Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism
Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard c...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 56; no. 5; pp. 778 - 781 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
16.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na
+
diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g
−1
, and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau.
Sodium is stored in hard carbon in an ionic state in the slope region and in a quasi-liquid metallic sodium cluster state in the low-voltage plateau. |
---|---|
AbstractList | Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na+ diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g-1, and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau. Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na + diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g −1 , and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau. Sodium is stored in hard carbon in an ionic state in the slope region and in a quasi-liquid metallic sodium cluster state in the low-voltage plateau. Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na+ diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g−1, and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau. Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na + diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g −1 , and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau. |
Author | Lyu, Yingchun Chen, Riming Cheng, Hongyu Chu, Jiaqi Yu, Zhuo-Er Liu, Yang Xu, Shuyin Mu, Xiaoyang Guo, Bingkun Wang, Yeting |
AuthorAffiliation | Inner Mongolia University Materials Genome Institute Shanghai University School of Physics Science and Technology |
AuthorAffiliation_xml | – name: Shanghai University – name: Inner Mongolia University – name: Materials Genome Institute – name: School of Physics Science and Technology |
Author_xml | – sequence: 1 givenname: Zhuo-Er surname: Yu fullname: Yu, Zhuo-Er – sequence: 2 givenname: Yingchun surname: Lyu fullname: Lyu, Yingchun – sequence: 3 givenname: Yeting surname: Wang fullname: Wang, Yeting – sequence: 4 givenname: Shuyin surname: Xu fullname: Xu, Shuyin – sequence: 5 givenname: Hongyu surname: Cheng fullname: Cheng, Hongyu – sequence: 6 givenname: Xiaoyang surname: Mu fullname: Mu, Xiaoyang – sequence: 7 givenname: Jiaqi surname: Chu fullname: Chu, Jiaqi – sequence: 8 givenname: Riming surname: Chen fullname: Chen, Riming – sequence: 9 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 10 givenname: Bingkun surname: Guo fullname: Guo, Bingkun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31845678$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtLxDAUhYOM6PjYuFcCbkSo5tlJllp8wYAbBXclSW-1zrQZk1bwD_i7zTi-MJsEzpdzH2cLjTrfAUJ7lJxQwvWp084RxRi1a2hMeS4yKdTDaPmWOptwITfRVozPJB0q1Qba5FQJmU_UGL1fm1BhZ4L1HW4bF3zWmc7jfrAQcQWheYUK18G3eGYWfobrxkLAJuJEVYBb0yfGzCOufcDRV83QZk3ysqZfKrAEK9w_wV8x9j6Yx_Qb3JPpmtjuoPU6mcDu172N7i8v7orrbHp7dVOcTTMnCO8zZ5kUGoggyqm6YooprcDInFHBcyd5mp5xRRh1udOWstpppZnlitbageHb6Gjluwj-ZYDYl20THcznpgM_xJJxNtGplJAJPfyHPvshdKm7RHGlJzKVTdTxikqbizFAXS5C05rwVlJSLtMpC10Un-mcJ_jgy3KwLVQ_6HccCdhfASG6H_U3Xv4Bhp-V9A |
CitedBy_id | crossref_primary_10_1002_aenm_202303833 crossref_primary_10_1016_j_diamond_2022_109392 crossref_primary_10_3390_batteries8090108 crossref_primary_10_1002_aenm_202003854 crossref_primary_10_1002_aenm_202200715 crossref_primary_10_1002_adma_202212186 crossref_primary_10_1016_j_nxmate_2024_100241 crossref_primary_10_3390_pr11030764 crossref_primary_10_6023_A21060284 crossref_primary_10_1016_j_carbon_2020_11_004 crossref_primary_10_1039_D2TA09406A crossref_primary_10_1039_D0EE03916K crossref_primary_10_1002_aenm_202202388 crossref_primary_10_1002_adfm_202208349 crossref_primary_10_1016_j_carbon_2023_01_048 crossref_primary_10_1021_acsenergylett_3c02751 crossref_primary_10_1016_j_jpowsour_2021_229834 crossref_primary_10_1021_acs_energyfuels_3c02406 crossref_primary_10_1039_D1CC04925A crossref_primary_10_1002_advs_202200023 crossref_primary_10_1002_smtd_202201508 crossref_primary_10_1002_aenm_202201734 crossref_primary_10_1002_ange_202106178 crossref_primary_10_1016_j_ensm_2023_102805 crossref_primary_10_1016_j_electacta_2021_139000 crossref_primary_10_1016_S1872_5805_21_60075_6 crossref_primary_10_1039_D1TA10588D crossref_primary_10_1002_asia_202301146 crossref_primary_10_1002_batt_202000133 crossref_primary_10_59761_RCR5100 crossref_primary_10_1002_batt_202000295 crossref_primary_10_1002_batt_202200427 crossref_primary_10_1002_batt_202300233 crossref_primary_10_3390_molecules27196516 crossref_primary_10_1038_s41467_024_45460_3 crossref_primary_10_1016_j_diamond_2024_111170 crossref_primary_10_1039_D3TA04739C crossref_primary_10_1039_D4CC00025K crossref_primary_10_1016_j_rser_2024_114304 crossref_primary_10_20964_2022_11_15 crossref_primary_10_1016_j_cej_2022_137468 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1002_cphc_202100748 crossref_primary_10_1016_j_jpowsour_2022_230994 crossref_primary_10_1002_anie_202106178 crossref_primary_10_1002_aenm_202000093 crossref_primary_10_1002_cey2_98 crossref_primary_10_3390_nano12060930 crossref_primary_10_3390_molecules27228107 crossref_primary_10_1007_s12274_022_5154_0 crossref_primary_10_1016_j_est_2024_112629 crossref_primary_10_1002_batt_202200316 crossref_primary_10_1007_s12598_020_01453_x crossref_primary_10_1016_j_cej_2024_151055 crossref_primary_10_1002_smtd_202001050 crossref_primary_10_1016_j_fuel_2021_122072 crossref_primary_10_1002_adfm_202006066 crossref_primary_10_1007_s10570_021_03834_6 crossref_primary_10_13005_ojc_370301 crossref_primary_10_1002_cssc_202301053 crossref_primary_10_1016_j_nanoen_2024_109459 crossref_primary_10_3390_batteries8080081 |
Cites_doi | 10.1021/ja00784a018 10.1016/j.ensm.2016.07.006 10.1002/adfm.201901072 10.1149/1.1393348 10.1021/jp406274e 10.1021/cr500192f 10.1002/aenm.201703268 10.1021/nl3016957 10.1002/aenm.201700403 10.1016/j.mattod.2018.12.040 10.1039/C4EE02986K 10.1016/S0008-6223(02)00121-5 10.1039/C8CC01388H 10.1021/acsaem.8b02231 10.1021/acs.nanolett.5b01969 10.1016/0368-2048(75)80052-1 10.1016/j.carbon.2017.08.030 10.1039/C6CC06990H 10.1149/1.2221153 10.1002/adma.201900440 10.1039/C5CS00344J 10.1016/j.memsci.2012.11.049 10.1039/C6TA04273B 10.1002/aenm.201902852 10.1016/S0008-6223(98)00103-1 10.1016/j.mser.2018.07.001 10.1103/PhysRev.98.337 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c9cc08221b |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 781 |
ExternalDocumentID | 10_1039_C9CC08221B 31845678 c9cc08221b |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 1TJ 29B 2WC 4.4 53G 5GY 6J9 705 70J 70~ 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABGFH ABPTK ABRYZ ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AETIL AFOGI AFVBQ AGKEF AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- F5P GNO H13 HZ~ H~N IDZ IH2 J3I M4U N9A O9- P2P R7B R7C R7D RAOCF RCNCU RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X7L AAHBH AAJAE AAMEH AAWGC AAXHV ABEMK ABJNI ABPDG ABXOH ACBEA AEFDR AENGV AESAV AFLYV AFRDS AGEGJ AHGCF APEMP GGIMP NPM RIG AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c403t-cb2549e0408c8fd282898ea5621436c53136238021c6c9b12fc9892b381f9cea3 |
ISSN | 1359-7345 |
IngestDate | Fri Aug 16 23:39:01 EDT 2024 Thu Oct 10 20:30:04 EDT 2024 Fri Aug 23 01:34:06 EDT 2024 Sat Sep 28 08:31:36 EDT 2024 Tue Jun 27 20:19:40 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-cb2549e0408c8fd282898ea5621436c53136238021c6c9b12fc9892b381f9cea3 |
Notes | 10.1039/c9cc08221b See DOI etc. Electronic supplementary information (ESI) available: Experimental section, SEM, EDS, CV, galvanostatic charge-discharge, GITT, HR-TEM ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2800-6001 0000-0003-3229-1175 0000-0001-5738-0049 |
PMID | 31845678 |
PQID | 2338975562 |
PQPubID | 2047502 |
PageCount | 4 |
ParticipantIDs | rsc_primary_c9cc08221b crossref_primary_10_1039_C9CC08221B proquest_journals_2338975562 proquest_miscellaneous_2327940345 pubmed_primary_31845678 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-16 |
PublicationDateYYYYMMDD | 2020-01-16 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Stratford (C9CC08221B-(cit10a)/*[position()=1]) 2016; 52 Ding (C9CC08221B-(cit12)/*[position()=1]) 2015; 8 Zou (C9CC08221B-(cit5b)/*[position()=1]) 2019; 31 Feher (C9CC08221B-(cit21)/*[position()=1]) 1955; 98 Li (C9CC08221B-(cit14)/*[position()=1]) 2019 Xie (C9CC08221B-(cit2c)/*[position()=1]) 2019; 29 Doeff (C9CC08221B-(cit4)/*[position()=1]) 1993; 140 Deringer (C9CC08221B-(cit10b)/*[position()=1]) 2018; 54 Zhecheva (C9CC08221B-(cit19)/*[position()=1]) 2002; 40 Zhu (C9CC08221B-(cit2b)/*[position()=1]) 2017; 123 Morita (C9CC08221B-(cit22)/*[position()=1]) 2016; 4 Yabuuchi (C9CC08221B-(cit1)/*[position()=1]) 2014; 114 Saffarini (C9CC08221B-(cit23)/*[position()=1]) 2013; 429 Mauger (C9CC08221B-(cit13)/*[position()=1]) 2018; 134 Saurel (C9CC08221B-(cit7)/*[position()=1]) 2018; 8 Kawamura (C9CC08221B-(cit20)/*[position()=1]) 1998; 36 Barrie (C9CC08221B-(cit17)/*[position()=1]) 1975; 7 Shkrob (C9CC08221B-(cit18)/*[position()=1]) 2013; 117 Qiu (C9CC08221B-(cit9)/*[position()=1]) 2017; 7 Kalisvaart (C9CC08221B-(cit3)/*[position()=1]) 2019; 2 Qi (C9CC08221B-(cit6)/*[position()=1]) 2015; 44 Li (C9CC08221B-(cit16)/*[position()=1]) 2016; 5 Cao (C9CC08221B-(cit5a)/*[position()=1]) 2012; 12 Morgan (C9CC08221B-(cit15)/*[position()=1]) 1973; 95 Stevens (C9CC08221B-(cit2a)/*[position()=1]) 2000; 147 Dou (C9CC08221B-(cit11)/*[position()=1]) 2019; 23 Bommier (C9CC08221B-(cit8)/*[position()=1]) 2015; 15 |
References_xml | – volume: 95 start-page: 751 year: 1973 ident: C9CC08221B-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00784a018 contributor: fullname: Morgan – volume: 5 start-page: 191 year: 2016 ident: C9CC08221B-(cit16)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.07.006 contributor: fullname: Li – volume: 29 start-page: 1901072 year: 2019 ident: C9CC08221B-(cit2c)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901072 contributor: fullname: Xie – volume: 147 start-page: 1271 year: 2000 ident: C9CC08221B-(cit2a)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393348 contributor: fullname: Stevens – volume: 117 start-page: 19255 year: 2013 ident: C9CC08221B-(cit18)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp406274e contributor: fullname: Shkrob – volume: 114 start-page: 11636 year: 2014 ident: C9CC08221B-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500192f contributor: fullname: Yabuuchi – volume: 8 start-page: 1703268 year: 2018 ident: C9CC08221B-(cit7)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703268 contributor: fullname: Saurel – volume: 12 start-page: 3783 year: 2012 ident: C9CC08221B-(cit5a)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl3016957 contributor: fullname: Cao – volume: 7 start-page: 1700403 year: 2017 ident: C9CC08221B-(cit9)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700403 contributor: fullname: Qiu – volume: 23 start-page: 87 year: 2019 ident: C9CC08221B-(cit11)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2018.12.040 contributor: fullname: Dou – volume: 8 start-page: 941 year: 2015 ident: C9CC08221B-(cit12)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02986K contributor: fullname: Ding – volume: 40 start-page: 2301 year: 2002 ident: C9CC08221B-(cit19)/*[position()=1] publication-title: Carbon doi: 10.1016/S0008-6223(02)00121-5 contributor: fullname: Zhecheva – volume: 54 start-page: 5988 year: 2018 ident: C9CC08221B-(cit10b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC01388H contributor: fullname: Deringer – volume: 2 start-page: 2205 year: 2019 ident: C9CC08221B-(cit3)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02231 contributor: fullname: Kalisvaart – volume: 15 start-page: 5888 year: 2015 ident: C9CC08221B-(cit8)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01969 contributor: fullname: Bommier – volume: 7 start-page: 1 year: 1975 ident: C9CC08221B-(cit17)/*[position()=1] publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/0368-2048(75)80052-1 contributor: fullname: Barrie – volume: 123 start-page: 727 year: 2017 ident: C9CC08221B-(cit2b)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2017.08.030 contributor: fullname: Zhu – volume: 52 start-page: 12430 year: 2016 ident: C9CC08221B-(cit10a)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC06990H contributor: fullname: Stratford – volume: 140 start-page: L169 year: 1993 ident: C9CC08221B-(cit4)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2221153 contributor: fullname: Doeff – volume: 31 start-page: 1900440 year: 2019 ident: C9CC08221B-(cit5b)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201900440 contributor: fullname: Zou – volume: 44 start-page: 6749 year: 2015 ident: C9CC08221B-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00344J contributor: fullname: Qi – volume: 429 start-page: 282 year: 2013 ident: C9CC08221B-(cit23)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.11.049 contributor: fullname: Saffarini – volume: 4 start-page: 13183 year: 2016 ident: C9CC08221B-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04273B contributor: fullname: Morita – start-page: 1902852 year: 2019 ident: C9CC08221B-(cit14)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902852 contributor: fullname: Li – volume: 36 start-page: 1227 year: 1998 ident: C9CC08221B-(cit20)/*[position()=1] publication-title: Carbon doi: 10.1016/S0008-6223(98)00103-1 contributor: fullname: Kawamura – volume: 134 start-page: 1 year: 2018 ident: C9CC08221B-(cit13)/*[position()=1] publication-title: Mater. Sci. Eng., R doi: 10.1016/j.mser.2018.07.001 contributor: fullname: Mauger – volume: 98 start-page: 337 year: 1955 ident: C9CC08221B-(cit21)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.98.337 contributor: fullname: Feher |
SSID | ssj0000158 |
Score | 2.5890112 |
Snippet | Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their... |
SourceID | proquest crossref pubmed rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 778 |
SubjectTerms | Anodes Carbon Electrode materials Electron paramagnetic resonance Ion storage Rechargeable batteries Sodium Sodium-ion batteries Storage batteries Thermogravimetric analysis |
Title | Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31845678 https://www.proquest.com/docview/2338975562 https://search.proquest.com/docview/2327940345 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJ8FeEF-DwkBG8DYZmjjOx-OoigYavNCJ9qlyHEdFU5NqTZDGD-Av8He517HdjIEEvFSV7Xw059Q-du49JuRlkJRaFSplXMc4QVGS5UmSMFEKGXFQ6GWJicIfPsYnZ9H7uZgPBj96UUttk79S336bV_I_qEIZ4IpZsv-ArD8pFMB3wBc-AWH4_CuM8bU7ekvnAOEaI-tYJSvQkm2ut0cF3MFXkJMmgeRcburzoxLDQ3BnGWhlIleb7i5NrOG2Lr60a4Z0yI3pJsyhfXxlrxLDKTHQZ60xadg5EDqzA-c_oPqJJ2Zl12eHme632zuktw6xaM17klVbs6kPGD69NKULGF_VqvU8_mwXuRcmX9uVzk3bT6v20rqJ28WMEGPiWGCtsLsOmMcRg1nUvN9Dd9bjlomi190m3fY_14aBMUcXVZUphYb2wZWxAiDcrA0hoDsD-did4hfTbVd1g-yF6CA4JHvH09m7054zmUid2y3PXu8utU9uuoOvSp1r8xdQMxdulxmjZmZ3yG07DaHHHafukoGu7pFbE7f7333yHblFO27RHbeo4Ra13KLILWq4RQ23qNxSwy3quUWBW3RHH-q5BQ0LCtzqV1puUc-tB-Ts7XQ2OWF2zw6mojFvmMpxxUHD0JCqtCzMhD7VElQ2CPNYQY8PiomnoCxVrLI8CEuVpVmYg3AsM6UlPyDDqq70I0LTYsyLUiShTMZRLgIZ6CQSMsbMsiCWyYi8cI93uemsWZYmpIJny0k2mRg83ozIoXvyS_vX3S5DDjo9EXBXI_LcV8MTxrdlstJ1i20AefhNkRiRhx1i_jIO4RE5AAh98Y4Fj_94yBOyvyP-IRk2F61-Crq2yZ9Zjv0EWw-mjQ |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hard+carbon+micro-nano+tubes+derived+from+kapok+fiber+as+anode+materials+for+sodium-ion+batteries+and+the+sodium-ion+storage+mechanism&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Yu%2C+Zhuo-Er&rft.au=Lyu%2C+Yingchun&rft.au=Wang%2C+Yeting&rft.au=Xu%2C+Shuyin&rft.date=2020-01-16&rft.eissn=1364-548X&rft.volume=56&rft.issue=5&rft.spage=778&rft_id=info:doi/10.1039%2Fc9cc08221b&rft_id=info%3Apmid%2F31845678&rft.externalDocID=31845678 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |