Estimation of survival and capture probabilities in open population capture–recapture models when covariates are subject to measurement error
Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or survival probabilities. If these predictor variables are measured with error and subsequently used in the analysis, then estimates of the model pa...
Saved in:
Published in | Computational statistics & data analysis Vol. 96; pp. 74 - 86 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or survival probabilities. If these predictor variables are measured with error and subsequently used in the analysis, then estimates of the model parameters may be biased. Several approaches have been proposed to account for error-in-variables in capture–recapture models, however these methods generally assume the population is closed; hence quantities of interest for open populations such as the survival probabilities do not appear in the likelihood. To account for measurement error in environmental time-varying covariates for open population capture–recapture data, the well-known Cormack–Jolly–Seber model and two statistical methods are considered: (1) simulation–extrapolation; and (2) regression calibration, as well as a new method which accounts for correlation (arising from measurement error) between the survival and capture probabilities. Several simulation studies are conducted to examine the method performances, and a case study is presented which uses capture–recapture data on the Little Penguin Eudyptula minor and sea-surface temperature data as an environmental covariate to model their survival and capture probabilities. |
---|---|
AbstractList | Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or survival probabilities. If these predictor variables are measured with error and subsequently used in the analysis, then estimates of the model parameters may be biased. Several approaches have been proposed to account for error-in-variables in capture–recapture models, however these methods generally assume the population is closed; hence quantities of interest for open populations such as the survival probabilities do not appear in the likelihood. To account for measurement error in environmental time-varying covariates for open population capture–recapture data, the well-known Cormack–Jolly–Seber model and two statistical methods are considered: (1) simulation–extrapolation; and (2) regression calibration, as well as a new method which accounts for correlation (arising from measurement error) between the survival and capture probabilities. Several simulation studies are conducted to examine the method performances, and a case study is presented which uses capture–recapture data on the Little Penguin Eudyptula minor and sea-surface temperature data as an environmental covariate to model their survival and capture probabilities. Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or survival probabilities. If these predictor variables are measured with error and subsequently used in the analysis, then estimates of the model parameters may be biased. Several approaches have been proposed to account for error-in-variables in capture–recapture models, however these methods generally assume the population is closed; hence quantities of interest for open populations such as the survival probabilities do not appear in the likelihood. To account for measurement error in environmental time-varying covariates for open population capture–recapture data, the well-known Cormack–Jolly–Seber model and two statistical methods are considered: (1) simulation–extrapolation; and (2) regression calibration, as well as a new method which accounts for correlation (arising from measurement error) between the survival and capture probabilities. Several simulation studies are conducted to examine the method performances, and a case study is presented which uses capture–recapture data on the Little Penguin Eudyptula minor and sea-surface temperature data as an environmental covariate to model their survival and capture probabilities. |
Author | Huggins, Richard M. Dann, Peter Hwang, Wen-Han Stoklosa, Jakub |
Author_xml | – sequence: 1 givenname: Jakub surname: Stoklosa fullname: Stoklosa, Jakub email: j.stoklosa@unsw.edu.au organization: School of Mathematics and Statistics and Evolution & Ecology Research Centre, The University of New South Wales, New South Wales 2052, Australia – sequence: 2 givenname: Peter surname: Dann fullname: Dann, Peter organization: Research Department, Phillip Island Nature Parks, Victoria 3922, Australia – sequence: 3 givenname: Richard M. surname: Huggins fullname: Huggins, Richard M. organization: Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia – sequence: 4 givenname: Wen-Han surname: Hwang fullname: Hwang, Wen-Han email: wenhan@nchu.edu.tw organization: Institute of Statistics and Department of Applied Mathematics, National Chung Hsing University, Taichung 402, Taiwan |
BookMark | eNp9kbFu2zAQhokiAeq4eYFOHLvIOVKSKQFdCiNNCgTIkszEiTohNCRRJSkX2foGHfKGfZJQtbN0yETg-H0k7v8v2NnoRmLss4CNALG92m9MaHEjQZRpsAEBH9hKVEpmKi_lGVslSGV1ofKP7CKEPQDIQlUr9uc6RDtgtG7kruNh9gd7wJ7j2HKDU5w98cm7Bhvb22gpcJvAiUY-uWnuj-IJ_Pv7xdObNLiW-sB_PSXUuAN6izHZmK7C3OzJRB4dHwjTlzTQGDl57_wndt5hH-jydK7Z4_frh91tdnd_82P37S4zBeQxM2i2eYGiblUHtcEC2jqvANSWTN7VSpRSNbJTXW5IgSqFKruqNTVgsyWR3DX7cnw3LfdzphD1YIOhvseR3By0lGUuhZKwoNURNd6F4KnTxsZ_i0ePttcC9NKB3uulA710sMxSB0mV_6mTT2n75_elr0cp5UcHS14HY2k01NoUb9Sts-_pr1bmp5g |
CitedBy_id | crossref_primary_10_1007_s10651_017_0394_y crossref_primary_10_1002_sta4_500 crossref_primary_10_1111_sjos_12670 |
Cites_doi | 10.1093/biostatistics/kxv024 10.1111/anzs.12066 10.1007/s13253-010-0052-4 10.1023/A:1015118120406 10.1111/j.0006-341X.2003.00128.x 10.3354/meps09709 10.1071/MU9830094 10.1111/j.1474-919X.2012.01234.x 10.1111/j.0006-341X.2000.00487.x 10.1111/j.1541-0420.2005.00514.x 10.2307/2532348 10.1111/j.1541-0420.2005.00399.x 10.1007/s13253-009-0003-0 10.1080/00949655.2012.668908 10.1198/000313006X152207 10.1177/1536867X0400300406 10.1111/j.1467-9876.2011.01030.x 10.1016/j.jspi.2006.04.010 10.1080/01621459.1994.10476871 10.1002/bimj.201100215 10.1002/cjs.10038 10.1111/2041-210X.12095 10.3354/cr01187 10.1080/03610918508812457 10.1016/S0378-1127(97)00161-8 10.1214/08-EJS341 10.3354/meps07881 10.1080/01621459.2014.893884 10.1071/MU9810001 10.1080/02664760120108430 10.1111/2041-210X.12217 10.2307/2937171 10.1198/108571101750524553 10.1080/01621459.1990.10474925 10.1080/02664760120108782 10.1111/j.1467-9868.2007.00644.x |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.csda.2015.10.010 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-7352 |
EndPage | 86 |
ExternalDocumentID | 10_1016_j_csda_2015_10_010 S0167947315002650 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c403t-cac634a19d7f09ca40d9380076ec3f971527b2f7f3ce7075175f8dc90ab6e1c63 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Fri Jul 11 15:20:15 EDT 2025 Tue Jul 01 02:24:31 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Fri Feb 23 02:23:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mark–capture–recapture SIMEX Regression calibration Cormack–Jolly–Seber model Error-in-variables Little Penguins |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-cac634a19d7f09ca40d9380076ec3f971527b2f7f3ce7075175f8dc90ab6e1c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2253217206 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2253217206 crossref_citationtrail_10_1016_j_csda_2015_10_010 crossref_primary_10_1016_j_csda_2015_10_010 elsevier_sciencedirect_doi_10_1016_j_csda_2015_10_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Carroll, Stefanski (br000045) 1990; 85 Armstrong (br000015) 1985; 14 Bonner, Schwarz (br000030) 2006; 62 Reilly, Cullen (br000175) 1983; 83 Catchpole, Morgan, Tavecchia (br000050) 2008; 70 Shen, Chen (br000185) 2015 Wang, Wang, Wang (br000215) 2000; 56 Hardin, Schmiediche, Carroll (br000095) 2003; 3 Xi, Watson, Wang, Yip (br000220) 2009; 37 Bonner, Schofield (br000025) 2014; 5 Monahan, Stefanski (br000150) 1992 Gimenez, Crainiceanu, Barbraud, Jenouvrier, Morgan (br000085) 2006; 62 Johnson, Kotz, Balakrishnan (br000125) 1995 Lebreton, Burnham, Clobert, Anderson (br000135) 1992; 62 Stoklosa, Daly, Foster, Ashcroft, Warton (br000195) 2015; 6 Cullen, Chambers, Coutin, Dann (br000060) 2009; 378 Delaigle (br000070) 2014; 56 Barker, Fletcher, Scofield (br000020) 2002; 29 Foster, Shimadzu, Darnell (br000075) 2012; 61 Nakamura (br000155) 1992; 48 Reilly, Cullen (br000170) 1981; 81 Oliver (br000160) 2012 Amstrup, McDonald, Manly (br000005) 2005 Hwang, Huang (br000110) 2003; 59 Hwang, Huang (br000115) 2007; 137 Borchers, Stevenson, Kidney, Thomas, Marques (br000035) 2015; 110 Dann, Chambers (br000065) 2013; 58 Pollock (br000165) 2002; 29 Stoklosa, Huggins (br000200) 2012; 54 Gould, Stefanski, Pollock (br000090) 1999; 56 McCrea, Morgan (br000140) 2014 Kangas (br000130) 1998; 102 Sutherland, Dann (br000205) 2012; 154 McDonald, Amstrup (br000145) 2001; 6 Sidhu, Dann, Chambers, Catchpole (br000190) 2012; 454 Schofield, Barker (br000180) 2011; 16 Van Duesen (br000210) 2001; 9 Huggins, Hwang (br000100) 2010; 15 Huggins, Stoklosa (br000105) 2013; 83 Freedman (br000080) 2006; 60 Apanasovich, Carroll, Maity (br000010) 2009; 3 Cook, Stefanski (br000055) 1994; 89 Carroll, Ruppert, Stefanski, Crainiceanu (br000040) 2006 Hwang, Huang, Wang (br000120) 2007; 17 Reilly (10.1016/j.csda.2015.10.010_br000175) 1983; 83 Apanasovich (10.1016/j.csda.2015.10.010_br000010) 2009; 3 Gould (10.1016/j.csda.2015.10.010_br000090) 1999; 56 McDonald (10.1016/j.csda.2015.10.010_br000145) 2001; 6 Cullen (10.1016/j.csda.2015.10.010_br000060) 2009; 378 Bonner (10.1016/j.csda.2015.10.010_br000025) 2014; 5 Hardin (10.1016/j.csda.2015.10.010_br000095) 2003; 3 Sutherland (10.1016/j.csda.2015.10.010_br000205) 2012; 154 Lebreton (10.1016/j.csda.2015.10.010_br000135) 1992; 62 Kangas (10.1016/j.csda.2015.10.010_br000130) 1998; 102 Barker (10.1016/j.csda.2015.10.010_br000020) 2002; 29 Stoklosa (10.1016/j.csda.2015.10.010_br000195) 2015; 6 Dann (10.1016/j.csda.2015.10.010_br000065) 2013; 58 Sidhu (10.1016/j.csda.2015.10.010_br000190) 2012; 454 Shen (10.1016/j.csda.2015.10.010_br000185) 2015 Oliver (10.1016/j.csda.2015.10.010_br000160) 2012 Schofield (10.1016/j.csda.2015.10.010_br000180) 2011; 16 Catchpole (10.1016/j.csda.2015.10.010_br000050) 2008; 70 Carroll (10.1016/j.csda.2015.10.010_br000045) 1990; 85 Bonner (10.1016/j.csda.2015.10.010_br000030) 2006; 62 Carroll (10.1016/j.csda.2015.10.010_br000040) 2006 Wang (10.1016/j.csda.2015.10.010_br000215) 2000; 56 Borchers (10.1016/j.csda.2015.10.010_br000035) 2015; 110 Xi (10.1016/j.csda.2015.10.010_br000220) 2009; 37 Foster (10.1016/j.csda.2015.10.010_br000075) 2012; 61 Hwang (10.1016/j.csda.2015.10.010_br000115) 2007; 137 Delaigle (10.1016/j.csda.2015.10.010_br000070) 2014; 56 Gimenez (10.1016/j.csda.2015.10.010_br000085) 2006; 62 Amstrup (10.1016/j.csda.2015.10.010_br000005) 2005 Hwang (10.1016/j.csda.2015.10.010_br000110) 2003; 59 Van Duesen (10.1016/j.csda.2015.10.010_br000210) 2001; 9 Nakamura (10.1016/j.csda.2015.10.010_br000155) 1992; 48 Pollock (10.1016/j.csda.2015.10.010_br000165) 2002; 29 Armstrong (10.1016/j.csda.2015.10.010_br000015) 1985; 14 McCrea (10.1016/j.csda.2015.10.010_br000140) 2014 Reilly (10.1016/j.csda.2015.10.010_br000170) 1981; 81 Cook (10.1016/j.csda.2015.10.010_br000055) 1994; 89 Huggins (10.1016/j.csda.2015.10.010_br000100) 2010; 15 Johnson (10.1016/j.csda.2015.10.010_br000125) 1995 Huggins (10.1016/j.csda.2015.10.010_br000105) 2013; 83 Hwang (10.1016/j.csda.2015.10.010_br000120) 2007; 17 Monahan (10.1016/j.csda.2015.10.010_br000150) 1992 Freedman (10.1016/j.csda.2015.10.010_br000080) 2006; 60 Stoklosa (10.1016/j.csda.2015.10.010_br000200) 2012; 54 |
References_xml | – volume: 137 start-page: 1888 year: 2007 end-page: 1899 ident: br000115 article-title: Measurement errors in continuous-time capture–recapture models publication-title: J. Statist. Plann. Inference – volume: 102 start-page: 203 year: 1998 end-page: 212 ident: br000130 article-title: Effect of errors-in-variables on coefficients of a growth model and on prediction of growth publication-title: Forest Ecol. Manag. – volume: 454 start-page: 263 year: 2012 end-page: 272 ident: br000190 article-title: Seasonal ocean temperatures and the survival of first-year little Penguins in south-eastern Australia publication-title: Mar. Ecol. Prog. Ser. – volume: 56 start-page: 487 year: 2000 end-page: 495 ident: br000215 article-title: Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements publication-title: Biometrics – volume: 59 start-page: 1113 year: 2003 end-page: 1122 ident: br000110 article-title: Estimation in capture–recapture models when covariates are subject to measurement errors publication-title: Biometrics – volume: 62 start-page: 142 year: 2006 end-page: 149 ident: br000030 article-title: An extension of the Cormack–Jolly–Seber model for continuous covariates with application to Microtus pennsylvanicus publication-title: Biometrics – volume: 48 start-page: 829 year: 1992 end-page: 838 ident: br000155 article-title: Proportional hazards model with covariates subject to measurement error publication-title: Biometrics – volume: 54 start-page: 861 year: 2012 end-page: 874 ident: br000200 article-title: Cormack–Jolly–Seber model with environmental covariates: A P-spline approach publication-title: Biom. J. – volume: 62 start-page: 691 year: 2006 end-page: 698 ident: br000085 article-title: Semiparametric regression in capture–recapture modeling publication-title: Biometrics – volume: 6 start-page: 206 year: 2001 end-page: 220 ident: br000145 article-title: Estimation of population size using open capture–recapture models publication-title: J. Agric. Biol. Environ. Stat. – volume: 81 start-page: 1 year: 1981 end-page: 19 ident: br000170 article-title: The little penguin eudyptula minor in victoria, II: breeding publication-title: Emu – volume: 17 start-page: 301 year: 2007 end-page: 316 ident: br000120 article-title: Effects of measurement error and conditional score estimation in capture–recapture models publication-title: Statist. Sinica – year: 2015 ident: br000185 article-title: Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error publication-title: Biostatistics – volume: 37 start-page: 645 year: 2009 end-page: 658 ident: br000220 article-title: Estimation in capture–recapture models when covariates are subject to measurement errors and missing data publication-title: Can. J. Statist. – volume: 83 start-page: 1741 year: 2013 end-page: 1755 ident: br000105 article-title: Semiparametric inference for open populations using the Jolly–Seber model: A penalized spline approach publication-title: J. Stat. Comput. Simul. – volume: 154 start-page: 488 year: 2012 end-page: 498 ident: br000205 article-title: Improving the accuracy of population size estimates for burrowing seabirds publication-title: Ibis – volume: 70 start-page: 445 year: 2008 end-page: 460 ident: br000050 article-title: A new method for analysing discrete life-history data with missing values publication-title: J. R. Stat. Soc. Ser. B – volume: 5 start-page: 1305 year: 2014 end-page: 1315 ident: br000025 article-title: MC(MC)MC: exploring Monte Carlo integration within MCMC for mark–recapture models with individual covariates publication-title: Methods Ecol. Evol. – year: 2012 ident: br000160 article-title: Modelling individual heterogeneity in mark-recapture studies – volume: 56 start-page: 1234 year: 1999 end-page: 1240 ident: br000090 article-title: Use of simulation–extrapolation estimation in catch–effort analyses publication-title: Can. J. Fish. Aquat. Sci. – volume: 83 start-page: 94 year: 1983 end-page: 98 ident: br000175 article-title: The little penguin eudyptula minor in victoria, IV: moult publication-title: Emu – year: 1995 ident: br000125 article-title: Continuous Univariate Distributions, Vol. 2 – volume: 6 start-page: 412 year: 2015 end-page: 423 ident: br000195 article-title: A climate of uncertainty: accounting for error in climate variables for species distribution models publication-title: Methods Ecol. Evol. – year: 2005 ident: br000005 article-title: Handbook of Capture–Recapture Analysis – volume: 16 start-page: 253 year: 2011 end-page: 268 ident: br000180 article-title: Full open population capture–recapture models with individual covariates publication-title: J. Agric. Biol. Environ. Stat. – year: 2014 ident: br000140 article-title: Analysis of Capture–Recapture Data – volume: 29 start-page: 305 year: 2002 end-page: 313 ident: br000020 article-title: Measuring density dependence in survival from mark-recapture data publication-title: J. Appl. Stat. – volume: 85 start-page: 652 year: 1990 end-page: 663 ident: br000045 article-title: Approximate quasi-likelihood estimation in models with surrogate predictors publication-title: J. Amer. Statist. Assoc. – volume: 58 start-page: 67 year: 2013 end-page: 79 ident: br000065 article-title: Ecological effects of climate change on little Penguins Eudyptula minor and the potential economic impact on tourism publication-title: Clim. Res. – volume: 14 start-page: 529 year: 1985 end-page: 544 ident: br000015 article-title: Measurement error in generalized linear models publication-title: Comm. Statist. Ser. B—Simulation Comput. – volume: 378 start-page: 269 year: 2009 end-page: 278 ident: br000060 article-title: Predicting onset and success of breeding in little penguins Eudyptula minor from ocean temperature publication-title: Mar. Ecol. Prog. Ser. – volume: 62 start-page: 67 year: 1992 end-page: 118 ident: br000135 article-title: Modelling survival and testing biological hypothesis using marked animals: A unified approach with case studies publication-title: Ecol. Monograph – volume: 56 start-page: 105 year: 2014 end-page: 124 ident: br000070 article-title: Nonparametric kernel methods with errors-in-variables: Constructing estimators, computing them, and avoiding common mistakes publication-title: Aust. N.Z. J. Stat. – volume: 15 start-page: 198 year: 2010 end-page: 208 ident: br000100 article-title: A measurement error model for heterogeneous capture probabilities in mark–recapture experiments: An estimating equation approach publication-title: J. Agric. Biol. Environ. Stat. – volume: 29 start-page: 85 year: 2002 end-page: 102 ident: br000165 article-title: The use of auxiliary variables in capture–recapture modelling: an overview publication-title: J. Appl. Stat. – volume: 60 start-page: 299 year: 2006 end-page: 302 ident: br000080 article-title: On the so-called “Huber sandwich estimator” and “Robust standard errors” publication-title: Amer. Statist. – start-page: 529 year: 1992 end-page: 540 ident: br000150 article-title: Normal scale mixture approximations to publication-title: Handbook of the Logistic Distribution – volume: 9 start-page: 151 year: 2001 end-page: 165 ident: br000210 article-title: An EM algorithm for capture–recapture experiments publication-title: J. Environ. Ecol. Stat. – volume: 110 start-page: 195 year: 2015 end-page: 204 ident: br000035 article-title: A unifying model for capture–recapture and distance sampling surveys of wildlife populations publication-title: J. Amer. Statist. Assoc. – volume: 89 start-page: 1314 year: 1994 end-page: 1328 ident: br000055 article-title: Simulation–extrapolation estimation in parametric measurement error models publication-title: J. Amer. Statist. Assoc. – volume: 3 start-page: 361 year: 2003 end-page: 372 ident: br000095 article-title: The regression-calibration method for fitting generalized linear models with additive measurement error publication-title: Stata J. – year: 2006 ident: br000040 article-title: Measurement Error in Nonlinear Models: A Modern Perspective – volume: 61 start-page: 637 year: 2012 end-page: 652 ident: br000075 article-title: Uncertainty in spatially predicted covariates: is it ignorable? publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat. – volume: 3 start-page: 318 year: 2009 end-page: 348 ident: br000010 article-title: SIMEX and standard error estimation in semiparametric measurement error models publication-title: Electron. J. Stat. – year: 2015 ident: 10.1016/j.csda.2015.10.010_br000185 article-title: Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error publication-title: Biostatistics doi: 10.1093/biostatistics/kxv024 – volume: 56 start-page: 105 year: 2014 ident: 10.1016/j.csda.2015.10.010_br000070 article-title: Nonparametric kernel methods with errors-in-variables: Constructing estimators, computing them, and avoiding common mistakes publication-title: Aust. N.Z. J. Stat. doi: 10.1111/anzs.12066 – volume: 16 start-page: 253 year: 2011 ident: 10.1016/j.csda.2015.10.010_br000180 article-title: Full open population capture–recapture models with individual covariates publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1007/s13253-010-0052-4 – volume: 9 start-page: 151 year: 2001 ident: 10.1016/j.csda.2015.10.010_br000210 article-title: An EM algorithm for capture–recapture experiments publication-title: J. Environ. Ecol. Stat. doi: 10.1023/A:1015118120406 – volume: 59 start-page: 1113 year: 2003 ident: 10.1016/j.csda.2015.10.010_br000110 article-title: Estimation in capture–recapture models when covariates are subject to measurement errors publication-title: Biometrics doi: 10.1111/j.0006-341X.2003.00128.x – volume: 454 start-page: 263 year: 2012 ident: 10.1016/j.csda.2015.10.010_br000190 article-title: Seasonal ocean temperatures and the survival of first-year little Penguins in south-eastern Australia publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps09709 – volume: 83 start-page: 94 year: 1983 ident: 10.1016/j.csda.2015.10.010_br000175 article-title: The little penguin eudyptula minor in victoria, IV: moult publication-title: Emu doi: 10.1071/MU9830094 – volume: 154 start-page: 488 year: 2012 ident: 10.1016/j.csda.2015.10.010_br000205 article-title: Improving the accuracy of population size estimates for burrowing seabirds publication-title: Ibis doi: 10.1111/j.1474-919X.2012.01234.x – volume: 56 start-page: 487 year: 2000 ident: 10.1016/j.csda.2015.10.010_br000215 article-title: Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00487.x – start-page: 529 year: 1992 ident: 10.1016/j.csda.2015.10.010_br000150 article-title: Normal scale mixture approximations to F∗(z) and computation of the logistic-normal integral – volume: 62 start-page: 691 year: 2006 ident: 10.1016/j.csda.2015.10.010_br000085 article-title: Semiparametric regression in capture–recapture modeling publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00514.x – volume: 48 start-page: 829 year: 1992 ident: 10.1016/j.csda.2015.10.010_br000155 article-title: Proportional hazards model with covariates subject to measurement error publication-title: Biometrics doi: 10.2307/2532348 – volume: 62 start-page: 142 year: 2006 ident: 10.1016/j.csda.2015.10.010_br000030 article-title: An extension of the Cormack–Jolly–Seber model for continuous covariates with application to Microtus pennsylvanicus publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00399.x – volume: 15 start-page: 198 year: 2010 ident: 10.1016/j.csda.2015.10.010_br000100 article-title: A measurement error model for heterogeneous capture probabilities in mark–recapture experiments: An estimating equation approach publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1007/s13253-009-0003-0 – year: 1995 ident: 10.1016/j.csda.2015.10.010_br000125 – volume: 83 start-page: 1741 year: 2013 ident: 10.1016/j.csda.2015.10.010_br000105 article-title: Semiparametric inference for open populations using the Jolly–Seber model: A penalized spline approach publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2012.668908 – volume: 60 start-page: 299 year: 2006 ident: 10.1016/j.csda.2015.10.010_br000080 article-title: On the so-called “Huber sandwich estimator” and “Robust standard errors” publication-title: Amer. Statist. doi: 10.1198/000313006X152207 – volume: 56 start-page: 1234 year: 1999 ident: 10.1016/j.csda.2015.10.010_br000090 article-title: Use of simulation–extrapolation estimation in catch–effort analyses publication-title: Can. J. Fish. Aquat. Sci. – volume: 3 start-page: 361 year: 2003 ident: 10.1016/j.csda.2015.10.010_br000095 article-title: The regression-calibration method for fitting generalized linear models with additive measurement error publication-title: Stata J. doi: 10.1177/1536867X0400300406 – year: 2012 ident: 10.1016/j.csda.2015.10.010_br000160 – volume: 61 start-page: 637 year: 2012 ident: 10.1016/j.csda.2015.10.010_br000075 article-title: Uncertainty in spatially predicted covariates: is it ignorable? publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat. doi: 10.1111/j.1467-9876.2011.01030.x – volume: 137 start-page: 1888 year: 2007 ident: 10.1016/j.csda.2015.10.010_br000115 article-title: Measurement errors in continuous-time capture–recapture models publication-title: J. Statist. Plann. Inference doi: 10.1016/j.jspi.2006.04.010 – volume: 89 start-page: 1314 year: 1994 ident: 10.1016/j.csda.2015.10.010_br000055 article-title: Simulation–extrapolation estimation in parametric measurement error models publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1994.10476871 – volume: 54 start-page: 861 year: 2012 ident: 10.1016/j.csda.2015.10.010_br000200 article-title: Cormack–Jolly–Seber model with environmental covariates: A P-spline approach publication-title: Biom. J. doi: 10.1002/bimj.201100215 – volume: 37 start-page: 645 year: 2009 ident: 10.1016/j.csda.2015.10.010_br000220 article-title: Estimation in capture–recapture models when covariates are subject to measurement errors and missing data publication-title: Can. J. Statist. doi: 10.1002/cjs.10038 – year: 2005 ident: 10.1016/j.csda.2015.10.010_br000005 – volume: 5 start-page: 1305 year: 2014 ident: 10.1016/j.csda.2015.10.010_br000025 article-title: MC(MC)MC: exploring Monte Carlo integration within MCMC for mark–recapture models with individual covariates publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12095 – volume: 58 start-page: 67 year: 2013 ident: 10.1016/j.csda.2015.10.010_br000065 article-title: Ecological effects of climate change on little Penguins Eudyptula minor and the potential economic impact on tourism publication-title: Clim. Res. doi: 10.3354/cr01187 – volume: 14 start-page: 529 year: 1985 ident: 10.1016/j.csda.2015.10.010_br000015 article-title: Measurement error in generalized linear models publication-title: Comm. Statist. Ser. B—Simulation Comput. doi: 10.1080/03610918508812457 – volume: 102 start-page: 203 year: 1998 ident: 10.1016/j.csda.2015.10.010_br000130 article-title: Effect of errors-in-variables on coefficients of a growth model and on prediction of growth publication-title: Forest Ecol. Manag. doi: 10.1016/S0378-1127(97)00161-8 – volume: 3 start-page: 318 year: 2009 ident: 10.1016/j.csda.2015.10.010_br000010 article-title: SIMEX and standard error estimation in semiparametric measurement error models publication-title: Electron. J. Stat. doi: 10.1214/08-EJS341 – volume: 378 start-page: 269 year: 2009 ident: 10.1016/j.csda.2015.10.010_br000060 article-title: Predicting onset and success of breeding in little penguins Eudyptula minor from ocean temperature publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps07881 – year: 2006 ident: 10.1016/j.csda.2015.10.010_br000040 – volume: 110 start-page: 195 year: 2015 ident: 10.1016/j.csda.2015.10.010_br000035 article-title: A unifying model for capture–recapture and distance sampling surveys of wildlife populations publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2014.893884 – volume: 81 start-page: 1 year: 1981 ident: 10.1016/j.csda.2015.10.010_br000170 article-title: The little penguin eudyptula minor in victoria, II: breeding publication-title: Emu doi: 10.1071/MU9810001 – volume: 29 start-page: 85 year: 2002 ident: 10.1016/j.csda.2015.10.010_br000165 article-title: The use of auxiliary variables in capture–recapture modelling: an overview publication-title: J. Appl. Stat. doi: 10.1080/02664760120108430 – volume: 6 start-page: 412 year: 2015 ident: 10.1016/j.csda.2015.10.010_br000195 article-title: A climate of uncertainty: accounting for error in climate variables for species distribution models publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12217 – volume: 62 start-page: 67 year: 1992 ident: 10.1016/j.csda.2015.10.010_br000135 article-title: Modelling survival and testing biological hypothesis using marked animals: A unified approach with case studies publication-title: Ecol. Monograph doi: 10.2307/2937171 – volume: 6 start-page: 206 year: 2001 ident: 10.1016/j.csda.2015.10.010_br000145 article-title: Estimation of population size using open capture–recapture models publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1198/108571101750524553 – volume: 85 start-page: 652 year: 1990 ident: 10.1016/j.csda.2015.10.010_br000045 article-title: Approximate quasi-likelihood estimation in models with surrogate predictors publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1990.10474925 – volume: 29 start-page: 305 year: 2002 ident: 10.1016/j.csda.2015.10.010_br000020 article-title: Measuring density dependence in survival from mark-recapture data publication-title: J. Appl. Stat. doi: 10.1080/02664760120108782 – volume: 17 start-page: 301 year: 2007 ident: 10.1016/j.csda.2015.10.010_br000120 article-title: Effects of measurement error and conditional score estimation in capture–recapture models publication-title: Statist. Sinica – volume: 70 start-page: 445 year: 2008 ident: 10.1016/j.csda.2015.10.010_br000050 article-title: A new method for analysing discrete life-history data with missing values publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2007.00644.x – year: 2014 ident: 10.1016/j.csda.2015.10.010_br000140 |
SSID | ssj0002478 |
Score | 2.139046 |
Snippet | Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 74 |
SubjectTerms | calibration case studies Cormack–Jolly–Seber model Error-in-variables Eudyptula minor Little Penguins Mark–capture–recapture population size Regression calibration SIMEX statistical analysis surface water temperature |
Title | Estimation of survival and capture probabilities in open population capture–recapture models when covariates are subject to measurement error |
URI | https://dx.doi.org/10.1016/j.csda.2015.10.010 https://www.proquest.com/docview/2253217206 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWzMhIbCk1iJ6nHClEVKjoAFWyRYzuiCJKoaWFD_AMG_iG_hLs8WoEQA5MV5xxFvvPnO_sehBwFtlBuW4HwesKzuM8BB4VxLa1dplztRKqI8L4c-L0hv7jz7hrktI6FQbfKCvtLTC_QuuppVbPZykaj1jU60AseMFBpwJAo7HbOA5Tyk9e5m4fLSzTG_N5IXQXOlD5eKteYe8jxTtDDC6Nof9-cfsB0sfd0V8lKpTTSTvlfa6RhknWyfDnLuJpvkPczWKtlGCJNY5pPAQJAiKhMNFUyw3sCisVjyrTcYB7TERBmJqHZrIRXTfj59gFzUg0qSuXk9OUeSFX6DKY1aqdUwqt8GuEpDp2k9Gl-1EjNeJyON8mwe3Zz2rOqYguW4jabWEoqn3HpCB3EwD_JbS1YGy_qjGKxCLD8beTGQcyUCUDPALUjbmslbBn5xoGxW2QhSROzTWgsbRaB5u5pDTgM9lWArRYeUx7jbXuHOPUsh6rKRI4FMR7D2uXsIUTOhMgZ7APO7JDj2ZiszMPxJ7VXMy_8Jk0hbBR_jjusOR3CMsO7E5mYdJqHAHsMa3nZ_u4_v71HluDJL71-9snCZDw1B6DQTKJmIbFNstg57_cG2Pavbvtfjtn57g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFtBG9St23SdnMU2WV9rBcVvIU0SXFF27Ld1Zv4Dzz4D_0lzvSxoogHT4V0ppTM5MtMMg9CDiJXaL-tQXkDETg85ICDwvqOMT7TvvFiXWZ49y_D3g0_uw1up8hJkwuDYZU19leYXqJ1PdKqZ7OVDwatKwygFzxiYNKAI4F--wyH5YttDI5evuI8fF7BMRb4RvI6c6YK8tKFweJDXnCEIV6YRvv77vQDp8vNp7tIFmqrkR5XP7ZEpmy6TOb7k5KrxQp568BirfIQaZbQYgwYAFpEVWqoVjleFFDsHlPV5Qb_mA6AMLcpzSc9vBrCj9d3mJSaqeyVU9DnOyDV2RP41mieUgWvinGMxzh0lNHHr7NGaofDbLhKbrqd65OeU3dbcDR32cjRSoeMK0-YKAEBKu4awdp4U2c1S0SE_W9jP4kSpm0EhgbYHUnbaOGqOLQe8K6R6TRL7TqhiXJZDKZ7YAwAMThYET6NCJgOGG-7G8RrZlnquhQ5dsR4kE3M2b1EyUiUDI6BZDbI4YQnrwpx_EkdNMKT39RJwk7xJ99-I2kJ6wwvT1Rqs3EhAfcYNvNyw81_fnuPzPau-xfy4vTyfIvMwZuwCgHaJtOj4djugHUzindL7f0Ea3v52Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+survival+and+capture+probabilities+in+open+population+capture%E2%80%93recapture+models+when+covariates+are+subject+to+measurement+error&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Stoklosa%2C+Jakub&rft.au=Dann%2C+Peter&rft.au=Huggins%2C+Richard+M&rft.au=Hwang%2C+Wen-Han&rft.date=2016-04-01&rft.issn=0167-9473&rft.volume=96+p.74-86&rft.spage=74&rft.epage=86&rft_id=info:doi/10.1016%2Fj.csda.2015.10.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |