Multi-Modal Sensor Fusion-Based Semantic Segmentation for Snow Driving Scenarios
In recent years, autonomous vehicle driving technology and advanced driver assistance systems have played a key role in improving road safety. However, weather conditions such as snow pose severe challenges for autonomous driving and are an active research area. Thanks to their superior reliability,...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 15; pp. 16839 - 16851 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, autonomous vehicle driving technology and advanced driver assistance systems have played a key role in improving road safety. However, weather conditions such as snow pose severe challenges for autonomous driving and are an active research area. Thanks to their superior reliability, the resilience of detection, and improved accuracy, advances in computation and sensor technology have paved the way for deep learning and neural network-based techniques that can replace the classical approaches. In this research, we investigate the semantic segmentation of roads in snowy environments. We propose a multi-modal fused RGB-T semantic segmentation utilizing a color (RGB) image and thermal map (T) as inputs for the network. This paper introduces a novel fusion module that combines the feature map from both inputs. We evaluate the proposed model on a new snow dataset that we collected and on other publicly available datasets. The segmentation results show that the proposed fused RGB-T input can segregate human subjects in snowy environments better than an RGB-only input. The fusion module plays a vital role in improving the efficiency of multiple input neural networks for person detection. Our results show that the proposed network can generate a higher success rate than other state-of-the-art networks. The combination of our fused module and pyramid supervision path generated the best results in both mean accuracy and mean intersection over union in every dataset. |
---|---|
AbstractList | In recent years, autonomous vehicle driving technology and advanced driver assistance systems have played a key role in improving road safety. However, weather conditions such as snow pose severe challenges for autonomous driving and are an active research area. Thanks to their superior reliability, the resilience of detection, and improved accuracy, advances in computation and sensor technology have paved the way for deep learning and neural network–based techniques that can replace the classical approaches. In this research, we investigate the semantic segmentation of roads in snowy environments. We propose a multi-modal fused RGB-T semantic segmentation utilizing a color (RGB) image and thermal map (T) as inputs for the network. This paper introduces a novel fusion module that combines the feature map from both inputs. We evaluate the proposed model on a new snow dataset that we collected and on other publicly available datasets. The segmentation results show that the proposed fused RGB-T input can segregate human subjects in snowy environments better than an RGB-only input. The fusion module plays a vital role in improving the efficiency of multiple input neural networks for person detection. Our results show that the proposed network can generate a higher success rate than other state-of-the-art networks. The combination of our fused module and pyramid supervision path generated the best results in both mean accuracy and mean intersection over union in every dataset. |
Author | Ravankar, Ankit A. Vachmanus, Sirawich Kobayashi, Yukinori Emaru, Takanori |
Author_xml | – sequence: 1 givenname: Sirawich orcidid: 0000-0002-6472-8426 surname: Vachmanus fullname: Vachmanus, Sirawich email: vachmas@gmail.com organization: Research Laboratory of Robotics and Dynamics, Hokkaido University, Sapporo, Japan – sequence: 2 givenname: Ankit A. orcidid: 0000-0002-5104-9782 surname: Ravankar fullname: Ravankar, Ankit A. email: ankit@srd.mech.tohoku.ac.jp organization: Department of Robotics, Division of Mechanical Engineering, Tohoku University, Sendai, Japan – sequence: 3 givenname: Takanori orcidid: 0000-0003-0806-9769 surname: Emaru fullname: Emaru, Takanori email: emaru@eng.hokudai.ac.jp organization: Research Laboratory of Robotics and Dynamics, Division of Human Mechanical System and Design Engineering, Hokkaido University, Sapporo, Japan – sequence: 4 givenname: Yukinori orcidid: 0000-0003-3442-1009 surname: Kobayashi fullname: Kobayashi, Yukinori email: kobay@eng.hokudai.ac.jp organization: National Institute of Technology, Tomakomai College, Tomakomai, Japan |
BookMark | eNp9UMtOwzAQtFCRaAsfgLhE4pxix0kdH6G0PNQCUkDiZjnOpnLV2sVOQPw9jlJx4MBpZ3dndrQzQgNjDSB0TvCEEMyvHov50yTBCZlQzBhO-BEakizLY8LSfNBhiuOUsvcTNPJ-gzHhLGND9LJqt42OV7aS26gA462LFq3X1sQ30kMVZjtpGq0CWO_ANLIJu6gOtMLYr-jW6U9t1lGhwEinrT9Fx7Xcejg71DF6W8xfZ_fx8vnuYXa9jFWKaROXlcRAOUhFcQ4UsjKheegJr5NsKomsJdSkpAyXXFEJGVCa1oSyGiRUqqJjdNnf3Tv70YJvxMa2zgRLkWTZNOUk5XlgkZ6lnPXeQS32Tu-k-xYEiy440QUnuuDEIbigYX80SvdvN07q7b_Ki16pAeDXiacJZklKfwBNWH49 |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1016_j_infrared_2023_105077 crossref_primary_10_1016_j_scs_2023_104991 crossref_primary_10_1016_j_isprsjprs_2022_12_021 crossref_primary_10_3390_technologies10040090 crossref_primary_10_1016_j_image_2023_117027 crossref_primary_10_1109_ACCESS_2023_3310428 crossref_primary_10_1109_JSEN_2023_3234335 crossref_primary_10_1109_JSEN_2023_3266802 crossref_primary_10_1109_JSEN_2023_3320099 crossref_primary_10_1016_j_cag_2023_05_017 crossref_primary_10_1016_j_engappai_2023_105919 crossref_primary_10_1016_j_eswa_2025_127155 crossref_primary_10_1109_TIM_2025_3527616 crossref_primary_10_1177_03611981231160544 crossref_primary_10_1109_MC_2022_3181519 crossref_primary_10_1007_s11042_024_18362_1 crossref_primary_10_1109_ACCESS_2024_3508271 crossref_primary_10_1109_JSEN_2024_3519153 crossref_primary_10_1109_ACCESS_2023_3243854 crossref_primary_10_1109_JSEN_2024_3384699 crossref_primary_10_1109_JSEN_2024_3515137 crossref_primary_10_1109_JSEN_2023_3273913 crossref_primary_10_1016_j_aej_2024_12_030 crossref_primary_10_3390_s22176447 crossref_primary_10_1109_JSEN_2021_3116408 crossref_primary_10_1109_ACCESS_2023_3345225 crossref_primary_10_3390_electronics11142214 crossref_primary_10_1109_MITS_2022_3162886 crossref_primary_10_3390_opt5040029 |
Cites_doi | 10.1109/ICMA49215.2020.9233538 10.1016/j.procs.2015.08.002 10.1109/ITSC.2010.5625290 10.5772/59992 10.21611/qirt.2010.083 10.1109/JSEN.2014.2364854 10.1109/ICCP.2009.5284724 10.1109/LRA.2019.2904733 10.1109/TIM.2010.2064910 10.23919/SICE48898.2020.9240402 10.1109/ACCESS.2018.2856088 10.1109/CVPR.2017.660 10.1155/2017/7090549 10.1109/APSIPAASC47483.2019.9023104 10.1109/CVPR.2016.350 10.1007/978-3-030-01252-6_9 10.1007/978-3-319-10584-0_23 10.1007/s13369-020-04758-2 10.1371/journal.pone.0215159 10.1109/TIP.2010.2045715 10.1016/j.aap.2018.10.014 10.1016/j.robot.2016.08.003 10.1109/Anti-Cybercrime.2017.7905298 10.1155/2020/3291426 10.1109/TPAMI.2017.2699184 10.1109/CVPR.2016.352 10.3390/s18093170 10.1109/JAS.2019.1911459 10.1007/s11263-019-01188-y 10.2105/AJPH.2004.048926 10.1155/2013/791743 10.1109/IROS.2017.8206396 10.1109/ICCVW.2011.6130298 10.1109/CVPR.2019.00324 10.1541/ieejeiss.134.878 10.1109/TPAMI.2016.2572683 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2021.3077029 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 16851 |
ExternalDocumentID | 10_1109_JSEN_2021_3077029 9420724 |
Genre | orig-research |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI titled “Robust SLAM by Non-Uniform UGV/UAV Groups for Large Field Management” grantid: JP20K04392 funderid: 10.13039/501100001691 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c403t-bda0e39eac308e3e5b23839e19f256a1afaef1b370b9c3ae5e334f137feaedcd3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:15:33 EDT 2025 Tue Jul 01 03:37:03 EDT 2025 Thu Apr 24 23:12:15 EDT 2025 Wed Aug 27 02:26:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-bda0e39eac308e3e5b23839e19f256a1afaef1b370b9c3ae5e334f137feaedcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3442-1009 0000-0002-6472-8426 0000-0002-5104-9782 0000-0003-0806-9769 |
OpenAccessLink | http://hdl.handle.net/2115/82600 |
PQID | 2556491498 |
PQPubID | 75733 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2021_3077029 proquest_journals_2556491498 crossref_citationtrail_10_1109_JSEN_2021_3077029 ieee_primary_9420724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref53 ref52 ref11 ref10 somasundaram (ref14) 2011 ref16 ioffe (ref51) 2015; abs 1502 0 ref19 zaki (ref17) 2020; abs 2003 3256 ref50 pan (ref27) 2020 zhao (ref35) 2018 haas (ref54) 2014 thoma (ref18) 2016; abs 1602 6541 ref45 ref48 ref47 ref42 sano (ref4) 2010; 8 ref43 ref49 chen (ref37) 2017; abs 1706 0 ronneberger (ref32) 2015; abs 1505 0 ref8 ref7 ref9 ref3 ref6 ref5 liang (ref31) 2019 ref34 zhao (ref29) 2017; abs 1704 0 ref30 ref33 he (ref41) 2015; abs 1512 0 ref2 ref1 ref39 ref38 valada (ref44) 2016 fu (ref36) 2018; abs 1809 0 vachmanus (ref12) 2018; 36 ref24 ref23 ref26 ref25 ref20 ref22 jiang (ref40) 2018; abs 1806 0 ref21 hazirbas (ref46) 2017 ref28 krizhevsky (ref55) 2012 |
References_xml | – start-page: 345 year: 2011 ident: ref14 article-title: Lane change detection and tracking for a safe-lane approach in real time vision based navigation systems publication-title: Proc 2nd Int Conf – ident: ref38 doi: 10.1109/ICMA49215.2020.9233538 – ident: ref24 doi: 10.1016/j.procs.2015.08.002 – ident: ref21 doi: 10.1109/ITSC.2010.5625290 – volume: abs 1806 0 start-page: 1 year: 2018 ident: ref40 article-title: RedNet: Residual encoder-decoder network for indoor RGB-D semantic segmentation publication-title: CoRR – volume: abs 1809 0 start-page: 1 year: 2018 ident: ref36 article-title: Dual attention network for scene segmentation publication-title: CoRR – volume: abs 1505 0 start-page: 1 year: 2015 ident: ref32 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: CoRR – ident: ref5 doi: 10.5772/59992 – year: 2020 ident: ref27 article-title: Applying semantic segmentation to autonomous cars in the snowy environment publication-title: arXiv 2007 12869 – volume: 36 start-page: rombunno.1i3-07 year: 2018 ident: ref12 article-title: Road detection in snowy forest environment using RGB camera publication-title: Proc 36th Annu Conf RSJ – ident: ref9 doi: 10.21611/qirt.2010.083 – ident: ref22 doi: 10.1109/JSEN.2014.2364854 – volume: abs 2003 3256 year: 2020 ident: ref17 article-title: Traffic signs detection and recognition system using deep learning publication-title: CoRR – start-page: 1097 year: 2012 ident: ref55 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – start-page: 213 year: 2017 ident: ref46 article-title: FuseNet: Incorporating depth into semantic segmentation via fusion-based CNN architecture publication-title: Computer – ident: ref19 doi: 10.1109/ICCP.2009.5284724 – volume: abs 1502 0 start-page: 1 year: 2015 ident: ref51 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: CoRR – ident: ref49 doi: 10.1109/LRA.2019.2904733 – ident: ref20 doi: 10.1109/TIM.2010.2064910 – start-page: 1 year: 2019 ident: ref31 article-title: Winter road surface status recognition using deep semantic segmentation network publication-title: Proc Int Workshop Atmos Icing Struct – ident: ref39 doi: 10.23919/SICE48898.2020.9240402 – ident: ref34 doi: 10.1109/ACCESS.2018.2856088 – ident: ref33 doi: 10.1109/CVPR.2017.660 – volume: 8 start-page: 2048 year: 2010 ident: ref4 article-title: An analysis on traffic accidents on undivided expressway in cold and snow area publication-title: J Eastern Asia Soc Transp Stud – ident: ref11 doi: 10.1155/2017/7090549 – ident: ref28 doi: 10.1109/APSIPAASC47483.2019.9023104 – ident: ref53 doi: 10.1109/CVPR.2016.350 – ident: ref47 doi: 10.1007/978-3-030-01252-6_9 – ident: ref43 doi: 10.1007/978-3-319-10584-0_23 – ident: ref16 doi: 10.1007/s13369-020-04758-2 – volume: abs 1706 0 start-page: 1 year: 2017 ident: ref37 article-title: Rethinking Atrous convolution for semantic image segmentation publication-title: CoRR – ident: ref8 doi: 10.1371/journal.pone.0215159 – volume: abs 1704 0 start-page: 1 year: 2017 ident: ref29 article-title: ICNet for real-time semantic segmentation on high-resolution images publication-title: CoRR – volume: abs 1512 0 start-page: 11 year: 2015 ident: ref41 article-title: Deep residual learning for image recognition publication-title: CoRR – ident: ref25 doi: 10.1109/TIP.2010.2045715 – ident: ref3 doi: 10.1016/j.aap.2018.10.014 – volume: abs 1602 6541 start-page: 1 year: 2016 ident: ref18 article-title: A survey of semantic segmentation publication-title: CoRR – year: 2014 ident: ref54 article-title: A history of the unity game engine – ident: ref10 doi: 10.1016/j.robot.2016.08.003 – ident: ref13 doi: 10.1109/Anti-Cybercrime.2017.7905298 – ident: ref15 doi: 10.1155/2020/3291426 – start-page: 465 year: 2016 ident: ref44 article-title: Deep multispectral semantic scene understanding of forested environments using multimodal fusion publication-title: Proc Int Symp Experim Robot (ISER) – ident: ref50 doi: 10.1109/TPAMI.2017.2699184 – ident: ref52 doi: 10.1109/CVPR.2016.352 – ident: ref6 doi: 10.3390/s18093170 – ident: ref7 doi: 10.1109/JAS.2019.1911459 – start-page: 270 year: 2018 ident: ref35 article-title: PSANet: Point-wise spatial attention network for scene parsing publication-title: Computer Vision – ident: ref45 doi: 10.1007/s11263-019-01188-y – ident: ref1 doi: 10.2105/AJPH.2004.048926 – ident: ref2 doi: 10.1155/2013/791743 – ident: ref48 doi: 10.1109/IROS.2017.8206396 – ident: ref42 doi: 10.1109/ICCVW.2011.6130298 – ident: ref30 doi: 10.1109/CVPR.2019.00324 – ident: ref23 doi: 10.1541/ieejeiss.134.878 – ident: ref26 doi: 10.1109/TPAMI.2016.2572683 |
SSID | ssj0019757 |
Score | 2.4646223 |
Snippet | In recent years, autonomous vehicle driving technology and advanced driver assistance systems have played a key role in improving road safety. However, weather... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16839 |
SubjectTerms | Accuracy Advanced driver assistance systems data fusion Datasets Feature extraction Feature maps Image segmentation Machine learning Modules Neural networks Roads Semantic segmentation Semantics Sensors Snow thermal camera Thermal mapping Traffic safety Training Weather |
Title | Multi-Modal Sensor Fusion-Based Semantic Segmentation for Snow Driving Scenarios |
URI | https://ieeexplore.ieee.org/document/9420724 https://www.proquest.com/docview/2556491498 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dTxQxcAK8oA8ioOEUyT7wZOzRvXav10dALoQEYnKS3NumH1MlwK457mL01zvt9k6jhvDWbjqbpjPtfM8AHJYGpR8KyTixYyalk8w4DNHJKyqnAvG0FCB7NTy_lhfTaroGH1a5MIiYgs-wH4fJl-9bt4imsiMtB1wN5Dqsk-LW5WqtPAZapaqedIE5k0JNswez5ProYnJ2RZrgoOwTQSuepMnfPCg1VfnnJU7sZbwFl8uNdVElt_3F3Pbdz79qNj515y_hRZYzi-OOMLZhDZsdeP5H9cEd2MwN0L_-2IVPKRGXXbaegCak2razYryIljR2QnzO07d7wsGNo8GX-5yv1BQk8RaTpv1efJzdRMtEMXHYkPbdPryC6_HZ59NzlpstMCe5mDPrDUeh6R0WfIQCK0vMnOalDiQVmdIEg6G0QnGrnTBYoRAylEIFNOidF69ho2kb3IMCfWk8cquU85IEJFNpj5oPQxiNrB_YHvDl8dcuVyKPDTHu6qSRcF1HjNURY3XGWA_er0C-dWU4Hlu8GzGwWpgPvwf7SxzX-aI-1LECm9SkJo7e_B_qLTyL_-5i_vZhYz5b4DuSQ-b2IBHgL3Sw2hU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigcKLRUbCmQA1yQsnViZ7M-cKC0q-1rhbSttLfgxwRW0KTah6r2t_Sv8N8YO94FAeJWiZsT2Yni-TIPzwvgdaJQ2A4XMSNxHAthRKwMls7JyzOTlyTTfIDsoNM_F0ejbLQCt8tcGET0wWfYdkPvy7e1mbujsl0pUpanIoRQHuP1FRlo03eH-0TNN2naOzj70I9DD4HYCMZnsbaKIZfEXjjrIsdMk4yi60SWJOxVokqFZaJ5zrQ0XGGGnIsy4XmJCq2xnJ57D-6TnpGlTXbY0kchc19HlFgGiwXPR8FnmjC5ezQ8GJDtmSZt-oVy5vXXn1LPt3H5g_d7gdZbh--LrWjiWL625zPdNje_VYn8X_fqMTwKmnT0voH-E1jBagMe_lJfcQPWQov3L9eb8NGnGsentaVFQzLe60nUm7uzwniPJLmlexeEsrGhweeLkJFVRaTTR8Oqvor2J2N39hINDVZqMq6nT-H8Tj5vC1arusJnEKFNlEWm89xYQSqgyqRFyTpl2e1qm-oWsAW5CxNqrbuWH98Kb3MxWTiEFA4hRUBIC94ul1w2hUb-NXnTUXw5MRC7BTsLTBWBFU0LV2NOSDKEu9t_X_UK1vpnpyfFyeHg-Dk8cO9pIhx3YHU2meML0rpm-qUHfwSf7hpBPwCDUDuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Sensor+Fusion-Based+Semantic+Segmentation+for+Snow+Driving+Scenarios&rft.jtitle=IEEE+sensors+journal&rft.au=Vachmanus%2C+Sirawich&rft.au=Ravankar%2C+Ankit+A.&rft.au=Emaru%2C+Takanori&rft.au=Kobayashi%2C+Yukinori&rft.date=2021-08-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=15&rft.spage=16839&rft.epage=16851&rft_id=info:doi/10.1109%2FJSEN.2021.3077029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3077029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |