Self-Powered Smart Insole for Monitoring Human Gait Signals
With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs)...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 24; p. 5336 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
04.12.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs) are fabricated to simultaneously harvest energy from human motion and monitor human gait signals. Multi-target magnetron sputtering technology is applied to form the aluminum electrode layers on the surface of the PVDF film and the self-powered insoles are fabricated through advanced 3D seamless flat-bed knitting technology. Output responses of the NGs are measured at different motion speeds and a maximum value of 41 V is obtained, corresponding to an output power of 168.1 μW. By connecting one NG with an external circuit, the influence of external resistance, capacitor, and motion speed on the charging characteristics of the system is systematically investigated. To demonstrate the potential of the smart insoles for monitoring human gait signals, two subjects were asked to walk on a treadmill at different speeds or with a limp. The results show that one can clearly distinguish walking with a limp from regular slow, normal, and fast walking states by using multiscale entropy analysis of the stride intervals. |
---|---|
AbstractList | With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs) are fabricated to simultaneously harvest energy from human motion and monitor human gait signals. Multi-target magnetron sputtering technology is applied to form the aluminum electrode layers on the surface of the PVDF film and the self-powered insoles are fabricated through advanced 3D seamless flat-bed knitting technology. Output responses of the NGs are measured at different motion speeds and a maximum value of 41 V is obtained, corresponding to an output power of 168.1 μW. By connecting one NG with an external circuit, the influence of external resistance, capacitor, and motion speed on the charging characteristics of the system is systematically investigated. To demonstrate the potential of the smart insoles for monitoring human gait signals, two subjects were asked to walk on a treadmill at different speeds or with a limp. The results show that one can clearly distinguish walking with a limp from regular slow, normal, and fast walking states by using multiscale entropy analysis of the stride intervals.With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs) are fabricated to simultaneously harvest energy from human motion and monitor human gait signals. Multi-target magnetron sputtering technology is applied to form the aluminum electrode layers on the surface of the PVDF film and the self-powered insoles are fabricated through advanced 3D seamless flat-bed knitting technology. Output responses of the NGs are measured at different motion speeds and a maximum value of 41 V is obtained, corresponding to an output power of 168.1 μW. By connecting one NG with an external circuit, the influence of external resistance, capacitor, and motion speed on the charging characteristics of the system is systematically investigated. To demonstrate the potential of the smart insoles for monitoring human gait signals, two subjects were asked to walk on a treadmill at different speeds or with a limp. The results show that one can clearly distinguish walking with a limp from regular slow, normal, and fast walking states by using multiscale entropy analysis of the stride intervals. With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs) are fabricated to simultaneously harvest energy from human motion and monitor human gait signals. Multi-target magnetron sputtering technology is applied to form the aluminum electrode layers on the surface of the PVDF film and the self-powered insoles are fabricated through advanced 3D seamless flat-bed knitting technology. Output responses of the NGs are measured at different motion speeds and a maximum value of 41 V is obtained, corresponding to an output power of 168.1 μW. By connecting one NG with an external circuit, the influence of external resistance, capacitor, and motion speed on the charging characteristics of the system is systematically investigated. To demonstrate the potential of the smart insoles for monitoring human gait signals, two subjects were asked to walk on a treadmill at different speeds or with a limp. The results show that one can clearly distinguish walking with a limp from regular slow, normal, and fast walking states by using multiscale entropy analysis of the stride intervals. |
Author | Liao, Wei-Hsin Yu, Jian Bowen, Chris R. Wang, Wei Liu, Rong Cao, Junyi |
AuthorAffiliation | 2 China Ship Development and Design Center, Wuhan 430064, China 4 Materials and Structures Centre, Department of Mechanical Engineering, University of Bath, Bath BA27AY, UK; C.R.Bowen@bath.ac.uk 1 Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; w_wei2013@126.com (W.W.); yujian_05_31@163.com (J.Y.) 3 Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; rong.liu@polyu.edu.hk 5 Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; whliao@cuhk.edu.hk |
AuthorAffiliation_xml | – name: 2 China Ship Development and Design Center, Wuhan 430064, China – name: 5 Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; whliao@cuhk.edu.hk – name: 3 Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; rong.liu@polyu.edu.hk – name: 1 Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; w_wei2013@126.com (W.W.); yujian_05_31@163.com (J.Y.) – name: 4 Materials and Structures Centre, Department of Mechanical Engineering, University of Bath, Bath BA27AY, UK; C.R.Bowen@bath.ac.uk |
Author_xml | – sequence: 1 givenname: Wei surname: Wang fullname: Wang, Wei – sequence: 2 givenname: Junyi surname: Cao fullname: Cao, Junyi – sequence: 3 givenname: Jian surname: Yu fullname: Yu, Jian – sequence: 4 givenname: Rong orcidid: 0000-0002-4484-5203 surname: Liu fullname: Liu, Rong – sequence: 5 givenname: Chris R. orcidid: 0000-0002-5880-9131 surname: Bowen fullname: Bowen, Chris R. – sequence: 6 givenname: Wei-Hsin orcidid: 0000-0001-7221-5906 surname: Liao fullname: Liao, Wei-Hsin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31817067$$D View this record in MEDLINE/PubMed |
BookMark | eNplkU1LAzEQhoMotlYP_gFZ8KKH1XxusgiCiF-gKFTPIc1ma8o2qcmu4r83pbXUeppAnnl5ZmYPbDvvDACHCJ4RUsLziEpMGSHFFugjimkuMIbba-8e2ItxAiEmhIhd0CNIIA4L3gcXQ9PU-Yv_MsFU2XCqQps9uOgbk9U-ZE_e2dYH68bZfTdVLrtTts2GduxUE_fBTp2KOVjWAXi7vXm9vs8fn-8erq8ec00haXONMB3p0iChuKiqZCGY4UhwjkcM1kxTIwrNa6oR5WWNENMCiqpgFS5pUVMyAJeL3Fk3mppKG9cG1chZsEn3W3pl5d8fZ9_l2H_KoiygIDgFnCwDgv_oTGzl1EZtmkY547socWJo2gcVCT3eQCe-C_NpJWaE0ZIwXibqaN1opfK71wScLwAdfIzB1FLbVrXWzwVtIxGU88vJ1eVSx-lGx2_of_YHyQaVyw |
CitedBy_id | crossref_primary_10_3390_mi13040571 crossref_primary_10_1080_10584587_2022_2102798 crossref_primary_10_1038_s41598_023_31594_9 crossref_primary_10_1016_j_sna_2022_114092 crossref_primary_10_1002_ente_202000533 crossref_primary_10_3390_s21134539 crossref_primary_10_3390_app14031012 crossref_primary_10_1002_bmm2_12008 crossref_primary_10_1016_j_measurement_2021_109943 crossref_primary_10_1016_j_smhl_2022_100301 crossref_primary_10_1186_s13047_020_00396_x crossref_primary_10_1016_j_nantod_2020_101016 crossref_primary_10_1021_acsbiomaterials_1c00800 crossref_primary_10_1007_s42765_021_00081_z crossref_primary_10_1109_JSEN_2023_3346816 crossref_primary_10_3389_fbioe_2024_1355254 crossref_primary_10_1016_j_nanoen_2022_107588 crossref_primary_10_3390_s24216925 crossref_primary_10_1002_admt_202202106 crossref_primary_10_1016_j_mtcomm_2023_106250 |
Cites_doi | 10.1002/adfm.201302453 10.1063/1.4803918 10.1016/j.nanoen.2016.10.061 10.1016/j.enconman.2016.11.026 10.3390/s140712497 10.1016/j.nanoen.2017.05.047 10.1002/adma.201200150 10.1103/PhysRevLett.89.068102 10.1002/adfm.201400379 10.1039/C5NR01746G 10.1016/j.nanoen.2016.10.034 10.1063/1.3159815 10.1021/acsnano.5b04855 10.1088/1361-665X/aa81a0 10.1063/1.4963786 10.1021/nn500441k 10.1126/sciadv.1700015 10.1002/adma.201303570 10.1016/j.physa.2013.07.075 10.3390/e19100557 10.1002/aenm.201602832 10.3390/e15031069 10.1016/j.nanoen.2017.10.029 10.1109/TIA.2010.2101995 10.1016/j.enconman.2017.09.057 10.1002/adma.201504299 10.1016/j.nanoen.2017.01.008 10.1021/acsnano.5b01835 10.1002/adfm.201703801 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/s19245336 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | PMC6960832 31817067 10_3390_s19245336 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of China grantid: xjj2016002 – fundername: National Natural Science Foundation of China grantid: 51575426, 51811530321 – fundername: Novel Energy Materials, Engineering Science and Integrated Systems grantid: 320963 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c403t-c124bc9e18a78dd00285e718772b50f5c4e86c7f4c1479f115c808d65d2946f43 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Thu Aug 21 18:13:32 EDT 2025 Fri Jul 11 15:22:12 EDT 2025 Fri Jul 25 20:03:53 EDT 2025 Thu Apr 03 07:07:14 EDT 2025 Tue Jul 01 00:42:11 EDT 2025 Thu Apr 24 23:09:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | multi-scale entropy smart insole gait monitoring piezoelectric self-powered |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-c124bc9e18a78dd00285e718772b50f5c4e86c7f4c1479f115c808d65d2946f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5880-9131 0000-0001-7221-5906 0000-0002-4484-5203 |
OpenAccessLink | https://www.proquest.com/docview/2535493579?pq-origsite=%requestingapplication% |
PMID | 31817067 |
PQID | 2535493579 |
PQPubID | 2032333 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6960832 proquest_miscellaneous_2323470648 proquest_journals_2535493579 pubmed_primary_31817067 crossref_citationtrail_10_3390_s19245336 crossref_primary_10_3390_s19245336 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191204 |
PublicationDateYYYYMMDD | 2019-12-04 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191204 day: 4 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Deng (ref_13) 2016; 109 Chen (ref_22) 2015; 7 Erturk (ref_12) 2009; 94 Fan (ref_18) 2016; 28 Salauddin (ref_21) 2017; 153 Yaqoob (ref_17) 2017; 26 Wu (ref_29) 2013; 392 Shi (ref_23) 2017; 32 Chen (ref_24) 2017; 38 Siddiqui (ref_9) 2016; 30 Lee (ref_7) 2012; 24 Arrieta (ref_11) 2013; 102 Zhang (ref_1) 2014; 24 Pu (ref_16) 2017; 3 Dayal (ref_15) 2011; 47 Xing (ref_25) 2017; 42 Wu (ref_27) 2013; 15 Hwang (ref_4) 2015; 9 Costa (ref_26) 2002; 89 Fuh (ref_20) 2016; 30 Wang (ref_2) 2014; 24 Li (ref_6) 2017; 7 Zhang (ref_8) 2018; 28 ref_28 Park (ref_5) 2014; 8 Lee (ref_19) 2014; 26 Zhao (ref_10) 2014; 14 Hinchet (ref_3) 2015; 9 Wang (ref_14) 2017; 132 |
References_xml | – volume: 24 start-page: 1401 year: 2014 ident: ref_1 article-title: Triboelectric Nanogenerator for Harvesting Vibration Energy in Full Space and as Self-Powered Acceleration Sensor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302453 – volume: 102 start-page: 173904 year: 2013 ident: ref_11 article-title: Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites publication-title: Appl. Phys. Lett. doi: 10.1063/1.4803918 – volume: 30 start-page: 677 year: 2016 ident: ref_20 article-title: Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.061 – volume: 132 start-page: 189 year: 2017 ident: ref_14 article-title: Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.11.026 – volume: 14 start-page: 12497 year: 2014 ident: ref_10 article-title: A shoe-embedded piezoelectric energy harvester for wearable sensors publication-title: Sensors doi: 10.3390/s140712497 – volume: 38 start-page: 43 year: 2017 ident: ref_24 article-title: Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.047 – volume: 24 start-page: 1759 year: 2012 ident: ref_7 article-title: A hybrid piezoelectric structure for wearable nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201200150 – volume: 89 start-page: 068102 year: 2002 ident: ref_26 article-title: Multiscale entropy analysis of complex physiologic time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.068102 – volume: 24 start-page: 4666 year: 2014 ident: ref_2 article-title: Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400379 – volume: 7 start-page: 11536 year: 2015 ident: ref_22 article-title: A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling publication-title: Nanoscale doi: 10.1039/C5NR01746G – volume: 30 start-page: 434 year: 2016 ident: ref_9 article-title: A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.034 – volume: 94 start-page: 254102 year: 2009 ident: ref_12 article-title: A piezomagnetoelastic structure for broadband vibration energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.3159815 – volume: 9 start-page: 7742 year: 2015 ident: ref_3 article-title: Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems publication-title: ACS Nano doi: 10.1021/acsnano.5b04855 – volume: 26 start-page: 095060 year: 2017 ident: ref_17 article-title: Effect of reduced graphene oxide on the energy harvesting performance of P(VDF-TrFE)-BaTiO3 nanocomposite devices publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa81a0 – volume: 109 start-page: 133903 year: 2016 ident: ref_13 article-title: Non-contact magnetically coupled rectilinear-rotary oscillations to exploit low-frequency broadband energy harvesting with frequency up-conversion publication-title: Appl. Phys. Lett. doi: 10.1063/1.4963786 – volume: 8 start-page: 4689 year: 2014 ident: ref_5 article-title: Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins publication-title: ACS Nano doi: 10.1021/nn500441k – volume: 3 start-page: e1700015 year: 2017 ident: ref_16 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. doi: 10.1126/sciadv.1700015 – volume: 26 start-page: 765 year: 2014 ident: ref_19 article-title: Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201303570 – volume: 392 start-page: 5865 year: 2013 ident: ref_29 article-title: Modified multiscale entropy for short-term time series analysis publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2013.07.075 – ident: ref_28 doi: 10.3390/e19100557 – volume: 7 start-page: 1602832 year: 2017 ident: ref_6 article-title: Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602832 – volume: 15 start-page: 1069 year: 2013 ident: ref_27 article-title: Time series analysis using composite multiscale entropy publication-title: Entropy doi: 10.3390/e15031069 – volume: 42 start-page: 138 year: 2017 ident: ref_25 article-title: Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.029 – volume: 47 start-page: 820 year: 2011 ident: ref_15 article-title: A New Design for Vibration-Based Electromagnetic Energy Harvesting Systems Using Coil Inductance of Microgenerator publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2010.2101995 – volume: 153 start-page: 1 year: 2017 ident: ref_21 article-title: Design and experiment of hybridized electromagnetic-triboelectric energy harvester using Halbach magnet array from handshaking vibration publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.09.057 – volume: 28 start-page: 4283 year: 2016 ident: ref_18 article-title: Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics publication-title: Adv. Mater. doi: 10.1002/adma.201504299 – volume: 32 start-page: 479 year: 2017 ident: ref_23 article-title: Self-powered wireless smart patch for healthcare monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.008 – volume: 9 start-page: 8801 year: 2015 ident: ref_4 article-title: Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities publication-title: ACS Nano doi: 10.1021/acsnano.5b01835 – volume: 28 start-page: 1703801 year: 2018 ident: ref_8 article-title: Electromagnetic Shielding Hybrid Nanogenerator for Health Monitoring and Protection publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703801 |
SSID | ssj0023338 |
Score | 2.400648 |
Snippet | With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5336 |
SubjectTerms | Aluminum Design Electric Power Supplies Energy Experiments Fitness equipment Gait Humans Nanotechnology - instrumentation Nanotechnology - methods Nanowires Physiology Polyvinyls - chemistry Sensors Shoes Wearable Electronic Devices Wireless Technology Zinc oxides |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7RcKGHqrzdFrRFHLhYcbwvWz1UFSIUpCKkECk3a19uIwUnbZL_3xnbcRJAnHcsWzOzM9_Mrr8B-KgNpgVrQqxST90q4oCUpY3TXFiTqpAISz8n3_xQ12PxfSInbcNt2V6r3MTEOlD7uaMeeT-VHEsZLnV-ubiPaWoUna62IzQO4ClRl9GVLj3ZFlwc66-GTYhjad9fUrGB8Ebt56C_gOWf9yN3Es7wGI5apMiuGtM-hyehegGHO_yBL-FiFGZl_JMGnQXPRr_RDdi3Cr0pMMSirNmvJMrqXj37aqYrNpreEmfyKxgPv_z6fB230xBiJxK-ih1mYuvyMMiMzrynYkkGzCwIj61MSulEyJTTpXADofMSkZ7Lkswr6VHvqhT8NfSqeRXeAjNemjDgJvcIlxBdG61Mym3pndYWn4_g00Y_hWupwmlixazAkoFUWXSqjOBDJ7po-DH-JXS2UXLRbpFlsTVoBOfdMjo3nViYKszXKMNTLjSipiyCN41NurdgMCLqHx2B3rNWJ0DE2fsr1fSuJtBWWLZhJDv5_2edwjNER_WwiEScQW_1sA7vEIGs7PvazR4BdDjbeg priority: 102 providerName: ProQuest |
Title | Self-Powered Smart Insole for Monitoring Human Gait Signals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31817067 https://www.proquest.com/docview/2535493579 https://www.proquest.com/docview/2323470648 https://pubmed.ncbi.nlm.nih.gov/PMC6960832 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xuJRD1VIKKXTlVhy4hGbjV6KqqgpioUgg1GWlvUV-BVbahgKLVP49M8luxAIHLrl4LEsztuf77PgbgG1tMC1YE2KVejqtIg1IWdo4zYU1qQqJsPQ4-eRUHQ3E8VAOF2BWY3PqwNsXqR3VkxrcjHf_X9__xAX_gxgnUvZvt0QiELaoRVjGkTWtzxPRXiaknNcFrelNV4z5MGkEhua7zqelZ1jz6S-Tj3JQ7x28nYJH9quJ9ntYCNUqrDySFPwA3_thXMZnVPsseNb_izOD_a5wggWG8JQ1S5hMWX18zw7NaML6owtyxxoMegfn-0fxtEBC7ETCJ7HD5GxdHrqZ0Zn3xJ9kwGSDiNnKpJROhEw5XQrXFTovEfy5LMm8kh5DoUrBP8JSdVWFDWDGSxO63OQeERQCbqOVSbktvdPaYv8Idmb-KdxUPZyKWIwLZBHkyqJ1ZQRfW9N_jWTGS0ZbMycXs6AXqeRIV7nUeQRf2mac73SJYapwdYc2POVCI5DKIlhvYtKOgvsTqQHpCPRctFoD0tKeb6lGl7WmtkImh5vbp1eMuwlvEDXVRSQSsQVLk5u78BmRycR2YFEPNX6z3mEHlvcOTs_-dGqW36ln5APyIeUH |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAcEOVpaMuCQOJi1fG-bCGEqj5I6ENIaaXczL7cRipOIakQf4rfyIwduw0gbj17bK9mZ2e-b9f-BuC1NlgWrAmxSj3tVpEGpCxtnObCmlSFRFj6OfnwSPVPxKeRHC3Br_ZfGPqsss2JdaL2E0d75Jup5EhluNT5h4tvMXWNotPVtoVGExb74ecPpGzT94MdnN83abq3e7zdj-ddBWInEj6LHVY06_LQy4zOvCfSIQNmaISZVialdCJkyulSuJ7QeYmIyWVJ5pX0OH5VCo7PvQUrWHgTWlF6dEXwOPK9Rr2I8zzZnBK5QTilFmveX0D2z-8xrxW4vftwb45M2VYTSquwFKoHcPeaXuFDeDcM52X8mRqrBc-GXzHs2KDC6A0MsS9r8gOZsvpsgH004xkbjk9Jo_kRnNyInx7DcjWpwlNgxksTetzkHuEZonmjlUm5Lb3T2uL9Ebxt_VO4uTQ5dcg4L5CikCuLzpURvOpMLxo9jn8ZrbVOLuZLclpcBVAEL7vLuJjohMRUYXKJNjzlQiNKyyJ40sxJ9xZMfiQ1pCPQC7PVGZBQ9-KVanxWC3YrpImYOZ_9f1gv4Hb_-PCgOBgc7T-HO4jM6kYViViD5dn3y7CO6GdmN-qQY_DlpmP8N99aFsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5iBNEHifdo1FYUfBl2dvqaIYiIcc0aDYE1sG-TvkYX4mx0N0j-Wn6dVXMlq-Jbnqfmqv66-qs-vgJ4oQ0OC9aEWKWeZqtIA1KWNk5zYU2qQiIsHU7-vKd2DsTHqZyuwVl3Foa2VXYxsQ7Ufu5ojnyQSo6pDJc6H5Tttoj97dGb4x8xVZCildaunEYDkd1w-gvTt8Xr8Ta29cs0Hb3_8m4nbisMxE4kfBk7HN2sy8MwMzrznhIQGTBaI-W0MimlEyFTTpfCDYXOS2RPLksyr6THf1Gl4PjcK3BVczmkPqan58kex9yvUTLiPE8GC0p0kFqp1fHvL1L7597MC4PdaANutiyVvW1gdQvWQnUbblzQLrwDW5NwVMb7VGQteDb5jhBk4wqRHBjyYNbECjJl9ToB-2BmSzaZfSW95rtwcCl-ugfr1bwKD4AZL00YcpN7pGrI7I1WJuW29E5ri_dH8KrzT-FamXKqlnFUYLpCrix6V0bwvDc9brQ5_mW02Tm5aLvnojgHUwTP-svYsWi1xFRhfoI2POVCI2PLIrjftEn_FgyEJDukI9ArrdUbkGj36pVq9q0W71aYMmIUffj_z3oK1xDdxafx3u4juI4kra5ZkYhNWF_-PAmPkQgt7ZMacQwOLxvivwGt2xsC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Powered+Smart+Insole+for+Monitoring+Human+Gait+Signals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Wei&rft.au=Cao%2C+Junyi&rft.au=Yu%2C+Jian&rft.au=Liu%2C+Rong&rft.date=2019-12-04&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=24&rft_id=info:doi/10.3390%2Fs19245336&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |