Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans

The human pathogenic fungus Cryptococcus neoformans has diverged from a common ancestor into three biologically distinct varieties or sibling species over the past 10-40 million years. During evolution of these divergent forms, serotype A C. neoformans var. grubii has emerged as the most virulent an...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology of the cell Vol. 16; no. 5; pp. 2285 - 2300
Main Authors Bahn, Yong-Sun, Kojima, Kaihei, Cox, Gary M, Heitman, Joseph
Format Journal Article
LanguageEnglish
Published United States 01.05.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human pathogenic fungus Cryptococcus neoformans has diverged from a common ancestor into three biologically distinct varieties or sibling species over the past 10-40 million years. During evolution of these divergent forms, serotype A C. neoformans var. grubii has emerged as the most virulent and cosmopolitan pathogenic clade. Therefore, understanding how serotype A C. neoformans is distinguished from less successful pathogenic serotypes will provide insights into the evolution of fungal virulence. Here we report that the structurally conserved Pbs2-Hog1 MAP kinase cascade has been specifically recruited as a global regulator to control morphological differentiation and virulence factors in the highly virulent serotype A H99 clinical isolate, but not in the laboratory-generated and less virulent serotype D strain JEC21. The mechanisms of Hog1 regulation are strikingly different between the two strains, and the phosphorylation kinetics and localization pattern of Hog1 are opposite in H99 compared with JEC21 and other yeasts. The unique Hog1 regulatory pattern observed in the H99 clinical isolate is widespread in serotype A strains and is also present in some clinical serotype D isolates. Serotype A hog1delta and pbs2delta mutants are attenuated in virulence, further underscoring the role of the Pbs2-Hog1 MAPK cascade in the pathogenesis of cryptococcosis.
AbstractList The human pathogenic fungus Cryptococcus neoformans has diverged from a common ancestor into three biologically distinct varieties or sibling species over the past 10-40 million years. During evolution of these divergent forms, serotype A C. neoformans var. grubii has emerged as the most virulent and cosmopolitan pathogenic clade. Therefore, understanding how serotype A C. neoformans is distinguished from less successful pathogenic serotypes will provide insights into the evolution of fungal virulence. Here we report that the structurally conserved Pbs2-Hog1 MAP kinase cascade has been specifically recruited as a global regulator to control morphological differentiation and virulence factors in the highly virulent serotype A H99 clinical isolate, but not in the laboratory-generated and less virulent serotype D strain JEC21. The mechanisms of Hog1 regulation are strikingly different between the two strains, and the phosphorylation kinetics and localization pattern of Hog1 are opposite in H99 compared with JEC21 and other yeasts. The unique Hog1 regulatory pattern observed in the H99 clinical isolate is widespread in serotype A strains and is also present in some clinical serotype D isolates. Serotype A hog1 Delta and pbs2 Delta mutants are attenuated in virulence, further underscoring the role of the Pbs2-Hog1 MAPK cascade in the pathogenesis of cryptococcosis.
The human pathogenic fungus Cryptococcus neoformans has diverged from a common ancestor into three biologically distinct varieties or sibling species over the past 10-40 million years. During evolution of these divergent forms, serotype A C. neoformans var. grubii has emerged as the most virulent and cosmopolitan pathogenic clade. Therefore, understanding how serotype A C. neoformans is distinguished from less successful pathogenic serotypes will provide insights into the evolution of fungal virulence. Here we report that the structurally conserved Pbs2-Hog1 MAP kinase cascade has been specifically recruited as a global regulator to control morphological differentiation and virulence factors in the highly virulent serotype A H99 clinical isolate, but not in the laboratory-generated and less virulent serotype D strain JEC21. The mechanisms of Hog1 regulation are strikingly different between the two strains, and the phosphorylation kinetics and localization pattern of Hog1 are opposite in H99 compared with JEC21 and other yeasts. The unique Hog1 regulatory pattern observed in the H99 clinical isolate is widespread in serotype A strains and is also present in some clinical serotype D isolates. Serotype A hog1delta and pbs2delta mutants are attenuated in virulence, further underscoring the role of the Pbs2-Hog1 MAPK cascade in the pathogenesis of cryptococcosis.
The human pathogenic fungus Cryptococcus neoformans has diverged from a common ancestor into three biologically distinct varieties or sibling species over the past 10–40 million years. During evolution of these divergent forms, serotype A C. neoformans var. grubii has emerged as the most virulent and cosmopolitan pathogenic clade. Therefore, understanding how serotype A C. neoformans is distinguished from less successful pathogenic serotypes will provide insights into the evolution of fungal virulence. Here we report that the structurally conserved Pbs2-Hog1 MAP kinase cascade has been specifically recruited as a global regulator to control morphological differentiation and virulence factors in the highly virulent serotype A H99 clinical isolate, but not in the laboratory-generated and less virulent serotype D strain JEC21. The mechanisms of Hog1 regulation are strikingly different between the two strains, and the phosphorylation kinetics and localization pattern of Hog1 are opposite in H99 compared with JEC21 and other yeasts. The unique Hog1 regulatory pattern observed in the H99 clinical isolate is widespread in serotype A strains and is also present in some clinical serotype D isolates. Serotype A hog1Δ and pbs2Δ mutants are attenuated in virulence, further underscoring the role of the Pbs2-Hog1 MAPK cascade in the pathogenesis of cryptococcosis.
Author Cox, Gary M
Kojima, Kaihei
Bahn, Yong-Sun
Heitman, Joseph
Author_xml – sequence: 1
  givenname: Yong-Sun
  surname: Bahn
  fullname: Bahn, Yong-Sun
  organization: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
– sequence: 2
  givenname: Kaihei
  surname: Kojima
  fullname: Kojima, Kaihei
– sequence: 3
  givenname: Gary M
  surname: Cox
  fullname: Cox, Gary M
– sequence: 4
  givenname: Joseph
  surname: Heitman
  fullname: Heitman, Joseph
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15728721$$D View this record in MEDLINE/PubMed
BookMark eNpFkM9P3DAQha0KVH60Z26VT70FPI6drI9oRQEJiQP0bNmTiTBK4tR2qLZ_PVntSj3NHL739PRdsJMpTsTYFYhrEAZuRo_Xd0JVAJUwm_YLOwdTm0rpTXOy_kKbCrRUZ-wi53chQKmm_crOQLdy00o4Z8PLTBjcEP65EuLEY8_LG_GH53s-u_L21-24mzoeSuZhnB0WvkJd6HtKNJVwCO2Jj5CWgSakfcU27eYSMSIumU8U-5hGN-Vv7LR3Q6bvx3vJfv-6e90-VE_P94_b26cKlahL5WXnwHUosQGjHHZ-HQvG1Y1B3WqvfItEJLxvG1LS1Ep5LZveAaLUwtSX7Oehd07xz0K52DFkpGFw65YlWzBaNSDVCt4cQEwx50S9nVMYXdpZEHYv2K6CLQllAexe8Jr4caxe_Ejdf_5otP4EzsR68g
CitedBy_id crossref_primary_10_1016_j_fgb_2019_01_002
crossref_primary_10_1128_mbio_03275_23
crossref_primary_10_1007_s00294_007_0174_6
crossref_primary_10_1111_mpp_12446
crossref_primary_10_1128_mBio_00478_16
crossref_primary_10_1371_journal_pgen_1006982
crossref_primary_10_3389_fcimb_2021_794661
crossref_primary_10_1111_cmi_12943
crossref_primary_10_3389_fcimb_2018_00162
crossref_primary_10_1128_EC_00261_12
crossref_primary_10_3390_jof2030024
crossref_primary_10_1128_mSphere_00191_16
crossref_primary_10_1016_j_mib_2007_04_002
crossref_primary_10_1002_bip_23276
crossref_primary_10_1080_21505594_2015_1066962
crossref_primary_10_3389_fcimb_2019_00261
crossref_primary_10_1016_j_fgb_2014_11_004
crossref_primary_10_1007_s00018_014_1573_8
crossref_primary_10_1093_jacamr_dlac033
crossref_primary_10_1099_mic_0_28571_0
crossref_primary_10_1007_s13365_013_0169_7
crossref_primary_10_1007_s12281_011_0069_3
crossref_primary_10_3390_jof8080865
crossref_primary_10_1371_journal_pone_0018769
crossref_primary_10_1111_cmi_12961
crossref_primary_10_1128_CMR_00001_12
crossref_primary_10_1128_mbio_01156_24
crossref_primary_10_1371_journal_pgen_1009313
crossref_primary_10_1128_EC_00323_08
crossref_primary_10_1128_mSphere_01281_20
crossref_primary_10_1111_j_1439_0434_2009_01638_x
crossref_primary_10_1111_j_1567_1364_2006_00024_x
crossref_primary_10_1007_s10123_019_00069_1
crossref_primary_10_1128_aem_00545_24
crossref_primary_10_1091_mbc_e07_07_0688
crossref_primary_10_3389_fmicb_2019_00918
crossref_primary_10_1038_s41467_020_15329_2
crossref_primary_10_1038_srep36765
crossref_primary_10_1128_microbiolspec_FUNK_0048_2016
crossref_primary_10_3389_fmicb_2016_01532
crossref_primary_10_3389_fmicb_2016_01652
crossref_primary_10_1016_j_jcpa_2008_06_007
crossref_primary_10_1101_gr_184101_114
crossref_primary_10_1007_s11046_012_9600_5
crossref_primary_10_1021_acs_jafc_3c02663
crossref_primary_10_1080_21505594_2017_1423189
crossref_primary_10_1016_j_tim_2020_09_010
crossref_primary_10_1007_s00792_013_0546_4
crossref_primary_10_1128_spectrum_02866_22
crossref_primary_10_1128_EC_05305_11
crossref_primary_10_1007_s11046_011_9464_0
crossref_primary_10_1371_journal_pgen_1008052
crossref_primary_10_3389_fcimb_2019_00212
crossref_primary_10_1007_s11274_017_2272_z
crossref_primary_10_1016_j_gene_2019_02_032
crossref_primary_10_1038_s41598_017_18106_2
crossref_primary_10_1016_j_ijmm_2014_11_003
crossref_primary_10_1128_mBio_02790_21
crossref_primary_10_4049_jimmunol_1201861
crossref_primary_10_1016_j_fgb_2008_04_003
crossref_primary_10_1021_acsinfecdis_5b00111
crossref_primary_10_1128_mSphere_00506_18
crossref_primary_10_4161_viru_26774
crossref_primary_10_3389_ffunb_2021_632048
crossref_primary_10_1128_EC_00004_11
crossref_primary_10_1371_journal_ppat_1007126
crossref_primary_10_1111_j_1462_5822_2008_01273_x
crossref_primary_10_1371_journal_ppat_1007007
crossref_primary_10_3390_jof7100831
crossref_primary_10_1094_PHYTO_07_23_0260_R
crossref_primary_10_1016_j_tim_2007_02_001
crossref_primary_10_1080_21501203_2010_487054
crossref_primary_10_1093_femsyr_fov072
crossref_primary_10_1128_mBio_02962_19
crossref_primary_10_1016_j_fgb_2010_10_005
crossref_primary_10_1016_j_fgb_2010_10_006
crossref_primary_10_1128_EC_05207_11
crossref_primary_10_1038_s41598_017_14756_4
crossref_primary_10_1128_AEM_06072_11
crossref_primary_10_1371_journal_pone_0128291
crossref_primary_10_1091_mbc_e06_02_0113
crossref_primary_10_1128_EC_05124_11
crossref_primary_10_3389_fmicb_2016_02014
crossref_primary_10_1016_j_fgb_2010_08_002
crossref_primary_10_1111_mmi_12785
crossref_primary_10_1128_mBio_00945_14
crossref_primary_10_3390_jof7080610
crossref_primary_10_1111_j_1365_2958_2008_06417_x
crossref_primary_10_1128_EC_4_10_1746_1754_2005
crossref_primary_10_1128_EC_00375_08
crossref_primary_10_3389_fmicb_2019_02690
crossref_primary_10_3390_pathogens9090750
crossref_primary_10_1371_journal_ppat_1011721
crossref_primary_10_1016_j_cell_2008_07_046
crossref_primary_10_1091_mbc_e05_07_0699
crossref_primary_10_1128_mBio_01537_17
crossref_primary_10_1111_j_1567_1364_2011_00763_x
crossref_primary_10_1016_j_mimet_2006_12_021
crossref_primary_10_1007_s40475_020_00220_3
crossref_primary_10_1016_j_fgb_2012_02_001
crossref_primary_10_1074_jbc_M109_040840
crossref_primary_10_1093_femsle_fnv046
crossref_primary_10_1016_j_mib_2009_06_007
crossref_primary_10_1091_mbc_e07_06_0581
crossref_primary_10_1038_ncomms6194
crossref_primary_10_3389_fpls_2014_00088
crossref_primary_10_1007_s10482_016_0709_2
crossref_primary_10_1016_j_fgb_2018_01_006
crossref_primary_10_3390_jof7020083
crossref_primary_10_1016_j_jprot_2013_06_029
crossref_primary_10_1371_journal_pgen_1004292
crossref_primary_10_1111_j_1365_2958_2009_06933_x
crossref_primary_10_1038_s41467_022_34151_6
crossref_primary_10_3389_fmicb_2017_02514
crossref_primary_10_4489_MYCO_2010_38_1_026
crossref_primary_10_1080_1040841X_2021_2011834
crossref_primary_10_1128_EC_00098_10
crossref_primary_10_1074_jbc_M110_136812
crossref_primary_10_1128_EC_00349_07
crossref_primary_10_2174_1570164615666180820155807
crossref_primary_10_1128_mBio_02267_19
crossref_primary_10_1007_s00018_022_04353_8
crossref_primary_10_1007_s12275_023_00092_y
crossref_primary_10_3389_fcimb_2021_806465
crossref_primary_10_1007_s11046_024_00842_5
crossref_primary_10_1002_yea_1512
crossref_primary_10_1111_j_1365_2958_2009_06983_x
crossref_primary_10_3390_antibiotics10101223
crossref_primary_10_1016_j_fgb_2020_103464
crossref_primary_10_1128_AAC_01719_20
crossref_primary_10_1534_genetics_116_190595
crossref_primary_10_3389_fmicb_2018_02958
crossref_primary_10_5941_MYCO_2014_42_2_152
crossref_primary_10_1128_IAI_00994_13
crossref_primary_10_1038_emboj_2009_68
crossref_primary_10_1128_EC_05236_11
crossref_primary_10_1038_ncomms12766
crossref_primary_10_3390_molecules26113476
crossref_primary_10_1016_j_bbrc_2009_10_089
crossref_primary_10_1002_yea_1169
crossref_primary_10_1146_annurev_micro_020518_120210
crossref_primary_10_1128_EC_00218_13
crossref_primary_10_1016_j_idc_2006_07_001
crossref_primary_10_1128_mBio_02153_21
crossref_primary_10_1128_mSphere_00086_15
crossref_primary_10_1128_EC_00120_09
crossref_primary_10_1128_EC_00309_09
crossref_primary_10_1093_mmy_myv098
crossref_primary_10_1099_mic_0_28729_0
crossref_primary_10_1038_srep24824
crossref_primary_10_1128_EC_00235_12
crossref_primary_10_1128_mSphere_00785_19
crossref_primary_10_1128_EC_00068_06
crossref_primary_10_1016_j_pestbp_2024_105862
crossref_primary_10_1128_EC_00213_06
crossref_primary_10_1371_journal_ppat_1002411
crossref_primary_10_3390_ijms21041361
crossref_primary_10_3390_jof7060418
crossref_primary_10_3389_fmicb_2017_01879
crossref_primary_10_1128_AAC_02810_15
crossref_primary_10_1111_1462_2920_13198
crossref_primary_10_2217_fmb_10_44
crossref_primary_10_1590_0074_02760180057
crossref_primary_10_1128_EC_00216_07
crossref_primary_10_1128_mBio_01573_14
crossref_primary_10_1038_s41598_023_40825_y
crossref_primary_10_1093_femsyr_fox089
crossref_primary_10_1128_spectrum_02653_21
crossref_primary_10_6064_2012_635431
crossref_primary_10_1038_nrmicro1245
crossref_primary_10_1128_EC_00437_07
crossref_primary_10_1128_EC_5_3_469_479_2006
crossref_primary_10_1111_1758_2229_12527
crossref_primary_10_1128_EC_00256_09
crossref_primary_10_1021_acsbiomaterials_1c00752
crossref_primary_10_1128_mBio_00084_10
crossref_primary_10_1128_spectrum_00439_22
crossref_primary_10_1016_j_fgb_2010_06_009
crossref_primary_10_1016_j_cub_2005_09_047
crossref_primary_10_1128_AAC_02364_18
crossref_primary_10_1111_mmi_12388
crossref_primary_10_1128_msphere_00010_22
crossref_primary_10_3389_fmicb_2016_00901
crossref_primary_10_1111_mmi_13354
crossref_primary_10_1002_wrna_1424
crossref_primary_10_1371_journal_pone_0031186
crossref_primary_10_1128_MMBR_00045_10
crossref_primary_10_1093_mmy_myz132
crossref_primary_10_1128_mBio_02353_18
crossref_primary_10_1111_mmi_13461
crossref_primary_10_4489_MYCO_2009_37_3_161
crossref_primary_10_1128_EC_00069_14
crossref_primary_10_1111_j_1567_1364_2011_00744_x
crossref_primary_10_1128_mBio_02313_21
crossref_primary_10_1007_s11427_020_1959_5
crossref_primary_10_1371_journal_ppat_1002177
crossref_primary_10_3389_fmicb_2019_00442
crossref_primary_10_1016_j_jep_2019_02_008
crossref_primary_10_1111_1462_2920_12538
crossref_primary_10_1128_EC_4_12_1971_1981_2005
crossref_primary_10_1038_nrmicro1578
crossref_primary_10_1128_mBio_03313_19
Cites_doi 10.1128/9781555818241
10.1128/JB.182.9.2428-2437.2000
10.1128/EC.1.2.257-272.2002
10.1016/S1097-2765(01)00221-0
10.1101/gad.11.23.3206
10.1128/EC.2.5.1036-1045.2003
10.1126/science.276.5319.1702
10.1146/annurev.genet.36.052402.152652
10.1093/oxfordjournals.aje.a113861
10.1101/gad.1041402
10.1172/JCI112000
10.1084/jem.191.5.871
10.1099/00221287-148-8-2607
10.1128/MCB.18.10.5788
10.1101/gad.12.18.2874
10.1128/MCB.21.9.3179-3191.2001
10.1534/genetics.103.023408
10.1128/IAI.71.9.4831-4841.2003
10.1128/JCM.31.12.3305-3309.1993
10.1016/S0092-8674(00)80162-2
10.1007/BF02191592
10.1046/j.1365-294x.2000.01021.x
10.1128/MCB.16.6.2870
10.1128/IAI.68.2.982-985.2000
10.1046/j.1365-2958.2000.02002.x
10.1128/IAI.68.2.443-448.2000
10.1038/369242a0
10.1091/mbc.10.4.1147
10.1128/EC.3.6.1476-1491.2004
10.1091/mbc.12.2.407
10.1093/clinids/21.1.28
10.1006/fgbi.1999.1155
10.1128/MCB.13.3.1962
10.1006/fgbi.1999.1180
10.1016/S1087-1845(02)00510-8
10.1046/j.1365-2958.2003.03508.x
10.1093/genetics/153.4.1601
10.1038/nature00935
10.1128/MMBR.64.4.746-785.2000
10.1128/MCB.16.12.6715
10.1046/j.1365-2958.2001.02549.x
10.1128/MMBR.66.2.300-372.2002
10.1093/emboj/17.5.1385
10.1128/EC.3.4.1028-1035.2004
10.1126/science.7624781
10.1128/IAI.71.11.6155-6164.2003
10.1099/jmm.0.05427-0
10.1126/science.1103773
10.1128/EC.3.1.14-26.2004
10.1128/EC.1.1.75-84.2002
10.1128/EC.2.2.351-361.2003
10.1128/MCB.19.11.7651
10.1016/S0168-9525(02)02723-3
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
M7N
DOI 10.1091/mbc.E04-11-0987
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1939-4586
1059-1524
EndPage 2300
ExternalDocumentID 10_1091_mbc_e04_11_0987
15728721
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R37 AI039115
– fundername: NIAID NIH HHS
  grantid: R01 AI39115
– fundername: NIAID NIH HHS
  grantid: P01 AI044975
– fundername: NIAID NIH HHS
  grantid: R01 AI039115
– fundername: NIAID NIH HHS
  grantid: P01 AI44975
– fundername: NIAID NIH HHS
  grantid: R01 AI050113
– fundername: NIAID NIH HHS
  grantid: R01 AI50113
GroupedDBID ---
.GJ
123
18M
29M
2WC
34G
39C
3O-
4.4
53G
5RE
5VS
ABDNZ
ABSQV
ACGFO
ACYGS
ADBBV
ADDZX
ADNWM
AEILP
AENEX
AFFNX
AFHIN
AFOSN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
C1A
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
HH5
HYE
IAO
IGS
IH2
IHR
INIJC
ITC
KQ8
NPM
OHT
OK1
R0Z
RHF
RPM
SJN
TCB
TR2
VQA
W8F
WOQ
YHG
YKV
YNT
YQT
YWH
ZGI
ZXP
AAYXX
CITATION
M7N
ID FETCH-LOGICAL-c403t-b2da1adc2c6194acdb28719a369c575b4b7ceee0bb76e429344b526fa1cc25093
ISSN 1059-1524
IngestDate Thu Aug 15 23:23:17 EDT 2024
Thu Sep 26 18:03:49 EDT 2024
Sat Sep 28 08:49:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-b2da1adc2c6194acdb28719a369c575b4b7ceee0bb76e429344b526fa1cc25093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15728721
PQID 19546124
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_19546124
crossref_primary_10_1091_mbc_e04_11_0987
pubmed_primary_15728721
PublicationCentury 2000
PublicationDate 2005-May
2005-05-00
20050501
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-May
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular biology of the cell
PublicationTitleAlternate Mol Biol Cell
PublicationYear 2005
References 7624781 - Science. 1995 Jul 28;269(5223):554-8
10523653 - Mol Cell Biol. 1999 Nov;19(11):7651-60
15314203 - J Med Microbiol. 2004 Sep;53(Pt 9):935-40
12177355 - Microbiology. 2002 Aug;148(Pt 8):2607-15
10198063 - Mol Biol Cell. 1999 Apr;10(4):1147-61
9482735 - EMBO J. 1998 Mar 2;17(5):1385-94
12455973 - Eukaryot Cell. 2002 Feb;1(1):75-84
10931333 - Mol Microbiol. 2000 Jul;37(2):382-97
8308124 - J Clin Microbiol. 1993 Dec;31(12):3305-9
11104818 - Microbiol Mol Biol Rev. 2000 Dec;64(4):746-85
15590822 - Eukaryot Cell. 2004 Dec;3(6):1476-91
12455960 - Eukaryot Cell. 2002 Apr;1(2):257-72
11532139 - Mol Microbiol. 2001 Aug;41(3):717-30
9180081 - Science. 1997 Jun 13;276(5319):1702-5
15653466 - Science. 2005 Feb 25;307(5713):1321-4
8649397 - Mol Cell Biol. 1996 Jun;16(6):2870-7
3928681 - J Clin Invest. 1985 Aug;76(2):508-16
9389652 - Genes Dev. 1997 Dec 1;11(23):3206-17
11287622 - Mol Cell Biol. 2001 May;21(9):3179-91
7578756 - Clin Infect Dis. 1995 Jul;21(1):28-34; discussion 35-6
14573631 - Infect Immun. 2003 Nov;71(11):6155-64
10512666 - Fungal Genet Biol. 1999 Oct;28(1):1-5
12429703 - Annu Rev Genet. 2002;36:557-615
7565587 - Mol Gen Genet. 1995 Aug 21;248(3):260-9
12140549 - Nature. 2002 Jul 25;418(6896):387-91
12040128 - Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72
12684384 - Eukaryot Cell. 2003 Apr;2(2):351-61
12933823 - Infect Immun. 2003 Sep;71(9):4831-41
15238516 - Genetics. 2004 Jun;167(2):619-31
8441425 - Mol Cell Biol. 1993 Mar;13(3):1962-70
10639477 - Infect Immun. 2000 Feb;68(2):982-5
11179424 - Mol Biol Cell. 2001 Feb;12(2):407-19
8183345 - Nature. 1994 May 19;369(6477):242-5
12142009 - Trends Genet. 2002 Aug;18(8):405-12
14871933 - Eukaryot Cell. 2004 Feb;3(1):14-26
10779398 - Fungal Genet Biol. 2000 Feb;29(1):38-48
6377880 - Am J Epidemiol. 1984 Jul;120(1):123-30
12787363 - Mol Microbiol. 2003 Jun;48(5):1377-87
9744864 - Genes Dev. 1998 Sep 15;12(18):2874-86
10762242 - J Bacteriol. 2000 May;182(9):2428-37
15302835 - Eukaryot Cell. 2004 Aug;3(4):1028-35
11336700 - Mol Cell. 2001 Apr;7(4):767-77
11050543 - Mol Ecol. 2000 Oct;9(10):1471-81
9742096 - Mol Cell Biol. 1998 Oct;18(10):5788-96
12464634 - Genes Dev. 2002 Dec 1;16(23):3046-60
14555486 - Eukaryot Cell. 2003 Oct;2(5):1036-45
10704467 - J Exp Med. 2000 Mar 6;191(5):871-82
8808622 - Cell. 1996 Sep 20;86(6):865-75
10581270 - Genetics. 1999 Dec;153(4):1601-15
10639402 - Infect Immun. 2000 Feb;68(2):443-8
8943326 - Mol Cell Biol. 1996 Dec;16(12):6715-23
12553931 - Fungal Genet Biol. 2003 Feb;38(1):1-9
REF9
REF7
REF8
REF5
REF6
REF3
REF4
REF40
REF44
REF43
REF42
REF41
REF48
REF47
REF46
REF45
REF49
REF33
REF32
REF31
REF30
REF37
REF36
REF35
REF34
REF1
REF2
REF39
REF38
REF22
REF21
REF20
REF26
REF25
REF24
REF23
REF29
REF28
REF27
REF51
REF50
REF11
REF10
REF53
REF52
REF15
REF14
REF13
REF12
REF19
REF18
REF17
REF16
References_xml – ident: REF8
  doi: 10.1128/9781555818241
– ident: REF17
  doi: 10.1128/JB.182.9.2428-2437.2000
– ident: REF50
  doi: 10.1128/EC.1.2.257-272.2002
– ident: REF1
  doi: 10.1016/S1097-2765(01)00221-0
– ident: REF4
  doi: 10.1101/gad.11.23.3206
– ident: REF16
  doi: 10.1128/EC.2.5.1036-1045.2003
– ident: REF42
  doi: 10.1126/science.276.5319.1702
– ident: REF26
  doi: 10.1146/annurev.genet.36.052402.152652
– ident: REF29
  doi: 10.1093/oxfordjournals.aje.a113861
– ident: REF25
  doi: 10.1101/gad.1041402
– ident: REF19
  doi: 10.1172/JCI112000
– ident: REF9
  doi: 10.1084/jem.191.5.871
– ident: REF13
  doi: 10.1099/00221287-148-8-2607
– ident: REF44
  doi: 10.1128/MCB.18.10.5788
– ident: REF39
  doi: 10.1101/gad.12.18.2874
– ident: REF12
  doi: 10.1128/MCB.21.9.3179-3191.2001
– ident: REF34
  doi: 10.1534/genetics.103.023408
– ident: REF38
  doi: 10.1128/IAI.71.9.4831-4841.2003
– ident: REF41
  doi: 10.1128/JCM.31.12.3305-3309.1993
– ident: REF45
  doi: 10.1016/S0092-8674(00)80162-2
– ident: REF27
  doi: 10.1007/BF02191592
– ident: REF51
  doi: 10.1046/j.1365-294x.2000.01021.x
– ident: REF15
  doi: 10.1128/MCB.16.6.2870
– ident: REF11
  doi: 10.1128/IAI.68.2.982-985.2000
– ident: REF48
  doi: 10.1046/j.1365-2958.2000.02002.x
– ident: REF10
  doi: 10.1128/IAI.68.2.443-448.2000
– ident: REF33
  doi: 10.1038/369242a0
– ident: REF46
  doi: 10.1091/mbc.10.4.1147
– ident: REF6
  doi: 10.1128/EC.3.6.1476-1491.2004
– ident: REF7
  doi: 10.1091/mbc.12.2.407
– ident: REF47
  doi: 10.1093/clinids/21.1.28
– ident: REF21
  doi: 10.1006/fgbi.1999.1155
– ident: REF36
  doi: 10.1128/MCB.13.3.1962
– ident: REF14
  doi: 10.1006/fgbi.1999.1180
– ident: REF37
  doi: 10.1016/S1087-1845(02)00510-8
– ident: REF28
  doi: 10.1046/j.1365-2958.2003.03508.x
– ident: REF52
  doi: 10.1093/genetics/153.4.1601
– ident: REF18
  doi: 10.1038/nature00935
– ident: REF30
  doi: 10.1128/MMBR.64.4.746-785.2000
– ident: REF20
  doi: 10.1128/MCB.16.12.6715
– ident: REF3
  doi: 10.1046/j.1365-2958.2001.02549.x
– ident: REF24
  doi: 10.1128/MMBR.66.2.300-372.2002
– ident: REF43
  doi: 10.1093/emboj/17.5.1385
– ident: REF49
  doi: 10.1128/EC.3.4.1028-1035.2004
– ident: REF32
  doi: 10.1126/science.7624781
– ident: REF53
  doi: 10.1128/IAI.71.11.6155-6164.2003
– ident: REF23
  doi: 10.1099/jmm.0.05427-0
– ident: REF31
  doi: 10.1126/science.1103773
– ident: REF22
  doi: 10.1128/EC.3.1.14-26.2004
– ident: REF5
  doi: 10.1128/EC.1.1.75-84.2002
– ident: REF2
  doi: 10.1128/EC.2.2.351-361.2003
– ident: REF35
  doi: 10.1128/MCB.19.11.7651
– ident: REF40
  doi: 10.1016/S0168-9525(02)02723-3
SSID ssj0014467
Score 2.3340082
Snippet The human pathogenic fungus Cryptococcus neoformans has diverged from a common ancestor into three biologically distinct varieties or sibling species over the...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 2285
SubjectTerms Cryptococcus neoformans
Cryptococcus neoformans - classification
Cryptococcus neoformans - enzymology
Cryptococcus neoformans - genetics
Cryptococcus neoformans - pathogenicity
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Genes, Fungal
Humans
Mitogen-Activated Protein Kinases - chemistry
Mitogen-Activated Protein Kinases - genetics
Mitogen-Activated Protein Kinases - metabolism
Models, Biological
Mutagenesis, Site-Directed
Phosphorylation
Serotyping
Virulence
Title Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans
URI https://www.ncbi.nlm.nih.gov/pubmed/15728721
https://search.proquest.com/docview/19546124
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiDeBFvbAAQm5eO1duz6itjSAgAOtVE7WvtwYETtKbVD49cw-_EigEnCxIttaJ_t9GX-zszOD0HNKlNAReCdKJuCgqIMk4CkpgjDiIYN_YBEru0H2YzI7o-_O2flk0o6zSxqxL3_-Ma_kf1CFc4CryZL9B2T7QeEEfAZ84QgIw_GvMPbN430qZRfun306MeVS5z_4ug8NdMmQVd8RpXGY2Du-l6vWJh_ZzRmr9bKpwU5KU7tV1y6v4HKsYj90PXVfdjWc_KNNGGBYG51bi_alri6Cz-0Q7a-_lgufiFbOddlHQdx78MRs4xst0ZaNX6P1sYrxKgUb9gR6wwoyLgCtQDcsbzJiGBub0cj18fnNvoO6AVAWQu4fm3qLJAgz974eob1cWLgJS8EbdOnXWyW1u0vX0PUozZjZCXr09n0ffAIP2fbk6b5yVxEqI6-2nmybOrmxNnXNFc6KFS2nt9Et723g1446d9BEV3fRDdd_dH0PfdskEK4LDChiIBD2BMJADwwEwo5AGG7aIpC9oyeQGWJMIDwQ6D46e3N8ejgLfPuNQNIwbgIRKU64kpE0K11cKmG864zHSSZB5AsqUlBYOhQiTTTImphSwaKk4ERKENZZ_ADtVHWlHyEsScwPBFNg_BWNI8mFSmMhNIkLxjhJp-hFN3n50lVZyd3uCJLDlOc6pOCq5mbKp-hZN7k5WELDaw4_pb3MTe1C0Ot0ih66OR-G8hg9vvLKE3RzYO0u2mlWrd4DtdmIp5YbvwDTLICq
link.rule.ids 315,786,790,27955,27956
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specialization+of+the+HOG+pathway+and+its+impact+on+differentiation+and+virulence+of+Cryptococcus+neoformans&rft.jtitle=Molecular+biology+of+the+cell&rft.au=Bahn%2C+Yong-Sun&rft.au=Kojima%2C+Kaihei&rft.au=Cox%2C+Gary+M&rft.au=Heitman%2C+Joseph&rft.date=2005-05-01&rft.issn=1059-1524&rft.volume=16&rft.issue=5&rft.spage=2285&rft_id=info:doi/10.1091%2Fmbc.E04-11-0987&rft_id=info%3Apmid%2F15728721&rft.externalDocID=15728721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-1524&client=summon