Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism

Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard c...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 56; no. 5; pp. 778 - 781
Main Authors Yu, Zhuo-Er, Lyu, Yingchun, Wang, Yeting, Xu, Shuyin, Cheng, Hongyu, Mu, Xiaoyang, Chu, Jiaqi, Chen, Riming, Liu, Yang, Guo, Bingkun
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 16.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na + diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g −1 , and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau. Sodium is stored in hard carbon in an ionic state in the slope region and in a quasi-liquid metallic sodium cluster state in the low-voltage plateau.
AbstractList Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na+ diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g-1, and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau.
Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na + diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g −1 , and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau. Sodium is stored in hard carbon in an ionic state in the slope region and in a quasi-liquid metallic sodium cluster state in the low-voltage plateau.
Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na+ diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g−1, and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau.
Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their application in SIBs. Moreover, the controversial mechanism of Na-ion storage restricts the improvement of hard carbon anodes. Herein, hard carbon micro-nano tubes (HCMNTs) from low-cost biomass kapok fibers are prepared as a promising anode for SIBs. Benefitting from the micro-nano structure, which offers low surface area and short Na + diffusion path, 1400HCMNT possesses a good initial Coulombic efficiency of 80%, a high reversible capacity of 290 mA h g −1 , and an excellent rate capacity. Furthermore, electron paramagnetic resonance and thermogravimetric analysis were applied to investigate the Na-ion storage mechanism in the HCMNTs. Sodium is stored in the hard carbon in an ionic state in the slope region and as quasi-liquid metallic sodium clusters in the low-voltage plateau.
Author Lyu, Yingchun
Chen, Riming
Cheng, Hongyu
Chu, Jiaqi
Yu, Zhuo-Er
Liu, Yang
Xu, Shuyin
Mu, Xiaoyang
Guo, Bingkun
Wang, Yeting
AuthorAffiliation Inner Mongolia University
Materials Genome Institute
Shanghai University
School of Physics Science and Technology
AuthorAffiliation_xml – name: Shanghai University
– name: Inner Mongolia University
– name: Materials Genome Institute
– name: School of Physics Science and Technology
Author_xml – sequence: 1
  givenname: Zhuo-Er
  surname: Yu
  fullname: Yu, Zhuo-Er
– sequence: 2
  givenname: Yingchun
  surname: Lyu
  fullname: Lyu, Yingchun
– sequence: 3
  givenname: Yeting
  surname: Wang
  fullname: Wang, Yeting
– sequence: 4
  givenname: Shuyin
  surname: Xu
  fullname: Xu, Shuyin
– sequence: 5
  givenname: Hongyu
  surname: Cheng
  fullname: Cheng, Hongyu
– sequence: 6
  givenname: Xiaoyang
  surname: Mu
  fullname: Mu, Xiaoyang
– sequence: 7
  givenname: Jiaqi
  surname: Chu
  fullname: Chu, Jiaqi
– sequence: 8
  givenname: Riming
  surname: Chen
  fullname: Chen, Riming
– sequence: 9
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 10
  givenname: Bingkun
  surname: Guo
  fullname: Guo, Bingkun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31845678$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtLxDAUhYOM6PjYuFcCbkSo5tlJllp8wYAbBXclSW-1zrQZk1bwD_i7zTi-MJsEzpdzH2cLjTrfAUJ7lJxQwvWp084RxRi1a2hMeS4yKdTDaPmWOptwITfRVozPJB0q1Qba5FQJmU_UGL1fm1BhZ4L1HW4bF3zWmc7jfrAQcQWheYUK18G3eGYWfobrxkLAJuJEVYBb0yfGzCOufcDRV83QZk3ysqZfKrAEK9w_wV8x9j6Yx_Qb3JPpmtjuoPU6mcDu172N7i8v7orrbHp7dVOcTTMnCO8zZ5kUGoggyqm6YooprcDInFHBcyd5mp5xRRh1udOWstpppZnlitbageHb6Gjluwj-ZYDYl20THcznpgM_xJJxNtGplJAJPfyHPvshdKm7RHGlJzKVTdTxikqbizFAXS5C05rwVlJSLtMpC10Un-mcJ_jgy3KwLVQ_6HccCdhfASG6H_U3Xv4Bhp-V9A
CitedBy_id crossref_primary_10_1002_aenm_202303833
crossref_primary_10_1016_j_diamond_2022_109392
crossref_primary_10_3390_batteries8090108
crossref_primary_10_1002_aenm_202003854
crossref_primary_10_1002_aenm_202200715
crossref_primary_10_1002_adma_202212186
crossref_primary_10_1016_j_nxmate_2024_100241
crossref_primary_10_3390_pr11030764
crossref_primary_10_6023_A21060284
crossref_primary_10_1016_j_carbon_2020_11_004
crossref_primary_10_1039_D2TA09406A
crossref_primary_10_1039_D0EE03916K
crossref_primary_10_1002_aenm_202202388
crossref_primary_10_1002_adfm_202208349
crossref_primary_10_1016_j_carbon_2023_01_048
crossref_primary_10_1021_acsenergylett_3c02751
crossref_primary_10_1016_j_jpowsour_2021_229834
crossref_primary_10_1021_acs_energyfuels_3c02406
crossref_primary_10_1039_D1CC04925A
crossref_primary_10_1002_advs_202200023
crossref_primary_10_1002_smtd_202201508
crossref_primary_10_1002_aenm_202201734
crossref_primary_10_1002_ange_202106178
crossref_primary_10_1016_j_ensm_2023_102805
crossref_primary_10_1016_j_electacta_2021_139000
crossref_primary_10_1016_S1872_5805_21_60075_6
crossref_primary_10_1039_D1TA10588D
crossref_primary_10_1002_asia_202301146
crossref_primary_10_1002_batt_202000133
crossref_primary_10_59761_RCR5100
crossref_primary_10_1002_batt_202000295
crossref_primary_10_1002_batt_202200427
crossref_primary_10_1002_batt_202300233
crossref_primary_10_3390_molecules27196516
crossref_primary_10_1038_s41467_024_45460_3
crossref_primary_10_1016_j_diamond_2024_111170
crossref_primary_10_1039_D3TA04739C
crossref_primary_10_1039_D4CC00025K
crossref_primary_10_1016_j_rser_2024_114304
crossref_primary_10_20964_2022_11_15
crossref_primary_10_1016_j_cej_2022_137468
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1002_cphc_202100748
crossref_primary_10_1016_j_jpowsour_2022_230994
crossref_primary_10_1002_anie_202106178
crossref_primary_10_1002_aenm_202000093
crossref_primary_10_1002_cey2_98
crossref_primary_10_3390_nano12060930
crossref_primary_10_3390_molecules27228107
crossref_primary_10_1007_s12274_022_5154_0
crossref_primary_10_1016_j_est_2024_112629
crossref_primary_10_1002_batt_202200316
crossref_primary_10_1007_s12598_020_01453_x
crossref_primary_10_1016_j_cej_2024_151055
crossref_primary_10_1002_smtd_202001050
crossref_primary_10_1016_j_fuel_2021_122072
crossref_primary_10_1002_adfm_202006066
crossref_primary_10_1007_s10570_021_03834_6
crossref_primary_10_13005_ojc_370301
crossref_primary_10_1002_cssc_202301053
crossref_primary_10_1016_j_nanoen_2024_109459
crossref_primary_10_3390_batteries8080081
Cites_doi 10.1021/ja00784a018
10.1016/j.ensm.2016.07.006
10.1002/adfm.201901072
10.1149/1.1393348
10.1021/jp406274e
10.1021/cr500192f
10.1002/aenm.201703268
10.1021/nl3016957
10.1002/aenm.201700403
10.1016/j.mattod.2018.12.040
10.1039/C4EE02986K
10.1016/S0008-6223(02)00121-5
10.1039/C8CC01388H
10.1021/acsaem.8b02231
10.1021/acs.nanolett.5b01969
10.1016/0368-2048(75)80052-1
10.1016/j.carbon.2017.08.030
10.1039/C6CC06990H
10.1149/1.2221153
10.1002/adma.201900440
10.1039/C5CS00344J
10.1016/j.memsci.2012.11.049
10.1039/C6TA04273B
10.1002/aenm.201902852
10.1016/S0008-6223(98)00103-1
10.1016/j.mser.2018.07.001
10.1103/PhysRev.98.337
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c9cc08221b
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 781
ExternalDocumentID 10_1039_C9CC08221B
31845678
c9cc08221b
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
1TJ
29B
2WC
4.4
53G
5GY
6J9
705
70J
70~
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABPTK
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AETIL
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
H13
HZ~
H~N
IDZ
IH2
J3I
M4U
N9A
O9-
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X7L
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
ABEMK
ABJNI
ABPDG
ABXOH
ACBEA
AEFDR
AENGV
AESAV
AFLYV
AFRDS
AGEGJ
AHGCF
APEMP
GGIMP
NPM
RIG
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c403t-cb2549e0408c8fd282898ea5621436c53136238021c6c9b12fc9892b381f9cea3
ISSN 1359-7345
IngestDate Fri Aug 16 23:39:01 EDT 2024
Thu Oct 10 20:30:04 EDT 2024
Fri Aug 23 01:34:06 EDT 2024
Sat Sep 28 08:31:36 EDT 2024
Tue Jun 27 20:19:40 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-cb2549e0408c8fd282898ea5621436c53136238021c6c9b12fc9892b381f9cea3
Notes 10.1039/c9cc08221b
See DOI
etc.
Electronic supplementary information (ESI) available: Experimental section, SEM, EDS, CV, galvanostatic charge-discharge, GITT, HR-TEM
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2800-6001
0000-0003-3229-1175
0000-0001-5738-0049
PMID 31845678
PQID 2338975562
PQPubID 2047502
PageCount 4
ParticipantIDs rsc_primary_c9cc08221b
crossref_primary_10_1039_C9CC08221B
proquest_journals_2338975562
proquest_miscellaneous_2327940345
pubmed_primary_31845678
PublicationCentury 2000
PublicationDate 2020-01-16
PublicationDateYYYYMMDD 2020-01-16
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Stratford (C9CC08221B-(cit10a)/*[position()=1]) 2016; 52
Ding (C9CC08221B-(cit12)/*[position()=1]) 2015; 8
Zou (C9CC08221B-(cit5b)/*[position()=1]) 2019; 31
Feher (C9CC08221B-(cit21)/*[position()=1]) 1955; 98
Li (C9CC08221B-(cit14)/*[position()=1]) 2019
Xie (C9CC08221B-(cit2c)/*[position()=1]) 2019; 29
Doeff (C9CC08221B-(cit4)/*[position()=1]) 1993; 140
Deringer (C9CC08221B-(cit10b)/*[position()=1]) 2018; 54
Zhecheva (C9CC08221B-(cit19)/*[position()=1]) 2002; 40
Zhu (C9CC08221B-(cit2b)/*[position()=1]) 2017; 123
Morita (C9CC08221B-(cit22)/*[position()=1]) 2016; 4
Yabuuchi (C9CC08221B-(cit1)/*[position()=1]) 2014; 114
Saffarini (C9CC08221B-(cit23)/*[position()=1]) 2013; 429
Mauger (C9CC08221B-(cit13)/*[position()=1]) 2018; 134
Saurel (C9CC08221B-(cit7)/*[position()=1]) 2018; 8
Kawamura (C9CC08221B-(cit20)/*[position()=1]) 1998; 36
Barrie (C9CC08221B-(cit17)/*[position()=1]) 1975; 7
Shkrob (C9CC08221B-(cit18)/*[position()=1]) 2013; 117
Qiu (C9CC08221B-(cit9)/*[position()=1]) 2017; 7
Kalisvaart (C9CC08221B-(cit3)/*[position()=1]) 2019; 2
Qi (C9CC08221B-(cit6)/*[position()=1]) 2015; 44
Li (C9CC08221B-(cit16)/*[position()=1]) 2016; 5
Cao (C9CC08221B-(cit5a)/*[position()=1]) 2012; 12
Morgan (C9CC08221B-(cit15)/*[position()=1]) 1973; 95
Stevens (C9CC08221B-(cit2a)/*[position()=1]) 2000; 147
Dou (C9CC08221B-(cit11)/*[position()=1]) 2019; 23
Bommier (C9CC08221B-(cit8)/*[position()=1]) 2015; 15
References_xml – volume: 95
  start-page: 751
  year: 1973
  ident: C9CC08221B-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00784a018
  contributor:
    fullname: Morgan
– volume: 5
  start-page: 191
  year: 2016
  ident: C9CC08221B-(cit16)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.07.006
  contributor:
    fullname: Li
– volume: 29
  start-page: 1901072
  year: 2019
  ident: C9CC08221B-(cit2c)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901072
  contributor:
    fullname: Xie
– volume: 147
  start-page: 1271
  year: 2000
  ident: C9CC08221B-(cit2a)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393348
  contributor:
    fullname: Stevens
– volume: 117
  start-page: 19255
  year: 2013
  ident: C9CC08221B-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp406274e
  contributor:
    fullname: Shkrob
– volume: 114
  start-page: 11636
  year: 2014
  ident: C9CC08221B-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500192f
  contributor:
    fullname: Yabuuchi
– volume: 8
  start-page: 1703268
  year: 2018
  ident: C9CC08221B-(cit7)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703268
  contributor:
    fullname: Saurel
– volume: 12
  start-page: 3783
  year: 2012
  ident: C9CC08221B-(cit5a)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl3016957
  contributor:
    fullname: Cao
– volume: 7
  start-page: 1700403
  year: 2017
  ident: C9CC08221B-(cit9)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700403
  contributor:
    fullname: Qiu
– volume: 23
  start-page: 87
  year: 2019
  ident: C9CC08221B-(cit11)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.12.040
  contributor:
    fullname: Dou
– volume: 8
  start-page: 941
  year: 2015
  ident: C9CC08221B-(cit12)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02986K
  contributor:
    fullname: Ding
– volume: 40
  start-page: 2301
  year: 2002
  ident: C9CC08221B-(cit19)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00121-5
  contributor:
    fullname: Zhecheva
– volume: 54
  start-page: 5988
  year: 2018
  ident: C9CC08221B-(cit10b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC01388H
  contributor:
    fullname: Deringer
– volume: 2
  start-page: 2205
  year: 2019
  ident: C9CC08221B-(cit3)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b02231
  contributor:
    fullname: Kalisvaart
– volume: 15
  start-page: 5888
  year: 2015
  ident: C9CC08221B-(cit8)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01969
  contributor:
    fullname: Bommier
– volume: 7
  start-page: 1
  year: 1975
  ident: C9CC08221B-(cit17)/*[position()=1]
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/0368-2048(75)80052-1
  contributor:
    fullname: Barrie
– volume: 123
  start-page: 727
  year: 2017
  ident: C9CC08221B-(cit2b)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.030
  contributor:
    fullname: Zhu
– volume: 52
  start-page: 12430
  year: 2016
  ident: C9CC08221B-(cit10a)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06990H
  contributor:
    fullname: Stratford
– volume: 140
  start-page: L169
  year: 1993
  ident: C9CC08221B-(cit4)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221153
  contributor:
    fullname: Doeff
– volume: 31
  start-page: 1900440
  year: 2019
  ident: C9CC08221B-(cit5b)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900440
  contributor:
    fullname: Zou
– volume: 44
  start-page: 6749
  year: 2015
  ident: C9CC08221B-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00344J
  contributor:
    fullname: Qi
– volume: 429
  start-page: 282
  year: 2013
  ident: C9CC08221B-(cit23)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.11.049
  contributor:
    fullname: Saffarini
– volume: 4
  start-page: 13183
  year: 2016
  ident: C9CC08221B-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04273B
  contributor:
    fullname: Morita
– start-page: 1902852
  year: 2019
  ident: C9CC08221B-(cit14)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902852
  contributor:
    fullname: Li
– volume: 36
  start-page: 1227
  year: 1998
  ident: C9CC08221B-(cit20)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/S0008-6223(98)00103-1
  contributor:
    fullname: Kawamura
– volume: 134
  start-page: 1
  year: 2018
  ident: C9CC08221B-(cit13)/*[position()=1]
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2018.07.001
  contributor:
    fullname: Mauger
– volume: 98
  start-page: 337
  year: 1955
  ident: C9CC08221B-(cit21)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.98.337
  contributor:
    fullname: Feher
SSID ssj0000158
Score 2.5890112
Snippet Hard carbon materials are considered as the most promising anode for sodium-ion batteries (SIBs). However, the high cost and poor rate performance hinder their...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 778
SubjectTerms Anodes
Carbon
Electrode materials
Electron paramagnetic resonance
Ion storage
Rechargeable batteries
Sodium
Sodium-ion batteries
Storage batteries
Thermogravimetric analysis
Title Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/31845678
https://www.proquest.com/docview/2338975562
https://search.proquest.com/docview/2327940345
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJ8FeEF-DwkBG8DYZmjjOx-OoigYavNCJ9qlyHEdFU5NqTZDGD-Av8He517HdjIEEvFSV7Xw059Q-du49JuRlkJRaFSplXMc4QVGS5UmSMFEKGXFQ6GWJicIfPsYnZ9H7uZgPBj96UUttk79S336bV_I_qEIZ4IpZsv-ArD8pFMB3wBc-AWH4_CuM8bU7ekvnAOEaI-tYJSvQkm2ut0cF3MFXkJMmgeRcburzoxLDQ3BnGWhlIleb7i5NrOG2Lr60a4Z0yI3pJsyhfXxlrxLDKTHQZ60xadg5EDqzA-c_oPqJJ2Zl12eHme632zuktw6xaM17klVbs6kPGD69NKULGF_VqvU8_mwXuRcmX9uVzk3bT6v20rqJ28WMEGPiWGCtsLsOmMcRg1nUvN9Dd9bjlomi190m3fY_14aBMUcXVZUphYb2wZWxAiDcrA0hoDsD-did4hfTbVd1g-yF6CA4JHvH09m7054zmUid2y3PXu8utU9uuoOvSp1r8xdQMxdulxmjZmZ3yG07DaHHHafukoGu7pFbE7f7333yHblFO27RHbeo4Ra13KLILWq4RQ23qNxSwy3quUWBW3RHH-q5BQ0LCtzqV1puUc-tB-Ts7XQ2OWF2zw6mojFvmMpxxUHD0JCqtCzMhD7VElQ2CPNYQY8PiomnoCxVrLI8CEuVpVmYg3AsM6UlPyDDqq70I0LTYsyLUiShTMZRLgIZ6CQSMsbMsiCWyYi8cI93uemsWZYmpIJny0k2mRg83ozIoXvyS_vX3S5DDjo9EXBXI_LcV8MTxrdlstJ1i20AefhNkRiRhx1i_jIO4RE5AAh98Y4Fj_94yBOyvyP-IRk2F61-Crq2yZ9Zjv0EWw-mjQ
link.rule.ids 315,783,787,27937,27938
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hard+carbon+micro-nano+tubes+derived+from+kapok+fiber+as+anode+materials+for+sodium-ion+batteries+and+the+sodium-ion+storage+mechanism&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Yu%2C+Zhuo-Er&rft.au=Lyu%2C+Yingchun&rft.au=Wang%2C+Yeting&rft.au=Xu%2C+Shuyin&rft.date=2020-01-16&rft.eissn=1364-548X&rft.volume=56&rft.issue=5&rft.spage=778&rft_id=info:doi/10.1039%2Fc9cc08221b&rft_id=info%3Apmid%2F31845678&rft.externalDocID=31845678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon