Estimation of survival and capture probabilities in open population capture–recapture models when covariates are subject to measurement error

Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or survival probabilities. If these predictor variables are measured with error and subsequently used in the analysis, then estimates of the model pa...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 96; pp. 74 - 86
Main Authors Stoklosa, Jakub, Dann, Peter, Huggins, Richard M., Hwang, Wen-Han
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or survival probabilities. If these predictor variables are measured with error and subsequently used in the analysis, then estimates of the model parameters may be biased. Several approaches have been proposed to account for error-in-variables in capture–recapture models, however these methods generally assume the population is closed; hence quantities of interest for open populations such as the survival probabilities do not appear in the likelihood. To account for measurement error in environmental time-varying covariates for open population capture–recapture data, the well-known Cormack–Jolly–Seber model and two statistical methods are considered: (1) simulation–extrapolation; and (2) regression calibration, as well as a new method which accounts for correlation (arising from measurement error) between the survival and capture probabilities. Several simulation studies are conducted to examine the method performances, and a case study is presented which uses capture–recapture data on the Little Penguin Eudyptula minor and sea-surface temperature data as an environmental covariate to model their survival and capture probabilities.
AbstractList Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or survival probabilities. If these predictor variables are measured with error and subsequently used in the analysis, then estimates of the model parameters may be biased. Several approaches have been proposed to account for error-in-variables in capture–recapture models, however these methods generally assume the population is closed; hence quantities of interest for open populations such as the survival probabilities do not appear in the likelihood. To account for measurement error in environmental time-varying covariates for open population capture–recapture data, the well-known Cormack–Jolly–Seber model and two statistical methods are considered: (1) simulation–extrapolation; and (2) regression calibration, as well as a new method which accounts for correlation (arising from measurement error) between the survival and capture probabilities. Several simulation studies are conducted to examine the method performances, and a case study is presented which uses capture–recapture data on the Little Penguin Eudyptula minor and sea-surface temperature data as an environmental covariate to model their survival and capture probabilities.
Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or survival probabilities. If these predictor variables are measured with error and subsequently used in the analysis, then estimates of the model parameters may be biased. Several approaches have been proposed to account for error-in-variables in capture–recapture models, however these methods generally assume the population is closed; hence quantities of interest for open populations such as the survival probabilities do not appear in the likelihood. To account for measurement error in environmental time-varying covariates for open population capture–recapture data, the well-known Cormack–Jolly–Seber model and two statistical methods are considered: (1) simulation–extrapolation; and (2) regression calibration, as well as a new method which accounts for correlation (arising from measurement error) between the survival and capture probabilities. Several simulation studies are conducted to examine the method performances, and a case study is presented which uses capture–recapture data on the Little Penguin Eudyptula minor and sea-surface temperature data as an environmental covariate to model their survival and capture probabilities.
Author Huggins, Richard M.
Dann, Peter
Hwang, Wen-Han
Stoklosa, Jakub
Author_xml – sequence: 1
  givenname: Jakub
  surname: Stoklosa
  fullname: Stoklosa, Jakub
  email: j.stoklosa@unsw.edu.au
  organization: School of Mathematics and Statistics and Evolution & Ecology Research Centre, The University of New South Wales, New South Wales 2052, Australia
– sequence: 2
  givenname: Peter
  surname: Dann
  fullname: Dann, Peter
  organization: Research Department, Phillip Island Nature Parks, Victoria 3922, Australia
– sequence: 3
  givenname: Richard M.
  surname: Huggins
  fullname: Huggins, Richard M.
  organization: Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
– sequence: 4
  givenname: Wen-Han
  surname: Hwang
  fullname: Hwang, Wen-Han
  email: wenhan@nchu.edu.tw
  organization: Institute of Statistics and Department of Applied Mathematics, National Chung Hsing University, Taichung 402, Taiwan
BookMark eNp9kbFu2zAQhokiAeq4eYFOHLvIOVKSKQFdCiNNCgTIkszEiTohNCRRJSkX2foGHfKGfZJQtbN0yETg-H0k7v8v2NnoRmLss4CNALG92m9MaHEjQZRpsAEBH9hKVEpmKi_lGVslSGV1ofKP7CKEPQDIQlUr9uc6RDtgtG7kruNh9gd7wJ7j2HKDU5w98cm7Bhvb22gpcJvAiUY-uWnuj-IJ_Pv7xdObNLiW-sB_PSXUuAN6izHZmK7C3OzJRB4dHwjTlzTQGDl57_wndt5hH-jydK7Z4_frh91tdnd_82P37S4zBeQxM2i2eYGiblUHtcEC2jqvANSWTN7VSpRSNbJTXW5IgSqFKruqNTVgsyWR3DX7cnw3LfdzphD1YIOhvseR3By0lGUuhZKwoNURNd6F4KnTxsZ_i0ePttcC9NKB3uulA710sMxSB0mV_6mTT2n75_elr0cp5UcHS14HY2k01NoUb9Sts-_pr1bmp5g
CitedBy_id crossref_primary_10_1007_s10651_017_0394_y
crossref_primary_10_1002_sta4_500
crossref_primary_10_1111_sjos_12670
Cites_doi 10.1093/biostatistics/kxv024
10.1111/anzs.12066
10.1007/s13253-010-0052-4
10.1023/A:1015118120406
10.1111/j.0006-341X.2003.00128.x
10.3354/meps09709
10.1071/MU9830094
10.1111/j.1474-919X.2012.01234.x
10.1111/j.0006-341X.2000.00487.x
10.1111/j.1541-0420.2005.00514.x
10.2307/2532348
10.1111/j.1541-0420.2005.00399.x
10.1007/s13253-009-0003-0
10.1080/00949655.2012.668908
10.1198/000313006X152207
10.1177/1536867X0400300406
10.1111/j.1467-9876.2011.01030.x
10.1016/j.jspi.2006.04.010
10.1080/01621459.1994.10476871
10.1002/bimj.201100215
10.1002/cjs.10038
10.1111/2041-210X.12095
10.3354/cr01187
10.1080/03610918508812457
10.1016/S0378-1127(97)00161-8
10.1214/08-EJS341
10.3354/meps07881
10.1080/01621459.2014.893884
10.1071/MU9810001
10.1080/02664760120108430
10.1111/2041-210X.12217
10.2307/2937171
10.1198/108571101750524553
10.1080/01621459.1990.10474925
10.1080/02664760120108782
10.1111/j.1467-9868.2007.00644.x
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2015.10.010
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
EndPage 86
ExternalDocumentID 10_1016_j_csda_2015_10_010
S0167947315002650
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c403t-cac634a19d7f09ca40d9380076ec3f971527b2f7f3ce7075175f8dc90ab6e1c63
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Fri Jul 11 15:20:15 EDT 2025
Tue Jul 01 02:24:31 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Fri Feb 23 02:23:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mark–capture–recapture
SIMEX
Regression calibration
Cormack–Jolly–Seber model
Error-in-variables
Little Penguins
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-cac634a19d7f09ca40d9380076ec3f971527b2f7f3ce7075175f8dc90ab6e1c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2253217206
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2253217206
crossref_citationtrail_10_1016_j_csda_2015_10_010
crossref_primary_10_1016_j_csda_2015_10_010
elsevier_sciencedirect_doi_10_1016_j_csda_2015_10_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Carroll, Stefanski (br000045) 1990; 85
Armstrong (br000015) 1985; 14
Bonner, Schwarz (br000030) 2006; 62
Reilly, Cullen (br000175) 1983; 83
Catchpole, Morgan, Tavecchia (br000050) 2008; 70
Shen, Chen (br000185) 2015
Wang, Wang, Wang (br000215) 2000; 56
Hardin, Schmiediche, Carroll (br000095) 2003; 3
Xi, Watson, Wang, Yip (br000220) 2009; 37
Bonner, Schofield (br000025) 2014; 5
Monahan, Stefanski (br000150) 1992
Gimenez, Crainiceanu, Barbraud, Jenouvrier, Morgan (br000085) 2006; 62
Johnson, Kotz, Balakrishnan (br000125) 1995
Lebreton, Burnham, Clobert, Anderson (br000135) 1992; 62
Stoklosa, Daly, Foster, Ashcroft, Warton (br000195) 2015; 6
Cullen, Chambers, Coutin, Dann (br000060) 2009; 378
Delaigle (br000070) 2014; 56
Barker, Fletcher, Scofield (br000020) 2002; 29
Foster, Shimadzu, Darnell (br000075) 2012; 61
Nakamura (br000155) 1992; 48
Reilly, Cullen (br000170) 1981; 81
Oliver (br000160) 2012
Amstrup, McDonald, Manly (br000005) 2005
Hwang, Huang (br000110) 2003; 59
Hwang, Huang (br000115) 2007; 137
Borchers, Stevenson, Kidney, Thomas, Marques (br000035) 2015; 110
Dann, Chambers (br000065) 2013; 58
Pollock (br000165) 2002; 29
Stoklosa, Huggins (br000200) 2012; 54
Gould, Stefanski, Pollock (br000090) 1999; 56
McCrea, Morgan (br000140) 2014
Kangas (br000130) 1998; 102
Sutherland, Dann (br000205) 2012; 154
McDonald, Amstrup (br000145) 2001; 6
Sidhu, Dann, Chambers, Catchpole (br000190) 2012; 454
Schofield, Barker (br000180) 2011; 16
Van Duesen (br000210) 2001; 9
Huggins, Hwang (br000100) 2010; 15
Huggins, Stoklosa (br000105) 2013; 83
Freedman (br000080) 2006; 60
Apanasovich, Carroll, Maity (br000010) 2009; 3
Cook, Stefanski (br000055) 1994; 89
Carroll, Ruppert, Stefanski, Crainiceanu (br000040) 2006
Hwang, Huang, Wang (br000120) 2007; 17
Reilly (10.1016/j.csda.2015.10.010_br000175) 1983; 83
Apanasovich (10.1016/j.csda.2015.10.010_br000010) 2009; 3
Gould (10.1016/j.csda.2015.10.010_br000090) 1999; 56
McDonald (10.1016/j.csda.2015.10.010_br000145) 2001; 6
Cullen (10.1016/j.csda.2015.10.010_br000060) 2009; 378
Bonner (10.1016/j.csda.2015.10.010_br000025) 2014; 5
Hardin (10.1016/j.csda.2015.10.010_br000095) 2003; 3
Sutherland (10.1016/j.csda.2015.10.010_br000205) 2012; 154
Lebreton (10.1016/j.csda.2015.10.010_br000135) 1992; 62
Kangas (10.1016/j.csda.2015.10.010_br000130) 1998; 102
Barker (10.1016/j.csda.2015.10.010_br000020) 2002; 29
Stoklosa (10.1016/j.csda.2015.10.010_br000195) 2015; 6
Dann (10.1016/j.csda.2015.10.010_br000065) 2013; 58
Sidhu (10.1016/j.csda.2015.10.010_br000190) 2012; 454
Shen (10.1016/j.csda.2015.10.010_br000185) 2015
Oliver (10.1016/j.csda.2015.10.010_br000160) 2012
Schofield (10.1016/j.csda.2015.10.010_br000180) 2011; 16
Catchpole (10.1016/j.csda.2015.10.010_br000050) 2008; 70
Carroll (10.1016/j.csda.2015.10.010_br000045) 1990; 85
Bonner (10.1016/j.csda.2015.10.010_br000030) 2006; 62
Carroll (10.1016/j.csda.2015.10.010_br000040) 2006
Wang (10.1016/j.csda.2015.10.010_br000215) 2000; 56
Borchers (10.1016/j.csda.2015.10.010_br000035) 2015; 110
Xi (10.1016/j.csda.2015.10.010_br000220) 2009; 37
Foster (10.1016/j.csda.2015.10.010_br000075) 2012; 61
Hwang (10.1016/j.csda.2015.10.010_br000115) 2007; 137
Delaigle (10.1016/j.csda.2015.10.010_br000070) 2014; 56
Gimenez (10.1016/j.csda.2015.10.010_br000085) 2006; 62
Amstrup (10.1016/j.csda.2015.10.010_br000005) 2005
Hwang (10.1016/j.csda.2015.10.010_br000110) 2003; 59
Van Duesen (10.1016/j.csda.2015.10.010_br000210) 2001; 9
Nakamura (10.1016/j.csda.2015.10.010_br000155) 1992; 48
Pollock (10.1016/j.csda.2015.10.010_br000165) 2002; 29
Armstrong (10.1016/j.csda.2015.10.010_br000015) 1985; 14
McCrea (10.1016/j.csda.2015.10.010_br000140) 2014
Reilly (10.1016/j.csda.2015.10.010_br000170) 1981; 81
Cook (10.1016/j.csda.2015.10.010_br000055) 1994; 89
Huggins (10.1016/j.csda.2015.10.010_br000100) 2010; 15
Johnson (10.1016/j.csda.2015.10.010_br000125) 1995
Huggins (10.1016/j.csda.2015.10.010_br000105) 2013; 83
Hwang (10.1016/j.csda.2015.10.010_br000120) 2007; 17
Monahan (10.1016/j.csda.2015.10.010_br000150) 1992
Freedman (10.1016/j.csda.2015.10.010_br000080) 2006; 60
Stoklosa (10.1016/j.csda.2015.10.010_br000200) 2012; 54
References_xml – volume: 137
  start-page: 1888
  year: 2007
  end-page: 1899
  ident: br000115
  article-title: Measurement errors in continuous-time capture–recapture models
  publication-title: J. Statist. Plann. Inference
– volume: 102
  start-page: 203
  year: 1998
  end-page: 212
  ident: br000130
  article-title: Effect of errors-in-variables on coefficients of a growth model and on prediction of growth
  publication-title: Forest Ecol. Manag.
– volume: 454
  start-page: 263
  year: 2012
  end-page: 272
  ident: br000190
  article-title: Seasonal ocean temperatures and the survival of first-year little Penguins in south-eastern Australia
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 56
  start-page: 487
  year: 2000
  end-page: 495
  ident: br000215
  article-title: Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements
  publication-title: Biometrics
– volume: 59
  start-page: 1113
  year: 2003
  end-page: 1122
  ident: br000110
  article-title: Estimation in capture–recapture models when covariates are subject to measurement errors
  publication-title: Biometrics
– volume: 62
  start-page: 142
  year: 2006
  end-page: 149
  ident: br000030
  article-title: An extension of the Cormack–Jolly–Seber model for continuous covariates with application to Microtus pennsylvanicus
  publication-title: Biometrics
– volume: 48
  start-page: 829
  year: 1992
  end-page: 838
  ident: br000155
  article-title: Proportional hazards model with covariates subject to measurement error
  publication-title: Biometrics
– volume: 54
  start-page: 861
  year: 2012
  end-page: 874
  ident: br000200
  article-title: Cormack–Jolly–Seber model with environmental covariates: A P-spline approach
  publication-title: Biom. J.
– volume: 62
  start-page: 691
  year: 2006
  end-page: 698
  ident: br000085
  article-title: Semiparametric regression in capture–recapture modeling
  publication-title: Biometrics
– volume: 6
  start-page: 206
  year: 2001
  end-page: 220
  ident: br000145
  article-title: Estimation of population size using open capture–recapture models
  publication-title: J. Agric. Biol. Environ. Stat.
– volume: 81
  start-page: 1
  year: 1981
  end-page: 19
  ident: br000170
  article-title: The little penguin eudyptula minor in victoria, II: breeding
  publication-title: Emu
– volume: 17
  start-page: 301
  year: 2007
  end-page: 316
  ident: br000120
  article-title: Effects of measurement error and conditional score estimation in capture–recapture models
  publication-title: Statist. Sinica
– year: 2015
  ident: br000185
  article-title: Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error
  publication-title: Biostatistics
– volume: 37
  start-page: 645
  year: 2009
  end-page: 658
  ident: br000220
  article-title: Estimation in capture–recapture models when covariates are subject to measurement errors and missing data
  publication-title: Can. J. Statist.
– volume: 83
  start-page: 1741
  year: 2013
  end-page: 1755
  ident: br000105
  article-title: Semiparametric inference for open populations using the Jolly–Seber model: A penalized spline approach
  publication-title: J. Stat. Comput. Simul.
– volume: 154
  start-page: 488
  year: 2012
  end-page: 498
  ident: br000205
  article-title: Improving the accuracy of population size estimates for burrowing seabirds
  publication-title: Ibis
– volume: 70
  start-page: 445
  year: 2008
  end-page: 460
  ident: br000050
  article-title: A new method for analysing discrete life-history data with missing values
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 5
  start-page: 1305
  year: 2014
  end-page: 1315
  ident: br000025
  article-title: MC(MC)MC: exploring Monte Carlo integration within MCMC for mark–recapture models with individual covariates
  publication-title: Methods Ecol. Evol.
– year: 2012
  ident: br000160
  article-title: Modelling individual heterogeneity in mark-recapture studies
– volume: 56
  start-page: 1234
  year: 1999
  end-page: 1240
  ident: br000090
  article-title: Use of simulation–extrapolation estimation in catch–effort analyses
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 83
  start-page: 94
  year: 1983
  end-page: 98
  ident: br000175
  article-title: The little penguin eudyptula minor in victoria, IV: moult
  publication-title: Emu
– year: 1995
  ident: br000125
  article-title: Continuous Univariate Distributions, Vol. 2
– volume: 6
  start-page: 412
  year: 2015
  end-page: 423
  ident: br000195
  article-title: A climate of uncertainty: accounting for error in climate variables for species distribution models
  publication-title: Methods Ecol. Evol.
– year: 2005
  ident: br000005
  article-title: Handbook of Capture–Recapture Analysis
– volume: 16
  start-page: 253
  year: 2011
  end-page: 268
  ident: br000180
  article-title: Full open population capture–recapture models with individual covariates
  publication-title: J. Agric. Biol. Environ. Stat.
– year: 2014
  ident: br000140
  article-title: Analysis of Capture–Recapture Data
– volume: 29
  start-page: 305
  year: 2002
  end-page: 313
  ident: br000020
  article-title: Measuring density dependence in survival from mark-recapture data
  publication-title: J. Appl. Stat.
– volume: 85
  start-page: 652
  year: 1990
  end-page: 663
  ident: br000045
  article-title: Approximate quasi-likelihood estimation in models with surrogate predictors
  publication-title: J. Amer. Statist. Assoc.
– volume: 58
  start-page: 67
  year: 2013
  end-page: 79
  ident: br000065
  article-title: Ecological effects of climate change on little Penguins Eudyptula minor and the potential economic impact on tourism
  publication-title: Clim. Res.
– volume: 14
  start-page: 529
  year: 1985
  end-page: 544
  ident: br000015
  article-title: Measurement error in generalized linear models
  publication-title: Comm. Statist. Ser. B—Simulation Comput.
– volume: 378
  start-page: 269
  year: 2009
  end-page: 278
  ident: br000060
  article-title: Predicting onset and success of breeding in little penguins Eudyptula minor from ocean temperature
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 62
  start-page: 67
  year: 1992
  end-page: 118
  ident: br000135
  article-title: Modelling survival and testing biological hypothesis using marked animals: A unified approach with case studies
  publication-title: Ecol. Monograph
– volume: 56
  start-page: 105
  year: 2014
  end-page: 124
  ident: br000070
  article-title: Nonparametric kernel methods with errors-in-variables: Constructing estimators, computing them, and avoiding common mistakes
  publication-title: Aust. N.Z. J. Stat.
– volume: 15
  start-page: 198
  year: 2010
  end-page: 208
  ident: br000100
  article-title: A measurement error model for heterogeneous capture probabilities in mark–recapture experiments: An estimating equation approach
  publication-title: J. Agric. Biol. Environ. Stat.
– volume: 29
  start-page: 85
  year: 2002
  end-page: 102
  ident: br000165
  article-title: The use of auxiliary variables in capture–recapture modelling: an overview
  publication-title: J. Appl. Stat.
– volume: 60
  start-page: 299
  year: 2006
  end-page: 302
  ident: br000080
  article-title: On the so-called “Huber sandwich estimator” and “Robust standard errors”
  publication-title: Amer. Statist.
– start-page: 529
  year: 1992
  end-page: 540
  ident: br000150
  article-title: Normal scale mixture approximations to
  publication-title: Handbook of the Logistic Distribution
– volume: 9
  start-page: 151
  year: 2001
  end-page: 165
  ident: br000210
  article-title: An EM algorithm for capture–recapture experiments
  publication-title: J. Environ. Ecol. Stat.
– volume: 110
  start-page: 195
  year: 2015
  end-page: 204
  ident: br000035
  article-title: A unifying model for capture–recapture and distance sampling surveys of wildlife populations
  publication-title: J. Amer. Statist. Assoc.
– volume: 89
  start-page: 1314
  year: 1994
  end-page: 1328
  ident: br000055
  article-title: Simulation–extrapolation estimation in parametric measurement error models
  publication-title: J. Amer. Statist. Assoc.
– volume: 3
  start-page: 361
  year: 2003
  end-page: 372
  ident: br000095
  article-title: The regression-calibration method for fitting generalized linear models with additive measurement error
  publication-title: Stata J.
– year: 2006
  ident: br000040
  article-title: Measurement Error in Nonlinear Models: A Modern Perspective
– volume: 61
  start-page: 637
  year: 2012
  end-page: 652
  ident: br000075
  article-title: Uncertainty in spatially predicted covariates: is it ignorable?
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– volume: 3
  start-page: 318
  year: 2009
  end-page: 348
  ident: br000010
  article-title: SIMEX and standard error estimation in semiparametric measurement error models
  publication-title: Electron. J. Stat.
– year: 2015
  ident: 10.1016/j.csda.2015.10.010_br000185
  article-title: Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxv024
– volume: 56
  start-page: 105
  year: 2014
  ident: 10.1016/j.csda.2015.10.010_br000070
  article-title: Nonparametric kernel methods with errors-in-variables: Constructing estimators, computing them, and avoiding common mistakes
  publication-title: Aust. N.Z. J. Stat.
  doi: 10.1111/anzs.12066
– volume: 16
  start-page: 253
  year: 2011
  ident: 10.1016/j.csda.2015.10.010_br000180
  article-title: Full open population capture–recapture models with individual covariates
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1007/s13253-010-0052-4
– volume: 9
  start-page: 151
  year: 2001
  ident: 10.1016/j.csda.2015.10.010_br000210
  article-title: An EM algorithm for capture–recapture experiments
  publication-title: J. Environ. Ecol. Stat.
  doi: 10.1023/A:1015118120406
– volume: 59
  start-page: 1113
  year: 2003
  ident: 10.1016/j.csda.2015.10.010_br000110
  article-title: Estimation in capture–recapture models when covariates are subject to measurement errors
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2003.00128.x
– volume: 454
  start-page: 263
  year: 2012
  ident: 10.1016/j.csda.2015.10.010_br000190
  article-title: Seasonal ocean temperatures and the survival of first-year little Penguins in south-eastern Australia
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps09709
– volume: 83
  start-page: 94
  year: 1983
  ident: 10.1016/j.csda.2015.10.010_br000175
  article-title: The little penguin eudyptula minor in victoria, IV: moult
  publication-title: Emu
  doi: 10.1071/MU9830094
– volume: 154
  start-page: 488
  year: 2012
  ident: 10.1016/j.csda.2015.10.010_br000205
  article-title: Improving the accuracy of population size estimates for burrowing seabirds
  publication-title: Ibis
  doi: 10.1111/j.1474-919X.2012.01234.x
– volume: 56
  start-page: 487
  year: 2000
  ident: 10.1016/j.csda.2015.10.010_br000215
  article-title: Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00487.x
– start-page: 529
  year: 1992
  ident: 10.1016/j.csda.2015.10.010_br000150
  article-title: Normal scale mixture approximations to F∗(z) and computation of the logistic-normal integral
– volume: 62
  start-page: 691
  year: 2006
  ident: 10.1016/j.csda.2015.10.010_br000085
  article-title: Semiparametric regression in capture–recapture modeling
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00514.x
– volume: 48
  start-page: 829
  year: 1992
  ident: 10.1016/j.csda.2015.10.010_br000155
  article-title: Proportional hazards model with covariates subject to measurement error
  publication-title: Biometrics
  doi: 10.2307/2532348
– volume: 62
  start-page: 142
  year: 2006
  ident: 10.1016/j.csda.2015.10.010_br000030
  article-title: An extension of the Cormack–Jolly–Seber model for continuous covariates with application to Microtus pennsylvanicus
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00399.x
– volume: 15
  start-page: 198
  year: 2010
  ident: 10.1016/j.csda.2015.10.010_br000100
  article-title: A measurement error model for heterogeneous capture probabilities in mark–recapture experiments: An estimating equation approach
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1007/s13253-009-0003-0
– year: 1995
  ident: 10.1016/j.csda.2015.10.010_br000125
– volume: 83
  start-page: 1741
  year: 2013
  ident: 10.1016/j.csda.2015.10.010_br000105
  article-title: Semiparametric inference for open populations using the Jolly–Seber model: A penalized spline approach
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2012.668908
– volume: 60
  start-page: 299
  year: 2006
  ident: 10.1016/j.csda.2015.10.010_br000080
  article-title: On the so-called “Huber sandwich estimator” and “Robust standard errors”
  publication-title: Amer. Statist.
  doi: 10.1198/000313006X152207
– volume: 56
  start-page: 1234
  year: 1999
  ident: 10.1016/j.csda.2015.10.010_br000090
  article-title: Use of simulation–extrapolation estimation in catch–effort analyses
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 3
  start-page: 361
  year: 2003
  ident: 10.1016/j.csda.2015.10.010_br000095
  article-title: The regression-calibration method for fitting generalized linear models with additive measurement error
  publication-title: Stata J.
  doi: 10.1177/1536867X0400300406
– year: 2012
  ident: 10.1016/j.csda.2015.10.010_br000160
– volume: 61
  start-page: 637
  year: 2012
  ident: 10.1016/j.csda.2015.10.010_br000075
  article-title: Uncertainty in spatially predicted covariates: is it ignorable?
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
  doi: 10.1111/j.1467-9876.2011.01030.x
– volume: 137
  start-page: 1888
  year: 2007
  ident: 10.1016/j.csda.2015.10.010_br000115
  article-title: Measurement errors in continuous-time capture–recapture models
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2006.04.010
– volume: 89
  start-page: 1314
  year: 1994
  ident: 10.1016/j.csda.2015.10.010_br000055
  article-title: Simulation–extrapolation estimation in parametric measurement error models
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1994.10476871
– volume: 54
  start-page: 861
  year: 2012
  ident: 10.1016/j.csda.2015.10.010_br000200
  article-title: Cormack–Jolly–Seber model with environmental covariates: A P-spline approach
  publication-title: Biom. J.
  doi: 10.1002/bimj.201100215
– volume: 37
  start-page: 645
  year: 2009
  ident: 10.1016/j.csda.2015.10.010_br000220
  article-title: Estimation in capture–recapture models when covariates are subject to measurement errors and missing data
  publication-title: Can. J. Statist.
  doi: 10.1002/cjs.10038
– year: 2005
  ident: 10.1016/j.csda.2015.10.010_br000005
– volume: 5
  start-page: 1305
  year: 2014
  ident: 10.1016/j.csda.2015.10.010_br000025
  article-title: MC(MC)MC: exploring Monte Carlo integration within MCMC for mark–recapture models with individual covariates
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12095
– volume: 58
  start-page: 67
  year: 2013
  ident: 10.1016/j.csda.2015.10.010_br000065
  article-title: Ecological effects of climate change on little Penguins Eudyptula minor and the potential economic impact on tourism
  publication-title: Clim. Res.
  doi: 10.3354/cr01187
– volume: 14
  start-page: 529
  year: 1985
  ident: 10.1016/j.csda.2015.10.010_br000015
  article-title: Measurement error in generalized linear models
  publication-title: Comm. Statist. Ser. B—Simulation Comput.
  doi: 10.1080/03610918508812457
– volume: 102
  start-page: 203
  year: 1998
  ident: 10.1016/j.csda.2015.10.010_br000130
  article-title: Effect of errors-in-variables on coefficients of a growth model and on prediction of growth
  publication-title: Forest Ecol. Manag.
  doi: 10.1016/S0378-1127(97)00161-8
– volume: 3
  start-page: 318
  year: 2009
  ident: 10.1016/j.csda.2015.10.010_br000010
  article-title: SIMEX and standard error estimation in semiparametric measurement error models
  publication-title: Electron. J. Stat.
  doi: 10.1214/08-EJS341
– volume: 378
  start-page: 269
  year: 2009
  ident: 10.1016/j.csda.2015.10.010_br000060
  article-title: Predicting onset and success of breeding in little penguins Eudyptula minor from ocean temperature
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps07881
– year: 2006
  ident: 10.1016/j.csda.2015.10.010_br000040
– volume: 110
  start-page: 195
  year: 2015
  ident: 10.1016/j.csda.2015.10.010_br000035
  article-title: A unifying model for capture–recapture and distance sampling surveys of wildlife populations
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2014.893884
– volume: 81
  start-page: 1
  year: 1981
  ident: 10.1016/j.csda.2015.10.010_br000170
  article-title: The little penguin eudyptula minor in victoria, II: breeding
  publication-title: Emu
  doi: 10.1071/MU9810001
– volume: 29
  start-page: 85
  year: 2002
  ident: 10.1016/j.csda.2015.10.010_br000165
  article-title: The use of auxiliary variables in capture–recapture modelling: an overview
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760120108430
– volume: 6
  start-page: 412
  year: 2015
  ident: 10.1016/j.csda.2015.10.010_br000195
  article-title: A climate of uncertainty: accounting for error in climate variables for species distribution models
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12217
– volume: 62
  start-page: 67
  year: 1992
  ident: 10.1016/j.csda.2015.10.010_br000135
  article-title: Modelling survival and testing biological hypothesis using marked animals: A unified approach with case studies
  publication-title: Ecol. Monograph
  doi: 10.2307/2937171
– volume: 6
  start-page: 206
  year: 2001
  ident: 10.1016/j.csda.2015.10.010_br000145
  article-title: Estimation of population size using open capture–recapture models
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1198/108571101750524553
– volume: 85
  start-page: 652
  year: 1990
  ident: 10.1016/j.csda.2015.10.010_br000045
  article-title: Approximate quasi-likelihood estimation in models with surrogate predictors
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1990.10474925
– volume: 29
  start-page: 305
  year: 2002
  ident: 10.1016/j.csda.2015.10.010_br000020
  article-title: Measuring density dependence in survival from mark-recapture data
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760120108782
– volume: 17
  start-page: 301
  year: 2007
  ident: 10.1016/j.csda.2015.10.010_br000120
  article-title: Effects of measurement error and conditional score estimation in capture–recapture models
  publication-title: Statist. Sinica
– volume: 70
  start-page: 445
  year: 2008
  ident: 10.1016/j.csda.2015.10.010_br000050
  article-title: A new method for analysing discrete life-history data with missing values
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2007.00644.x
– year: 2014
  ident: 10.1016/j.csda.2015.10.010_br000140
SSID ssj0002478
Score 2.139046
Snippet Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 74
SubjectTerms calibration
case studies
Cormack–Jolly–Seber model
Error-in-variables
Eudyptula minor
Little Penguins
Mark–capture–recapture
population size
Regression calibration
SIMEX
statistical analysis
surface water temperature
Title Estimation of survival and capture probabilities in open population capture–recapture models when covariates are subject to measurement error
URI https://dx.doi.org/10.1016/j.csda.2015.10.010
https://www.proquest.com/docview/2253217206
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWzMhIbCk1iJ6nHClEVKjoAFWyRYzuiCJKoaWFD_AMG_iG_hLs8WoEQA5MV5xxFvvPnO_sehBwFtlBuW4HwesKzuM8BB4VxLa1dplztRKqI8L4c-L0hv7jz7hrktI6FQbfKCvtLTC_QuuppVbPZykaj1jU60AseMFBpwJAo7HbOA5Tyk9e5m4fLSzTG_N5IXQXOlD5eKteYe8jxTtDDC6Nof9-cfsB0sfd0V8lKpTTSTvlfa6RhknWyfDnLuJpvkPczWKtlGCJNY5pPAQJAiKhMNFUyw3sCisVjyrTcYB7TERBmJqHZrIRXTfj59gFzUg0qSuXk9OUeSFX6DKY1aqdUwqt8GuEpDp2k9Gl-1EjNeJyON8mwe3Zz2rOqYguW4jabWEoqn3HpCB3EwD_JbS1YGy_qjGKxCLD8beTGQcyUCUDPALUjbmslbBn5xoGxW2QhSROzTWgsbRaB5u5pDTgM9lWArRYeUx7jbXuHOPUsh6rKRI4FMR7D2uXsIUTOhMgZ7APO7JDj2ZiszMPxJ7VXMy_8Jk0hbBR_jjusOR3CMsO7E5mYdJqHAHsMa3nZ_u4_v71HluDJL71-9snCZDw1B6DQTKJmIbFNstg57_cG2Pavbvtfjtn57g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFtBG9St23SdnMU2WV9rBcVvIU0SXFF27Ld1Zv4Dzz4D_0lzvSxoogHT4V0ppTM5MtMMg9CDiJXaL-tQXkDETg85ICDwvqOMT7TvvFiXWZ49y_D3g0_uw1up8hJkwuDYZU19leYXqJ1PdKqZ7OVDwatKwygFzxiYNKAI4F--wyH5YttDI5evuI8fF7BMRb4RvI6c6YK8tKFweJDXnCEIV6YRvv77vQDp8vNp7tIFmqrkR5XP7ZEpmy6TOb7k5KrxQp568BirfIQaZbQYgwYAFpEVWqoVjleFFDsHlPV5Qb_mA6AMLcpzSc9vBrCj9d3mJSaqeyVU9DnOyDV2RP41mieUgWvinGMxzh0lNHHr7NGaofDbLhKbrqd65OeU3dbcDR32cjRSoeMK0-YKAEBKu4awdp4U2c1S0SE_W9jP4kSpm0EhgbYHUnbaOGqOLQe8K6R6TRL7TqhiXJZDKZ7YAwAMThYET6NCJgOGG-7G8RrZlnquhQ5dsR4kE3M2b1EyUiUDI6BZDbI4YQnrwpx_EkdNMKT39RJwk7xJ99-I2kJ6wwvT1Rqs3EhAfcYNvNyw81_fnuPzPau-xfy4vTyfIvMwZuwCgHaJtOj4djugHUzindL7f0Ea3v52Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+survival+and+capture+probabilities+in+open+population+capture%E2%80%93recapture+models+when+covariates+are+subject+to+measurement+error&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Stoklosa%2C+Jakub&rft.au=Dann%2C+Peter&rft.au=Huggins%2C+Richard+M&rft.au=Hwang%2C+Wen-Han&rft.date=2016-04-01&rft.issn=0167-9473&rft.volume=96+p.74-86&rft.spage=74&rft.epage=86&rft_id=info:doi/10.1016%2Fj.csda.2015.10.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon