Room temperature synthesis of CsPbX3 (X = Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass

Currently, the mainstream method for preparing perovskite quantum dots in glass is a heat treatment method. Here, a new method for the preparation of CsPbX3 (X = Cl, Br, I) quantum dots (QDs) by water-induced surface crystallization in tin fluorophosphates glass has been developed. A plausible water...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 818; p. 152872
Main Authors Wang, Yajie, Zhang, Renli, Yue, Yu, Yan, Sasa, Zhang, Liyan, Chen, Danping
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.03.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, the mainstream method for preparing perovskite quantum dots in glass is a heat treatment method. Here, a new method for the preparation of CsPbX3 (X = Cl, Br, I) quantum dots (QDs) by water-induced surface crystallization in tin fluorophosphates glass has been developed. A plausible water-induced surface crystallization mechanism has been proposed, revealing that water can reduce the non-uniform nucleation barrier to induce crystallization. Through changing the ratio of Cl/Br/I halogen elements in the raw material, a whole-family of CsPbX3 QDs in tin fluorophosphate glass can be obtained, covering the entire visible band from 414 nm to 713 nm. Besides, the proposed material technology may exert a vital role in the field of anti-counterfeiting technology shortly. A new method for the preparation of CsPbBr3 quantum dots (QDs) by water-induced surface crystallization in tin fluorophosphates glass has been developed, which may exert a vital role in the field of anti-counterfeiting technology. [Display omitted] •A completely new method for the preparation of CsPbX3 (X = Cl, Br, I) quantum dots (QDs) by water-induced surface crystallization in tin fluorophosphate glass has been developed.•A plausible water-induced surface crystallization mechanism has been proposed, revealing that the activation energy decrease in the presence of hydroxyls was attributed to the breaking of [P–O–P] bonds of the glass structure by water.
AbstractList Currently, the mainstream method for preparing perovskite quantum dots in glass is a heat treatment method. Here, a new method for the preparation of CsPbX3 (X = Cl, Br, I) quantum dots (QDs) by water-induced surface crystallization in tin fluorophosphates glass has been developed. A plausible water-induced surface crystallization mechanism has been proposed, revealing that water can reduce the non-uniform nucleation barrier to induce crystallization. Through changing the ratio of Cl/Br/I halogen elements in the raw material, a whole-family of CsPbX3 QDs in tin fluorophosphate glass can be obtained, covering the entire visible band from 414 nm to 713 nm. Besides, the proposed material technology may exert a vital role in the field of anti-counterfeiting technology shortly.
Currently, the mainstream method for preparing perovskite quantum dots in glass is a heat treatment method. Here, a new method for the preparation of CsPbX3 (X = Cl, Br, I) quantum dots (QDs) by water-induced surface crystallization in tin fluorophosphates glass has been developed. A plausible water-induced surface crystallization mechanism has been proposed, revealing that water can reduce the non-uniform nucleation barrier to induce crystallization. Through changing the ratio of Cl/Br/I halogen elements in the raw material, a whole-family of CsPbX3 QDs in tin fluorophosphate glass can be obtained, covering the entire visible band from 414 nm to 713 nm. Besides, the proposed material technology may exert a vital role in the field of anti-counterfeiting technology shortly. A new method for the preparation of CsPbBr3 quantum dots (QDs) by water-induced surface crystallization in tin fluorophosphates glass has been developed, which may exert a vital role in the field of anti-counterfeiting technology. [Display omitted] •A completely new method for the preparation of CsPbX3 (X = Cl, Br, I) quantum dots (QDs) by water-induced surface crystallization in tin fluorophosphate glass has been developed.•A plausible water-induced surface crystallization mechanism has been proposed, revealing that the activation energy decrease in the presence of hydroxyls was attributed to the breaking of [P–O–P] bonds of the glass structure by water.
ArticleNumber 152872
Author Wang, Yajie
Zhang, Renli
Chen, Danping
Yue, Yu
Zhang, Liyan
Yan, Sasa
Author_xml – sequence: 1
  givenname: Yajie
  surname: Wang
  fullname: Wang, Yajie
  organization: Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
– sequence: 2
  givenname: Renli
  surname: Zhang
  fullname: Zhang, Renli
  organization: Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
– sequence: 3
  givenname: Yu
  surname: Yue
  fullname: Yue, Yu
  organization: College of Science, Shandong Jianzhu University, Jinan, 250101, China
– sequence: 4
  givenname: Sasa
  surname: Yan
  fullname: Yan, Sasa
  organization: Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
– sequence: 5
  givenname: Liyan
  orcidid: 0000-0003-0269-7959
  surname: Zhang
  fullname: Zhang, Liyan
  email: jndxzly@hotmail.com
  organization: Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
– sequence: 6
  givenname: Danping
  surname: Chen
  fullname: Chen, Danping
  email: dpchen2008@aliyun.com
  organization: Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
BookMark eNqFkN9K5DAUh4OM4Oj6CELAm12YzuZP02lZFtFBdwVBWVbwLqRJqqltM5OTKuPNvorP4pPZ2fHKm7k6N7_vd8759tGo851F6IiSKSU0-15Pa9U02rdTRmgxpYLlM7aDxjSf8STNsmKExqRgIsl5nu-hfYCakCHJ6Rj9--N9i6NtFzao2AeLYdXFBwsOsK_wHG7KO46_3r29_sTzZoLPwgRffsND2j_Bo4sWL3vVxb7FxkfA5Qo_q2hD4jrTa2sw9KFS2mIdVhCHK92Lis536-77RgF8QbuVasAefswDdHtx_nf-O7m6_nU5P71KdEp4TDTXbEaYNkyJTLOyLExmyooSlpmZUlWlBNdUV4QYkuYpy3VRCC6MoIaTlDB-gI43vYvgl72FKGvfh25YKRkXKaeU8nVKbFI6eIBgK7kIrlVhJSmRa9eylh-u5dq13LgeuB-fOO3i_0djUK7ZSp9saDsIeHI2SNDOdoM-F6yO0ni3peEd69ChaA
CitedBy_id crossref_primary_10_1039_D1TC00993A
crossref_primary_10_1002_andp_202400152
crossref_primary_10_1039_D1NR07711B
crossref_primary_10_1039_D0NR03254A
crossref_primary_10_1111_jace_17379
crossref_primary_10_1016_j_jallcom_2022_166322
crossref_primary_10_3390_ma15155187
crossref_primary_10_1016_j_jtice_2022_104469
crossref_primary_10_1016_j_pmatsci_2024_101243
crossref_primary_10_1002_adfm_202418032
crossref_primary_10_1016_j_cej_2022_134593
crossref_primary_10_1002_lpor_202401649
crossref_primary_10_1557_s43578_021_00118_4
crossref_primary_10_1016_j_ceja_2022_100358
crossref_primary_10_1149_2162_8777_abc80b
crossref_primary_10_1016_j_jmrt_2021_08_008
crossref_primary_10_1016_j_jeurceramsoc_2021_03_034
crossref_primary_10_1016_j_jallcom_2021_160714
crossref_primary_10_1016_j_nocx_2023_100182
crossref_primary_10_1364_OME_485237
crossref_primary_10_3390_ma15051678
crossref_primary_10_1016_j_ceramint_2023_05_270
crossref_primary_10_1021_acs_jpclett_4c01878
crossref_primary_10_1039_D2TA03559F
crossref_primary_10_1016_j_optmat_2022_113400
crossref_primary_10_3390_s22103721
crossref_primary_10_1002_lpor_202402245
crossref_primary_10_1016_j_jnoncrysol_2022_121739
crossref_primary_10_1016_j_jlumin_2024_120953
crossref_primary_10_1021_acsami_2c20605
crossref_primary_10_1021_acsanm_2c00515
crossref_primary_10_1016_j_cej_2025_159341
crossref_primary_10_1021_acsami_3c01484
crossref_primary_10_1002_lpor_202402093
crossref_primary_10_1364_OL_465445
crossref_primary_10_1364_OME_457559
crossref_primary_10_1016_j_mtchem_2023_101628
crossref_primary_10_1021_acs_chemmater_1c03522
crossref_primary_10_1111_jace_18431
crossref_primary_10_1109_ACCESS_2020_3020594
crossref_primary_10_3390_mi13081326
crossref_primary_10_1186_s11671_020_03430_w
crossref_primary_10_1016_j_jmrt_2022_06_109
crossref_primary_10_2139_ssrn_4098448
Cites_doi 10.1002/adma.201600784
10.1039/C7CC06486A
10.1002/smll.201901173
10.1016/j.jnoncrysol.2007.07.092
10.1039/C8CS00740C
10.1002/anie.201605909
10.1016/j.matlet.2018.07.041
10.1039/C8CC06442C
10.1039/C8TC04786C
10.1021/acsami.8b02857
10.1002/anie.201713332
10.1002/adfm.201701121
10.1007/s12274-019-2338-3
10.1021/acsnano.8b04209
10.1038/s41586-018-0451-1
10.1007/s12274-018-2190-x
10.1364/PRJ.5.000457
10.1364/PRJ.7.000837
10.1039/C7NR01287J
10.1016/j.jallcom.2018.12.231
10.1039/C7RA13366A
10.1364/PRJ.7.000579
10.1021/acs.nanolett.8b01142
10.1002/anie.201710869
10.1111/j.1151-2916.1966.tb15387.x
10.1021/nl5048779
10.1021/acsnano.8b02143
10.1016/j.jallcom.2017.09.284
10.1002/adom.201801663
10.1002/adom.201800289
10.1021/acsnano.7b04496
10.1039/C8TC01408F
10.1021/acs.nanolett.7b02896
10.1039/C8TC03457E
10.1021/acsami.8b05155
10.1002/adma.201801996
10.1016/j.jnoncrysol.2015.03.040
10.1016/j.jallcom.2018.11.382
10.1002/adfm.201800248
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Mar 25, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 25, 2020
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2019.152872
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2019_152872
S0925838819341180
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c403t-c3c2702cd2a56c2bb9d6dbf1026d7aaffa53c1cf00d048428c99535d51d304023
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Mon Jul 14 07:48:27 EDT 2025
Tue Jul 01 03:58:19 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Fri Feb 23 02:48:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CsPbX3
Water-induced
Glass
Surface crystallization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-c3c2702cd2a56c2bb9d6dbf1026d7aaffa53c1cf00d048428c99535d51d304023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0269-7959
PQID 2354311132
PQPubID 2045454
ParticipantIDs proquest_journals_2354311132
crossref_primary_10_1016_j_jallcom_2019_152872
crossref_citationtrail_10_1016_j_jallcom_2019_152872
elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_152872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-25
PublicationDateYYYYMMDD 2020-03-25
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-25
  day: 25
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Chen, Zou, Wu, Pan, Yang, Hu, Tan, Zhong, Xu, Liu, Sun, Zhang (bib14) 2017; 27
Tong, Bladt, Ayguler, Manzi, Milowska, Hintermayr, Docampo, Bals, Urban, Polavarapu, Feldmann (bib16) 2016; 55
Tang, Dong, Sun, Zheng, Wang, Sun, Jiang, Pan, Zhang (bib18) 2017; 11
Yuan, Chen, Li, Zhong, Xu (bib28) 2018; 10
Di, Hu, Jiang, He, Zhou, Xiang, Liang (bib26) 2017; 53
Chen, Wu, Ou, Huang, Almutlaq, Zhumekenov, Guan, Han, Liang, Yi, Li, Xie, Wang, Li, Fan, Teh, All, Mohammed, Bakr, Wu, Bettinelli, Yang, Huang, Liu (bib11) 2018; 561
Xiang, Lin, Li, Cheng, Huang, Xu, Wang, Chen, Wang (bib36) 2019; 12
Zhuohao Xiao, Li, Wang, Wang, Zhang, Lin Li, Shen, Kong, Huang (bib38) 2018; 18
Yan, Shi, Zang, Zhou, Liu, Zhang, Du, Leng, Tang (bib21) 2019; 15
Ye, Zhang, Zhao, Wang, Liu, Deng, Zhao, Han (bib33) 2019; 7
Zhong, Cao, Hu, Yang, Chen, Li, Wu, Zhang (bib23) 2018; 12
He, Ding, Liu, Shao, Zhang, Liang, Xiang (bib27) 2019; 780
Yu, Cao, Gao, Xiong, Zeng (bib15) 2018; 28
Wu, Hu, Xu, Jiang, Chen, Zhong, Yang, Liu, Zhao, Sun, Zhang, Yin (bib31) 2017; 17
Wei, Cheng, Lin (bib2) 2019; 48
Zhang, Bai, Wu, Zhang, Sun, Zhang, Zhang, Zheng, Yu, Rogach (bib30) 2018; 57
Quan, Garcia de Arquer, Sabatini, Sargent (bib4) 2018
Lin, Verma, Kang, Pai, Chen, Yang, Sher, Yang, Lee, Lin, Wu, Sharma, Wu, Chung, Kuo (bib8) 2019; 7
Jiang, Shao, Zhang, Ding, Zhang, Liu, Chen, Xiang, Liang (bib25) 2018; 54
Protesescu, Yakunin, Bodnarchuk, Krieg, Caputo, Hendon, Yang, Walsh, Kovalenko (bib12) 2015; 15
Ye, Yu, Zhao, Song, Qu (bib1) 2018; 730
de Weerd, Gregorkiewicz, Gomez (bib3) 2018; 6
Liu, Yang, Du, Hu, Shi, Zhang, Liu, Tang, Leng, Li (bib6) 2018; 12
Chen, Yuan, Chen, Zhong, Xu (bib32) 2018; 6
Pan, Quan, Zhao, Peng, Murali, Sarmah, Yuan, Sinatra, Alyami, Liu, Yassitepe, Yang, Voznyy, Comin, Hedhili, Mohammed, Lu, Kim, Sargent, Bakr (bib19) 2016; 28
H, Eperon, Leijtens, Bruijnaers, van Franeker (bib29) 2015; 9
Wang, Lin, Xiang, Cheng, Huang, Gao, Cui, Wang (bib9) 2018; 6
Li, Dong, Xu, Zhang, Cai, Wang, Zhang (bib5) 2017; 5
Jing, Zhang, Huang, Ren, Wang, Lu (bib20) 2017; 9
Liu, He, Sun, Lin, Yao, Wang (bib24) 2019; 782
Yuan, Cheng, Liu, Ding, Zhang, Xiang, Liang (bib35) 2018; 229
Li, Lv, Guo, Dong, Zheng, Chai, Chen, Lu, Chen (bib7) 2018; 10
Zhang, Huang, Song, Ruan (bib10) 2019; 7
Li, Huang, Xiong, Kershaw, Rogach (bib17) 2018; 57
Wang, Yu, Zou, Zhang, Hu, Chen (bib34) 2018; 8
Ehrt (bib40) 2008; 354
Zhang, Fan, Li, Liu, Wang, Wang, Tu (bib13) 2018; 12
Yang, Xu, Zhu, Cai, Gu, Zhu, Wang, Shen, Li (bib22) 2018; 6
Wagstaff F E (bib37) 1966; 49
Liu, Ma, Gong, Xu (bib39) 2015; 419
Jing (10.1016/j.jallcom.2019.152872_bib20) 2017; 9
Tang (10.1016/j.jallcom.2019.152872_bib18) 2017; 11
Tong (10.1016/j.jallcom.2019.152872_bib16) 2016; 55
Zhong (10.1016/j.jallcom.2019.152872_bib23) 2018; 12
Wagstaff F E (10.1016/j.jallcom.2019.152872_bib37) 1966; 49
H (10.1016/j.jallcom.2019.152872_bib29) 2015; 9
Wei (10.1016/j.jallcom.2019.152872_bib2) 2019; 48
Quan (10.1016/j.jallcom.2019.152872_bib4) 2018
Protesescu (10.1016/j.jallcom.2019.152872_bib12) 2015; 15
Li (10.1016/j.jallcom.2019.152872_bib17) 2018; 57
Liu (10.1016/j.jallcom.2019.152872_bib39) 2015; 419
He (10.1016/j.jallcom.2019.152872_bib27) 2019; 780
Wang (10.1016/j.jallcom.2019.152872_bib34) 2018; 8
Ye (10.1016/j.jallcom.2019.152872_bib33) 2019; 7
Yu (10.1016/j.jallcom.2019.152872_bib15) 2018; 28
Yuan (10.1016/j.jallcom.2019.152872_bib28) 2018; 10
Zhuohao Xiao (10.1016/j.jallcom.2019.152872_bib38) 2018; 18
Chen (10.1016/j.jallcom.2019.152872_bib32) 2018; 6
Zhang (10.1016/j.jallcom.2019.152872_bib13) 2018; 12
Li (10.1016/j.jallcom.2019.152872_bib7) 2018; 10
Wu (10.1016/j.jallcom.2019.152872_bib31) 2017; 17
Lin (10.1016/j.jallcom.2019.152872_bib8) 2019; 7
Chen (10.1016/j.jallcom.2019.152872_bib11) 2018; 561
Liu (10.1016/j.jallcom.2019.152872_bib6) 2018; 12
Di (10.1016/j.jallcom.2019.152872_bib26) 2017; 53
Wang (10.1016/j.jallcom.2019.152872_bib9) 2018; 6
de Weerd (10.1016/j.jallcom.2019.152872_bib3) 2018; 6
Zhang (10.1016/j.jallcom.2019.152872_bib10) 2019; 7
Chen (10.1016/j.jallcom.2019.152872_bib14) 2017; 27
Xiang (10.1016/j.jallcom.2019.152872_bib36) 2019; 12
Ye (10.1016/j.jallcom.2019.152872_bib1) 2018; 730
Yang (10.1016/j.jallcom.2019.152872_bib22) 2018; 6
Jiang (10.1016/j.jallcom.2019.152872_bib25) 2018; 54
Pan (10.1016/j.jallcom.2019.152872_bib19) 2016; 28
Yuan (10.1016/j.jallcom.2019.152872_bib35) 2018; 229
Zhang (10.1016/j.jallcom.2019.152872_bib30) 2018; 57
Li (10.1016/j.jallcom.2019.152872_bib5) 2017; 5
Ehrt (10.1016/j.jallcom.2019.152872_bib40) 2008; 354
Yan (10.1016/j.jallcom.2019.152872_bib21) 2019; 15
Liu (10.1016/j.jallcom.2019.152872_bib24) 2019; 782
References_xml – volume: 6
  start-page: 12864
  year: 2018
  end-page: 12870
  ident: bib32
  article-title: Robust CsPbX
  publication-title: J. Mater. Chem. C
– volume: 782
  start-page: 235
  year: 2019
  end-page: 241
  ident: bib24
  article-title: A new approach to stabilize the CsPbX
  publication-title: J. Alloy. Comp.
– volume: 7
  start-page: 1801663
  year: 2019
  ident: bib33
  article-title: Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications
  publication-title: Adv Opt Mater
– volume: 12
  start-page: 8579
  year: 2018
  end-page: 8587
  ident: bib23
  article-title: One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles
  publication-title: ACS Nano
– volume: 28
  start-page: 8718
  year: 2016
  end-page: 8725
  ident: bib19
  article-title: Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering
  publication-title: Adv. Mater.
– volume: 229
  start-page: 290
  year: 2018
  end-page: 292
  ident: bib35
  article-title: Multicolour light-emitting diodes based on CsPbX
  publication-title: Mater. Lett.
– volume: 57
  start-page: 3337
  year: 2018
  end-page: 3342
  ident: bib30
  article-title: Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals
  publication-title: Angew. Chem.
– volume: 6
  start-page: 1800289
  year: 2018
  ident: bib3
  article-title: All-Inorganic perovskite nanocrystals: microscopy insights in structure and optical properties
  publication-title: Adv. Opt.Mater.
– volume: 57
  start-page: 5833
  year: 2018
  end-page: 5837
  ident: bib17
  article-title: Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis
  publication-title: Angew. Chem.
– volume: 10
  start-page: 15888
  year: 2018
  end-page: 15894
  ident: bib7
  article-title: One-step preparation of long-term stable and flexible CsPbBr
  publication-title: ACS Appl. Mater. Interfaces
– volume: 780
  start-page: 318
  year: 2019
  end-page: 325
  ident: bib27
  article-title: Superior fluorescence and high stability of B-Si-Zn glasses based on Mn-doped CsPbBr
  publication-title: J. Alloy. Comp.
– volume: 8
  start-page: 4921
  year: 2018
  end-page: 4927
  ident: bib34
  article-title: Broadband visible luminescence in tin fluorophosphate glasses with ultra-low glass transition temperature
  publication-title: RSC Adv.
– year: 2018
  ident: bib4
  article-title: Perovskites for light emission
  publication-title: Adv. Mater.
– volume: 6
  start-page: 9964
  year: 2018
  end-page: 9971
  ident: bib9
  article-title: CsPbBr3/EuPO4 dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 837
  year: 2019
  ident: bib10
  article-title: Radiation-pressure-induced photoluminescence enhancement of all-inorganic perovskite CsPbBr3 quantum dots
  publication-title: Photonics Res.
– volume: 28
  start-page: 1800248
  year: 2018
  ident: bib15
  article-title: Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving rec. 2020 displays
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 3290
  year: 2018
  ident: bib38
  article-title: Phase transformation of GeO
  publication-title: Nano letter
– volume: 17
  start-page: 5799
  year: 2017
  end-page: 5804
  ident: bib31
  article-title: From nonluminescent Cs
  publication-title: Nano Lett.
– volume: 48
  start-page: 310
  year: 2019
  end-page: 350
  ident: bib2
  article-title: An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 3692
  year: 2015
  end-page: 3696
  ident: bib12
  article-title: Nanocrystals of cesium lead halide perovskites (CsPbX(3), X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut
  publication-title: Nano Lett.
– volume: 55
  start-page: 13887
  year: 2016
  end-page: 13892
  ident: bib16
  article-title: Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication
  publication-title: Angew. Chem.
– volume: 419
  start-page: 92
  year: 2015
  end-page: 96
  ident: bib39
  article-title: The structure and properties of SnF
  publication-title: J. Non-Cryst. Solids
– volume: 7
  start-page: 579
  year: 2019
  ident: bib8
  article-title: Hybrid-type white LEDs based on inorganic halide perovskite QDs: candidates for wide color gamut display backlights
  publication-title: Photonics Res.
– volume: 53
  start-page: 11068
  year: 2017
  end-page: 11071
  ident: bib26
  article-title: Use of long-term stable CsPbBr
  publication-title: Chem. Commun.
– volume: 27
  start-page: 1701121
  year: 2017
  ident: bib14
  article-title: Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire
  publication-title: Adv. Funct. Mater.
– volume: 15
  year: 2019
  ident: bib21
  article-title: Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification
  publication-title: Small
– volume: 54
  start-page: 12302
  year: 2018
  end-page: 12305
  ident: bib25
  article-title: Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P-Si-Zn glass for white LEDs
  publication-title: Chem. Commun.
– volume: 9
  year: 2015
  ident: bib29
  article-title: The importance of moisture in hybrid lead halide perovskite thin film fabrication
  publication-title: ACS Nano
– volume: 12
  year: 2018
  ident: bib6
  article-title: Robust subwavelength single-mode perovskite nanocuboid laser
  publication-title: ACS Nano
– volume: 10
  start-page: 18918
  year: 2018
  end-page: 18926
  ident: bib28
  article-title: In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 457
  year: 2017
  ident: bib5
  article-title: CsPbBr_3 perovskite quantum dots: saturable absorption properties and passively Q-switched visible lasers
  publication-title: Photonics Res.
– volume: 49
  start-page: 4
  year: 1966
  ident: bib37
  article-title: Kinetics of crystallization of stoichiometric SiO
  publication-title: J. Am. Ceram. Soc.
– volume: 561
  start-page: 88
  year: 2018
  end-page: 93
  ident: bib11
  article-title: All-inorganic perovskite nanocrystal scintillators
  publication-title: Nature
– volume: 12
  start-page: 121
  year: 2018
  end-page: 127
  ident: bib13
  article-title: Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system
  publication-title: Nano Res.
– volume: 11
  start-page: 10681
  year: 2017
  end-page: 10688
  ident: bib18
  article-title: Single-mode lasers based on cesium lead halide perovskite submicron spheres
  publication-title: ACS Nano
– volume: 354
  start-page: 546
  year: 2008
  end-page: 552
  ident: bib40
  article-title: Effect of OH-content on thermal and chemical properties of SnO-P
  publication-title: J. Non-Cryst. Solids
– volume: 12
  start-page: 1049
  year: 2019
  end-page: 1054
  ident: bib36
  article-title: Stress-induced CsPbBr
  publication-title: Nano Research
– volume: 9
  start-page: 7391
  year: 2017
  end-page: 7396
  ident: bib20
  article-title: Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability
  publication-title: Nanoscale
– volume: 6
  start-page: 7971
  year: 2018
  end-page: 7975
  ident: bib22
  article-title: Preparation of CsPbBr3@PS composite microspheres with high stability by electrospraying
  publication-title: J. Mater. Chem. C
– volume: 730
  start-page: 62
  year: 2018
  end-page: 70
  ident: bib1
  article-title: Low temperature synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals in open air and their upconversion luminescence
  publication-title: J. Alloy. Comp.
– volume: 28
  start-page: 8718
  issue: 39
  year: 2016
  ident: 10.1016/j.jallcom.2019.152872_bib19
  article-title: Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600784
– volume: 53
  start-page: 11068
  issue: 80
  year: 2017
  ident: 10.1016/j.jallcom.2019.152872_bib26
  article-title: Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06486A
– volume: 15
  issue: 23
  year: 2019
  ident: 10.1016/j.jallcom.2019.152872_bib21
  article-title: Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification
  publication-title: Small
  doi: 10.1002/smll.201901173
– volume: 354
  start-page: 546
  issue: 2–9
  year: 2008
  ident: 10.1016/j.jallcom.2019.152872_bib40
  article-title: Effect of OH-content on thermal and chemical properties of SnO-P2O5 glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2007.07.092
– volume: 48
  start-page: 310
  issue: 1
  year: 2019
  ident: 10.1016/j.jallcom.2019.152872_bib2
  article-title: An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00740C
– volume: 9
  issue: 9
  year: 2015
  ident: 10.1016/j.jallcom.2019.152872_bib29
  article-title: The importance of moisture in hybrid lead halide perovskite thin film fabrication
  publication-title: ACS Nano
– volume: 55
  start-page: 13887
  issue: 44
  year: 2016
  ident: 10.1016/j.jallcom.2019.152872_bib16
  article-title: Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201605909
– volume: 229
  start-page: 290
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib35
  article-title: Multicolour light-emitting diodes based on CsPbX3 (X = Br, I) quantum dots glasses solid materials
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.07.041
– volume: 54
  start-page: 12302
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib25
  article-title: Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P-Si-Zn glass for white LEDs
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06442C
– volume: 6
  start-page: 12864
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib32
  article-title: Robust CsPbX3 (X=Cl, Br, I) perovskite quantum dots embedded glasses: nanocrystallization, improved stability and visible full-spectral tunable emissions
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC04786C
– volume: 10
  start-page: 15888
  issue: 18
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib7
  article-title: One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02857
– volume: 57
  start-page: 5833
  issue: 20
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib17
  article-title: Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201713332
– volume: 27
  start-page: 1701121
  issue: 23
  year: 2017
  ident: 10.1016/j.jallcom.2019.152872_bib14
  article-title: Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701121
– volume: 12
  start-page: 1049
  issue: 5
  year: 2019
  ident: 10.1016/j.jallcom.2019.152872_bib36
  article-title: Stress-induced CsPbBr3 nanocrystallization on glass surface: unexpected mechanoluminescence and applications
  publication-title: Nano Research
  doi: 10.1007/s12274-019-2338-3
– volume: 12
  start-page: 8579
  issue: 8
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib23
  article-title: One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04209
– volume: 561
  start-page: 88
  issue: 7721
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib11
  article-title: All-inorganic perovskite nanocrystal scintillators
  publication-title: Nature
  doi: 10.1038/s41586-018-0451-1
– volume: 12
  start-page: 121
  issue: 1
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib13
  article-title: Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2190-x
– volume: 5
  start-page: 457
  issue: 5
  year: 2017
  ident: 10.1016/j.jallcom.2019.152872_bib5
  article-title: CsPbBr_3 perovskite quantum dots: saturable absorption properties and passively Q-switched visible lasers
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.5.000457
– volume: 7
  start-page: 837
  issue: 8
  year: 2019
  ident: 10.1016/j.jallcom.2019.152872_bib10
  article-title: Radiation-pressure-induced photoluminescence enhancement of all-inorganic perovskite CsPbBr3 quantum dots
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.7.000837
– volume: 9
  start-page: 7391
  issue: 22
  year: 2017
  ident: 10.1016/j.jallcom.2019.152872_bib20
  article-title: Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability
  publication-title: Nanoscale
  doi: 10.1039/C7NR01287J
– volume: 782
  start-page: 235
  year: 2019
  ident: 10.1016/j.jallcom.2019.152872_bib24
  article-title: A new approach to stabilize the CsPbX3 quantum dots by double chemical coupling with stress
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.12.231
– volume: 8
  start-page: 4921
  issue: 9
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib34
  article-title: Broadband visible luminescence in tin fluorophosphate glasses with ultra-low glass transition temperature
  publication-title: RSC Adv.
  doi: 10.1039/C7RA13366A
– volume: 7
  start-page: 579
  issue: 5
  year: 2019
  ident: 10.1016/j.jallcom.2019.152872_bib8
  article-title: Hybrid-type white LEDs based on inorganic halide perovskite QDs: candidates for wide color gamut display backlights
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.7.000579
– volume: 18
  start-page: 3290
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib38
  article-title: Phase transformation of GeO2 glass to nanocrystals under ambient conditions
  publication-title: Nano letter
  doi: 10.1021/acs.nanolett.8b01142
– volume: 57
  start-page: 3337
  issue: 13
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib30
  article-title: Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201710869
– volume: 49
  start-page: 4
  issue: 3
  year: 1966
  ident: 10.1016/j.jallcom.2019.152872_bib37
  article-title: Kinetics of crystallization of stoichiometric SiO2 glass in H2O atmospheres
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1966.tb15387.x
– volume: 15
  start-page: 3692
  issue: 6
  year: 2015
  ident: 10.1016/j.jallcom.2019.152872_bib12
  article-title: Nanocrystals of cesium lead halide perovskites (CsPbX(3), X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut
  publication-title: Nano Lett.
  doi: 10.1021/nl5048779
– volume: 12
  issue: 6
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib6
  article-title: Robust subwavelength single-mode perovskite nanocuboid laser
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02143
– volume: 730
  start-page: 62
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib1
  article-title: Low temperature synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals in open air and their upconversion luminescence
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.09.284
– volume: 7
  start-page: 1801663
  year: 2019
  ident: 10.1016/j.jallcom.2019.152872_bib33
  article-title: Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications
  publication-title: Adv Opt Mater
  doi: 10.1002/adom.201801663
– volume: 6
  start-page: 1800289
  issue: 16
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib3
  article-title: All-Inorganic perovskite nanocrystals: microscopy insights in structure and optical properties
  publication-title: Adv. Opt.Mater.
  doi: 10.1002/adom.201800289
– volume: 11
  start-page: 10681
  issue: 11
  year: 2017
  ident: 10.1016/j.jallcom.2019.152872_bib18
  article-title: Single-mode lasers based on cesium lead halide perovskite submicron spheres
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04496
– volume: 6
  start-page: 7971
  issue: 30
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib22
  article-title: Preparation of CsPbBr3@PS composite microspheres with high stability by electrospraying
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC01408F
– volume: 17
  start-page: 5799
  issue: 9
  year: 2017
  ident: 10.1016/j.jallcom.2019.152872_bib31
  article-title: From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02896
– volume: 6
  start-page: 9964
  issue: 37
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib9
  article-title: CsPbBr3/EuPO4 dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC03457E
– volume: 10
  start-page: 18918
  issue: 22
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib28
  article-title: In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05155
– year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib4
  article-title: Perovskites for light emission
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801996
– volume: 419
  start-page: 92
  year: 2015
  ident: 10.1016/j.jallcom.2019.152872_bib39
  article-title: The structure and properties of SnF2–SnO–P2O5 glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2015.03.040
– volume: 780
  start-page: 318
  year: 2019
  ident: 10.1016/j.jallcom.2019.152872_bib27
  article-title: Superior fluorescence and high stability of B-Si-Zn glasses based on Mn-doped CsPbBrxI3-x nanocrystals
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.11.382
– volume: 28
  start-page: 1800248
  issue: 19
  year: 2018
  ident: 10.1016/j.jallcom.2019.152872_bib15
  article-title: Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving rec. 2020 displays
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800248
SSID ssj0001931
Score 2.490666
Snippet Currently, the mainstream method for preparing perovskite quantum dots in glass is a heat treatment method. Here, a new method for the preparation of CsPbX3...
Currently, the mainstream method for preparing perovskite quantum dots in glass is a heat treatment method. Here, a new method for the preparation of CsPbX3 (X...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152872
SubjectTerms Crystallization
CsPbX3
Glass
Heat treatment
Nucleation
Perovskites
Quantum dots
Room temperature
Surface crystallization
Water-induced
Title Room temperature synthesis of CsPbX3 (X = Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass
URI https://dx.doi.org/10.1016/j.jallcom.2019.152872
https://www.proquest.com/docview/2354311132
Volume 818
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRQg4IFhAbSmVDxxAanad2MnGBw4lotqCqBBQaW-WYyfSrsK2jXdBe4FX4Vl4MmayDgUkVIlrYluRZ_zNN878ADytLNpgZVxk44xTSg6PTMVFNJaIyGguTO7oQv_taTY5k6-n6XQLij4XhsIqA_ZvML1D6_BkFHZzdDGbjT5wldA_PzRpiMRxTn67lGPS8uHXqzAPfNt1zcPBEY2-yuIZzYdz0zQUNIJWUFEnoHyc_Ms-_YXUnfk5vgd3A29kR5tPuw9b1WIAt4q-XdsA7vxWWXAAN7vITusfwLf3SI0ZVaAK5ZOZXy-Q9fmZZ-c1K_y7cirYs-mP7y9Y0Ryyl-0hO3nOqH74Z09Xu-xyhbu_-sTQf_WsXLMvSE_bCH151ArH_Kqtja2YbddINJsm5HXS2h0zfwhnx68-FpModF2IrORiGVlhKUfNusSkmU3KUlHPqRqJSObGxtS1SYWNbc25w9OP3otVKhWpS2MnEBES8Qi2F-eLageYUTyzteDKiAppmyidRO8wzUtVyyy3chdkv9fahpLk1Bmj0X3s2VwHEWkSkd6IaBeGv6ZdbGpyXDch7wWp_1AujXbjuqn7veB1ON1eJ4IqCMToyO_9_8qP4XZCvjsejCTdh-1lu6qeIMFZlgedBh_AjaOTN5PTn7Aq-vQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIlQ4VLCAWlpgDhxAanadOMnGhx4gotpCWyFopb1Zjp1IuwrbEu9S7aW8Cs_SJ2Mm61BAQpW4JrYVeTwz3-fMD2MvS4M-WGobmDDllJLDA11yEQxjtMjoLnRm6UL_-CQdncXvx8l4jeVdLgyFVXrbv7LprbX2TwZ-NwcXk8ngM5cR_fNDl4aWOMyQt9-JUX2pjUH_6ibOA1-3bfNwdEDDb9J4BtP-VNc1RY2gG5TUCigbRv9yUH-Z6tb_HDxgmx44wpvVtz1ka-Wsxzbyrl9bj93_rbRgj91tQzuNe8S-f0JsDFSCytdPBrecIexzEwfnFeTuYzEW8Gp8_WMf8noP3jZ7cPgaqID4N0d3u_B1gdu_-AJIYB0US7hEfNoESObxWFhwi6bSpgTTLBFp1rVP7KS1W2j-mJ0dvDvNR4FvuxCYmIt5YIShJDVjI52kJioKSU2nKkQiqR1qXVU6ESY0FecW1R_pi5EyEYlNQivQJETiCVufnc_KLQZa8tRUgkstSsRtorAx0sMkK2QVp5mJt1nc7bUyviY5tcaoVRd8NlVeRIpEpFYi2mb9X9MuVkU5bpuQdYJUf5wuhY7jtqm7neCVV2-nIkElBEJk8k__f-UXbGN0enykjg5PPuywexERedSSKNll6_NmUT5DtDMvnren-SdjSvyC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room+temperature+synthesis+of+CsPbX3+%28X%C2%A0%3D+Cl%2C+Br%2C+I%29+perovskite+quantum+dots+by+water-induced+surface+crystallization+of+glass&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Wang%2C+Yajie&rft.au=Zhang%2C+Renli&rft.au=Yue%2C+Yu&rft.au=Yan%2C+Sasa&rft.date=2020-03-25&rft.issn=0925-8388&rft.volume=818&rft.spage=152872&rft_id=info:doi/10.1016%2Fj.jallcom.2019.152872&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2019_152872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon