STABILITY RESULTS OF RANDOM IMPULSIVE SEMILINEAR DIFFERENTIAL EQUATIONS

In this paper, we study the existence, uniqueness, continuous dependence, Ulam stabilities and exponential stability of random impulsive semilineax differential equations under sufficient condition. The results are obtained by using the contraction mapping principle. Finally an example is given to i...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 34; no. 4; pp. 1055 - 1071
Main Authors GOWRISANKAR, M., MOHANKUMAR, P., VINODKUMAR, A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2014
Department of Mathematics, Annapoorana Engineering College, Salem-636308, Tamil Nadu, India%Department of Mathematics, Arupadai Veedu Institute of Technology, Chennai-636104, Tamil Nadu, India%Department of Mathematics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(14)60069-2

Cover

Loading…
Abstract In this paper, we study the existence, uniqueness, continuous dependence, Ulam stabilities and exponential stability of random impulsive semilineax differential equations under sufficient condition. The results are obtained by using the contraction mapping principle. Finally an example is given to illustrate the applications of the abstract results.
AbstractList In this paper, we study the existence, uniqueness, continuous dependence, Ulam stabilities and exponential stability of random impulsive semilinear differential equations under sufficient condition. The results are obtained by using the contraction mapping principle. Finally an example is given to illustrate the applications of the abstract results.
In this paper, we study the existence, uniqueness, continuous dependence, Ulam stabilities and exponential stability of random impulsive semilinear differential equations un-der sufficient condition. The results are obtained by using the contraction mapping principle. Finally an example is given to illustrate the applications of the abstract results.
In this paper, we study the existence, uniqueness, continuous dependence, Ulam stabilities and exponential stability of random impulsive semilineax differential equations under sufficient condition. The results are obtained by using the contraction mapping principle. Finally an example is given to illustrate the applications of the abstract results.
Author M. GOWRISANKAR P. MOHANKUMAR A. VINODKUMAR
AuthorAffiliation Department of Mathematics, Annapoorana Engineering College, Salem-636308, Tamil Nadu, India Department of Mathematics, Arupadai Veedu Institute of Technology, Chennai-636104, Tamil Nadu, India Department of Mathematics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India
AuthorAffiliation_xml – name: Department of Mathematics, Annapoorana Engineering College, Salem-636308, Tamil Nadu, India%Department of Mathematics, Arupadai Veedu Institute of Technology, Chennai-636104, Tamil Nadu, India%Department of Mathematics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India
Author_xml – sequence: 1
  givenname: M.
  surname: GOWRISANKAR
  fullname: GOWRISANKAR, M.
  email: tamilangowri@gmail.com
  organization: Department of Mathematics, Annapoorana Engineering College, Salem-636308, Tamil Nadu, India
– sequence: 2
  givenname: P.
  surname: MOHANKUMAR
  fullname: MOHANKUMAR, P.
  email: profmohankumar@yahoo.co.in
  organization: Department of Mathematics, Arupadai Veedu Institute of Technology, Chennai-636104, Tamil Nadu, India
– sequence: 3
  givenname: A.
  surname: VINODKUMAR
  fullname: VINODKUMAR, A.
  email: vinod026@gmail.com
  organization: Department of Mathematics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India
BookMark eNqFkMFO3DAURa2KSh2mfAJS1BUs0j47tpOoiyqFDI2UmYFJplJXVuI41Cg4YGcK_fsahnbRDasnPd1zr3QO0YEZjULoGMNHDJh_qoAwEqYcyAmmpxyApyF5g2aYxf4NSXyAZv8i79ChczfgOcLpDF1Udfa1KIv6R7DJq21ZV8F6EWyy1fl6GRTLy21ZFd_zoMqXPrTKs01wXiwW-SZf1UVWBvnVNquL9ap6j972zeDU0cudo-0ir8--heX6ojjLylBSiKawlW0COFUqaSOIozSGNmYtgb7HUcviNKFSdh3jHGhPFEuhI5J3rEkSSlrKu2iOTve9D43pG3MtbsadNX5RuMeH4bEVigCmQMG3z9HJPntnx_udcpO41U6qYWiMGndOYMYwxIn35aOf91FpR-es6oXUUzPp0Uy20YPAIJ5Ui2fV4smjwFQ8qxbE0-w_-s7q28b-fpX7sueUN_ZLKyuc1MpI1Wmr5CS6Ub_a8OFl-edoru-1F_J3mnMcU8YYRH8AvEKbyQ
CitedBy_id crossref_primary_10_1080_17442508_2020_1783264
crossref_primary_10_1007_s12346_022_00714_7
crossref_primary_10_1016_S0252_9602_17_30053_X
crossref_primary_10_1002_mma_4405
crossref_primary_10_1080_17442508_2018_1551400
crossref_primary_10_1080_17442508_2022_2056415
crossref_primary_10_2298_FIL2303979V
crossref_primary_10_1080_09720502_2020_1868661
crossref_primary_10_1088_1742_6596_1139_1_012054
crossref_primary_10_3390_math12081145
crossref_primary_10_1515_ijnsns_2017_0245
crossref_primary_10_3390_math11204382
crossref_primary_10_3390_math7090843
crossref_primary_10_1002_mma_7218
crossref_primary_10_1186_s13661_021_01574_x
crossref_primary_10_3934_math_2021174
crossref_primary_10_1186_s13662_018_1779_4
crossref_primary_10_11948_20190089
crossref_primary_10_1002_mma_5419
crossref_primary_10_1016_S0252_9602_16_30010_8
Cites_doi 10.1063/1.3397461
10.1016/j.camwa.2012.02.057
10.1007/s10255-004-0157-z
10.1016/j.aml.2004.06.015
10.15352/afa/1399899934
10.1007/s10255-006-0336-1
10.1016/j.jmaa.2006.09.043
10.1016/j.jmaa.2007.11.019
10.1016/j.cnsns.2011.09.030
10.1016/j.na.2010.07.007
10.1016/j.camwa.2006.04.026
10.1016/j.jmaa.2012.05.040
10.1016/j.camwa.2004.12.009
10.1016/j.nahs.2009.11.004
10.1073/pnas.27.4.222
10.1016/j.nahs.2011.04.002
10.1016/j.camwa.2012.02.021
10.1080/00036810701354995
ContentType Journal Article
Copyright 2014 Wuhan Institute of Physics and Mathematics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2014 Wuhan Institute of Physics and Mathematics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(14)60069-2
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts



DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate STABILITY RESULTS OF RANDOM IMPULSIVE SEMILINEAR DIFFERENTIAL EQUATIONS
EISSN 1572-9087
EndPage 1071
ExternalDocumentID sxwlxb_e201404007
10_1016_S0252_9602_14_60069_2
S0252960214600692
661745550
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABYKQ
ACAOD
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADTPH
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CSCUP
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~G-
~L9
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
HG6
SJYHP
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
4A8
PSX
ID FETCH-LOGICAL-c403t-bcb8019ee8b3073970b75b20ff13b57984ccdd56604f2e590d2c6d5a8842b46d3
IEDL.DBID .~1
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Thu Sep 04 19:32:46 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Tue Jul 01 02:27:32 EDT 2025
Fri Feb 23 02:25:03 EST 2024
Wed Feb 14 10:35:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 60H99
35R60
Hyers-Ulam-Rassias stability
35B35
35R12
random impulses
semilinear differential equations
Hyers-Ulam stability
stability
exponential stability
contraction principle
stability,Hyers-Ulam sta-bility
contraction princi-ple
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-bcb8019ee8b3073970b75b20ff13b57984ccdd56604f2e590d2c6d5a8842b46d3
Notes In this paper, we study the existence, uniqueness, continuous dependence, Ulam stabilities and exponential stability of random impulsive semilineax differential equations under sufficient condition. The results are obtained by using the contraction mapping principle. Finally an example is given to illustrate the applications of the abstract results.
42-1227/O
semilinear differential equations; random impulses; stability, Hyers-Ulam stability; Hyers-Ulam-Rassias stability; exponential stability; contraction principle
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1551078006
PQPubID 23500
PageCount 17
ParticipantIDs wanfang_journals_sxwlxb_e201404007
proquest_miscellaneous_1551078006
crossref_citationtrail_10_1016_S0252_9602_14_60069_2
crossref_primary_10_1016_S0252_9602_14_60069_2
elsevier_sciencedirect_doi_10_1016_S0252_9602_14_60069_2
chongqing_primary_661745550
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL Acta Mathematica Scientia
PublicationYear 2014
Publisher Elsevier Ltd
Department of Mathematics, Annapoorana Engineering College, Salem-636308, Tamil Nadu, India%Department of Mathematics, Arupadai Veedu Institute of Technology, Chennai-636104, Tamil Nadu, India%Department of Mathematics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India
Publisher_xml – name: Elsevier Ltd
– name: Department of Mathematics, Annapoorana Engineering College, Salem-636308, Tamil Nadu, India%Department of Mathematics, Arupadai Veedu Institute of Technology, Chennai-636104, Tamil Nadu, India%Department of Mathematics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India
References Vinodkumar (bib15) 2012; 1
Da Prato, Zabczyk (bib29) 1992
Samoilenko, Perestyuk (bib2) 1995
Zhang, Sun (bib16) 2013; 2013
Lakshmikantham, Bainov, Simeonov (bib1) 1989
Sakthivel, Ren, Kim (bib19) 2010; 51
Burton, Zhang (bib27) 2004; 17
Burton (bib17) 2006
Wang, Lv, Zhou (bib21) 2011; 63
Wang, Zhou, Fečkan (bib24) 2012; 64
Wu, Guo, Lin (bib7) 2006; 22
Ulam (bib20) 1968
Fu (bib31) 2009; 2009
Vinodkumar, Anguraj (bib13) 2011; 5
Wu, Guo, Zhou (bib8) 2006; 52
Anguraj, Vinodkumar (bib11) 2010; 4
Vinodkumar (bib14) 2012; 3
Pazy (bib30) 1983
Anguraj, Arjunan, Hernández (bib3) 2007; 86
Hyers (bib18) 1941; 27
Anguraj, Vinodkumar (bib12) 2009; 8
Wang, Lv, Zhou (bib22) 2012; 17
Anguraj, Wu, Vinodkumar (bib10) 2011; 74
Hernández, Rabello, Henriquez (bib4) 2007; 331
Wu, Duan (bib6) 2005; 49
Wei, Li, Li (bib23) 2012; 64
Li, Wang (bib26) 2013; 2013
Wu, Guo, Zhai (bib9) 2008; 15
Wu, Meng (bib5) 2004; 20
Wang, Fečkan, Zhou (bib25) 2012; 395
Luo (bib28) 2008; 342
Wu (10.1016/S0252-9602(14)60069-2_bib8) 2006; 52
Wu (10.1016/S0252-9602(14)60069-2_bib7) 2006; 22
Wang (10.1016/S0252-9602(14)60069-2_bib25) 2012; 395
Wu (10.1016/S0252-9602(14)60069-2_bib9) 2008; 15
Zhang (10.1016/S0252-9602(14)60069-2_bib16) 2013; 2013
Vinodkumar (10.1016/S0252-9602(14)60069-2_bib14) 2012; 3
Hyers (10.1016/S0252-9602(14)60069-2_bib18) 1941; 27
Vinodkumar (10.1016/S0252-9602(14)60069-2_bib13) 2011; 5
Wang (10.1016/S0252-9602(14)60069-2_bib22) 2012; 17
Burton (10.1016/S0252-9602(14)60069-2_bib27) 2004; 17
Wei (10.1016/S0252-9602(14)60069-2_bib23) 2012; 64
Samoilenko (10.1016/S0252-9602(14)60069-2_bib2) 1995
Da Prato (10.1016/S0252-9602(14)60069-2_bib29) 1992
Lakshmikantham (10.1016/S0252-9602(14)60069-2_bib1) 1989
Vinodkumar (10.1016/S0252-9602(14)60069-2_bib15) 2012; 1
Fu (10.1016/S0252-9602(14)60069-2_bib31) 2009; 2009
Anguraj (10.1016/S0252-9602(14)60069-2_bib3) 2007; 86
Wang (10.1016/S0252-9602(14)60069-2_bib24) 2012; 64
Sakthivel (10.1016/S0252-9602(14)60069-2_bib19) 2010; 51
Anguraj (10.1016/S0252-9602(14)60069-2_bib12) 2009; 8
Anguraj (10.1016/S0252-9602(14)60069-2_bib10) 2011; 74
Pazy (10.1016/S0252-9602(14)60069-2_bib30) 1983
Hernández (10.1016/S0252-9602(14)60069-2_bib4) 2007; 331
Ulam (10.1016/S0252-9602(14)60069-2_bib20) 1968
Li (10.1016/S0252-9602(14)60069-2_bib26) 2013; 2013
Luo (10.1016/S0252-9602(14)60069-2_bib28) 2008; 342
Wang (10.1016/S0252-9602(14)60069-2_bib21) 2011; 63
Wu (10.1016/S0252-9602(14)60069-2_bib6) 2005; 49
Wu (10.1016/S0252-9602(14)60069-2_bib5) 2004; 20
Burton (10.1016/S0252-9602(14)60069-2_bib17) 2006
Anguraj (10.1016/S0252-9602(14)60069-2_bib11) 2010; 4
References_xml – volume: 64
  start-page: 3389
  year: 2012
  end-page: 3405
  ident: bib24
  article-title: Nonlinear impulsive problems for fractional differential equations and Ulam stability
  publication-title: Comput Math Appl
– volume: 17
  start-page: 2530
  year: 2012
  end-page: 2538
  ident: bib22
  article-title: New concepts and results in stability of fractional differential equations
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 86
  start-page: 861
  year: 2007
  end-page: 872
  ident: bib3
  article-title: Existence results for an impulsive partial neutral functional differential equations with state-dependent delay
  publication-title: Appl Anal
– volume: 331
  start-page: 1135
  year: 2007
  end-page: 1158
  ident: bib4
  article-title: Existence of solutions for impulsive partial neutral functional differential equations
  publication-title: J Math Anal Appl
– volume: 1
  start-page: 813
  year: 2012
  ident: bib15
  article-title: Existence and uniqueness of solutions for random impulsive differential equation
  publication-title: Malaya J Mat
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 27
  ident: bib31
  article-title: Existence and stability of solutions for nonautonomous stochastic functional evolution equations
  publication-title: J Ineq Appl
– year: 1989
  ident: bib1
  publication-title: Theory of Impulsive Differential Equations
– volume: 17
  start-page: 839
  year: 2004
  end-page: 846
  ident: bib27
  article-title: Fixed points and Stability of an integral equation: non uniqueness
  publication-title: Appl Math Lett
– volume: 64
  start-page: 3468
  year: 2012
  end-page: 3476
  ident: bib23
  article-title: New stability results for fractional integral equation
  publication-title: Comput Math Appl
– volume: 51
  start-page: 052701
  year: 2010
  ident: bib19
  article-title: Asymptotic stability of second-order neutral stochastic differential equations
  publication-title: J Math Phys
– volume: 3
  start-page: 89
  year: 2012
  end-page: 106
  ident: bib14
  article-title: Existence results on random impulsive semilinear functional differential inclusions with delays
  publication-title: Ann Funct Anal
– year: 1992
  ident: bib29
  publication-title: Stochastic Equations in Infinite Dimensions
– volume: 5
  start-page: 413
  year: 2011
  end-page: 426
  ident: bib13
  article-title: Existence of random impulsive abstract neutral non-autonomous differential inclusions with delays
  publication-title: Nonlinear Anal Hybrid Syst
– volume: 52
  start-page: 1683
  year: 2006
  end-page: 1694
  ident: bib8
  article-title: p-moment stability of functional differential equations with random impulses
  publication-title: Comput Mathe Appl
– volume: 8
  start-page: 412
  year: 2009
  end-page: 418
  ident: bib12
  article-title: Existence and uniqueness of neutral functional differential equations with random impulses
  publication-title: Int J Nonlinear Sci
– volume: 74
  start-page: 331
  year: 2011
  end-page: 342
  ident: bib10
  article-title: Existence and exponential stability of semilinear functional differential equations with random impulses under non-uniqueness
  publication-title: Nonlinear Anal TMA
– volume: 2013
  start-page: 403
  year: 2013
  end-page: 415
  ident: bib16
  article-title: Stability analysis of second-order differential systems with Erlang distribution random impulses
  publication-title: Adv Differ Equ
– volume: 63
  start-page: 1
  year: 2011
  end-page: 10
  ident: bib21
  article-title: Ulam stability and data dependence for fractional differential equations with Caputo derivative
  publication-title: Electron J Qual Theory Differ Equ
– volume: 27
  start-page: 222
  year: 1941
  end-page: 224
  ident: bib18
  article-title: On the stability of the linear functional equation
  publication-title: Proc Nat Acad Sci
– volume: 395
  start-page: 258
  year: 2012
  end-page: 264
  ident: bib25
  article-title: Ulam's type stability of impulsive ordinary differential equations
  publication-title: J Math Anal Appl
– volume: 20
  start-page: 147
  year: 2004
  end-page: 154
  ident: bib5
  article-title: Boundedness of nonlinear differential systems with impulsive effect on random moments
  publication-title: Acta Math Appl Sin
– volume: 22
  start-page: 595
  year: 2006
  end-page: 600
  ident: bib7
  article-title: Existence and uniqueness of solutions to random impulsive differential systems
  publication-title: Acta Math Appl Sin
– year: 1968
  ident: bib20
  publication-title: A Collection of Mathematical Problems
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib26
  article-title: Ulam-Hyers-Rassias stability of semilinear differential equations with impulses
  publication-title: Electron J Diff Equ
– year: 2006
  ident: bib17
  publication-title: Stability by Fixed Point Theory for Functional Differential Equations
– volume: 342
  start-page: 753
  year: 2008
  end-page: 760
  ident: bib28
  article-title: Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays
  publication-title: J Math Anal Appl
– year: 1995
  ident: bib2
  publication-title: Impulsive Differential Equations
– volume: 49
  start-page: 1375
  year: 2005
  end-page: 1386
  ident: bib6
  article-title: Oscillation, stability, and boundedness of second-order differential systems with random impulses
  publication-title: Comput Math Appl
– volume: 4
  start-page: 475
  year: 2010
  end-page: 483
  ident: bib11
  article-title: Existence, uniqueness and stability results of random impulsive semilinear differential systems
  publication-title: Nonlinear Anal Hybrid Syst
– volume: 15
  start-page: 403
  year: 2008
  end-page: 415
  ident: bib9
  article-title: Almost sure stability of functional differential equations with random impulses
  publication-title: DCDIS, Series A: Math Anal
– year: 1983
  ident: bib30
  publication-title: Semigroups of Linear Operators and Applications to Partial Differential Equations
– year: 1989
  ident: 10.1016/S0252-9602(14)60069-2_bib1
– volume: 1
  start-page: 813
  issue: 1
  year: 2012
  ident: 10.1016/S0252-9602(14)60069-2_bib15
  article-title: Existence and uniqueness of solutions for random impulsive differential equation
  publication-title: Malaya J Mat
– volume: 63
  start-page: 1
  year: 2011
  ident: 10.1016/S0252-9602(14)60069-2_bib21
  article-title: Ulam stability and data dependence for fractional differential equations with Caputo derivative
  publication-title: Electron J Qual Theory Differ Equ
– volume: 8
  start-page: 412
  issue: 4
  year: 2009
  ident: 10.1016/S0252-9602(14)60069-2_bib12
  article-title: Existence and uniqueness of neutral functional differential equations with random impulses
  publication-title: Int J Nonlinear Sci
– volume: 51
  start-page: 052701
  year: 2010
  ident: 10.1016/S0252-9602(14)60069-2_bib19
  article-title: Asymptotic stability of second-order neutral stochastic differential equations
  publication-title: J Math Phys
  doi: 10.1063/1.3397461
– volume: 64
  start-page: 3468
  year: 2012
  ident: 10.1016/S0252-9602(14)60069-2_bib23
  article-title: New stability results for fractional integral equation
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2012.02.057
– volume: 20
  start-page: 147
  issue: 1
  year: 2004
  ident: 10.1016/S0252-9602(14)60069-2_bib5
  article-title: Boundedness of nonlinear differential systems with impulsive effect on random moments
  publication-title: Acta Math Appl Sin
  doi: 10.1007/s10255-004-0157-z
– year: 1968
  ident: 10.1016/S0252-9602(14)60069-2_bib20
– volume: 17
  start-page: 839
  year: 2004
  ident: 10.1016/S0252-9602(14)60069-2_bib27
  article-title: Fixed points and Stability of an integral equation: non uniqueness
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2004.06.015
– volume: 2013
  start-page: 1
  issue: 172
  year: 2013
  ident: 10.1016/S0252-9602(14)60069-2_bib26
  article-title: Ulam-Hyers-Rassias stability of semilinear differential equations with impulses
  publication-title: Electron J Diff Equ
– year: 1995
  ident: 10.1016/S0252-9602(14)60069-2_bib2
– volume: 3
  start-page: 89
  issue: 2
  year: 2012
  ident: 10.1016/S0252-9602(14)60069-2_bib14
  article-title: Existence results on random impulsive semilinear functional differential inclusions with delays
  publication-title: Ann Funct Anal
  doi: 10.15352/afa/1399899934
– volume: 15
  start-page: 403
  year: 2008
  ident: 10.1016/S0252-9602(14)60069-2_bib9
  article-title: Almost sure stability of functional differential equations with random impulses
  publication-title: DCDIS, Series A: Math Anal
– volume: 22
  start-page: 595
  issue: 4
  year: 2006
  ident: 10.1016/S0252-9602(14)60069-2_bib7
  article-title: Existence and uniqueness of solutions to random impulsive differential systems
  publication-title: Acta Math Appl Sin
  doi: 10.1007/s10255-006-0336-1
– volume: 331
  start-page: 1135
  year: 2007
  ident: 10.1016/S0252-9602(14)60069-2_bib4
  article-title: Existence of solutions for impulsive partial neutral functional differential equations
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2006.09.043
– volume: 342
  start-page: 753
  year: 2008
  ident: 10.1016/S0252-9602(14)60069-2_bib28
  article-title: Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2007.11.019
– volume: 2013
  start-page: 403
  issue: 4
  year: 2013
  ident: 10.1016/S0252-9602(14)60069-2_bib16
  article-title: Stability analysis of second-order differential systems with Erlang distribution random impulses
  publication-title: Adv Differ Equ
– volume: 17
  start-page: 2530
  year: 2012
  ident: 10.1016/S0252-9602(14)60069-2_bib22
  article-title: New concepts and results in stability of fractional differential equations
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2011.09.030
– volume: 74
  start-page: 331
  year: 2011
  ident: 10.1016/S0252-9602(14)60069-2_bib10
  article-title: Existence and exponential stability of semilinear functional differential equations with random impulses under non-uniqueness
  publication-title: Nonlinear Anal TMA
  doi: 10.1016/j.na.2010.07.007
– year: 1992
  ident: 10.1016/S0252-9602(14)60069-2_bib29
– volume: 2009
  start-page: 1
  year: 2009
  ident: 10.1016/S0252-9602(14)60069-2_bib31
  article-title: Existence and stability of solutions for nonautonomous stochastic functional evolution equations
  publication-title: J Ineq Appl
– volume: 52
  start-page: 1683
  year: 2006
  ident: 10.1016/S0252-9602(14)60069-2_bib8
  article-title: p-moment stability of functional differential equations with random impulses
  publication-title: Comput Mathe Appl
  doi: 10.1016/j.camwa.2006.04.026
– volume: 395
  start-page: 258
  year: 2012
  ident: 10.1016/S0252-9602(14)60069-2_bib25
  article-title: Ulam's type stability of impulsive ordinary differential equations
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2012.05.040
– year: 2006
  ident: 10.1016/S0252-9602(14)60069-2_bib17
– volume: 49
  start-page: 1375
  issue: 9/10
  year: 2005
  ident: 10.1016/S0252-9602(14)60069-2_bib6
  article-title: Oscillation, stability, and boundedness of second-order differential systems with random impulses
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2004.12.009
– volume: 4
  start-page: 475
  issue: 3
  year: 2010
  ident: 10.1016/S0252-9602(14)60069-2_bib11
  article-title: Existence, uniqueness and stability results of random impulsive semilinear differential systems
  publication-title: Nonlinear Anal Hybrid Syst
  doi: 10.1016/j.nahs.2009.11.004
– volume: 27
  start-page: 222
  year: 1941
  ident: 10.1016/S0252-9602(14)60069-2_bib18
  article-title: On the stability of the linear functional equation
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.27.4.222
– volume: 5
  start-page: 413
  year: 2011
  ident: 10.1016/S0252-9602(14)60069-2_bib13
  article-title: Existence of random impulsive abstract neutral non-autonomous differential inclusions with delays
  publication-title: Nonlinear Anal Hybrid Syst
  doi: 10.1016/j.nahs.2011.04.002
– year: 1983
  ident: 10.1016/S0252-9602(14)60069-2_bib30
– volume: 64
  start-page: 3389
  year: 2012
  ident: 10.1016/S0252-9602(14)60069-2_bib24
  article-title: Nonlinear impulsive problems for fractional differential equations and Ulam stability
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2012.02.021
– volume: 86
  start-page: 861
  issue: 7
  year: 2007
  ident: 10.1016/S0252-9602(14)60069-2_bib3
  article-title: Existence results for an impulsive partial neutral functional differential equations with state-dependent delay
  publication-title: Appl Anal
  doi: 10.1080/00036810701354995
SSID ssj0016264
Score 2.1347435
Snippet In this paper, we study the existence, uniqueness, continuous dependence, Ulam stabilities and exponential stability of random impulsive semilineax...
In this paper, we study the existence, uniqueness, continuous dependence, Ulam stabilities and exponential stability of random impulsive semilinear...
SourceID wanfang
proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1055
SubjectTerms 35B35
35R12
35R60
60H99
contraction principle
Differential equations
exponential stability
Hyers-Ulam stability
Hyers-Ulam-Rassias stability
Mapping
random impulses
semilinear differential equations
Stability
Uniqueness
半线性微分方程
压缩映射原理
应用程序
指数稳定性
随机脉冲
Title STABILITY RESULTS OF RANDOM IMPULSIVE SEMILINEAR DIFFERENTIAL EQUATIONS
URI http://lib.cqvip.com/qk/86464X/201404/661745550.html
https://dx.doi.org/10.1016/S0252-9602(14)60069-2
https://www.proquest.com/docview/1551078006
https://d.wanfangdata.com.cn/periodical/sxwlxb-e201404007
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQCKk9FEpbdUuL3KqH9mA26zgb-4gQdNsKLi0SN8ufsFI2WciuoBd-O2PHWeihQuolUqzxxPLYM8_K-A1Cn5UIpGWWEi9KQ5ihBRHcWcIdzcU4QHweLiefnI4nZ-zHeXG-hg77uzAhrTL5_s6nR2-dWoZpNofz6XT4C6I1hS-FytSBbzf4YcbKwJ-_f7dK8xgBYI8UUiBMgvTDLZ5OQ2z8MmJfoxJCA8fCZVNfXEHk-FeseoRFN29U7VV98SgoHW-jFwlN4oNuwC_Rmqt30FZCljjt23YHPT9ZsbPC22ZM-zTtK_QNsGbMjv2D4di9rBYtbjyG8GWbGZ7O5ssqZLfj1s2mAY6qa9wXVAHHUGF31RGFt6_R2fHR78MJSaUViGFZviDaaAhNwjmuwyYXZabLQtPM-1Gui1JwZoy1APUy5qkrRGapGdtCcc6oZmObv0HrdVO7twh7pXJLda65MMxpr7SmOTwBunuhvR-g3dWEynlHoSEBFZSsgNPRALF-iqVJrOShOEYlH9LPwEoyWAmOKTJaSdIB2l9163U-0YH39pN_rS8JoeOprh97e0vYe-GHiqpds2xlgJsAsUBsgD6lhSCTD2hle3tT3WrpaKQwAiz27v_HsIueBTVdnvB7tL64XroPgIYWei8u9z20cfD95-T0Hq-IAuo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrSrgwKOAWMrDIA5wCJs6zsY-VhVlS7t7oZV6s_wsK2WTbbOrln_POHG25YAqcYmUyONYnvHMZ3n8DcAnJQJpmaWJF4VJmKF5IrizCXc0E6MA8Xm4nDyZjsZn7Md5fr4BB_1dmJBWGX1_59Nbbx2_DONsDhez2fAnRmuKfwqVqQPfLvrhrcBOhca-tX90PJ6uDxMQs7csUtg-CQK3F3m6TtqPn_fYl7afhAaahV91dXGJweNf4eoOHN2-VpVX1cWduHT4FB5HQEn2uzE_gw1X7cCTCC5JXLrNDjyarAla8W27zfw0zXP4jnCzTZD9TXDnvSqXDak9wQhm6zmZzRerMiS4k8bNZwGRqivS11RB31ASd9lxhTcv4Ozw2-nBOInVFRLD0myZaKMxOgnnuA7rXBSpLnJNU-_3Mp0XgjNjrEW0lzJPXS5SS83I5opzRjUb2ewlbFZ15V4B8UpllupMc2GY015pTTN8Inr3Qns_gN31hMpFx6IhERgULMcN0gBYP8XSRGLyUB-jlLcZaKglGbSEOxXZaknSAXxdi_V93iPAe_3Jv0xMYvS4T_RDr2-Jyy-cqajK1atGBsSJKAubDeBjNAQZ3UAjm5vr8kZLR1sWI4Rjr_9_DO_hwfh0ciJPjqbHu_AwdNmlDb-BzeXVyr1FcLTU76Lx_wGV2wWb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+results+of+random+impulsive+semilinear+differential+equations&rft.jtitle=Acta+mathematica+scientia&rft.au=GOWRISANKAR%2C+M.&rft.au=MOHANKUMAR%2C+P.&rft.au=VINODKUMAR%2C+A.&rft.date=2014-07-01&rft.pub=Elsevier+Ltd&rft.issn=0252-9602&rft.eissn=1572-9087&rft.volume=34&rft.issue=4&rft.spage=1055&rft.epage=1071&rft_id=info:doi/10.1016%2FS0252-9602%2814%2960069-2&rft.externalDocID=S0252960214600692
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg