primary_10_1007_s00382_024_07386_w crossref_primary_10_3390_atmos12020254 crossref_primary_10_3390_atmos14060974 crossref_primary_10_3390_rs16244753 crossref_primary_10_3390_rs14112698 crossref_primary_10_1016_j_scitotenv_2022_154916 crossref_primary_10_3390_w13081098 crossref_primary_10_5194_amt_14_3333_2021 crossref_primary_10_3390_rs14153783 crossref_primary_10_1016_j_hydroa_2023_100148 crossref_primary_10_1016_j_jhydrol_2022_127743 crossref_primary_10_1007_s12145_021_00708_0 crossref_primary_10_1175_BAMS_D_20_0014_1 crossref_primary_10_1007_s00704_022_04325_9 crossref_primary_10_1016_j_advwatres_2022_104300 crossref_primary_10_1029_2020RG000728 crossref_primary_10_3390_atmos12121678 crossref_primary_10_3390_rs12091426 crossref_primary_10_1016_j_jhydrol_2024_131921 crossref_primary_10_24850_j_tyca_2024_05_01 crossref_primary_10_3390_w13172376 crossref_primary_10_1016_j_jhydrol_2020_125128 crossref_primary_10_3390_s21103547 crossref_primary_10_3390_atmos15070763 crossref_primary_10_3390_rs15041078 crossref_primary_10_1007_s11442_024_2221_3 crossref_primary_10_1016_j_jhydrol_2022_129012 crossref_primary_10_3390_rs14163859 crossref_primary_10_1016_j_jhydrol_2021_127357 crossref_primary_10_3390_rs15041115 crossref_primary_10_3390_rs14235950 crossref_primary_10_1029_2020JD033020 crossref_primary_10_3390_rs12111836 crossref_primary_10_3390_rs11242936 crossref_primary_10_3390_w14101650 crossref_primary_10_1016_j_ejrh_2021_100957 crossref_primary_10_1016_j_jhydrol_2021_125975 crossref_primary_10_1016_j_scitotenv_2024_170425 crossref_primary_10_1016_j_jhydrol_2022_127640 crossref_primary_10_2139_ssrn_3993358 crossref_primary_10_1175_JHM_D_19_0269_1 crossref_primary_10_1016_j_atmosres_2023_106656 crossref_primary_10_3390_rs15061475 crossref_primary_10_5194_acp_23_9323_2023 crossref_primary_10_1016_j_rsase_2024_101186 crossref_primary_10_1029_2021MS002586 crossref_primary_10_1016_j_rsase_2024_101182 crossref_primary_10_3390_atmos14060985 crossref_primary_10_3390_rs14194748 crossref_primary_10_3390_rs14184557 crossref_primary_10_3390_rs15225432 crossref_primary_10_1007_s11629_022_7451_1 crossref_primary_10_1080_07055900_2021_1995317 crossref_primary_10_1016_j_jhydrol_2024_131715 crossref_primary_10_1080_02626667_2023_2284871 crossref_primary_10_3390_rs15071823 crossref_primary_10_3390_rs15235622 crossref_primary_10_3390_rs15092405 crossref_primary_10_1109_TGRS_2023_3306795 crossref_primary_10_1016_j_jhydrol_2024_131310 crossref_primary_10_1016_j_atmosres_2021_105510 crossref_primary_10_1175_JHM_D_21_0228_1 crossref_primary_10_1016_j_atmosres_2023_106639 crossref_primary_10_3390_rs14174406 crossref_primary_10_3390_rs14051172 crossref_primary_10_1016_j_scitotenv_2022_159302 crossref_primary_10_5194_hess_28_1147_2024 crossref_primary_10_1002_wea_3865 crossref_primary_10_1371_journal_pone_0319477 crossref_primary_10_1029_2020JD034202 crossref_primary_10_1007_s00704_023_04555_5 crossref_primary_10_1029_2022GL099850 crossref_primary_10_1038_s41558_022_01443_0 crossref_primary_10_1038_s41467_023_39465_7 crossref_primary_10_1016_j_rsase_2022_100827 crossref_primary_10_3390_atmos14111653 crossref_primary_10_1002_qj_4124 crossref_primary_10_5572_KOSAE_2022_38_2_304 crossref_primary_10_1029_2022JD038398 crossref_primary_10_1038_s41598_024_59019_1 crossref_primary_10_1175_JCLI_D_20_0966_1 crossref_primary_10_1175_JAS_D_21_0052_1 crossref_primary_10_3389_frwa_2021_648499 crossref_primary_10_3390_rs14225827 crossref_primary_10_1029_2022GL102087 crossref_primary_10_1016_j_qsa_2024_100163 crossref_primary_10_1073_pnas_2109285119 crossref_primary_10_1175_JHM_D_21_0106_1 |
Cites_doi | 10.1175/JAMC-D-16-0332.1 10.1175/JHM-D-15-0059.1 10.1016/j.atmosres.2018.08.021 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 10.1016/j.jhydrol.2016.01.029 10.1016/j.atmosres.2017.06.020 10.5194/hess-22-5801-2018 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2 10.1175/BAMS-D-15-00296.1 10.1016/j.atmosres.2018.10.012 10.3390/rs9070720 10.1175/JHM-D-16-0168.1 10.1175/JHM560.1 10.1175/BAMS-D-13-00164.1 10.1175/JHM-D-11-0139.1 10.1175/BAMS-D-15-00306.1 10.1175/JAM2173.1 10.1007/s10712-017-9416-4 10.1002/qj.3313 10.2151/jmsj.87A.137 10.1007/s00704-013-0860-x 10.1175/JHM-D-16-0277.1 10.1175/2010JTECHA1468.1 10.1175/JHM-D-11-022.1 10.1175/JHM-D-16-0174.1 10.1175/JHM-D-16-0198.1 10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2 10.1002/2014WR015672 10.1016/j.atmosres.2016.12.007 10.3390/rs9040369 10.1016/j.atmosres.2016.02.020 10.1175/JHM-D-17-0174.1 10.1002/2017JD027606 10.1175/JTECH-D-15-0039.1 10.1016/j.atmosres.2014.07.024 10.1175/JCLI-D-16-0758.1 10.1175/JHM-D-17-0139.1 |
ContentType | Journal Article |
Copyright | Copyright Determination: GOV_PERMITTED Copyright American Meteorological Society Dec 2019 |
Copyright_xml | – notice: Copyright Determination: GOV_PERMITTED – notice: Copyright American Meteorological Society Dec 2019 |
DBID | CYE CYI AAYXX CITATION 3V. 7TG 7TN 7UA 7XB 88F 88I 8AF 8FD 8FE 8FG 8FK 8G5 ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ GUQSH H8D H96 HCIFZ KL. L.G L7M M1Q M2O M2P MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U S0X |
DOI | 10.1175/JTECH-D-19-0114.1 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Military Database Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest AP Science SciTech Premium Collection ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace ProQuest Central Basic ProQuest Science Journals ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Oceanography |
EISSN | 1520-0426 |
EndPage | 2482 |
ExternalDocumentID | 10_1175_JTECH_D_19_0114_1 20190032981 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation | NNG17HP01C NNG11HP16A |
GroupedDBID | .4S .DC 29J 4.4 5GY 7XC 88I 8AF 8CJ 8FE 8FG 8FH 8G5 8R4 8R5 ABDBF ABDNZ ABUWG ACGFO ACGOD ACUHS AENEX AEUYN AFKRA AFRAH AGFAN ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BENPR BES BGLVJ BHPHI BKSAR BPHCQ CCPQU CS3 CYE CYI D1J D1K DU5 DWQXO E3Z EAD EAP EBS EDH EDO EMK EPL EST ESX F8P FRP GNUQQ GUQSH H13 HCIFZ I-F K6- LK5 M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PYCSY Q2X QF4 QM1 QN7 QO4 RWA RWE RWL RXW S0X TAE TUS U5U UNMZH 2WC AAYXX ACYGS C1A CAG CITATION COF EJD TR2 ZY4 3V. 7TG 7TN 7UA 7XB 8FD 8FK C1K F1W H8D H96 KL. L.G L7M MBDVC PKEHL PQEST PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c403t-cd931414d06053d96237539b5298708ca5f6986dc3dbbd5257f9c1f0b50247ce3 |
IEDL.DBID | BENPR |
ISSN | 0739-0572 |
IngestDate | Sat Aug 23 14:52:59 EDT 2025 Tue Jul 01 04:33:39 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Fri Aug 15 15:18:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-cd931414d06053d96237539b5298708ca5f6986dc3dbbd5257f9c1f0b50247ce3 |
Notes | GSFC E-ISSN: 1520-0426 ISSN: 0739-0572 Report Number: GSFC-E-DAA-TN74890 GSFC-E-DAA-TN74890 Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://ntrs.nasa.gov/citations/20190032981 |
PQID | 2389756924 |
PQPubID | 33207 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2389756924 crossref_primary_10_1175_JTECH_D_19_0114_1 crossref_citationtrail_10_1175_JTECH_D_19_0114_1 nasa_ntrs_20190032981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center – name: Boston |
PublicationTitle | Journal of atmospheric and oceanic technology |
PublicationYear | 2019 |
Publisher | American Meteorological Society |
Publisher_xml | – name: American Meteorological Society |
References | Guo (2020061922390079500_bib8) 2016; 176–177 Precipitation Processing System (2020061922390079500_bib34) 2018 2020061922390079500_bib28 Tan (2020061922390079500_bib44) 2018; 19 Janowiak (2020061922390079500_bib15) 2017 Romanov (2020061922390079500_bib37) 2000; 39 Satgé (2020061922390079500_bib38) 2017; 9 Kirstetter (2020061922390079500_bib23) 2014 Tang (2020061922390079500_bib46) 2016; 17 Kummerow (2020061922390079500_bib27) 2015; 32 Kummerow (2020061922390079500_bib26) 2011; 28 Adler (2020061922390079500_bib2) 2016 Joyce (2020061922390079500_bib18) 2004; 5 Precipitation Processing System (2020061922390079500_bib35) 2019 Huffman (2020061922390079500_bib12) 2007; 8 Kirstetter (2020061922390079500_bib24) 2015; 51 Jiang (2020061922390079500_bib16) 2018; 214 He (2020061922390079500_bib9) 2017; 18 Hong (2020061922390079500_bib10) 2004; 43 Gelaro (2020061922390079500_bib7) 2017; 30 Yamamoto (2020061922390079500_bib51) 2015; 163 Palomino-Ángel (2020061922390079500_bib31) 2019; 217 Tan (2020061922390079500_bib43) 2017; 18 Dezfuli (2020061922390079500_bib5) 2017; 18 Yamamoto (2020061922390079500_bib52) 2017; 56 Nguyen (2020061922390079500_bib30) 2018; 22 Schneider (2020061922390079500_bib40) 2015 Climate Prediction Center (2020061922390079500_bib4) 2011 Kirschbaum (2020061922390079500_bib21) 2017; 98 Ushio (2020061922390079500_bib47) 2009; 87A Prakash (2020061922390079500_bib32) 2018; 556 Kummerow (2020061922390079500_bib25) 2001; 40 Tan (2020061922390079500_bib45) 2017; 9 Wang (2020061922390079500_bib48) 2017; 196 Kirstetter (2020061922390079500_bib22) 2012; 13 2020061922390079500_bib19 Precipitation Processing System (2020061922390079500_bib33) 2017 Skofronick-Jackson (2020061922390079500_bib42) 2018; 144 Adler (2020061922390079500_bib3) 2017; 38 Hou (2020061922390079500_bib11) 2014; 95 2020061922390079500_bib14 2020061922390079500_bib13 Xie (2020061922390079500_bib50) 2017; 18 Schneider (2020061922390079500_bib39) 2014; 115 Joyce (2020061922390079500_bib17) 2011; 12 Wilks (2020061922390079500_bib49) 2011 Skofronick-Jackson (2020061922390079500_bib41) 2017; 98 Adler (2020061922390079500_bib1) 2003; 4 Kim (2020061922390079500_bib20) 2017; 187 Manz (2020061922390079500_bib29) 2017; 18 Gebregiorgis (2020061922390079500_bib6) 2018; 123 Precipitation Processing System (2020061922390079500_bib36) 2019 |
References_xml | – volume: 56 start-page: 2607 year: 2017 ident: 2020061922390079500_bib52 article-title: Further improvement of the heavy orographic rainfall retrievals in the GSMaP algorithm for microwave radiometers publication-title: J. Appl. Meteor. Climatol. doi: 10.1175/JAMC-D-16-0332.1 – year: 2017 ident: 2020061922390079500_bib33 – ident: 2020061922390079500_bib19 – volume: 17 start-page: 121 year: 2016 ident: 2020061922390079500_bib46 article-title: Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7? publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-15-0059.1 – volume: 214 start-page: 418 year: 2018 ident: 2020061922390079500_bib16 article-title: Statistical and hydrological evaluation of the latest Integrated Multi-Satellite Retrievals for GPM (IMERG) over a midlatitude humid basin in South China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.08.021 – year: 2011 ident: 2020061922390079500_bib4 – volume: 4 start-page: 1147 year: 2003 ident: 2020061922390079500_bib1 article-title: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present) publication-title: J. Hydrometeor. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 – volume: 556 start-page: 865 year: 2018 ident: 2020061922390079500_bib32 article-title: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.01.029 – volume: 196 start-page: 151 year: 2017 ident: 2020061922390079500_bib48 article-title: Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.06.020 – volume: 22 start-page: 5801 year: 2018 ident: 2020061922390079500_bib30 article-title: The PERSIANN family of global satellite precipitation data: A review and evaluation of products publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-5801-2018 – volume: 5 start-page: 487 year: 2004 ident: 2020061922390079500_bib18 article-title: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution publication-title: J. Hydrometeor. doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 – volume: 40 start-page: 1801 year: 2001 ident: 2020061922390079500_bib25 article-title: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2 – volume: 98 start-page: 1169 year: 2017 ident: 2020061922390079500_bib21 article-title: NASA’s remotely sensed precipitation: A reservoir for applications users publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-15-00296.1 – volume: 217 start-page: 37 year: 2019 ident: 2020061922390079500_bib31 article-title: Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.10.012 – volume: 9 start-page: 720 year: 2017 ident: 2020061922390079500_bib45 article-title: Assessment of GPM and TRMM precipitation products over Singapore publication-title: Remote Sens. doi: 10.3390/rs9070720 – volume: 18 start-page: 1617 year: 2017 ident: 2020061922390079500_bib50 article-title: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998 publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-16-0168.1 – year: 2019 ident: 2020061922390079500_bib35 – year: 2015 ident: 2020061922390079500_bib40 – year: 2016 ident: 2020061922390079500_bib2 – volume: 8 start-page: 38 year: 2007 ident: 2020061922390079500_bib12 article-title: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales publication-title: J. Hydrometeor. doi: 10.1175/JHM560.1 – year: 2014 ident: 2020061922390079500_bib23 – volume: 95 start-page: 701 year: 2014 ident: 2020061922390079500_bib11 article-title: The Global Precipitation Measurement Mission publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-13-00164.1 – volume: 13 start-page: 1285 year: 2012 ident: 2020061922390079500_bib22 article-title: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar–based national mosaic QPE publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-11-0139.1 – year: 2019 ident: 2020061922390079500_bib36 – volume: 98 start-page: 1679 year: 2017 ident: 2020061922390079500_bib41 article-title: The Global Precipitation Measurement (GPM) mission for science and society publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-15-00306.1 – volume: 43 start-page: 1834 year: 2004 ident: 2020061922390079500_bib10 article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system publication-title: J. Appl. Meteor. doi: 10.1175/JAM2173.1 – volume: 38 start-page: 679 year: 2017 ident: 2020061922390079500_bib3 article-title: Global precipitation: Means, variations and trends during the satellite era (1979–2014) publication-title: Surv. Geophys. doi: 10.1007/s10712-017-9416-4 – volume: 144 start-page: 27 year: 2018 ident: 2020061922390079500_bib42 article-title: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.3313 – volume: 87A start-page: 137 year: 2009 ident: 2020061922390079500_bib47 article-title: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data publication-title: J. Meteor. Soc. Japan doi: 10.2151/jmsj.87A.137 – volume: 115 start-page: 15 year: 2014 ident: 2020061922390079500_bib39 article-title: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-013-0860-x – year: 2018 ident: 2020061922390079500_bib34 – volume: 18 start-page: 2469 year: 2017 ident: 2020061922390079500_bib29 article-title: Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-16-0277.1 – ident: 2020061922390079500_bib13 – volume: 28 start-page: 113 year: 2011 ident: 2020061922390079500_bib26 article-title: An observationally generated a priori database for microwave rainfall retrievals publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/2010JTECHA1468.1 – volume: 12 start-page: 1547 year: 2011 ident: 2020061922390079500_bib17 article-title: Kalman filter–based CMORPH publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-11-022.1 – volume: 18 start-page: 307 year: 2017 ident: 2020061922390079500_bib43 article-title: Performance of IMERG as a function of spatiotemporal scale publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-16-0174.1 – volume: 18 start-page: 413 year: 2017 ident: 2020061922390079500_bib9 article-title: Intercomparisons of rainfall estimates from TRMM and GPM multisatellite products over the upper Mekong River basin publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-16-0198.1 – volume: 39 start-page: 1866 year: 2000 ident: 2020061922390079500_bib37 article-title: Automated monitoring of snow cover over North America with multispectral satellite data publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2 – volume: 51 start-page: 1422 year: 2015 ident: 2020061922390079500_bib24 article-title: Probabilistic precipitation rate estimates with ground-based radar networks publication-title: Water Resour. Res. doi: 10.1002/2014WR015672 – ident: 2020061922390079500_bib28 – volume: 187 start-page: 95 year: 2017 ident: 2020061922390079500_bib20 article-title: Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.12.007 – volume: 9 start-page: 369 year: 2017 ident: 2020061922390079500_bib38 article-title: Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main Bolivian watersheds publication-title: Remote Sens. doi: 10.3390/rs9040369 – volume: 176–177 start-page: 121 year: 2016 ident: 2020061922390079500_bib8 article-title: Early assessment of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement over China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.02.020 – year: 2011 ident: 2020061922390079500_bib49 – ident: 2020061922390079500_bib14 – volume: 19 start-page: 517 year: 2018 ident: 2020061922390079500_bib44 article-title: Evaluation of Global Precipitation Measurement rainfall estimates against three dense gauge networks publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-17-0174.1 – volume: 123 start-page: 1694 year: 2018 ident: 2020061922390079500_bib6 article-title: To what extent is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPA-RT?: Day-1 IMERG improves upon TMPA-RT publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2017JD027606 – volume: 32 start-page: 2265 year: 2015 ident: 2020061922390079500_bib27 article-title: The evolution of the Goddard Profiling algorithm to a fully parametric scheme publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/JTECH-D-15-0039.1 – volume: 163 start-page: 36 year: 2015 ident: 2020061922390079500_bib51 article-title: Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.07.024 – volume: 30 start-page: 5419 year: 2017 ident: 2020061922390079500_bib7 article-title: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) publication-title: J. Climate doi: 10.1175/JCLI-D-16-0758.1 – volume: 18 start-page: 2817 year: 2017 ident: 2020061922390079500_bib5 article-title: Validation of IMERG precipitation in Africa publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-17-0139.1 – year: 2017 ident: 2020061922390079500_bib15 |
SSID | ssj0001316 |
Score | 2.6336246 |
Snippet | As the US Science Team’s globally gridded precipitation product from the NASA/JAXA Global Precipitation Measurement (GPM) mission, the Integrated... As the U.S. Science Team’s globally gridded precipitation product from the NASA–JAXA Global Precipitation Measurement (GPM) mission, the Integrated... |
SourceID | proquest crossref nasa |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2471 |
SubjectTerms | Algorithms Atmospheric models Calibration Climate Earth Resources And Remote Sensing Estimates Global precipitation Interpolation Kalman filters Mathematical models Model testing Morphing Movement Numerical models Observatories Precipitable water Precipitation Satellites Sensors Vectors Water vapor Water vapour |
Title | IMERG V06: Changes to the Morphing Algorithm |
URI | https://ntrs.nasa.gov/citations/20190032981 https://www.proquest.com/docview/2389756924 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA66vYggOhWnc-RBfBCjadJmjS-y33MwlTHFt9AmnQpznVv9_7102UCEPbZJQ3NJ7vsuyd0hdAEgwoUMDPFlxIif-JQAKjISAVkGti80S6xz8uBR9F78_lvw5jbcFu5a5Uon5orapNrukd8CtMhaIMBcuJ99E5s1yp6uuhQa26gIKjiEGV5stB-fh2td7PE8-ak9jiLATJg71wTMvO2P2s0eaRHrxANGwY33B5kK02gR_dPPOeh09tGeY4u4vhzeA7SVTEuoPACim87z_XB8iZuTT2Cd-VMJ7T7pJJq6MNSH6Pph0B528SsVd3jpR7DAWYqB9OFBChIG3ML1yTv0M_v4OkIvnfYI_tblRyDapzwj2kju-Z5vKNgk3EhgMmB8yDhgElZhqKNgLGQojOYmjo0NezqW2hvTOABgrumEH0M302lygjAHsyUWlEkNhIRBPeNHIYuth4KkQodlRFeyUdoFD7c5LCYqNyJqgcrFqVrKk8qKU3lldLX-ZLaMnLGp8pEVuIJGF4pZ_3bKoRfwvrIaAeUWF5Svp8Lp5uIztGPbWt4-qaBCNv9JzoFDZHEVbYedbhUV641Wo1N10-YXIVO_pA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8x9rBpEmKMaYWy-WHbwzQPx3bceBJCiLa0QJg0lYk3k9gpIJUG2iC0f4q_kXM-Kk2TeOMx8Yfi88W_39m-O4DPCCJC6dBRqRNOZSYZRVTkNEGyjGxfWZ555-T4RA1O5eFZeLYED40vjL9W2ayJ5ULtcuv3yLcRWnQnVGgu7N7cUp81yp-uNik0KrU4yv7eo8k23xl2cX6_cN7vjfYHtM4qQK1koqDWaRHIQDqGTF44jfiPlF2nIUfzm0U2CcdKR8pZ4dLU-WChY22DMUtDhLOOzQT2-wJeSiG0v0IY9Q8WK38gylSr_vCLIg_i9SkqIvT24aiHX9Kl3mUITZAfwT84uDxN5sl_aFBCXH8VVmpuSvYqZXoLS9l0DVox0up8Vu6-k69kf3KFHLd8WoM3v2yWTOug1-_g-zDu_T4gf5j6SSqvhTkpcoIUk8Q5zieiJNmbXKBUi8vrdTh9Frm9x2Hm0-wDEIFGUqoY1xbpD8d6TiYRT70_hGbKRi1gjWyMrUOV-4wZE1OaLJ3QlOI0XRNo48VpghZ8WzS5qeJ0PFV53QvcYKdzw703PRM4CnzfbmbA1L8yli8Ub-Pp4k_wajCKj83x8ORoE177fqt7L21YLmZ32RaylyL9WKoMgfPn1tFHytr3Ig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFL3UCiKCaK24tWoe1AcxbiaZyU4EkdLdbbd1q0hb-hZnklkrrDu1OyL-NX-dJ_OxIELf-jiTDyY3d3LOTXLvJXoOEFHaJJ7HJpM8LmLBgYqSZyDLYPvaySI4J0-P9P5JfHCWnK3Rn84XJlyr7NbEeqH2pQt75H1AixkkGuZCf9Zei_g0HL-_-MFDBqlw0tql02hU5LD4_Qvm2_LdZIi5fiHleHS8u8_bDAPcxUJV3HmjojiKvQCrV96AC4C-mzyRMMVF6rJkpk2qvVM-z30IHDozLpqJPAG0DVyh0O8NujlQqQjZE9Lx3goFIlWnXQ0HYRycSLYnqkDr_sHxCF8y5MF9CObIm-gfTFxfZMvsP2So4W58j-62PJXtNIp1n9aKxQb1pqDY5WW9E89est35N_Dd-mmD7nx0RbZoA2A_oNeT6ejzHjsV-i1rPBiWrCoZ6CablphbICbbmX-FVKvz75t0ci1ye4hhloviETEFgynXQhoHKiRRz8dZKvPgG2GEdmmPRCcb69qw5SF7xtzW5ssgsbU47dBGxgZx2qhHr1ZNLpqYHVdV3gwCt-h0aWXwrBcKo8D77W4GbPtbo3ylhFtXFz-jW9BO-2FydPiYbodumysw27ReXf4snoDIVPnTWmMYfbluFf0LcZX7Tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IMERG+V06%3A+Changes+to+the+Morphing+Algorithm&rft.jtitle=Journal+of+atmospheric+and+oceanic+technology&rft.au=Tan%2C+Jackson&rft.au=Huffman%2C+George+J.&rft.au=Bolvin%2C+David+T.&rft.au=Nelkin%2C+Eric+J.&rft.date=2019-12-01&rft.issn=0739-0572&rft.eissn=1520-0426&rft.volume=36&rft.issue=12&rft.spage=2471&rft.epage=2482&rft_id=info:doi/10.1175%2FJTECH-D-19-0114.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_JTECH_D_19_0114_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-0572&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-0572&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-0572&client=summon |