Self-Powered Smart Insole for Monitoring Human Gait Signals

With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs)...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 24; p. 5336
Main Authors Wang, Wei, Cao, Junyi, Yu, Jian, Liu, Rong, Bowen, Chris R., Liao, Wei-Hsin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.12.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs) are fabricated to simultaneously harvest energy from human motion and monitor human gait signals. Multi-target magnetron sputtering technology is applied to form the aluminum electrode layers on the surface of the PVDF film and the self-powered insoles are fabricated through advanced 3D seamless flat-bed knitting technology. Output responses of the NGs are measured at different motion speeds and a maximum value of 41 V is obtained, corresponding to an output power of 168.1 μW. By connecting one NG with an external circuit, the influence of external resistance, capacitor, and motion speed on the charging characteristics of the system is systematically investigated. To demonstrate the potential of the smart insoles for monitoring human gait signals, two subjects were asked to walk on a treadmill at different speeds or with a limp. The results show that one can clearly distinguish walking with a limp from regular slow, normal, and fast walking states by using multiscale entropy analysis of the stride intervals.
AbstractList With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs) are fabricated to simultaneously harvest energy from human motion and monitor human gait signals. Multi-target magnetron sputtering technology is applied to form the aluminum electrode layers on the surface of the PVDF film and the self-powered insoles are fabricated through advanced 3D seamless flat-bed knitting technology. Output responses of the NGs are measured at different motion speeds and a maximum value of 41 V is obtained, corresponding to an output power of 168.1 μW. By connecting one NG with an external circuit, the influence of external resistance, capacitor, and motion speed on the charging characteristics of the system is systematically investigated. To demonstrate the potential of the smart insoles for monitoring human gait signals, two subjects were asked to walk on a treadmill at different speeds or with a limp. The results show that one can clearly distinguish walking with a limp from regular slow, normal, and fast walking states by using multiscale entropy analysis of the stride intervals.With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs) are fabricated to simultaneously harvest energy from human motion and monitor human gait signals. Multi-target magnetron sputtering technology is applied to form the aluminum electrode layers on the surface of the PVDF film and the self-powered insoles are fabricated through advanced 3D seamless flat-bed knitting technology. Output responses of the NGs are measured at different motion speeds and a maximum value of 41 V is obtained, corresponding to an output power of 168.1 μW. By connecting one NG with an external circuit, the influence of external resistance, capacitor, and motion speed on the charging characteristics of the system is systematically investigated. To demonstrate the potential of the smart insoles for monitoring human gait signals, two subjects were asked to walk on a treadmill at different speeds or with a limp. The results show that one can clearly distinguish walking with a limp from regular slow, normal, and fast walking states by using multiscale entropy analysis of the stride intervals.
With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered sensing is becoming desirable. Herein, a pair of smart insoles integrated with piezoelectric poly(vinylidene fluoride) (PVDF) nanogenerators (NGs) are fabricated to simultaneously harvest energy from human motion and monitor human gait signals. Multi-target magnetron sputtering technology is applied to form the aluminum electrode layers on the surface of the PVDF film and the self-powered insoles are fabricated through advanced 3D seamless flat-bed knitting technology. Output responses of the NGs are measured at different motion speeds and a maximum value of 41 V is obtained, corresponding to an output power of 168.1 μW. By connecting one NG with an external circuit, the influence of external resistance, capacitor, and motion speed on the charging characteristics of the system is systematically investigated. To demonstrate the potential of the smart insoles for monitoring human gait signals, two subjects were asked to walk on a treadmill at different speeds or with a limp. The results show that one can clearly distinguish walking with a limp from regular slow, normal, and fast walking states by using multiscale entropy analysis of the stride intervals.
Author Liao, Wei-Hsin
Yu, Jian
Bowen, Chris R.
Wang, Wei
Liu, Rong
Cao, Junyi
AuthorAffiliation 2 China Ship Development and Design Center, Wuhan 430064, China
4 Materials and Structures Centre, Department of Mechanical Engineering, University of Bath, Bath BA27AY, UK; C.R.Bowen@bath.ac.uk
1 Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; w_wei2013@126.com (W.W.); yujian_05_31@163.com (J.Y.)
3 Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; rong.liu@polyu.edu.hk
5 Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; whliao@cuhk.edu.hk
AuthorAffiliation_xml – name: 2 China Ship Development and Design Center, Wuhan 430064, China
– name: 5 Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; whliao@cuhk.edu.hk
– name: 3 Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; rong.liu@polyu.edu.hk
– name: 1 Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; w_wei2013@126.com (W.W.); yujian_05_31@163.com (J.Y.)
– name: 4 Materials and Structures Centre, Department of Mechanical Engineering, University of Bath, Bath BA27AY, UK; C.R.Bowen@bath.ac.uk
Author_xml – sequence: 1
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
– sequence: 2
  givenname: Junyi
  surname: Cao
  fullname: Cao, Junyi
– sequence: 3
  givenname: Jian
  surname: Yu
  fullname: Yu, Jian
– sequence: 4
  givenname: Rong
  orcidid: 0000-0002-4484-5203
  surname: Liu
  fullname: Liu, Rong
– sequence: 5
  givenname: Chris R.
  orcidid: 0000-0002-5880-9131
  surname: Bowen
  fullname: Bowen, Chris R.
– sequence: 6
  givenname: Wei-Hsin
  orcidid: 0000-0001-7221-5906
  surname: Liao
  fullname: Liao, Wei-Hsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31817067$$D View this record in MEDLINE/PubMed
BookMark eNplkU1LAzEQhoMotlYP_gFZ8KKH1XxusgiCiF-gKFTPIc1ma8o2qcmu4r83pbXUeppAnnl5ZmYPbDvvDACHCJ4RUsLziEpMGSHFFugjimkuMIbba-8e2ItxAiEmhIhd0CNIIA4L3gcXQ9PU-Yv_MsFU2XCqQps9uOgbk9U-ZE_e2dYH68bZfTdVLrtTts2GduxUE_fBTp2KOVjWAXi7vXm9vs8fn-8erq8ec00haXONMB3p0iChuKiqZCGY4UhwjkcM1kxTIwrNa6oR5WWNENMCiqpgFS5pUVMyAJeL3Fk3mppKG9cG1chZsEn3W3pl5d8fZ9_l2H_KoiygIDgFnCwDgv_oTGzl1EZtmkY547socWJo2gcVCT3eQCe-C_NpJWaE0ZIwXibqaN1opfK71wScLwAdfIzB1FLbVrXWzwVtIxGU88vJ1eVSx-lGx2_of_YHyQaVyw
CitedBy_id crossref_primary_10_3390_mi13040571
crossref_primary_10_1080_10584587_2022_2102798
crossref_primary_10_1038_s41598_023_31594_9
crossref_primary_10_1016_j_sna_2022_114092
crossref_primary_10_1002_ente_202000533
crossref_primary_10_3390_s21134539
crossref_primary_10_3390_app14031012
crossref_primary_10_1002_bmm2_12008
crossref_primary_10_1016_j_measurement_2021_109943
crossref_primary_10_1016_j_smhl_2022_100301
crossref_primary_10_1186_s13047_020_00396_x
crossref_primary_10_1016_j_nantod_2020_101016
crossref_primary_10_1021_acsbiomaterials_1c00800
crossref_primary_10_1007_s42765_021_00081_z
crossref_primary_10_1109_JSEN_2023_3346816
crossref_primary_10_3389_fbioe_2024_1355254
crossref_primary_10_1016_j_nanoen_2022_107588
crossref_primary_10_3390_s24216925
crossref_primary_10_1002_admt_202202106
crossref_primary_10_1016_j_mtcomm_2023_106250
Cites_doi 10.1002/adfm.201302453
10.1063/1.4803918
10.1016/j.nanoen.2016.10.061
10.1016/j.enconman.2016.11.026
10.3390/s140712497
10.1016/j.nanoen.2017.05.047
10.1002/adma.201200150
10.1103/PhysRevLett.89.068102
10.1002/adfm.201400379
10.1039/C5NR01746G
10.1016/j.nanoen.2016.10.034
10.1063/1.3159815
10.1021/acsnano.5b04855
10.1088/1361-665X/aa81a0
10.1063/1.4963786
10.1021/nn500441k
10.1126/sciadv.1700015
10.1002/adma.201303570
10.1016/j.physa.2013.07.075
10.3390/e19100557
10.1002/aenm.201602832
10.3390/e15031069
10.1016/j.nanoen.2017.10.029
10.1109/TIA.2010.2101995
10.1016/j.enconman.2017.09.057
10.1002/adma.201504299
10.1016/j.nanoen.2017.01.008
10.1021/acsnano.5b01835
10.1002/adfm.201703801
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/s19245336
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID PMC6960832
31817067
10_3390_s19245336
Genre Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of China
  grantid: xjj2016002
– fundername: National Natural Science Foundation of China
  grantid: 51575426, 51811530321
– fundername: Novel Energy Materials, Engineering Science and Integrated Systems
  grantid: 320963
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c403t-c124bc9e18a78dd00285e718772b50f5c4e86c7f4c1479f115c808d65d2946f43
IEDL.DBID M48
ISSN 1424-8220
IngestDate Thu Aug 21 18:13:32 EDT 2025
Fri Jul 11 15:22:12 EDT 2025
Fri Jul 25 20:03:53 EDT 2025
Thu Apr 03 07:07:14 EDT 2025
Tue Jul 01 00:42:11 EDT 2025
Thu Apr 24 23:09:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords multi-scale entropy
smart insole
gait monitoring
piezoelectric
self-powered
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-c124bc9e18a78dd00285e718772b50f5c4e86c7f4c1479f115c808d65d2946f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5880-9131
0000-0001-7221-5906
0000-0002-4484-5203
OpenAccessLink https://www.proquest.com/docview/2535493579?pq-origsite=%requestingapplication%
PMID 31817067
PQID 2535493579
PQPubID 2032333
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6960832
proquest_miscellaneous_2323470648
proquest_journals_2535493579
pubmed_primary_31817067
crossref_citationtrail_10_3390_s19245336
crossref_primary_10_3390_s19245336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191204
PublicationDateYYYYMMDD 2019-12-04
PublicationDate_xml – month: 12
  year: 2019
  text: 20191204
  day: 4
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Deng (ref_13) 2016; 109
Chen (ref_22) 2015; 7
Erturk (ref_12) 2009; 94
Fan (ref_18) 2016; 28
Salauddin (ref_21) 2017; 153
Yaqoob (ref_17) 2017; 26
Wu (ref_29) 2013; 392
Shi (ref_23) 2017; 32
Chen (ref_24) 2017; 38
Siddiqui (ref_9) 2016; 30
Lee (ref_7) 2012; 24
Arrieta (ref_11) 2013; 102
Zhang (ref_1) 2014; 24
Pu (ref_16) 2017; 3
Dayal (ref_15) 2011; 47
Xing (ref_25) 2017; 42
Wu (ref_27) 2013; 15
Hwang (ref_4) 2015; 9
Costa (ref_26) 2002; 89
Fuh (ref_20) 2016; 30
Wang (ref_2) 2014; 24
Li (ref_6) 2017; 7
Zhang (ref_8) 2018; 28
ref_28
Park (ref_5) 2014; 8
Lee (ref_19) 2014; 26
Zhao (ref_10) 2014; 14
Hinchet (ref_3) 2015; 9
Wang (ref_14) 2017; 132
References_xml – volume: 24
  start-page: 1401
  year: 2014
  ident: ref_1
  article-title: Triboelectric Nanogenerator for Harvesting Vibration Energy in Full Space and as Self-Powered Acceleration Sensor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302453
– volume: 102
  start-page: 173904
  year: 2013
  ident: ref_11
  article-title: Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4803918
– volume: 30
  start-page: 677
  year: 2016
  ident: ref_20
  article-title: Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.061
– volume: 132
  start-page: 189
  year: 2017
  ident: ref_14
  article-title: Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.11.026
– volume: 14
  start-page: 12497
  year: 2014
  ident: ref_10
  article-title: A shoe-embedded piezoelectric energy harvester for wearable sensors
  publication-title: Sensors
  doi: 10.3390/s140712497
– volume: 38
  start-page: 43
  year: 2017
  ident: ref_24
  article-title: Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.047
– volume: 24
  start-page: 1759
  year: 2012
  ident: ref_7
  article-title: A hybrid piezoelectric structure for wearable nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200150
– volume: 89
  start-page: 068102
  year: 2002
  ident: ref_26
  article-title: Multiscale entropy analysis of complex physiologic time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.068102
– volume: 24
  start-page: 4666
  year: 2014
  ident: ref_2
  article-title: Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400379
– volume: 7
  start-page: 11536
  year: 2015
  ident: ref_22
  article-title: A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling
  publication-title: Nanoscale
  doi: 10.1039/C5NR01746G
– volume: 30
  start-page: 434
  year: 2016
  ident: ref_9
  article-title: A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.034
– volume: 94
  start-page: 254102
  year: 2009
  ident: ref_12
  article-title: A piezomagnetoelastic structure for broadband vibration energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3159815
– volume: 9
  start-page: 7742
  year: 2015
  ident: ref_3
  article-title: Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04855
– volume: 26
  start-page: 095060
  year: 2017
  ident: ref_17
  article-title: Effect of reduced graphene oxide on the energy harvesting performance of P(VDF-TrFE)-BaTiO3 nanocomposite devices
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa81a0
– volume: 109
  start-page: 133903
  year: 2016
  ident: ref_13
  article-title: Non-contact magnetically coupled rectilinear-rotary oscillations to exploit low-frequency broadband energy harvesting with frequency up-conversion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4963786
– volume: 8
  start-page: 4689
  year: 2014
  ident: ref_5
  article-title: Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins
  publication-title: ACS Nano
  doi: 10.1021/nn500441k
– volume: 3
  start-page: e1700015
  year: 2017
  ident: ref_16
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700015
– volume: 26
  start-page: 765
  year: 2014
  ident: ref_19
  article-title: Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303570
– volume: 392
  start-page: 5865
  year: 2013
  ident: ref_29
  article-title: Modified multiscale entropy for short-term time series analysis
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2013.07.075
– ident: ref_28
  doi: 10.3390/e19100557
– volume: 7
  start-page: 1602832
  year: 2017
  ident: ref_6
  article-title: Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602832
– volume: 15
  start-page: 1069
  year: 2013
  ident: ref_27
  article-title: Time series analysis using composite multiscale entropy
  publication-title: Entropy
  doi: 10.3390/e15031069
– volume: 42
  start-page: 138
  year: 2017
  ident: ref_25
  article-title: Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.029
– volume: 47
  start-page: 820
  year: 2011
  ident: ref_15
  article-title: A New Design for Vibration-Based Electromagnetic Energy Harvesting Systems Using Coil Inductance of Microgenerator
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2010.2101995
– volume: 153
  start-page: 1
  year: 2017
  ident: ref_21
  article-title: Design and experiment of hybridized electromagnetic-triboelectric energy harvester using Halbach magnet array from handshaking vibration
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.09.057
– volume: 28
  start-page: 4283
  year: 2016
  ident: ref_18
  article-title: Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504299
– volume: 32
  start-page: 479
  year: 2017
  ident: ref_23
  article-title: Self-powered wireless smart patch for healthcare monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.008
– volume: 9
  start-page: 8801
  year: 2015
  ident: ref_4
  article-title: Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01835
– volume: 28
  start-page: 1703801
  year: 2018
  ident: ref_8
  article-title: Electromagnetic Shielding Hybrid Nanogenerator for Health Monitoring and Protection
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703801
SSID ssj0023338
Score 2.400648
Snippet With the rapid development of low-power consumption wireless sensors and wearable electronics, harvesting energy from human motion to enable self-powered...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5336
SubjectTerms Aluminum
Design
Electric Power Supplies
Energy
Experiments
Fitness equipment
Gait
Humans
Nanotechnology - instrumentation
Nanotechnology - methods
Nanowires
Physiology
Polyvinyls - chemistry
Sensors
Shoes
Wearable Electronic Devices
Wireless Technology
Zinc oxides
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7RcKGHqrzdFrRFHLhYcbwvWz1UFSIUpCKkECk3a19uIwUnbZL_3xnbcRJAnHcsWzOzM9_Mrr8B-KgNpgVrQqxST90q4oCUpY3TXFiTqpAISz8n3_xQ12PxfSInbcNt2V6r3MTEOlD7uaMeeT-VHEsZLnV-ubiPaWoUna62IzQO4ClRl9GVLj3ZFlwc66-GTYhjad9fUrGB8Ebt56C_gOWf9yN3Es7wGI5apMiuGtM-hyehegGHO_yBL-FiFGZl_JMGnQXPRr_RDdi3Cr0pMMSirNmvJMrqXj37aqYrNpreEmfyKxgPv_z6fB230xBiJxK-ih1mYuvyMMiMzrynYkkGzCwIj61MSulEyJTTpXADofMSkZ7Lkswr6VHvqhT8NfSqeRXeAjNemjDgJvcIlxBdG61Mym3pndYWn4_g00Y_hWupwmlixazAkoFUWXSqjOBDJ7po-DH-JXS2UXLRbpFlsTVoBOfdMjo3nViYKszXKMNTLjSipiyCN41NurdgMCLqHx2B3rNWJ0DE2fsr1fSuJtBWWLZhJDv5_2edwjNER_WwiEScQW_1sA7vEIGs7PvazR4BdDjbeg
  priority: 102
  providerName: ProQuest
Title Self-Powered Smart Insole for Monitoring Human Gait Signals
URI https://www.ncbi.nlm.nih.gov/pubmed/31817067
https://www.proquest.com/docview/2535493579
https://www.proquest.com/docview/2323470648
https://pubmed.ncbi.nlm.nih.gov/PMC6960832
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xuJRD1VIKKXTlVhy4hGbjV6KqqgpioUgg1GWlvUV-BVbahgKLVP49M8luxAIHLrl4LEsztuf77PgbgG1tMC1YE2KVejqtIg1IWdo4zYU1qQqJsPQ4-eRUHQ3E8VAOF2BWY3PqwNsXqR3VkxrcjHf_X9__xAX_gxgnUvZvt0QiELaoRVjGkTWtzxPRXiaknNcFrelNV4z5MGkEhua7zqelZ1jz6S-Tj3JQ7x28nYJH9quJ9ntYCNUqrDySFPwA3_thXMZnVPsseNb_izOD_a5wggWG8JQ1S5hMWX18zw7NaML6owtyxxoMegfn-0fxtEBC7ETCJ7HD5GxdHrqZ0Zn3xJ9kwGSDiNnKpJROhEw5XQrXFTovEfy5LMm8kh5DoUrBP8JSdVWFDWDGSxO63OQeERQCbqOVSbktvdPaYv8Idmb-KdxUPZyKWIwLZBHkyqJ1ZQRfW9N_jWTGS0ZbMycXs6AXqeRIV7nUeQRf2mac73SJYapwdYc2POVCI5DKIlhvYtKOgvsTqQHpCPRctFoD0tKeb6lGl7WmtkImh5vbp1eMuwlvEDXVRSQSsQVLk5u78BmRycR2YFEPNX6z3mEHlvcOTs_-dGqW36ln5APyIeUH
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAcEOVpaMuCQOJi1fG-bCGEqj5I6ENIaaXczL7cRipOIakQf4rfyIwduw0gbj17bK9mZ2e-b9f-BuC1NlgWrAmxSj3tVpEGpCxtnObCmlSFRFj6OfnwSPVPxKeRHC3Br_ZfGPqsss2JdaL2E0d75Jup5EhluNT5h4tvMXWNotPVtoVGExb74ecPpGzT94MdnN83abq3e7zdj-ddBWInEj6LHVY06_LQy4zOvCfSIQNmaISZVialdCJkyulSuJ7QeYmIyWVJ5pX0OH5VCo7PvQUrWHgTWlF6dEXwOPK9Rr2I8zzZnBK5QTilFmveX0D2z-8xrxW4vftwb45M2VYTSquwFKoHcPeaXuFDeDcM52X8mRqrBc-GXzHs2KDC6A0MsS9r8gOZsvpsgH004xkbjk9Jo_kRnNyInx7DcjWpwlNgxksTetzkHuEZonmjlUm5Lb3T2uL9Ebxt_VO4uTQ5dcg4L5CikCuLzpURvOpMLxo9jn8ZrbVOLuZLclpcBVAEL7vLuJjohMRUYXKJNjzlQiNKyyJ40sxJ9xZMfiQ1pCPQC7PVGZBQ9-KVanxWC3YrpImYOZ_9f1gv4Hb_-PCgOBgc7T-HO4jM6kYViViD5dn3y7CO6GdmN-qQY_DlpmP8N99aFsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5iBNEHifdo1FYUfBl2dvqaIYiIcc0aDYE1sG-TvkYX4mx0N0j-Wn6dVXMlq-Jbnqfmqv66-qs-vgJ4oQ0OC9aEWKWeZqtIA1KWNk5zYU2qQiIsHU7-vKd2DsTHqZyuwVl3Foa2VXYxsQ7Ufu5ojnyQSo6pDJc6H5Tttoj97dGb4x8xVZCildaunEYDkd1w-gvTt8Xr8Ta29cs0Hb3_8m4nbisMxE4kfBk7HN2sy8MwMzrznhIQGTBaI-W0MimlEyFTTpfCDYXOS2RPLksyr6THf1Gl4PjcK3BVczmkPqan58kex9yvUTLiPE8GC0p0kFqp1fHvL1L7597MC4PdaANutiyVvW1gdQvWQnUbblzQLrwDW5NwVMb7VGQteDb5jhBk4wqRHBjyYNbECjJl9ToB-2BmSzaZfSW95rtwcCl-ugfr1bwKD4AZL00YcpN7pGrI7I1WJuW29E5ri_dH8KrzT-FamXKqlnFUYLpCrix6V0bwvDc9brQ5_mW02Tm5aLvnojgHUwTP-svYsWi1xFRhfoI2POVCI2PLIrjftEn_FgyEJDukI9ArrdUbkGj36pVq9q0W71aYMmIUffj_z3oK1xDdxafx3u4juI4kra5ZkYhNWF_-PAmPkQgt7ZMacQwOLxvivwGt2xsC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Powered+Smart+Insole+for+Monitoring+Human+Gait+Signals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Wei&rft.au=Cao%2C+Junyi&rft.au=Yu%2C+Jian&rft.au=Liu%2C+Rong&rft.date=2019-12-04&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=24&rft_id=info:doi/10.3390%2Fs19245336&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon