Multi-Modal Sensor Fusion-Based Semantic Segmentation for Snow Driving Scenarios

In recent years, autonomous vehicle driving technology and advanced driver assistance systems have played a key role in improving road safety. However, weather conditions such as snow pose severe challenges for autonomous driving and are an active research area. Thanks to their superior reliability,...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 15; pp. 16839 - 16851
Main Authors Vachmanus, Sirawich, Ravankar, Ankit A., Emaru, Takanori, Kobayashi, Yukinori
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, autonomous vehicle driving technology and advanced driver assistance systems have played a key role in improving road safety. However, weather conditions such as snow pose severe challenges for autonomous driving and are an active research area. Thanks to their superior reliability, the resilience of detection, and improved accuracy, advances in computation and sensor technology have paved the way for deep learning and neural network-based techniques that can replace the classical approaches. In this research, we investigate the semantic segmentation of roads in snowy environments. We propose a multi-modal fused RGB-T semantic segmentation utilizing a color (RGB) image and thermal map (T) as inputs for the network. This paper introduces a novel fusion module that combines the feature map from both inputs. We evaluate the proposed model on a new snow dataset that we collected and on other publicly available datasets. The segmentation results show that the proposed fused RGB-T input can segregate human subjects in snowy environments better than an RGB-only input. The fusion module plays a vital role in improving the efficiency of multiple input neural networks for person detection. Our results show that the proposed network can generate a higher success rate than other state-of-the-art networks. The combination of our fused module and pyramid supervision path generated the best results in both mean accuracy and mean intersection over union in every dataset.
AbstractList In recent years, autonomous vehicle driving technology and advanced driver assistance systems have played a key role in improving road safety. However, weather conditions such as snow pose severe challenges for autonomous driving and are an active research area. Thanks to their superior reliability, the resilience of detection, and improved accuracy, advances in computation and sensor technology have paved the way for deep learning and neural network–based techniques that can replace the classical approaches. In this research, we investigate the semantic segmentation of roads in snowy environments. We propose a multi-modal fused RGB-T semantic segmentation utilizing a color (RGB) image and thermal map (T) as inputs for the network. This paper introduces a novel fusion module that combines the feature map from both inputs. We evaluate the proposed model on a new snow dataset that we collected and on other publicly available datasets. The segmentation results show that the proposed fused RGB-T input can segregate human subjects in snowy environments better than an RGB-only input. The fusion module plays a vital role in improving the efficiency of multiple input neural networks for person detection. Our results show that the proposed network can generate a higher success rate than other state-of-the-art networks. The combination of our fused module and pyramid supervision path generated the best results in both mean accuracy and mean intersection over union in every dataset.
Author Ravankar, Ankit A.
Vachmanus, Sirawich
Kobayashi, Yukinori
Emaru, Takanori
Author_xml – sequence: 1
  givenname: Sirawich
  orcidid: 0000-0002-6472-8426
  surname: Vachmanus
  fullname: Vachmanus, Sirawich
  email: vachmas@gmail.com
  organization: Research Laboratory of Robotics and Dynamics, Hokkaido University, Sapporo, Japan
– sequence: 2
  givenname: Ankit A.
  orcidid: 0000-0002-5104-9782
  surname: Ravankar
  fullname: Ravankar, Ankit A.
  email: ankit@srd.mech.tohoku.ac.jp
  organization: Department of Robotics, Division of Mechanical Engineering, Tohoku University, Sendai, Japan
– sequence: 3
  givenname: Takanori
  orcidid: 0000-0003-0806-9769
  surname: Emaru
  fullname: Emaru, Takanori
  email: emaru@eng.hokudai.ac.jp
  organization: Research Laboratory of Robotics and Dynamics, Division of Human Mechanical System and Design Engineering, Hokkaido University, Sapporo, Japan
– sequence: 4
  givenname: Yukinori
  orcidid: 0000-0003-3442-1009
  surname: Kobayashi
  fullname: Kobayashi, Yukinori
  email: kobay@eng.hokudai.ac.jp
  organization: National Institute of Technology, Tomakomai College, Tomakomai, Japan
BookMark eNp9UMtOwzAQtFCRaAsfgLhE4pxix0kdH6G0PNQCUkDiZjnOpnLV2sVOQPw9jlJx4MBpZ3dndrQzQgNjDSB0TvCEEMyvHov50yTBCZlQzBhO-BEakizLY8LSfNBhiuOUsvcTNPJ-gzHhLGND9LJqt42OV7aS26gA462LFq3X1sQ30kMVZjtpGq0CWO_ANLIJu6gOtMLYr-jW6U9t1lGhwEinrT9Fx7Xcejg71DF6W8xfZ_fx8vnuYXa9jFWKaROXlcRAOUhFcQ4UsjKheegJr5NsKomsJdSkpAyXXFEJGVCa1oSyGiRUqqJjdNnf3Tv70YJvxMa2zgRLkWTZNOUk5XlgkZ6lnPXeQS32Tu-k-xYEiy440QUnuuDEIbigYX80SvdvN07q7b_Ki16pAeDXiacJZklKfwBNWH49
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_infrared_2023_105077
crossref_primary_10_1016_j_scs_2023_104991
crossref_primary_10_1016_j_isprsjprs_2022_12_021
crossref_primary_10_3390_technologies10040090
crossref_primary_10_1016_j_image_2023_117027
crossref_primary_10_1109_ACCESS_2023_3310428
crossref_primary_10_1109_JSEN_2023_3234335
crossref_primary_10_1109_JSEN_2023_3266802
crossref_primary_10_1109_JSEN_2023_3320099
crossref_primary_10_1016_j_cag_2023_05_017
crossref_primary_10_1016_j_engappai_2023_105919
crossref_primary_10_1016_j_eswa_2025_127155
crossref_primary_10_1109_TIM_2025_3527616
crossref_primary_10_1177_03611981231160544
crossref_primary_10_1109_MC_2022_3181519
crossref_primary_10_1007_s11042_024_18362_1
crossref_primary_10_1109_ACCESS_2024_3508271
crossref_primary_10_1109_JSEN_2024_3519153
crossref_primary_10_1109_ACCESS_2023_3243854
crossref_primary_10_1109_JSEN_2024_3384699
crossref_primary_10_1109_JSEN_2024_3515137
crossref_primary_10_1109_JSEN_2023_3273913
crossref_primary_10_1016_j_aej_2024_12_030
crossref_primary_10_3390_s22176447
crossref_primary_10_1109_JSEN_2021_3116408
crossref_primary_10_1109_ACCESS_2023_3345225
crossref_primary_10_3390_electronics11142214
crossref_primary_10_1109_MITS_2022_3162886
crossref_primary_10_3390_opt5040029
Cites_doi 10.1109/ICMA49215.2020.9233538
10.1016/j.procs.2015.08.002
10.1109/ITSC.2010.5625290
10.5772/59992
10.21611/qirt.2010.083
10.1109/JSEN.2014.2364854
10.1109/ICCP.2009.5284724
10.1109/LRA.2019.2904733
10.1109/TIM.2010.2064910
10.23919/SICE48898.2020.9240402
10.1109/ACCESS.2018.2856088
10.1109/CVPR.2017.660
10.1155/2017/7090549
10.1109/APSIPAASC47483.2019.9023104
10.1109/CVPR.2016.350
10.1007/978-3-030-01252-6_9
10.1007/978-3-319-10584-0_23
10.1007/s13369-020-04758-2
10.1371/journal.pone.0215159
10.1109/TIP.2010.2045715
10.1016/j.aap.2018.10.014
10.1016/j.robot.2016.08.003
10.1109/Anti-Cybercrime.2017.7905298
10.1155/2020/3291426
10.1109/TPAMI.2017.2699184
10.1109/CVPR.2016.352
10.3390/s18093170
10.1109/JAS.2019.1911459
10.1007/s11263-019-01188-y
10.2105/AJPH.2004.048926
10.1155/2013/791743
10.1109/IROS.2017.8206396
10.1109/ICCVW.2011.6130298
10.1109/CVPR.2019.00324
10.1541/ieejeiss.134.878
10.1109/TPAMI.2016.2572683
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3077029
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 16851
ExternalDocumentID 10_1109_JSEN_2021_3077029
9420724
Genre orig-research
GrantInformation_xml – fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI titled “Robust SLAM by Non-Uniform UGV/UAV Groups for Large Field Management”
  grantid: JP20K04392
  funderid: 10.13039/501100001691
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c403t-bda0e39eac308e3e5b23839e19f256a1afaef1b370b9c3ae5e334f137feaedcd3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:15:33 EDT 2025
Tue Jul 01 03:37:03 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Wed Aug 27 02:26:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-bda0e39eac308e3e5b23839e19f256a1afaef1b370b9c3ae5e334f137feaedcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3442-1009
0000-0002-6472-8426
0000-0002-5104-9782
0000-0003-0806-9769
OpenAccessLink http://hdl.handle.net/2115/82600
PQID 2556491498
PQPubID 75733
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSEN_2021_3077029
proquest_journals_2556491498
crossref_citationtrail_10_1109_JSEN_2021_3077029
ieee_primary_9420724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref53
ref52
ref11
ref10
somasundaram (ref14) 2011
ref16
ioffe (ref51) 2015; abs 1502 0
ref19
zaki (ref17) 2020; abs 2003 3256
ref50
pan (ref27) 2020
zhao (ref35) 2018
haas (ref54) 2014
thoma (ref18) 2016; abs 1602 6541
ref45
ref48
ref47
ref42
sano (ref4) 2010; 8
ref43
ref49
chen (ref37) 2017; abs 1706 0
ronneberger (ref32) 2015; abs 1505 0
ref8
ref7
ref9
ref3
ref6
ref5
liang (ref31) 2019
ref34
zhao (ref29) 2017; abs 1704 0
ref30
ref33
he (ref41) 2015; abs 1512 0
ref2
ref1
ref39
ref38
valada (ref44) 2016
fu (ref36) 2018; abs 1809 0
vachmanus (ref12) 2018; 36
ref24
ref23
ref26
ref25
ref20
ref22
jiang (ref40) 2018; abs 1806 0
ref21
hazirbas (ref46) 2017
ref28
krizhevsky (ref55) 2012
References_xml – start-page: 345
  year: 2011
  ident: ref14
  article-title: Lane change detection and tracking for a safe-lane approach in real time vision based navigation systems
  publication-title: Proc 2nd Int Conf
– ident: ref38
  doi: 10.1109/ICMA49215.2020.9233538
– ident: ref24
  doi: 10.1016/j.procs.2015.08.002
– ident: ref21
  doi: 10.1109/ITSC.2010.5625290
– volume: abs 1806 0
  start-page: 1
  year: 2018
  ident: ref40
  article-title: RedNet: Residual encoder-decoder network for indoor RGB-D semantic segmentation
  publication-title: CoRR
– volume: abs 1809 0
  start-page: 1
  year: 2018
  ident: ref36
  article-title: Dual attention network for scene segmentation
  publication-title: CoRR
– volume: abs 1505 0
  start-page: 1
  year: 2015
  ident: ref32
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: CoRR
– ident: ref5
  doi: 10.5772/59992
– year: 2020
  ident: ref27
  article-title: Applying semantic segmentation to autonomous cars in the snowy environment
  publication-title: arXiv 2007 12869
– volume: 36
  start-page: rombunno.1i3-07
  year: 2018
  ident: ref12
  article-title: Road detection in snowy forest environment using RGB camera
  publication-title: Proc 36th Annu Conf RSJ
– ident: ref9
  doi: 10.21611/qirt.2010.083
– ident: ref22
  doi: 10.1109/JSEN.2014.2364854
– volume: abs 2003 3256
  year: 2020
  ident: ref17
  article-title: Traffic signs detection and recognition system using deep learning
  publication-title: CoRR
– start-page: 1097
  year: 2012
  ident: ref55
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– start-page: 213
  year: 2017
  ident: ref46
  article-title: FuseNet: Incorporating depth into semantic segmentation via fusion-based CNN architecture
  publication-title: Computer
– ident: ref19
  doi: 10.1109/ICCP.2009.5284724
– volume: abs 1502 0
  start-page: 1
  year: 2015
  ident: ref51
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: CoRR
– ident: ref49
  doi: 10.1109/LRA.2019.2904733
– ident: ref20
  doi: 10.1109/TIM.2010.2064910
– start-page: 1
  year: 2019
  ident: ref31
  article-title: Winter road surface status recognition using deep semantic segmentation network
  publication-title: Proc Int Workshop Atmos Icing Struct
– ident: ref39
  doi: 10.23919/SICE48898.2020.9240402
– ident: ref34
  doi: 10.1109/ACCESS.2018.2856088
– ident: ref33
  doi: 10.1109/CVPR.2017.660
– volume: 8
  start-page: 2048
  year: 2010
  ident: ref4
  article-title: An analysis on traffic accidents on undivided expressway in cold and snow area
  publication-title: J Eastern Asia Soc Transp Stud
– ident: ref11
  doi: 10.1155/2017/7090549
– ident: ref28
  doi: 10.1109/APSIPAASC47483.2019.9023104
– ident: ref53
  doi: 10.1109/CVPR.2016.350
– ident: ref47
  doi: 10.1007/978-3-030-01252-6_9
– ident: ref43
  doi: 10.1007/978-3-319-10584-0_23
– ident: ref16
  doi: 10.1007/s13369-020-04758-2
– volume: abs 1706 0
  start-page: 1
  year: 2017
  ident: ref37
  article-title: Rethinking Atrous convolution for semantic image segmentation
  publication-title: CoRR
– ident: ref8
  doi: 10.1371/journal.pone.0215159
– volume: abs 1704 0
  start-page: 1
  year: 2017
  ident: ref29
  article-title: ICNet for real-time semantic segmentation on high-resolution images
  publication-title: CoRR
– volume: abs 1512 0
  start-page: 11
  year: 2015
  ident: ref41
  article-title: Deep residual learning for image recognition
  publication-title: CoRR
– ident: ref25
  doi: 10.1109/TIP.2010.2045715
– ident: ref3
  doi: 10.1016/j.aap.2018.10.014
– volume: abs 1602 6541
  start-page: 1
  year: 2016
  ident: ref18
  article-title: A survey of semantic segmentation
  publication-title: CoRR
– year: 2014
  ident: ref54
  article-title: A history of the unity game engine
– ident: ref10
  doi: 10.1016/j.robot.2016.08.003
– ident: ref13
  doi: 10.1109/Anti-Cybercrime.2017.7905298
– ident: ref15
  doi: 10.1155/2020/3291426
– start-page: 465
  year: 2016
  ident: ref44
  article-title: Deep multispectral semantic scene understanding of forested environments using multimodal fusion
  publication-title: Proc Int Symp Experim Robot (ISER)
– ident: ref50
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref52
  doi: 10.1109/CVPR.2016.352
– ident: ref6
  doi: 10.3390/s18093170
– ident: ref7
  doi: 10.1109/JAS.2019.1911459
– start-page: 270
  year: 2018
  ident: ref35
  article-title: PSANet: Point-wise spatial attention network for scene parsing
  publication-title: Computer Vision
– ident: ref45
  doi: 10.1007/s11263-019-01188-y
– ident: ref1
  doi: 10.2105/AJPH.2004.048926
– ident: ref2
  doi: 10.1155/2013/791743
– ident: ref48
  doi: 10.1109/IROS.2017.8206396
– ident: ref42
  doi: 10.1109/ICCVW.2011.6130298
– ident: ref30
  doi: 10.1109/CVPR.2019.00324
– ident: ref23
  doi: 10.1541/ieejeiss.134.878
– ident: ref26
  doi: 10.1109/TPAMI.2016.2572683
SSID ssj0019757
Score 2.4646223
Snippet In recent years, autonomous vehicle driving technology and advanced driver assistance systems have played a key role in improving road safety. However, weather...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16839
SubjectTerms Accuracy
Advanced driver assistance systems
data fusion
Datasets
Feature extraction
Feature maps
Image segmentation
Machine learning
Modules
Neural networks
Roads
Semantic segmentation
Semantics
Sensors
Snow
thermal camera
Thermal mapping
Traffic safety
Training
Weather
Title Multi-Modal Sensor Fusion-Based Semantic Segmentation for Snow Driving Scenarios
URI https://ieeexplore.ieee.org/document/9420724
https://www.proquest.com/docview/2556491498
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dTxQxcAK8oA8ioOEUyT7wZOzRvXav10dALoQEYnKS3NumH1MlwK457mL01zvt9k6jhvDWbjqbpjPtfM8AHJYGpR8KyTixYyalk8w4DNHJKyqnAvG0FCB7NTy_lhfTaroGH1a5MIiYgs-wH4fJl-9bt4imsiMtB1wN5Dqsk-LW5WqtPAZapaqedIE5k0JNswez5ProYnJ2RZrgoOwTQSuepMnfPCg1VfnnJU7sZbwFl8uNdVElt_3F3Pbdz79qNj515y_hRZYzi-OOMLZhDZsdeP5H9cEd2MwN0L_-2IVPKRGXXbaegCak2razYryIljR2QnzO07d7wsGNo8GX-5yv1BQk8RaTpv1efJzdRMtEMXHYkPbdPryC6_HZ59NzlpstMCe5mDPrDUeh6R0WfIQCK0vMnOalDiQVmdIEg6G0QnGrnTBYoRAylEIFNOidF69ho2kb3IMCfWk8cquU85IEJFNpj5oPQxiNrB_YHvDl8dcuVyKPDTHu6qSRcF1HjNURY3XGWA_er0C-dWU4Hlu8GzGwWpgPvwf7SxzX-aI-1LECm9SkJo7e_B_qLTyL_-5i_vZhYz5b4DuSQ-b2IBHgL3Sw2hU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigcKLRUbCmQA1yQsnViZ7M-cKC0q-1rhbSttLfgxwRW0KTah6r2t_Sv8N8YO94FAeJWiZsT2Yni-TIPzwvgdaJQ2A4XMSNxHAthRKwMls7JyzOTlyTTfIDsoNM_F0ejbLQCt8tcGET0wWfYdkPvy7e1mbujsl0pUpanIoRQHuP1FRlo03eH-0TNN2naOzj70I9DD4HYCMZnsbaKIZfEXjjrIsdMk4yi60SWJOxVokqFZaJ5zrQ0XGGGnIsy4XmJCq2xnJ57D-6TnpGlTXbY0kchc19HlFgGiwXPR8FnmjC5ezQ8GJDtmSZt-oVy5vXXn1LPt3H5g_d7gdZbh--LrWjiWL625zPdNje_VYn8X_fqMTwKmnT0voH-E1jBagMe_lJfcQPWQov3L9eb8NGnGsentaVFQzLe60nUm7uzwniPJLmlexeEsrGhweeLkJFVRaTTR8Oqvor2J2N39hINDVZqMq6nT-H8Tj5vC1arusJnEKFNlEWm89xYQSqgyqRFyTpl2e1qm-oWsAW5CxNqrbuWH98Kb3MxWTiEFA4hRUBIC94ul1w2hUb-NXnTUXw5MRC7BTsLTBWBFU0LV2NOSDKEu9t_X_UK1vpnpyfFyeHg-Dk8cO9pIhx3YHU2meML0rpm-qUHfwSf7hpBPwCDUDuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Sensor+Fusion-Based+Semantic+Segmentation+for+Snow+Driving+Scenarios&rft.jtitle=IEEE+sensors+journal&rft.au=Vachmanus%2C+Sirawich&rft.au=Ravankar%2C+Ankit+A.&rft.au=Emaru%2C+Takanori&rft.au=Kobayashi%2C+Yukinori&rft.date=2021-08-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=15&rft.spage=16839&rft.epage=16851&rft_id=info:doi/10.1109%2FJSEN.2021.3077029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3077029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon